
Semi-automatic support
for evolving functional dependencies

Mirjana Mazuran
DEIB – Politecnico di Milano

mirjana.mazuran@polimi.it

Elisa Quintarelli
DEIB – Politecnico di Milano

elisa.quintarelli@polimi.it
Letizia Tanca

DEIB – Politecnico di Milano
letizia.tanca@polimi.it

Stefania Ugolini
Department of Mathematics –

Milan University
stefania.ugolini@unimi.it

ABSTRACT
During the life of a database, systematic and frequent vi-
olations of a given constraint may suggest that the repre-
sented reality is changing and thus the constraint should
evolve with it. In this paper we propose a method and a
tool to (i) find the functional dependencies that are violated
by the current data, and (ii) support their evolution when
it is necessary to update them. The method relies on the
use of confidence, as a measure that is associated with each
dependency and allows us to understand ”how far” the de-
pendency is from correctly describing the current data; and
of goodness, as a measure of balance between the data satis-
fying the antecedent of the dependency and those satisfying
its consequent. Our method compares favorably with liter-
ature that approaches the same problem in a different way,
and performs effectively and efficiently as shown by our tests
on both real and synthetic databases.

1. INTRODUCTION
The information related to a certain reality of interest is

represented in a database by means of data, a vital resource
on which decision-making processes are based. The data
stored in a database must satisfy the semantic conditions
expressed by the schema plus integrity constraints. Specify-
ing and enforcing constraints grants us better data qual-
ity, maintenance, query optimization, view updating and
database integration and exchange; in particular, functional
dependencies have been widely applied to these aims and,
from the 70s on, their knowledge has been used to support
database design and management, reverse engineering and
query optimization. The number of application scenarios
they are used in has grown over time including, more re-
cently, automated DB analysis such as knowledge discovery
and data mining. A functional dependency (FD) is a con-
straint between two sets X and Y of attributes in a relation

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

R of a database: R is said to satisfy the functional depen-
dency X → Y if each X value is associated with precisely
one Y value.

Nowadays, huge amounts of data are generated daily and
may come from different applications and sources where con-
straints are not equally enforced, thus the original datasets
may be inconsistent with each other or even by themselves
[1, 2]. Once a database designer or administrator is able to
understand that a constraint no longer holds, he/she can de-
cide what to do. Most systems that deal with discrepancies
of this kind re-establish consistency by changing the data
that violate the constraints. In our work we allow for a differ-
ent interpretation. Indeed, from our point of view, changes
in the data might also mean that their semantics is evolv-
ing for some reason, like for instance law or policy changes.
Therefore, once the DB administrator has ascertained that
this is the case, s/he will be able to re-establish consistency
by appropriately modifying the violated constraints. Note
that the new constraints capture a succinct representation
of the new semantics of the data, thus, this kind of analysis
is interesting for knowledge discovery purposes.

This paper’s main goal is to propose a method to modify
functional dependencies so as to adjust them to the evolu-
tions of the modeled reality that may occur during database
life. The method we propose provides a way to understand
which FDs are violated and, if needed, to modify them by
adding, to their antecedent, a minimal set of attributes that
makes them consistent with the data.

Running example Consider the relation Places in Figure 1
and assume that the following FDs be defined on it:

F1 : [District, Region]→ [AreaCode]

F2 : [Zip]→ [City, State]

F3 : [PhNo,Zip]→ [Street]

All the tuples in Places violate F1; tuples t1, t2 and t3 violate
F2 and tuples t10 and t11 violate F3. Thus, these three FDs
are not satisfied by the data. If the DBMS is able to detect
that (e.g. by means of periodic or continuous checks of FDs
validity) then it can present it to the designer. Suppose the
designer realizes that an FD not being satisfied by the data
is not a mistake but a symptom of a real-world situation
which is no more reflected by the semantics of the FDs, at
this point s/he can decide to integrate some of the candidate

 

 

Series ISSN: 2367-2005 293 10.5441/002/edbt.2016.28

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.28


tid

t1
t2
t3
t4
t5
t6
t7
t8
t9
t10

t11

District
Brookside

Alexandria

Brookside
Brookside
Brookside
Brookside

Alexandria
Alexandria
Alexandria
Alexandria
Alexandria

Region
Granville

Moore Park

Granville
Granville
Granville
Granville

Moore Park
Moore Park
Moore Park
Moore Park
Moore Park

Municipal
Glendale

Guildwood

NapaHill

QueenAnne

Glendale
Glendale

Guildwood

NapaHill
NapaHill

QueenAnne
QueenAnne

AreaCode
613
613
613
515
515
415
415
415
517
517
517

PhNo
974-2345
974-2345
299-1010
220-1200
220-1200
220-1200
930-2525
555-1234
888-5152
888-5152
888-5152

Street
Boxwood
Boxwood
Westlane

Squire
Squire
Napa
Main
Tower
Main
Main
Bay

Zip
10211
10211
10211
02215
02215
60415
60415
60415
60415
60601
60601

City
NY
NY
NY

Boston
Boston
Chicago
Chicago
Chester
Chicago
Chicago
Chicago

State
NY
NY
MA
MA
MA
IL
IL
IL
IL
IL
IL

Figure 1: Running example: relation Places

changes into the database. Thus, the idea of the paper is to
find a way to change the constraints instead of the data and
make them valid again. How can we repair an FD? First of
all, without loss of generality we can assume that all FDs
are decomposed so that their consequent contains a single
attribute. In this way it is easy to see that modifying the
consequent is a no-issue. What we can do instead is acting
upon the antecedent: of course deleting attributes from it
cannot repair the FD but adding attributes might. Thus, our
aim is to identify the FDs violated by the data, find possible
repairs and present them to the designer to be evaluated. The
method can be used periodically on the data in order to keep
them consistent with the constrains.

The paper is organized as follows: in Section 2 we re-
view the state of the art, Section 3 introduces the technical
notions and the considerations at the basis of our proposal,
while Section 4 presents our proposal to evolve violated FDs.
In Section 5 we formally compare our approach with a pro-
posal which has the same aim as ours, but is based on the
notion of entropy to measure how much an FD is far from
being exact, while for the same aim we use the (simpler)
notion of confidence. In Section 6 we explain the experi-
mental results we have obtained on both real and synthetic
datasets and finally in Section 7 we draw the conclusions of
our work.

2. RELATED WORK
In the last years, research involving FDs has taken a dif-

ferent turn with respect to the past; today, automated data
analysis has become fundamental for knowledge discovery
and data mining and FDs in particular provide invaluable
intensional knowledge on the relation instances. As a conse-
quence, the concept has been used in a wide range of appli-
cation scenarios, which in turn originated many extensions
and variants [3], including: Conditional FDs (CFDs) [4], Ap-
proximate FDs (AFDs) [5], Approximate Conditional FDs
(ACFDs) [6], Temporal FDs (TFDs) [7], Approximate Tem-
poral FDs (ATFDs) [8], and others.

CFDs [4], have been introduced that specify FDs that do
not hold on the whole relation but just on a subset of its
data.

