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ABSTRACT
Data profiling is the discipline of examining an unknown
dataset for its structure and statistical information. It is a
preprocessing step in a wide range of applications, such as
data integration, data cleansing, or query optimization. For
this reason, many algorithms have been proposed for the
discovery of different kinds of metadata. When analyzing
a dataset, these profiling algorithms are often applied in
sequence, but they do not support one another, for instance,
by sharing I/O cost or pruning information.

We present the holistic algorithm Muds, which jointly
discovers the three most important metadata: inclusion de-
pendencies, unique column combinations, and functional de-
pendencies. By sharing I/O cost and data structures across
the different discovery tasks, Muds can clearly increase the
efficiency of traditional sequential data profiling. The al-
gorithm also introduces novel inter-task pruning rules that
build upon different types of metadata, e.g., unique column
combinations to infer functional dependencies. We evalu-
ate Muds in detail and compare it against the sequential
execution of state-of-the-art algorithms. A comprehensive
evaluation shows that our holistic algorithm outperforms the
baseline by up to factor 48 on datasets with favorable prun-
ing conditions.
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1. DEPENDENCY DISCOVERY
With the ever growing amount of digitally recorded in-

formation, the need to maintain, link, and query these in-
formation becomes increasingly hard to fulfill. For many
applications, such as data mining, data linkage, query op-
timization, schema matching, or database reverse engineer-
ing, it is crucial to understand the data and, in particular,
its structure and dependencies [13]. In biological research,
for instance, scientists create large amounts of genome data
that grow rapidly every year [2]. Originating from differ-
ent genome sequencers, the data needs to be analyzed and
linked to other datasets. This task requires knowledge of
several structural properties of the data.

Usually, the reason why data becomes difficult to access
is that metadata about the datasets’ structure or their de-
pendencies is missing. Therefore, various profiling algo-
rithms have been proposed for the computationally inten-
sive discovery of metadata, such as inclusion dependencies
(INDs) [4, 8], unique column combinations (UCCs) [1, 9, 10,
16], and functional dependencies (FDs) [11, 14]. The algo-
rithms Spider [4] for the discovery of INDs, Ducc [10] for
UCCs and Fun [14] for FDs are among the most efficient
algorithms in their respective problem domain. The idea of
all these discovery algorithms is to reduce the tremendous
search spaces with so called pruning rules: A pruning rule
allows to infer the (in)validity of certain unchecked metadata
candidates from already checked ones. Each algorithm, how-
ever, computes only one type of metadata. While this might
be sufficient for some applications, most applications like
data exploration or data integration require different types
of metadata at the same time [13]. Therefore, current data
profiling processes run several highly complex algorithms in
a row. Considering that these algorithms and the metadata
they discover have many commonalities, the sequential exe-
cution is a waste of time and resources.

Some existing profiling algorithms, such as HCA [1] or
Fun [14], already leverage some knowledge about other types
of metadata to reduce the discovery time (pruning). How-
ever, the combination of different profiling algorithms, i.e.,
a holistic algorithm, can utilize many more interleavings to
increase its overall efficiency: First, it can facilitate new
pruning rules using all collected information at once. In this
way, fewer validity checks on the actual data are required.
Second, it can share common costs like those required for
I/O operations and iteration cycles. Third, it can combine
similar data structures from different profiling tasks into one
holistic data structure reducing overall memory consump-
tion and initialization costs.
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In this paper, we describe new inter-task pruning capa-
bilities and analyze their impact on the algorithm’s run-
time. We also develop and evaluate a novel holistic al-
gorithm called Muds, which jointly discovers unary INDs,
minimal UCCs, and minimal FDs in one execution while fa-
cilitating all three opportunities for performance optimiza-
tion mentioned above. If a dataset has favorable pruning
conditions – which is true for most real-world datasets –
Muds improves upon the sequential execution of profiling
algorithms by up to a factor of 48. In our evaluation, we in-
vestigate dataset characteristics that lead to good and poor
runtime behavior.

Contributions. We first analyze INDs, UCCs, and FDs
for their commonalities and examine state-of-the-art pro-
filing algorithms (Section 2). We then discuss different ap-
proaches for holistic data profiling and possible pruning rules
across profiling tasks (Section 3). Next, we describe how dif-
ferent types of FDs can be discovered or pruned if minimal
UCCs are already known (Section 4). Based on the discov-
ery and pruning techniques, we present the novel algorithm
Muds, which utilizes inter-task pruning rules (Section 5).
Muds derives FDs directly from discovered minimal UCCs
and facilitates a new depth-first traversal strategy that is
based on minimality pruning and the knowledge about non-
dependencies (unlike previous level-wise approaches for FDs
that solely rely on minimality pruning). Finally, we com-
pare Muds with the sequential execution of state-of-the-art
algorithms and with a holistic adaption of the algorithms
Spider and Fun (Section 6). Our evaluation shows that
Muds usually not only considerably outperforms the base-
line algorithms but also outperforms common FD discovery
algorithms on datasets with more than 10 columns.

2. PROFILING TASKS
For our holistic approach, we focus on three common and

computationally intensive profiling tasks: The discovery of
all unary inclusion dependencies, all unique column com-
binations, and all functional dependencies in a given data-
set. This section defines the three tasks and explains one
state-of-the-art algorithm for each of them. The chosen al-
gorithms are among the most efficient algorithms for their
specific task and exhibit favorable features to combine them
into a holistic algorithm. At the end of this section, we com-
pare the nature of the profiling tasks and their search space
complexities.

2.1 Inclusion dependencies
An inclusion dependency (IND) X ⊆ Y between attribute

sets X and Y describes that the projection of Y contains all
values of the projection of X, i.e., all values in X are also
contained in Y . Attribute set X is called the dependent and
Y is called the referenced. INDs with only one attribute
in the sets X and Y are called unary INDs. Because only
these unary INDs are of interest for the holistic discovery of
other metadata types, we only consider them in our holistic
algorithm. Without any loss of generality, we could discover
n-ary INDs as well, but these would not contribute to the
holistic discovery. We also artificially restrict the IND dis-
covery to a single relation, because the two other metadata
types UCCs and FDs are defined on only one relation. The
search space for a relation with n attributes, hence, com-
prises n · (n− 1) unary IND candidates.

Spider is the currently most efficient algorithm for the de-
tection of unary INDs. The algorithm developed by Bauck-
mann et al. [4] consists of two phases: A sorting phase and a
comparison phase. In the first phase, Spider sorts the values
of each column, eliminates duplicate values, and stores the
sorted values in separate lists (Tables 1.1 and 1.2). In the
second phase, Spider initially assumes that all attributes
are included in one another. Then, it iterates simultane-
ously over the sorted lists in order to invalidate IND can-
didates (Tables 1.3 and 1.4). For the invalidation, Spider
selects the group of attributes that all contain the currently
smallest value. In our example A and C both contain w.
By set intersection, the algorithm then excludes INDs from
the candidates: The attributes in this group can only be
included in one another, because they exclusively contain a
value. So, A can still depend on C, but A cannot depend on
B, because B does not contain w. The algorithm continues
with next smallest values until only valid INDs remain.

1. 2. 3. 4.
A B C A B C A B C A B C
w z x w w →w →w w w
w x x x x x x →x x →x →x →x
x z w y y y
y z z z z z z z z

Table 1: Example execution of Spider

2.2 Unique column combinations
A set X of attributes is a unique column combination

(UCC) if the projection of X does not contain duplicates;
otherwise, it is a non-unique column combination (non-UCC).
UCCs are also called key candidates, because the values of
the projection of a UCC uniquely define all records. X is
a minimal unique column combination (minimal UCC) if it
is a UCC and no proper subset of X is a UCC. The num-
ber of possible candidates for UCCs in a relation R with n
attributes is 2n − 1. We can visualize the search space of
UCC candidates as a lattice of attribute sets, i.e., a Hasse
diagram (Figure 1). Each node represents a set of attributes
and each edge a superset/subset relationship.

A B C D E 

AB AC AD AE BC  BD BE CD CE DE 

ABC ABD ABE ACD ACE BCD BCE BDE CDE ADE 

ABCD ABCE ABDE ACDE BCDE 

ABCDE 

Figure 1: Attribute lattice for five columns

The Ducc algorithm is among the most efficient algo-
rithms for detecting UCCs [10]. It applies a combination of
depth-first and random walk strategies to traverse the lattice
of UCC candidates. Thereby, Ducc uses the information
about both discovered UCCs and non-UCCs for pruning.
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The traversal starts from the bottom of the lattice. Every
time the algorithm detects a non-UCC, it generates all di-
rect supersets and picks one randomly as its next candidate;
if the algorithm detects a UCC, the next candidate is a ran-
dom direct subset. While traversing, Ducc prunes subsets
of non-UCCs and supersets of UCCs from the search space,
because subsets of non-UCCs are also non-UCCs, and super-
sets of UCCs cannot be minimal. It is possible that some col-
umn combinations remain unvisited after the random walk.
The reason for such “holes” in the lattice is the combination
of upwards and downwards pruning. Ducc identifies and
fills these holes by comparing the found minimal UCCs with
the complement of the found maximal non-UCCs.