Both FDs and CFDs are exact, i.e., they hold for all the
instances in the relation (in the case of FDs) or for certain
subsets of it (for CFDs). These rules may easily break in the

sense that even small errors or minor changes to the rela-
tion instance may cause that the constraint no longer holds.
However, as time passes by and the lifecycle of a database
goes on, reality may change and so should the constraints
defined on the data. It is thus appropriate to monitor data
evolution as a mirror of reality in order to get useful insights
about the way data are evolving in time. To this aim, allow-
ing some exceptions in the table makes it possible to obtain
a better understanding of the data. In fact, a few rows might
contain errors due to various noise factors or simply be an
exception to the rule, and being able to detect the presence
of unexpected exceptions may inform us that something has
changed in the data semantics. To deal with this scenario,
AFDs have been introduced, that is, FDs that are associated
with some degree of approximation. AFDs are FDs that al-
low some rows to contain “errors” as exceptions to the rules;
the more errors they allow, the more approximate they are,
that is, their “approximation degree” changes. Thus, AFDs
“bend but do not break” and coherently ACFDs have been
introduced as an extension of CFDs.

The problem of constraint violation has been faced in the
literature in different ways. Works such as [9, 10, 11, 12, 13,
14] propose strategies to query inconsistent databases trying
to re-establish consistency by changing the facts that violate
the constraints. Thus, the problem of inconsistent databases
is considered from a query-answering point of view, that is,
the data that can produce inconsistency with respect to the
integrity constraints imposed at design time are discarded.
By contrast, we aim at modifying the integrity constraints so
the semantics of the database will adhere as much as possible
to the changing reality. Therefore, the data that violate
the constraints are not considered as abnormal facts but are
used to update obsolete constraints. A similar approach was
developed in [15] whose authors used data mining techniques
to repair tuple constraints. In this work we extend their
methodology to deal with functional dependencies.

FDs have been used as means to enforce data quality
through data profiling and cleaning. In [16] the authors pro-
pose an algorithm for discovering Denial Constraints (which
include functional dependencies) without supposing that any
constraint has been specified on the database at design time.
In order to apply the proposal in [16] to update the con-
straints on a given database when they are not up to date,
one has: (i) first to discover all the possible constraints from
data, then (ii) relax the constraints, considered as if they

294



have been specified at design time on the database schema,
that do not hold on the current instance. This approach
is rather impractical when the FDs, though obsolete, have
been originally defined by a designer, first because of ef-
ficiency reasons, and second because, as we have noticed
testing the on-line algorithm of [16] the inferred constraints
not always include extensions of the ones specified by the
designer.

Not many works have been proposed in the literature that,
in the case of inconsistency, try to change the constraints in-
stead of the data. The authors of [17, 18] have for the first
time introduced a model that considers functional depen-
dency repair. They illustrate a method to extend, by adding
one attribute, the body of a violated FD in order to obtain a
new dependency that is not violated anymore. In particular,
given a functional dependency F : X → Y over a relation
R, each attribute of R (other than X and Y ) is evaluated
as a candidate using the notion of entropy for comparing
clusterings of tuples. As a result, a ranked list of candidate
attributes is given to the designer. Given an FD that is vi-
olated by the data, the strategy in [17]: i) first computes a
ground truth clustering of the data, based on the attributes
in the FD; ii) then, for each attribute A, not present in
the FD, computes a clustering of the data based on A and
finally iii) computes the relative entropy (see Section 3) be-
tween this clustering and the ground truth clustering, which
means comparing all its clusters with those in the ground
truth clustering. The metric used in the work, which is the
information variation requires frequent clustering of tuples
in order to understand how good a candidate attribute is.
We propose a very simple approach based on confidence and
a measure of goodness that only require to count tuples. In
Section 5 we explain the details of [17] and give a theoretical
comparison between this work and ours. An experimental
comparison between the two approaches was unfortunately
impossible due to the unavailability of the tool presented
in [17].

3. BASIC NOTIONS
Let U be a finite set of attribute names; we denote at-

tributes by capital letters from the beginning of the alpha-
bet (e.g., A, B, C, A1, etc.), while capital letters from the
end of the alphabet (e.g., U , X, Y , Z, X1, etc.) are used
to denote sets of attributes. Let D be a finite set of do-
mains, each containing atomic values for the attributes; the
domain Dj contains the possible values for the attribute Aj .
A relation schema R(A1, A2, ..., An) describes the structure
of a relation whose name is R and whose set of attributes is
A1, A2, ..., An. A relation instance r of relation R, is a finite
set of tuples t1, t2, . . . , tm of the form th = (v1, v2, ..., vn),
where each value vk, 1 ≤ k ≤ n, is an element of Dk. t[Ai]
denotes the value assumed by the attribute Ai in the tuple
t (i.e., vi). Given an instance r of a relation R, we denote
by |r| the number of tuples in r and |R| the number of at-
tributes in R. Moreover, πX(r) is the projection of r on the
attributes of X. The structure of a functional dependency
is defined as follows:

Definition 1 (Syntax) Given a relation schema R, a func-
tional dependency F over R has the form F : X → Y where
X and Y are sets of attributes in R.

We use XY to denote the union of X and Y , moreover
|F | = |XY | is the number of attributes in the FD and, given

two FDs F1 and F2, |F1 ∩ F2| is the number of attributes
common to F1 and F2. An instance r of a relation schema
R can either satisfy an FD or not, according to Definition 2.

Definition 2 (Semantics) Given an instance r of a rela-
tion R, r satisfies F if, for every pair of tuples t1, t2 in r,
if t1[X] = t2[X] then t1[Y ] = t2[Y ].

We say that an instance r is inconsistent with respect to F
if it does not satisfy Definition 2.

Let us introduce a useful characterization of the notion of
FD with the introduction of confidence and goodness.

Definition 3 Let r be an instance of a relation R defined
over a set of attributes S. Let X and Y be subsets of S and
F : X → Y a functional dependency over R. The confidence
of F w.r.t. r is:

cF,r =
|πX(r)|
|πXY (r)|

while the goodness of F w.r.t. r is:

gF,r = |πX(r)| − |πY (r)|

Moreover, based on the value of the confidence of an FD,
we have the following definition:

Definition 4 Given a relation R, an instance r of R, a
functional dependency F over R and its confidence cF,r, we
say that F is an exact functional dependency iff cF,r = 1,
otherwise it is an approximate functional dependency.

All three FDs from Example 1 are approximate and have
the following confidence and goodness values: cF1,P laces =
0.5 and gF1,P laces = −2; cF2,P laces = 0.667 and gF2,P laces =
−1; cF3,P laces = 0.889 and gF3,P laces = 1. Note that the
confidence of an FD reflects the average number of values of
Y that are associated with each value of X in r. When the
confidence is 1 it means that, for each distinct value of X,
exactly one value of Y is associated with X, thus it is easy
to see that exact FDs are the classical FDs of Definition 1:

The notion of functional dependency can be also formal-
ized as a function between clusters of tuples.

Definition 5 (Clustering) Given an instance r of a rela-
tion R and a set X of attributes of R, we call X-clustering
a partition CX = {C1, C2, ..., CK} of r into mutually disjoint
subsets Ci, with i ∈ {1, . . . ,K}, called classes (or clusters),
such that each class Ci contains all the tuples of r that have
the same value for the attributes in X.

Given F : X → Y , there are two clusterings naturally
generated by F : CX and CY . Intuitively, if each cluster in
CX is associated with only one cluster in CY (that is, if there
is a function between classes in CX and classes in CY ) then
F is satisfied, otherwise it is not. Consider as an example

F1 : [District, Region]→ [AreaCode]
The two clusterings CDistrict,Region and CAreaCode are shown
in Figure 2a. As we can see, the relation between the two
clusterings is not a function because there are some tuples,
having the same value of District, Region that are associ-
ated with sets having different values of AreaCode. In fact,
F1 is violated by the data.