During traversal, the algorithm has to check whether a
column combination is a UCC or a non-UCC. This check
is performed by constructing a position list index (PLI, also
called stripped partition) for the column combination. A
PLI is a list that contains sets of tuple ids [11]. These tuple
ids belong to tuples of the column combination that contain
the same value. If a PLI contains no id-set of size two or
larger, the column combination contains no duplicate value
and is, hence, unique. Because only id-sets of size two or
larger are necessary for this test, all id-sets of size one can
be removed, i.e., stripped from the PLI. So if the PLI is
empty, all values are unique and the column combination is
a UCC. To calculate the PLI for an unvisited lattice node
AB, Ducc intersects the PLIs of the nodes A and B by
pair-wise intersecting their id-sets.

2.3 Functional dependencies
Given a relation R, a functional dependency (FD) X → A

between a set of attributes X and an attribute A exists if
the values of X uniquely determine the values of A [6]. We
call X the left hand side and A the right hand side. An
FD is called trivial if A ∈ X. The FD is minimal if no
proper subset of X determines A. A set of attributes X
can determine multiple other attributes Y . In the following,
we use the short notation X → Y to denote FDs with one
or more right hand side attributes. In the lattice shown in
Figure 1, every edge represents a potential FD. For exam-
ple, the edge between ABC and ABCD represents the FD
candidate ABC → D. To count all FD candidates for n
attributes, we count the edges in each level k with k = 1...n.
Starting with attribute sets of size one, the sets are extended
by one attribute in each level until the set in the highest level
contains all attributes. In each level k we find

(
n
k

)
nodes.

Each node in level k can be connected to n− k nodes in the
next level without generating duplicate connections. The
number of FD candidates in a relation with n attributes is
therefore

∑n
k=1

(
n
k

)
· (n− k).

Among the many FD discovery algorithms, Fun is one
of the fastest algorithms [14]. Fun discovers FDs in a re-
lation R by traversing the attribute lattice level-wise with
a bottom-up strategy. While exploring the attribute lat-
tice, FUN generates PLIs for each traversed attribute set.
The algorithm then derives the cardinality of attributes and
attribute combinations from their PLIs. This information
is used to efficiently detect FDs by partition refinement as
described in Lemma 1 (from [14]). In a relation R and a
relation instance r, let |X|r denote the cardinality of the
projection of X over r.

Lemma 1. ∀X ⊆ R,A ∈ R : X → A⇔
|X|r = |X ∪ {A}|r

Fun classifies column combinations into free sets and non-
free sets. A free set X contains only those attributes that
are not functionally dependent on any other attribute in X.
A non-free set contains at least one functionally dependent
attribute. Definition 1 describes the set of free sets FSr:

Definition 1. The set of free sets FSr is defined as
∀X ⊆ R : X ∈ FSr ⇔ @X ′ ⊂ X : |X ′|r = |X|r.

The Fun algorithm has a pruning advantage in compari-
son to other FD algorithms like Tane [11], because it omits
certain PLI intersect operations and retrieves missing cardi-
nality information from a node’s child nodes. So instead of
performing a PLI intersect, Fun infers the cardinality of a
pruned non-free set with a recursive look-up in the non-free
set’s subsets.

2.4 Comparison of profiling tasks
The discovery of INDs inherently differs from the discov-

ery of UCCs and FDs: For INDs, the attribute values are
of interest whereas for FDs and UCCs only the position of
equal values is relevant. Hence, UCC and FD algorithms use
quite different data structures than IND algorithms; these
data structures do not allow the reconstruction of values
(e.g., PLIs), but improve the algorithms’ efficiency. How-
ever, several relationships between FDs and UCCs can be
used for pruning (see Sec. 3).