To understand whether F is satisfied or not, we consider
the two clusterings CX and CXY . Since CXY is finer-grained
than CX we always have: |CXY | ≥ |CX |. When |CXY | > |CX |,

295



CDistrict, Region CAreaCode

t1   t2   t3
t4   t5

t6   t7   t8
t9   t10   

t11

t1   t2   t3

t4   t5
t6   t7   

t8

t9   t10   
t11

D= Brookside
R= Granville

D= Alexandria
R= Moore Park

A= 613

A= 515 
A= 415 

A= 517 

CDistrict, Region, Municipal CAreaCode

t1   t2   
t3

t6   t7   
t8

t4   t5

t9   t10   
t11

t1   t2   t3

t4   t5
t6   t7   

t8

t9   t10   
t11

CDistrict, Region, PhNo CAreaCode

t1   t2

t4   t5

t9   t10   
t11

t3

t6
t7

t8

t1   t2   t3

t4   t5
t6   t7   

t8

t9   t10   
t11

(a) F1: [District (D), Region (R)] --> [AreaCode (A)] (b) F': [District, Region, Municipal] --> [AreaCode] (c) F'': [District, Region, PhNo] --> [AreaCode]

Figure 2: FDs clusterings

it means that there exists at least one class Cx in CX whose
tuples form more than one class in CXY , thus, the relation
between CX and CY is not a function. Only when |CXY | =
|CX |, we have that each class in CX forms one class in CY
and therefore F is satisfied. If there is a function between
CX and CY , such function is surjective, because each tuple in
the database contains values for both X and Y 1, thus each
value of Y is necessarily associated with at least one value of
X. Now, the function could be injective (and thus bijective)
or not. In particular, we introduce the following definition:

Definition 6 (Proper association) Given two clusterings
CX and CY , we say that a class Cx in CX is properly asso-
ciated with a class Cy in CY , when Cy is the unique class in
CY such that Cx ⊆ Cy.

The concept of proper association is crucial for defining
an FD in terms of a function between two given clusterings.
Given F : X → Y , when for every class Cx in CX there
is a class Cy in CY which is properly associated with Cx
(i.e. Cy is the unique class that contains Cx), one usually
says that the clustering CX is homogeneous with respect to
CY . Accordingly, we say that there is a well-defined function
between the classes in CX and those in CY . Intuitively, a
well-defined function is bijective.

From our point of view, FDs that allow us to obtain a
well-defined function are to be preferred to other FDs. Con-
sider F ′ : [District, Region,Municipal] → [AreaCode] and

F
′′

: [District, Region, PhNo] → [AreaCode]; the cluster-
ings CX and CY generated by the two FDs are shown in Fig-
ure 2b and Figure 2c respectively. As we can see, in both
cases there is a function between CX and CY , however, F ′ al-
lows us to obtain a well-defined function while F ′′ does not.
Intuitively speaking, the municipality is “a better choice”
than the phone number.

To explain this intuition, consider again that a non-satisfied
F : X → Y generates two clusterings CX and CY where the
number of clusters in CX is smaller than the number of clus-
ters in CY . To obtain a function between the two clusterings,
we need to “further fragment” CX so that there is the same
number of clusters as in CY , or more: in our method we do
this by adding attributes to X.

Note that the number of clusters in CX gives us an idea of
how “specific” is a set of attributes X, that is, if the number

1Note that attributes involved in FDs do not contain NULL
values

of clusters is 1 all the tuples in the relation are put in the
same cluster, while, in the extreme case where each tuple is
assigned to a distinct cluster, X is actually a candidate key.

This second case will surely happen if, while repairing F ,
we add to its antecedent an attribute that has the property
of being UNIQUE in the relation. Adding a UNIQUE at-
tribute allows to repair any FD because this attribute alone
determines Y thus it practically makes X “useless” in the
FD. Something very close to this case happens with the two
dependencies F ′ and F ′′ above: F ′ is “better” than F ′′ be-
cause adding the municipality to the antecedent allows to
generate two clusterings that are associated by a function
such that the specificity of the domain is as much as possi-
bile similar to the specificity of the codomain, while, due to
the high specificity of the phone number, adding it would
make the antecedent too specific (also making the other at-
tributes “almost useless”). We will see that our repairing
method discourages the addition of such attributes (they
are penalized through the goodness coefficient) and instead
prefers those attributes that fragment CX just as much as it
is necessary to reach the same specificity as CY .

Notice the relationship between these concepts and the
confidence and goodness of an FD F :

• F is exact when there is a well-defined function from
CX to CY , that is, the confidence coefficient of an FD
somehow measures the “degree of being a function”
(cF,r ≤ 1).

• When this pleasant fact happens (cF,r = 1), then the
goodness coefficient measures how far our function is
from being injective. In fact it is injective when gF,r =
0. In any case, when cF,r is different from 1, the good-
ness coefficient measures the distance of our approxi-
mate FD from having the domain with the same car-
dinality of the co-domain.

Therefore the case {cF,r = 1, gF,r = 0} is such that to each
class in CX is associated one and only one class in CY : the
corresponding FD allows to obtain a bijective function be-
tween the two clusterings and so it is the best function which
cannot be further improved. In fact, from a well-known re-
sult on functions 2, since the correspondence F is surjective
and |πX(r)| = |πY (r)|, it is therefore bijective. Finally we

2Let f : X −→ Y be a function. If |X| = |Y |, then f is
injective if and only if f is surjective.

296



notice that the goodness coefficient can be positive or neg-
ative. It is positive when the domain cardinality is higher
than the co-domain one and negative instead when the car-
dinality of the domain is smaller.

As a final remark, notice that, if the DB schema is in
a higher normal form, the only non-trivial FDs are those
determining candidate keys. However, we believe this to
be a strong assumption, especially nowadays, since NoSQL,
semi-structured and other types of poorly organized data are
widely used. Thus, we do not rely on the assumption that
a database is in a higher normal form and obtaining some
insight about the data becomes very important in such a
scenario.

4. EVOLVING FUNCTIONAL DEPENDEN-
CIES

The goal of our method is to: (i) understand which FDs
are violated and (ii) repair these FDs by adding attributes
to the antecedent of the dependency.

Objective Given an FD F : X → Y , not satisfied by the
data, our aim is to find a minimal set of attributes U such
that the new FD FU : XU → Y is satisfied by the data.

Given a relation schema R, an instance r of R, and all the
FDs defined on it, for each FD, F : X → Y , we compute its
confidence. If the result is lower than 1 then the FD is not
satisfied and, to repair it, we look for a set of attributes U in
R \XY such that, if added to the antecedent of F , generate
a new dependency FU : XU → Y whose confidence is 1.

4.1 FD ordering
If an instance r of a relation R violates more than one

constraint we need to decide the order in which they should
be repaired. To do this, similarly to [17], for each FD F we
compute a rank that is the average of two indicators:

1. icF,r: the “degree of inconsistency” of F with respect
to the relation r: icF,r = 1− cF,r

2. cfF : the “conflict score” of F with respect to the other
FDs defined on R, which is independent of any specific
instance and depends on the number of attributes that
F has in common with these FDs:

cfF =

∑
F ′∈F

|F∩F ′|
max(|F |,|F ′|)

|F|

where F is the set of FDs defined on R.