To determine the complexity of a holistic algorithm, we
need to inspect the search spaces of the different sub-tasks:
A relation with n attributes contains n · (n− 1) unary IND
candidates. IND discovery is, hence, in O(n2). In the same
relation, the number of UCC candidates is

∑n
k=1

(
n
k

)
, which

places the search space of UCCs in O(2n). The number
of FD candidates is

∑n
k=1

(
n
k

)
· (n − k) so that FD discov-

ery is in O(n · 2n). The search space for FDs, therefore,
clearly dominates the overall discovery cost. The exponen-
tial search spaces of UCCs and FDs in particular dominate
the quadratic search space of unary INDs. Our evaluation
in Sec. 6.4 shows that the time spent on IND discovery is in-
deed negligible in comparison to the time spent on UCC and
FD discovery. For this reason, INDs can best be calculated
as a byproduct in the starting phase of a holistic algorithm.

3. HOLISTIC APPROACH
As we described in Section 2.4, IND discovery differs greatly

from the discovery of UCCs and FDs. Therefore, INDs are
discovered while the input data is read and the values are
still accessible. The discovery uses the Spider algorithm
and mainly profits from sharing its I/O costs with the UCC
and FD algorithms, i.e., the data is read only once and then
used for the discovery of all three types of matadata. Spider
additionally profits from the initial PLI-construction that is
performed for both the UCC and FD discovery: At construc-
tion time, PLIs map values to positions so that Spider can
retrieve duplicate-free value lists from this mapping, which
are more efficient to sort.

If the input dataset contains two identical rows, i.e., du-
plicate records, then it cannot contain any UCC and, hence,
most inter-task pruning rules would not apply. Therefore,
we assume that duplicate records, which are forbidden in
most database systems anyway, have been removed in a pre-
processing step.

We now discuss three basic approaches for the holistic
discovery of INDs, UCCs, and FDs.
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3.1 FDs first
By discovering minimal FDs first, we can derive all mini-

mal UCCs from the discovered FDs [15]. The UCC inference
follows Lemma 2. Under the assumption that each row in
R is distinct, every column combination that functionally
determines all other attributes of the relation R is a key in
R and, hence, a UCC:

Lemma 2. ∀U ⊆ R : U → R \ U ⇒ U is a UCC

Thus, all UCCs can be inferred from the set of minimal FDs.
Without describing an actual algorithm for UCC inference,
it is clear that the inference and minimization of UCCs in-
troduces an additional overhead. As several FD discovery
algorithms (e.g., Fun and Tane) exist that already find all
minimal UCCs while discovering FDs, we do not pursue this
FDs-first approach for a holistic algorithm. Instead, we fo-
cus on approaches that improve the overall runtime by avoid-
ing this additional overhead and by leverageing pruning.

3.2 FDs and UCCs simultaneously
To discover FDs and UCCs simultaneously, we analyzed

several FD discovery algorithms and evaluated their extensi-
bility towards UCC discovery. As already described in Sec-
tions 2.3 and 2.4, Fun uses an attribute lattice for pruning
that is very similar to Ducc’s way of calculating minimal
UCCs. Furthermore, Fun traverses all unpruned free sets.
The following Lemma 3 shows that all minimal UCCs are
“free sets” in Fun’s sense. Therefore, Fun must traverse the
minimal UCCs for FD discovery, enabling the discovery of
minimal UCCs with little impact on the overall runtime. In
a relation instance r, Ur is the set of all minimal UCCs in r.

Lemma 3. ∀U ∈ Ur : U ∈ FSr

Proof. Let X ∈ Ur be a minimal UCC and let X /∈
FSr be a non-free set. According to Definition 1, X ′ ⊂ X
with |X ′|r = |X|r exists. X ′ has the same distinct count
as X. Therefore, X ′ is a UCC. This contradicts the initial
assumption that X is a minimal UCC and, therefore, no
subset of the minimal UCC X can be a UCC.

In the original version of Fun, minimal UCCs are detected
and used for key-pruning, which is a common pruning rule
for FD discovery: The supersets of UCCs can be pruned,
because they cannot be the left hand side of a minimal FD.
This pruning rule is applied in FD discovery algorithms like
Tane and Fun. With small adaptions, it is possible to store
the minimal UCCs and return them when the algorithm ter-
minates. This does not impair the runtime of Fun, because
no further checks are necessary. We implemented this algo-
rithm and call it Holistic Fun.