The final rank is the average of these two indicators:

OF =
icF,r + cfF

2

Given a set F of FDs, we sort F according to the rank OF
of each F ∈ F and then follow this order to repair the FDs.
Consider the relation in Figure 1 and the three FDs F1, F2

and F3 in Example 1. The constraints should be examined
in the following order: F1 (0.25), F2 (0.167), F3 (0.056).

4.2 Candidate-repair ordering for an FD
Given an instance r of a relation R, an FD F : X → Y and

an attribute A which is a candidate to extend the antecedent

of FD, we first compute the confidence of the candidate FD
FA : XA→ Y as:

cFA,r =
|πXA(r)|
|πXAY (r)|

and then provide an ordered list of candidate attributes
sorted in descending order of cFA,r. However, this ranking
does not allow us to distinguish which attribute is better
when the FDs they produce have the same confidence. Con-
sider F1 : [District, Region]→ [AreaCode] defined on table
Places. Intuitively, if we add the attribute Municipal to
the antecedent of F1 we obtain an exact FD and, similarly,
if we instead add the attribute PhNo we also obtain an ex-
act FD. Now, is it more reasonable to add the municipality
or the phone number as attribute that is part of a functional
dependency? Which one is better and why?

To provide a better ranking, following the intuition ex-
plained in Section 3 we use the goodness of FA, which de-
pends on the number of distinct values A assumes, as shown
in Definition 3:

gFA,r = |πXA(r)| − |πY (r)|

Once we have computed both the confidence and the good-
ness of each attribute in R \ XY , we produce, for each
violated FD, a ranked list of candidate attributes, sorted
first according to cFA,r and then, as secondary sorting key,
according to gFA,r. Consider F1 : X → Y with X =
[District, Region] and Y = [AreaCode]. The confidence
and goodness of F1 are:

cF1,P laces =
|πDistrict,Region(Places)|

|πDistrict,Region,AreaCode(Places)|
=

2

4
= 0.5

gF1,P laces = |πDistrict,Region(Places)| − |πAreaCode(Places)| =
= 2− 4 = −2

F1 is not satisfied by the tuples in Places, thus, for each
candidate attribute A in relation Places we compute the two
parameters cFA

1 ,P laces
and gFA

1 ,P laces
(Table 1 shows the

results). The two candidate attributes Z1 = [Municipal]

A cFA
1 ,P laces

gFA
1 ,P laces

Municipal 4/4 = 1 0
PhNo 7/7 = 1 3
Street 7/8 = 0.875 3

Zip 4/5 = 0.8 0
City 4/5 = 0.8 0
State 3/5 = 0.6 −1

Table 1: Evolving F1 : [District, Region]→ [AreaCode]

and Z2 = [PhNo] allow us to obtain new exact FDs, while
every other attribute does not. Moreover, attribute Z1 has
a better rank because it allows to discriminate the distinct
values ofDistrict, Region,AreaCode in a homogeneous way.

4.3 When more than one attribute is needed
Until now we have assumed that we repair an FD by

adding only one attribute to its antecedent. Of course, it
might happen that adding only one attribute is not enough
to obtain an exact new FD. In this case, we can either stop or
try to find a“more specific”FD by adding more attributes to

297



its antecedent. We handle this scenario as an iterative pro-
cess where, at each step of iteration, the method presented
so far is applied. Thus, at each step we have to choose the
next attribute to be added to the antecedent and we do so by
adding the attribute that produces the candidate FD with
the highest rank. Consider F4 : X → Y with X = [District]
and Y = [PhNo], whose confidence and goodness are:

cF4,P laces =
|πDistrict(Places)|

|πDistrict,PhNo(Places)|
=

2

7
= 0.29

gF4,P laces = |πDistrict(Places)| − |πPhNo(Places)| =
= 2− 6 = −4

Thus, F4 is not satisfied, and Table 2 shows the ranking of
the attributes which are candidates to extend it.

A cFA
4 ,P laces

gFA
4 ,P laces

Street 0.875 1
Municipal 0.571 -2
AreaCode 0.571 -2

City 0.571 -2
Zip 0.5 -2

State 0.429 -3
Region 0.286 -4

Table 2: Evolving F4 : [District]→ [PhNo]

As we can see, there is no attribute that allows us to obtain
an exact new FD thus we proceed by adding the attribute
that generates the candidate FD with the highest rank. We
obtain a new FD which is still not exact and then apply our
method again to look for attributes that can be added to
its antecedent. Therefore, we add attribute Street to the
antecedent of F4 and obtain FStreet4 : [District, Street] →
[PhNo]. Table 3 shows the ranking of the attributes which
are the candidates to extend FStreet4 .

B c
F

Street,B
4 ,P laces

g
F

Street,B
4 ,P laces

Municipal 1 4
AreaCode 1 4

Zip 0.889 4
City 0.875 4
State 0.875 3

Table 3: Evolving FStreet4 : [District, Street]→ [PhNo]

We have found two attributes, Municipal and AreaCode,
that allow to extend F4′ and obtain an exact new FD. There-
fore, the two pairs Street, Municipal and Street, AreaCode
allow to extend the antecedent of F4 and obtain an exact new
FD. They score the same value also for the goodness thus
they are actually equivalent w.r.t. our aim. In such a case,
it is for the designer to choose which one is more significant
w.r.t. the application scenario.

4.4 Algorithm
Our approach is formalized by Algorithm 1 which receives

as input a relation R (both instance and schema) and the
set F of FDs defined over R. First of all, the function Or-
derFDs (line 2) orders all FDs according to the rank intro-
duced in Section 4.1. Then, for each functional dependency

F , the algorithm computes its confidence cF,r (line 4) in or-
der to understand whether the FD is satisfied or not. If it
is not satisfied, it calls the ExtendByOne function that
computes the confidence and goodness (w.r.t. F) of all at-
tributes in R other than those that are already in F (lines 3
and 4 in Algorithm 2) and returns the set of all candidates
sorted according to their rank. Finally, if the considered at-
tribute allows to obtain an exact new FD, it is added to the
set of exact new FDs (line 9 in Algorithm 1).

Algorithm 1 FindFDRepairs (pseudocode).

Input: R the schema of a relation
r the instances of R
F the functional dependecies defined on R

Output: Exact the set of exact FDs obtained

1: Exact = 〈〉;Cand = 〈〉
2: FDs = OrderFDs(F)
3: for all F : X → Y ∈ F do
4: cF,r = |πX (r)|

|πXY (r)|
5: if cF,r < 1 then
6: Cand = ExtendByOne(F, R, r)
7: for all 〈F ′, cF ′,r, gF ′,r〉 ∈ Cand do
8: if cF ′,r = 1 then
9: Exact =addInOrder(Exact, 〈F ′, cF ′,r, gF ′,r〉)

10: end if
11: end for
12: end if
13: end for
14: return Exact

Notice that the computation of confidence and goodness
can be implemented using SQL queries. In fact, the val-
ues |πX(r)|, |πXY (r)|,|πXA(r)|, |πXAY (r)|, |πXY (r)|, |πA(r)|
used in the algorithm are computed by counting the num-
ber of distinct tuples over the set of attributes involved in
the antecedent and consequent of the FD. For example, the
confidence of F1, is the ratio between the results of:

Q1: select count(distinct District, Region)

from Places

Q2: select count(distinct District, Region, AreaCode)

from Places

The computation of these queries heavily depends on the
query plan implemented by the DBMS and on the presence
of supporting data structure such as indices. What we can
say is that, considering the worst case scenario where no op-
timization techniques are implemented, we have a O(n logn)
complexity because counting the distinct values corresponds
to a sorting (O(n logn)) followed by counting (O(n)). More-
over, looking for a single attribute at a time to extend the
antecedent of an FD is linear with respect to the number of
attributes in the relation.