3.3 UCCs first
If a holistic algorithm first discovers all minimal UCCs, it

can leverage this information for the discovery of minimal
FDs, due to the key-pruning rule. As we explain in Sec-
tion 4.1, many left hand sides of minimal FDs are subsets
of minimal UCCs. This observation can be used to discover
and minimize relevant FDs faster. It can further be used for
pruning, because applying this rule reduces the number of
traversed column combinations in comparison to level-wise
FD discovery algorithms. Several rules can derive the inva-
lidity of certain FDs from the known minimal UCCs. We
present these rules in more detail in Section 4 and use them
in the implementation of our algorithm Muds in Section 5.

4. DISCOVERING FDS BASED ON UCCS
In this section, we present pruning and inference rules

that allow for a fast FD discovery based on known UCCs.
These rules lay the foundation for our Muds algorithm de-
scribed in Section 5. We show in Section 6 that an algo-
rithm using these rules is usually faster than current state-
of-the-art FD discovery algorithms. We first describe the
UCC-based pruning rules for FDs. The following three sub-
sections then match the three sub-algorithms of Muds’ FD
discovery: minimize FDs, calculate R\Z, and shadowed FDs.

Figure 2 categorizes the attributes of a relation R into
the set Z :=

⋃
U∈U U , which is the union of all minimal

UCCs, and the set R \ Z, which contains all columns that
are not contained in any minimal UCC. In the following,
we describe the two situations, shown in Figure 2, where
the non-existence of functional dependencies can be inferred
from the set of UCCs.

1 

R: R\Z 

mUCC1 mUCC2 

1. 2. 

Figure 2: Possible FDs in R with two minimal UCCs

1. FDs fully contained in a minimal UCC: An FD
cannot exist if it is fully contained in a minimal UCC (both
left and right hand side are subsets of the same minimal
UCC). The right hand side of an FD carries only information
that could be inferred from the left hand side. Therefore,
if a functional dependency existed that is contained in a
minimal UCC, the right hand side can be removed from the
minimal UCC without changing the uniqueness property.
This contradicts the minimality of the UCC.

2. FDs with a lhs in R\Z and rhs in Z: Consider an FD
X → A with a left hand side X ⊆ R \ Z and a right hand
side A ∈ U with U ∈ U. A is determined by X; hence, A can
be substituted by X in U . This yields at least one unique
Usubs = X ∪ U \ A. Thus, a minimal unique Umin must
exist that is subset of Usubs. Umin must still contain one
or more attributes of X (otherwise U could not have been
minimal, as A could have been omitted). It follows that a
part of X is contained in a minimal UCC, which contradicts
the proposition that X is a subset of R \ Z. Thus, no such
FD may exist.

In the following, we present rules and operations that en-
able the discovery of FDs using the two pruning rules de-
scribed above. In Section 4.1, we first describe how to dis-
cover FDs that have left and right hand sides in overlapping
minimal UCCs.

4.1 FDs between minimal UCCs
A UCC functionally determines all other columns of the

same relation. Thus, FDs can be inferred from a discovered
UCC. Not all of these FDs are minimal. To find the minimal
FDs, the substitution pruning rule can be applied:

Substitution rule: For every FD that has an attribute
of a minimal UCC as right hand side, we can infer a new
UCC, by substituting that attribute in the UCC with the
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left hand side of the FD. If the inferred UCC does not exist,
the corresponding FD cannot hold and must not be checked.
This insight is used to validate FD candidates by checking
for corresponding UCCs. For instance, given a relation R =
{A,B,C,D,E, F}, the minimal UCCs ABC and DEF , and
the FD candidate BC → D that we need to check. The
UCC BCEF follows by substituting D with BC. Now, a
subset of BCEF that is also a proper superset of EF must
be a minimal UCC. As this minimal UCC does not exist,
we know that the FD BC → D cannot exist.

It follows that valid FDs between minimal UCCs must
fulfill the following condition: The left hand side and the
right hand side of valid FD must be subsets of different and
intersecting minimal UCCs. We use this insight in the Muds
algorithm, using an operation that we call connector lookup.
We describe this operation in detail in Section 5.1.

4.2 FDs with right hand sides in R \ Z
Tane and similar algorithms for FD discovery traverse

the attribute lattice bottom-up. In the traversal, these al-
gorithms utilize pruning rules based on the minimality of
dependencies. If a left hand side is known to yield only non-
minimal FDs (e.g., it already contains an FD), this left hand
side is pruned from the lattice and the traversal is contin-
ued with a reduced candidate set (upwards pruning). We
now propose a traversal strategy that operates similarly to
the random walk strategy in the UCC discovery algorithm
Ducc. For this traversal, pruning of subsets (downwards
pruning) is necessary. This pruning is based on a property
of FDs: If X → A does not hold, A cannot be functionally
dependent on any subset of X.