However, when looking for repairs that contain more than
one attribute, things get more complicated because the num-
ber of candidate repairs grows exponentialy with respect to
the number of attributes. To limit this problem we use a
greedy algorithm that chooses the FD candidates accord-
ing first to the number of attributes in their antecedent and
then to their rank. To this aim, we modify Algorithm 1 by
introducing a queue that contains candidate repairs sorted
by increasing cardinality of the antecedent and decreasing

298



Algorithm 2 ExtendByOne (F, R, r) pseudocode.

1: Cand = 〈〉
2: for all A ∈ R \XY do

3: cFA,r = |πXA(r)|
|πXAY (r)|

4: gFA,r = |πXA(r)| − |πY (r)|
5: if cFA,r = 1 then

6: Cand = addInOrder(Cand, 〈FA, cFA,r, gFA,r〉)
7: end if
8: end for
9: return Cand

rank: given an FD F that needs to be evolved, Algorithm 3
first generates all the candidates obtained by adding one at-
tribute to the antecedent of F (line 1) and inserts them into
a queue ordered by decreasing rank (line 2). Then, one at
the time, it removes the first candidate in the queue (line
4); if its confidence is 1, it adds it to the set of candidates
that allow to find an exact FD (line 6), otherwise it gener-
ates all the candidates obtained by adding one attribute to
the antecedent of the FD (line 8) and inserts them into the
queue, again sorted first by increasing cardinality of their
antecedent and then by decreasing rank (line 9). The pro-
cess is repeated while there are still candidates left in the
queue and, at the end of the process, the algorithm returns
the set of all candidates that allow to obtain an exact FD
(line 12). Notice two things: (i) the stop condition of the
algorithm can be easily changed to end when the first re-
pair is found (in this way the algorithm does not need to
explore the whole search space); (ii) since the candidates
in the queue are ordered first according to the number of
attributes in their antecedent (and then according to their
rank), the first repair found is also a minimal one, that is, it
contains the minimum number of attributes that need to be
added to the antecedent of the considered FD to repair it.

Algorithm 3 Extend (F, R, r) (pseudocode).

1: Cand = ExtendByOne(F,R, r)
2: addInOrder(QueueF , Cand)
3: while QueueF not empty do
4: 〈F ′, cF ′,r, gF ′,r〉 = removeF irst(QueueF )
5: if cF ′,r=1 then
6: addInOrder(Exact, 〈F ′, cF ′,r, gF ′,r〉)
7: else
8: Cand = ExtendByOne(F ′, R, r)
9: addInOrder(QueueF , Cand)

10: end if
11: end while
12: return Exact

The complexity of managing the queue corresponds to the
complexity of a sorting algorithm. Of course, the number
of candidates inserted into the queue is exponential with re-
spect to the number of attributes in the relation. In order
to find all candidates that allow to obtain an exact FD we
need to explore the whole search space. However, this does
not happen if we decide to stop when we find the first can-
didate instead. In the latter case, given the ordering we use
to explore the search space, we can ensure that we reach our
objective, as stated at the beginning of Section 4, that is,
that we are able to find a minimal repair for a given FD.

Notice that a minimal repair might not always be the

best choice. Suppose we are trying to repair a given FD
F : X → Y and suppose there are two ways to do it: i)
we can add attribute A which has the property of being
UNIQUE and ii) we can add the two attributes B and C,
neither of whom is UNIQUE. Of course, since we privilege
shorter repairs, the algorithm will privilege the first repair
which unfortunately goes against what we have discussed in
Section 3. To address this drawback we are currently investi-
gating the use of a user-specified maximum goodness thresh-
old. The idea is to use it to privilege those repairs whose
goodness is lower than the threshold. In particular, we are
currently considering combining such a threshold with our
confidence and goodness measures in order to provide an
objective function that guides our repair strategy.

5. THEORETICAL COMPARISON WITH
THE ENTROPY-BASED APPROACH

The technique presented in [17] finds attributes that are
good candidates to extend the antecedent of an FD, based
on its variation of information, which in its turn is based on
the entropy measure. In this section we dub this Entropy-
Based method EB, and compare it with ours (CB) which is
based mainly on the Confidence measure.

Even though the aim of the EB method is the same as
ours, there are some differences between them: the first dif-
ference is that CB easily supports the evolution of an FD
by adding more than one attribute in its antecedent; sec-
ond, and more important, to understand if an attribute is
a good candidate to extend the FD, we only compute its
confidence, while with EB more complex computations are
needed. To discuss this, we need to introduce formally the
notion of Entropy.

Given two clusterings C and C′, we can compute the Vari-
ation of Information (VI) [19] between them as the sum of
the two conditional entropies:

V I(C, C′) = H(C|C′) +H(C′|C)

where the conditional entropy of C given C′ is defined as:

H(C|C′) = −
K∑
k=1

K′∑
k′=1

P (k, k′)logP (k|k′)

where: P (k, k′) =
|Ck∩C′

k′ |
n

is the joint probability distribu-
tion associated to the pair (C, C′),

P (k|k′) =
P (k, k′)

P (k′)
=
|Ck ∩ C′k′ |
|C′k′ |

is the conditional probability distribution associated to C
given C′, and P (k′) =

|Ck′ |
n

the marginal probability distri-
bution associated to C′. Note that V I(C, C′) is symmetric
with respect to the two clusterings.

Given F : X → Y , the EB method creates a ground truth
clustering CXY and then looks for an attribute A that, when
added to the antecedent of F , allows to obtain a clustering
CXA that is either homogeneous or, preferably, homogeneous
and complete w.r.t. CXY (i.e., with VI equal to zero).

Note that, with EB, for each FD, the algorithm computes
a ground truth clustering that is obtained by scanning all
tuples and grouping them according to the attributes in the
FD; then, for each attribute A in the relation, the algorithm
computes the clustering CA of the relation in the same man-
ner; and finally the two clusterings must be compared by

299



computing the intersections of all pairs of clusters in order
to determine the variance of information. This last action
requires, for each cluster in the ground truth clustering, to
scan all clusters in CA. Thus, the EB method requires to
store the tuples in order to be able to perform the intersec-
tions between clusters while with the CB technique we do
not keep trace of all tuples in the groups but only of their
amount.

We now show that the confidence and goodness parame-
ters introduced in Section 3 can be successfully used instead
of the conditional entropies and that these two simple pa-
rameters give rise to a measure which is equivalent to the
VI measure.