Lemma 4. ∀X ⊆ R, ∀A ∈ R, ∀X ′ ⊆ X :
X 9 A⇒ X ′ 9 A

Lemma 4 can be used to prune downwards. To facilitate
this pruning, we traverse a sub-lattice for each possible right
hand side. A sub-lattice is a lattice created for a specific
right hand side attribute, which is omitted from the lattice.
The nodes in the sub-lattice contain only the different left
hand side candidates. All sub-lattices for an exemplary re-
lation with columns A,B,C,D are shown in Figure 3. In
the sub-lattices, the above mentioned pruning rule applies,
because of the fixed right hand side.

A B C 

AB AC BC 

ABC D 

A B D 

AB AD BD 

ABD C 

A C D 

AC AD CD 

ACD B 

B C D 

BC BD CD 

BCD A 

Figure 3: Sub-lattices for the right hand side
columns A, B, C, and D

The example in Figure 3 shows that some column com-
binations are represented in multiple lattices. The column
combination CD, for example, is contained in the first and
in the second lattice. Such column combinations are only
fully pruned, i.e., we do not need to calculate their PLIs, if
the column combination is pruned in all sub-lattices. In the
best case, entire sub-lattices can be pruned.

Section 5.2 presents an algorithm that leverages the sub-
lattice pruning. The algorithm also assures that only columns
of R \ Z are used as right hand sides of FD candidates.

4.3 Shadowed FDs
Section 4.1 describes how FDs can be deduced from mini-

mal UCCs. Unfortunately, not all minimal FDs can be found
in this way. If a minimal UCC U and a column combination
X ⊆ U exist and the FD X → A holds, a column A may
be shadowed in U : A can be part of a left hand side with
only other columns of U . As our algorithm would not con-
sider this left hand side, we call the left hand side and the
resulting FD shadowed. To still find all minimal FDs, a post-
processing step is needed that explicitly checks all left hand
sides containing attributes from different minimal UCCs or
even R\Z. We explain the algorithm in Section 5.3 but first
give an example of how shadowed attributes arise:

Let BCD, CDE, and AD be the only minimal UCCs in
a dataset for the relation R = {A,B,C,D,E}. Suppose
that the minimal UCCs directly contain the minimal FDs,
i.e., BCD → AE, CDE → AB, and AD → BCE. Now,
assume that there is an additional minimal functional de-
pendency AC → B. The inference rule from Section 4.1
cannot find this FD, because the left hand side AC can-
not be deduced from the minimal UCCs BCD, CDE, or
AD. Thus, AC → B is never checked. The existence of
the minimal FDs BCD → A indicates that A is shadowed
in every subset of BCD. C is shadowed analogously in ev-
ery subset of AD by the minimal FD AD → C. Therefore,
every attribute that is determined by a subset of BCD or
AD may also be determined by a subset of ABCD or ACD
containing A and C.

For each minimal FD Y →W , we must find all shadowed
attributes S. The shadowed attributes are added to the left
hand side of the functional dependency. This results in the
FD Y ∪S →W , which holds, but is not necessarily minimal.
The FD must be minimized and we provide pseudo-code for
a minimization algorithm in Section 5.3.

5. THE MUDS ALGORITHM
In this section, we develop a holistic profiling algorithm

called Muds, which jointly discovers unary INDs, minimal
UCCs, and minimal FDs facilitating pruning across the dif-
ferent profiling tasks. The acronym Muds is a composition
of the algorithms key features: “Mu” for Minimizing UCCs,
“d” for the Depth-first approach that is used to find FDs
with right hand side in R \ Z, and “s” for shadowed FDs.

The algorithm uses the following execution strategy: While
reading the input dataset, Muds directly applies the Spider
algorithm described in Section 2.1 to calculate INDs (one
shared I/O operation). Since this algorithm already requires
to read and sort all records, Muds also builds the PLIs in
this step. Afterwards, Muds runs the Ducc algorithm, de-
scribed in Section 2.2, using the previously calculated PLIs
to identify all minimal UCCs. Finally, it executes a novel
FD discovery algorithm that is based on the concepts ex-
plained in Section 4. The FD discovery takes advantage
of the known minimal UCCs (inter-task pruning) and the
already calculated PLIs (shared data structures).