Given F : X → Y , the EB method chooses CXY as the
ground truth clustering and, for each attribute A, consid-
ers the clustering CA in order to understand how well it
matches CXY . This is done by taking advantage of the two
conditional entropies involved in the definition of VI, but not
symmetrically. In fact, a modified version of the VI is in-
troduced that considers first the conditional entropy of CXY
given CXA, i.e. H(CXY |CXA), and then the conditional en-
tropy of CA given CXY , i.e. H(CA|CXY ). Then, the EB
approach selects the attribute A that has the lowest value of
H(CXY |CXA) and, in the case of a tie, the attribute A with
the lowest value of H(CA|CXY ).

The first conditional entropy H(CXY |CXA) measures the
non homogeneity property of CXA with respect to CXY . In
fact, it is easy to see that when a class Cxa ∈ CXA is such
that Cxa ⊆ Cxy for some Cxy ∈ CXY , then

logP (Cxy|Cxa) = log
P (Cxy ∩ Cxa)

P (Cxa)
= log

P (Cxa)

P (Cxa)
= 0

Thus, when CXA is homogeneous with respect to CXY , the
relative conditional entropy H(CXY |CXA) is zero. Similarly,
the second conditional entropy H(CA|CXY ) is zero when
every class Cxy ∈ CXY is such that Cxy ⊆ Ca for some
Ca ∈ CA. When this happens, the completeness property
for CA versus CXY is verified.

The best attribute found by the EB technique is both
homogeneous and complete implying that the VI is zero.

In the following we propose a slight variation of the EB
approach of [17], based on the original definition on VI as in
[19], i.e.

V I(CXY , CXA) = H(CXY |CXA) +H(CXA|CXY )

This allows us to make the comparison clearer, while not
affecting the results. Note that, given F : X → Y , VI can
be seen as a measure, denoted by εV I := V I, on all FDs
FA : XA → Y , where A is, as introduced in Section 4.2, a
candidate attribute to repair F . This measure is equal to
zero when there is homogeneity and completeness between
the two clusterings CXA and CXY . Let us also introduce the
measure εCB , based on our confidence and goodness coeffi-
cients of Definition 3:

εCB := icFA + ĝFA

where icFA := 1−cFA is the “degree of inconsistency” intro-
duced in Section 4.1 and ĝFA := |gFA | is the absolute value
of the goodness coefficient. This measure is equal to zero
when FA allows to generate a bijective function between
the classes of CXA and those of CY . We can state that the
two measures are equivalent, i.e. they have the same null

sets (the sets where they assume the null value) and, conse-
quently, the same support sets (the sets where the measures
assume a strictly positive value):

Theorem 1 Let R be a relation schema and FZ : XZ → Y
a functional dependency defined on R as above. Then the
measures εCB and εV I are equivalent.

Proof 1 First we observe that the CB best case {cFZ =
1, gFZ = 0} corresponds to {εCB = 0} and the EB best case
{V I = 0} corresponds to {εV I = 0}.

Let us recall that given two measures P and Q, the mea-
sure P is absolutely continuous w.r.t. the measure Q ( or
P is dominated by Q) if for all A such that Q(A) = 0 one
has that P (A) = 0, i.e. when the null sets of Q are also null
sets of P . Moreover in this case by Radon-Nikodym theorem
(see [20]) there exists a (positive) density f such that in dif-
ferential form one has that dP = fdQ. If in addition Q is
also absolutely continuous w.r.t. P , then the two measures
are called equivalent. In particular in this case one can show
that dQ = f−1dP ( [20]).

We prove that εV I is absolutely continuous w.r.t. εCB.
We put B = FZ : XZ → Y and suppose that εCB(B) = 0.
Then {cFZ = 1} and {gFZ = 0}. When the confidence
is equal to one we also have the homogeneity property of
CXZ versus CXY . In fact when {cFZ = 1} there is a proper
association for every Cxz ∈ CXZ , that is:

∀Cxz ∈ CXZ ∃! Cy ∈ CY s.t. Cxz ⊆ Cy

Thus, CXZ is homogeneous with respect to CY and it follows
that CXZ is homogeneous also with respect to CXY , i.e.:

∀Cxz ∈ CXZ ∃! Cxy ∈ CXY s.t. Cxz ⊆ Cxy

In fact if there exists a Cxz whose tuples are contained in
more than one class Cxy, it would be |CXZ | < |CXY | ≤
|CXZY |. But this cannot happen, since

{cFZ = 1} ⇔ |CXZ | = |CXZY |

Therefore, also the confidence coefficient of the CB method is
a measure of the homogeneity property of CXZ versus CXY :
there is homogeneity when the confidence coefficient is one.

Moreover, when in addition also the goodness coefficient is
zero, the clustering CXZ has also the completeness property
versus CXY , in the sense that H(CXZ |CXY ) = 0. In fact, we
recall that a clustering has the cited completeness property
when

∀Cxy ∈ CXY ∃! Cxz ∈ CXZ s.t. Cxy ⊆ Cxz

If there exists a class Cxy whose tuples are in part contained

in some Cxz and in part in some other Ĉxz, then it would
be |CY | ≤ |CXY | < |CXZ |. But this cannot happen, since

{gFZ ,r = 0} ⇔ |CXZ | = |CY |

Since the homegeneity plus completeness properties between
the two clusterings implies εV I = 0 we have proved that the
measure εV I is dominated by the measure εCB.

We show that εCB is dominated by εV I . Let us suppose
that εV I(B) = 0. Then V I = 0, which implies that the
homogeneity and the completeness properties hold. As a
conseuence the two clusterings are exactly equal, i.e. ev-
ery single class in correspondence contains the same subset
of tuples. In particular this means that: a) |CXY | = |CXZ |

b) ∀y ∃! (x, z) and therefore |CXZ | = |CY |

300



c) ∀(x, z) ∃! y = z and therefore |CXZY | = |CXZ |
and this implies icFZ = 0 and gFZ = 0, i.e. εCB(B) = 0.
Finally the two measures are equivalent: they have the

same null sets and, consequently, the same support sets (that
is the sets where the measures assume strictly positive val-
ues). Moreover by Radon-Nikodym theorem there exists a
positive density f, such that

dεCB(B) = f(B)dεV I(B), dεV I(B) = f−1(B)dεCB(B).

The proof of Theorem 1 shows that the two measures have
the same support sets (i.e. the sets where a measure assumes
strictly positive values).

We remark that the measures εV I and εCB can be consid-
ered as acting on a general F : X → Y , with X and Y sets
of attributes in R, and in this case they assume respectively
the form

εV I(F ) = H(CXY |CY ) +H(CY |CXY )

and

εCB(F ) := icF + ĝF .

Moreover it can be proved, in the same way as for Theorem
1, that they are equivalent measures.

Usually the equivalence relation between measures is rather
weak: they have the same support sets but the values they
assume can be very different. Since in our case the num-
ber of possible FDs is finite and our measures are finite too,
the absolutely continuity property is a sort of continuity
property between the two measures; more precisely, one can
prove that, in our finite case, the mutual absolutely conti-
nuity property of εCB and εV I is equivalent to the following
ε− δ property:
∀ε ∃δ s.t. εCB(A) < ε for each A with εV I(A) <

δ (and the same relation holds with εCB and εV I inter-
changed).

As a consequence, our measures are equivalent and assume
comparable values in their support sets. Moreover both EB
and CB are based on algorithms which are looking for ex-
actly the sets where the two measures assume the value zero.

We want to stress the fact that the CB method is indeed
simpler than the EB approach both from the conceptual
and computational point of view. First, because CB uses the
classical framework of set functions with well-known elemen-
tary mathematical concepts. Moreover, with CB we have to
perform only a few cardinality computations of the notable
clusterings associated to a given FD in order to achieve our
ranked list of attributes, i.e. with no need to enter in the
detailed structure of the involved clusterings.

We have compared our CB approach only with the EB
method in [17]. We think that this comparison is sufficient
for the following reasons. In [21] it has been shown that from
an axiomatic point of view the best approximation measure
for FDs is the information dependency measure. One can
easily prove that the measure introduced in [21] for an ar-
bitrary FD F : X → Y is a normalized version of the first
conditional entropy entering in the VI, that is H(CXY |CX).
We observe that also what we call “degree of inconsistency”
icF = 1 − cF can be seen as an approximation measure of
how far the given FD is from generating an exact function
and that from the proof of Theorem 1 one can deduce that
our measure icF is equivalent to the approximation measure
given by H(CXY |CX). Since in [21] there is also an accurate
and complete review of the approximation measures in the

literature, we finally conclude that the comparison of our CB
method with the EB approach proposed in [17] is sufficient.
It is now quite clear that the CB method grants results that
are fully comparable with those obtained by means of the
EB method, with the important difference that the basic
concepts and the required computations are much simpler.

6. EXPERIMENTAL RESULTS
We implemented our method in a Java prototype tool.

Initially, users connect to a MySQL database and visualize
its relations and all FDs defined on each relation; then, they
are allowed to add other FDs to the ones that are already
defined, and finally they can start the process of FD valida-
tion.

We tested the tool on both real and synthetic databases
and studied the time needed to find FD repairs. Our study
was conducted varying both the FDs and the number of
attributes and tuples in the relations.

All the experiments were run on a Core i5 2.6 GHz PC
with 4 GB of memory and Windows 8 x64 operating system.

6.1 Synthetic databases
We used DBGEN to independently generate three syn-

thetic databases of different sizes: Table 4 shows the features
of the generated relations in terms of numbers of attributes
and tuples. For each instance of the three databases, we
defined one FD on each relation and run our algorithm to
understand how execution time varies depending on the di-
mension of the dataset. Notice that, as shown in Table 5,
all FDs have one attribute in the antecedent and one in the
body and by processing time we mean the time it took for
the algorithm to find all possible repairs for the given FD.

100MB 250MB 1GB

Table arity card. card. card.

customer 8 15 000 30 043 150 249
lineitem 16 601 045 1 196 929 6 005 428
nation 4 25 25 25
orders 9 149 622 301 174 1 493 724
part 9 20 000 40 098 199 756
partsupp 5 80 533 160 611 779 546
region 3 5 5 5
supplier 7 1 000 2 000 10 000

Table 4: TPC-H Databases Overview

Figure 3 shows, for the 1GB synthetic database, how the
processing time varies depending on the number of attributes
(Figure 3a), number of tuples (Figure 3b) and overall dimen-
sion of the table (Figure 3c).

We report only the plots related to the 1GB database be-
cause of space limitations. However, we noticed that the
time needed to repair the FDs is higher for bigger datasets,
but the trend is the same. In fact, the trends for the 100MB
and 250MB databases are very similar to the one for the 1GB
database, although on a smaller scale. This happens because
the structure of the three datasets is the same, thus what
changes is only the number of tuples. Synthetic datasets
tend to behave in a somehow “uniform” way, thus we per-
formed a study on real datasets, with the aim of understand-
ing in what way the number of attributes and the number

301



100MB 250MB 1GB

Table FD processing time processing time processing time

customer [name]→ [address] 1s 276ms 2s 873ms 20s 657ms

lineitem [partkey]→ [suppkey] 9m 42s 708ms 21m 20s 599ms 1h 59m 19s 884ms

nation [name]→ [regionkey] 5ms 5ms 6ms

orders [custkey]→ [orderstatus] 8s 621ms 19s 726ms 1m 57s 103ms

part [name]→ [mfgr] 1s 3ms 1s 983ms 18s 561ms

partsupp [suppkey]→ [availqty] 4s 450ms 10s 570ms 1m 3s 909ms

region [name]→ [comment] 3ms 3ms 3ms

supplier [name]→ [address] 74ms 141ms 717ms

Table 5: FindFDRepairs processing times

Figure 3: Processing times for the 1GB synthetic database

of tuples in a relation influence the algorithm.

6.2 Real-life databases
We conducted our experiments using the relations listed

in Table 6, which also summarizes, for each of them, the
number of attributes and tuples. On each relation we defined
an FD containing one attribute in the antecedent and one
in the consequent and then run our algorithm to find one
possible repair (that is, the algorithm stops when it finds
the first repair). Table 6 shows the results in terms of the
time needed to execute the task.

Table arity card. FD process time

Places 9 10 257ms

Country3 15 239 32ms

Rental4 7 16044 588ms

Image5 14 124768 2m 52s

PageLinks6 3 842159 4s 678ms

Veterans7 481 95412 29m 45s

Table 6: Real Databases Overview and processing times

We can see that relations with a higher number of at-
tributes take longer time to be processed while the same
does not hold in general for relations with high amounts of
tuples. In fact, as we will see in the next Section, the time
grows exponentially with the number of attributes while tu-
ples do not influence it so much.
3http://dev.mysql.com/doc/index-other.html
4http://dev.mysql.com/doc/index-other.html
5http://dumps.wikimedia.org/backup-index.html
6http://dumps.wikimedia.org/backup-index.html
7http://kdd.ics.uci.edu/databases/kddcup98/
kddcup98.html

There are many factors that influence execution time:
these mainly concern the content of the tables (e.g. num-
ber of null values, number of candidates at one level that
improve confidence, etc . . . ), whose impact on computation
time needs to be studied in details. For example, in the re-
sults shown in Table 6 we have that even though Places
is a smaller relation than Country (both in terms of at-
tributes and tuples) it took longer to compute the results.
This happens because for the first relation, longer repairs
were needed, in fact, for table Places, the algorithm added
2 attributes to repair the given FD while for relation Coun-
try it added only 1 attribute. Moreover, we can see that
even though table PageLinks is the biggest one in terms of
tuples, it took less time to repair it than the Image table.
This happens because the PageLinks relation has only three
attributes, and since the FD defined on it has already two
attributes (one in the antecedent and one in the consequent)
the algorithm had to consider only the third one in the table.
On the other hand, in the Image table, the algorithm had
to add 2 attributes to the antecedent of the FD to repair it.

Nr. of attributes

Nr. of tuples 10 20 30

10K 26s 4m16s 17m34s

20K 38s 7m56s 35m1s

30K 57s 11m47s 51m48s

40K 2m13s 15m29s 1h28m12s

50K 2m44s 19m34s 1h48s

60K 3m17s 22m51s 1h56m3s

70K 5m13s 36m36s 2h23m8s

Table 7: Processing times for the Veterans relation – find all
repairs

302



6.2.1 Case study
To better understand how the number of attributes and

the number of tuples in a relation influence our algorithm,
we performed a case study using the Veterans relation (see
Table 6) which has 481 attributes (323 of which do not have
null values) and 95412 tuples containing only non-null val-
ues. Notice that, since the attributes occurring in an FD
are not allowed to contain NULL values, when generating
candidate repairs, we only consider the addition of those
attributes that do not contain NULLs. We created several
instances of this relation, each containing a different num-
ber of attributes and tuples. We defined an FD containing
one attribute in the antecedent and one in the consequent
and then run our algorithm to find: (i) all possible repairs
(Table 7 shows the results) and (ii) the first repair (results
in Table 8). From these results we can confirm the evidence
of the synthetic dataset study, namely, that execution time
grows much quicker with the number of attributes in the
relation than with the number of tuples. Computation time
grows exponentially with the number of attributes while an
increase in the number of tuples implies longer query pro-
cessing times, but does not affect the algorithm processing
time so much. Moreover, we can see that processing times
are much smaller if the algorithm stops when it finds the first
repair instead of exploring the whole search space. However,
it might happen that the two times are very similar (e.g. in
the 70K tuples DB with 10 attributes) when the algorithm
is not able to find a repair for the given FD.