The FD discovering part of Muds consists of three phases:
In the first phase, Muds discovers the FDs among over-
lapping minimal UCCs (Section 5.1). In the second phase,
the algorithm finds FDs with right hand sides in the set of
columns that are non-minimal UCCs (R \ Z) (Section 5.2).
In the third phase, Muds discovers and minimizes the re-
maining FDs that have a shadowed left hand side (Sec-
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tion 5.3). Because the FD validations in the Muds algorithm
perform many superset look-ups to find minimal UCCs for
left hand side column combinations, we introduce a prefix
tree of UCCs that ensures fast look-up times (Section 5.4).

5.1 FDs in connected minimal UCCs
Muds is a “Unique Column Combinations First” algo-

rithm. So it first discovers all minimal UCCs to use them
for the FD discovery. So when starting the FD discovery,
all minimal UCCs are already known. Now, the first part
of Muds’ FD discovery analyzes only those FDs whose left
and right hand side columns are included in minimal UCCs.
For an FD X → Y , we call the complete set of functionally
determined attributes Y the closure of X. Suppose U is a
minimal UCC in the relation R; then, the closure of U is
R, because U functionally determines all other attributes.
It is possible that some of the attributes in the closure of
U are non-minimally determined, which means that they
are also determined by a subset of U . To minimize the left
hand sides of the non-minimal FDs, we check whether the
direct subsets of U functionally determine attributes in the
closure. In the following, we present an algorithm that min-
imizes the left hand sides, starting from the minimal UCCs
in a top-down manner.

Recursive minimization. In order to minimize the left
hand sides of the FDs deduced from minimal UCCs, we start
from the UCCs themselves and recursively analyze subsets
of the UCCs. Algorithm 1 shows the pseudocode for the
recursive minimization. minimizeFDs takes two input pa-
rameters: the set U of all minimal UCCs discovered in the
previous step and the union Z of all attributes that appear
in at least one minimal UCC. The algorithm iterates over all
minimal UCCs U ∈ U, generates FD candidates from them,
and then creates minimization tasks for the generated FDs
(lines 2-3). We use tasks and a queue of tasks to avoid recur-
sive method calls, which uses heap memory instead of stack
memory.

For every task, we know the valid right hand sides from the
parent closure, but the minimality of these FDs is not yet
known. To determine the minimal right hand sides, min-
imizeFDs iterates over the left hand side’s direct subsets
and checks which FDs are also valid in the subsets U ′ ⊂ U
(line 8). To this end, the algorithm determines the subset’s
connector C := U \ U ′ and performs the connector look-
up (lines 9-10). We describe this connector look-up below.
Then, minimizeFDs tests the candidate FDs using partition
refinement (line 11). If it finds an FD, minimizeFDs re-
moves the corresponding attribute from the closure of the
current left hand side, because the left hand side cannot be
minimal (line 12). Finally, we create new tasks for all direct
subsets with the valid right hand side (line 15). The valid
right hand sides contain all attributes that are still function-
ally determined by the current subset. After checking the
FDs in all subsets, the closure of the current left hand side
contains only those right hand sides for which the current
left hand side is minimal. The minimizeFDs function then
outputs these minimal FDs (line 16).

Connector look-up. Muds generates the right hand side
candidates using an operation that we call connector look-
up. The connector look-up ensures that the left and right
hand side are subsets of different minimal UCCs and that
the minimal UCCs overlap. We already discussed the princi-

Algorithm 1 Calculate FDs from minimal UCCs

Require: minimal UCCs U, union of all minimal UCCs Z
1: function minimizeFDs(U, Z )
2: for U ∈ U do
3: tasks.add(〈lhs←U, rhs←Z \ U, mUcc←U 〉)
4: FDs ← new Map<ColumnComb,ColumnComb>()
5: while !tasks.isEmpty() do
6: task ← tasks.remove()
7: currentRhs ← tasks.rhs
8: for lhsSubset ∈ task.lhs.getDirectSubsets() do
9: connector ← task.mUcc\lhsSubset

10: potentialRhs ← connectorLookup(connector\
getImpossibleColumns(lhsSubset))