Nr. of attributes

Nr. of tuples 10 20 30

10K 8s76ms 53s96ms 2m23s

20K 18s22ms 1m30s 4m10s

30K 27s64ms 2m15s 6m12s

40K 1m25s 3m4s 8m18s

50K 1m47s 3m46s 10m38s

60K 2m10s 4m44s 12m51s

70K 5m23s 5m57s 16m10s

Table 8: Processing times for the Veterans relation – find
the first repair

During the experiments we noticed that there are other
parameters, generally application-dependent, that influence
our method. Just to name a few: (i) the number of distinct
values of an attribute: the more distinct values there are, the
more time is needed to compute the queries; (ii) the initial
confidence of an FD: as can be expected, the smaller the
initial confidence, the greater the probability that a longer
repair is needed, that is, the more attributes should be added
in the antecedent, thus requiring more time; (iii) the average
length of the repairs: if an FD needs repairs that add many
attributes to the antecedent it will require more computation
time. These parameters are related to each other, depend
on the domain of application and are very difficult to control
and predict.

6.3 Quality of results
We claim that our criterion for choosing the order in which

attributes are added to the antecedent of functional depen-
dencies favours the quality of the results we obtain. Indeed,

as we have already discussed, our method privileges the ad-
dition of attributes that allow us to obtain functions that are
“as well defined as possible”, by approximating the goodness
to 0. This is because we try to construct an FD that re-
sembles as much as possible a bijective function, mapping
the clusters generated by the antecedent of the FD to the
clusters generated by the consequent of the FD. This choice
allows us to:

• discourage the addition of a UNIQUE attribute: in-
deed, that would make the rest of the antecedent use-
less, because that attribute alone determines the con-
sequent of the FD;

• along the same line of thought, encourage the addi-
tion of attributes that make the “specificity” of the
antecedent of the FD is as much as possible similar to
the “specificity” of the consequent;

• support indexing and query optimization, because, when
the method manages to find “invertible” FDs, not only
the antecedent determines the consequent but also vice-
versa; thus, an index built on the antecedent of an FD
can be used to efficiently access the attributes in the
consequent (if we know the correspondence between
the clusters in the antecedent and the clusters in the
consequent).

7. CONCLUSION
In this paper we proposed a new method for repairing FD

violations that works at the intensional level: rather than
changing the data, it repairs the FD by adding one or more
attributes to its antecedent. To this aim we have used the
notions of confidence and goodness of an FD, as measures
to estimate if an FD is violated by the data and to what
extent. In future we intend to extend the method to other
kinds of constraints and to make a more extensive study on
the parameters that influence the processing time and on
the impact they have when examining a database.

8. ACKNOWLEDGEMENTS
This research has been partially funded by the Italian

project SHELL CTN01 00128 111357 and by the IT2Rail
project, funded by European Union’s Horizon 2020 research
and innovation programme under grant agreement No: 636078.

9. REFERENCES
[1] T. Murata and A. Borgida. Handling of irregularities

in human centered systems: A unified framework for
data and processes. IEEE Transaction on Software
Engineering, 26(10), 2000.

[2] G. Cugola, E. Di Nitto, A. Fuggetta, and C. Ghezzi. A
framework for formalizing inconsistencies and
deviations in human-centered systems. ACM Trans.
Software Eng. and Methodology, 5(3):191–230, 1996.

[3] L. Caruccio, V. Deufemia, and G. Polese. Relaxed
functional dependencies - A survey of approaches.
IEEE Trans. Knowl. Data Eng., 28(1):147–165, 2016.

[4] W. Fan, F. Geerts, J. Li, and M. Xiong. Discovering
conditional functional dependencies. IEEE Trans.
Knowl. Data Eng., 23(5):683–698, 2011.

303



[5] C. Giannella and E. L. Robertson. On approximation
measures for functional dependencies. Inf. Syst.,
29(6):483–507, 2004.

[6] H. Nakayama, A. Hoshino, C. Ito, and K. Kanno.
Formalization and discovery of approximate
conditional functional dependencies. In DEXA, pages
118–128, 2013.

[7] J. Wijsen. Temporal dependencies. In Encyclopedia of
Database Systems, pages 2960–2966. 2009.

[8] C. Combi, P. Parise, P. Sala, and G. Pozzi. Mining
approximate temporal functional dependencies based
on pure temporal grouping. In ICDM Workshops,
pages 258–265, 2013.

[9] L. E. Bertossi and J. Chomicki. Query answering in
inconsistent databases. In Logics for Emerging
Applications of Databases, pages 43–83. Springer,
2003.

[10] S. Flesca, F. Furfaro, S. Greco, and E. Zumpano.
Querying and repairing inconsistent xml data. In Web
Information System Engineering, volume 3806 of
LNCS, pages 175–188, 2005.

[11] S. Flesca, F. Furfaro, and F. Parisi. Consistent query
answers on numerical databases under aggregate
constraints. In DBPL Workshops, volume 3774 of
LNCS, pages 279–294, 2005.

[12] J. Chomicki. Consistent query answering:
Opportunities and limitations. In DEXA, pages
527–531. IEEE Computer Society, 2006.

[13] J. Chomicki and J. Marcinkowski. Minimal-change
integrity maintenance using tuple deletions.
Information and Computation, 197(1-2):90–121, 2005.

[14] J. Chomicki. Consistent query answering: Five easy
pieces. In D. Suciu T. Schwentick, editor, Proceeding
of ICDT’07, volume 4353 of LNCS, pages 1–17, 2007.

[15] M. Mazuran, E. Quintarelli, R. Rossato, and L. Tanca.
Mining violations to relax relational database
constraints. In DaWaK, pages 339–353, 2009.

[16] X. Chu, I. F. Ilyas, and P. Papotti. Discovering denial
constraints. PVLDB, 6(13):1498–1509, 2013.

[17] F. Chiang and R.J. Miller. A unified model for data
and constraint repair. In ICDE 2011, pages 446 –457,
2011.

[18] J. Segeren, D. Gairola, and F. Chiang. CONDOR: A
system for constraint discovery and repair. In CIKM,
pages 2087–2089, 2014.

[19] M. Meilă. Comparing clusterings—an information
based distance. J. Multivar. Anal., 98(5):873–895,
2007.

[20] P. Billingsley. Ergodic Theory and Information. Wiley,
1965.

[21] C. Giannella. An axiomatic approach to defining
approximation measures for functional dependencies.
In ADBIS, pages 37–50, 2002.

304


	Semi-automatic support for evolving functional dependenciesMirjana Mazuran, Elisa Quintarelli, Letizia Tanca, Stefania Ugolini