11: validRhs ← checkFDs(task.lhs, potentialRhs)
12: currentRhs ← currentRhs \ validRhs
13: if validRhs.isEmpty then
14: continue
15: tasks.add(〈lhs←lhsSubset, rhs←validRhs,

mUcc←task.mUcc〉)
16: FDs[lhs] ← FDs[lhs] ∪ currentRhs

17: return FDs

ples used for this operation in Section 4.1. We now describe
the connector look-up in an example shown in Table 2. To
perform the connector look-up for a column combination,
Muds splits the minimal UCCs into a potential left hand
side and a connector. In our example, we split the mini-
mal UCC AFG into the potential left hand side A and the
connector FG. Then, we use the connector to perform a
look-up on the minimal UCCs: All minimal UCCs that are
supersets of the connector, are candidates for the right hand
side. Table 2 lists all minimal UCCs of our example in the
mUCCs column. In the matched column, Table 2 depicts
the retrieved UCCs. The subset of the matching UCCs that
is not the connector is printed in bold font. The result of the
look-up is the union of these columns; these columns serve
as right hand sides for the next FD candidates.

mUCCs matched
AFG AFG
BDFG BDFG
DEF -
CEFG CEFG

union: ABCDE

Table 2: Connector look-up with connector FG

After the connector look-up, the algorithm removes all left
hand side columns of the new FD candidate from the right
hand side columns, because trivial FDs do not need to be
checked. So in the example, we would remove A from the
union ABCDE. Additionally, the algorithm checks whether
the union of the left and right hand side is a subset of a min-
imal UCC; such dependencies cannot exist, because minimal
UCCs cannot contain FDs in themselves.

In the following, we describe the minimization of FDs for
the example minimal UCC AFG. Figure 4 depicts the tra-
versed graph. Note that for conciseness, we describe the
recursion in only one branch. At first, Muds initializes the
closure of the minimal UCC AFG to R \ {AFG}, which in
this case is BCDE. Then, the algorithm splits AFG into its
direct subsets, i.e., left hand sides for new FD candidates,
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and the connector (the connector is shown in round brack-
ets). At node AF , Muds performs the connector look-up,
which yields the potential right hand sides BD. By checking
the FDs AF → B and AF → D using partition refinement
(see Section 2.3), the algorithm finds that both FDs still
hold. Therefore, it can remove the FDs’ right hand sides
from the superset closure in node AFG, because these can-
not be minimal at AFG. Then, Muds computes the direct
subsets of AF and again performs the connector look-up.
For the column A, the look-up yields BD, whose dependen-
cies are then tested. In the test, the algorithm finds only
A→ B to be valid, which invalidates the minimality of the
parent FD AF → B. After completing an entire level, Muds
outputs the previous level’s remaining right hand sides as
valid minimal FDs. The algorithm terminates when no po-
tential right hand sides remain or the list of direct subsets
is empty. Upon termination, the algorithm has discovered
and minimized all FDs among connected minimal UCCs.

1

mUCC

AFG

BDFG

DEF
BD

BD

BCDE

AF(G)

AFG

AG(F) FG(A)

A(FG) F(AG)

Figure 4: Example for recursive FD minimization

5.2 Graph traversing for R \ Z
This section focusses on those FDs whose right hand side

is in R \ Z. The set R \ Z contains all columns that are
not element of any minimal UCC. Hence, the previous step
did not find these FDs. In contrast to existing FD discov-
ery algorithms, we can restrict possible right hand sides to
columns that belong to R \ Z, because the previous step
has already found all minimal FDs with right hand side in
Z. Therefore, not all columns in the relation need to be
analyzed as potential right hand sides.

As discussed in Section 4.2, Muds uses one sub-lattice
for each potential right hand side to profit from downwards
pruning. The algorithm traverses each sub-lattice using a
random walk strategy that is based on the traversal strategy
of the UCC discovery algorithm Ducc, which we already
introduced in Section 2.2: Suppose that we search for FDs
with right hand side A. Muds first constructs the lattice of
left hand side candidates for A using the attributes R \ A.
Then the random walk starts at a random seed node on
the first level of this lattice. At each node, we check if the
column combination in that node determines A.

Suppose we are at the node that contains the column com-
bination X. If X determines A, we continue the traversal by
choosing a random subset of X, because the discovered FD
X → A might not be minimal. All supersets of X also deter-
mine A, but are minimal. Therefore, we prune all supersets
of X. If the column combination X does not determine A,
the next traversal step chooses a random superset of X. All
subsets of X can then be pruned, because they cannot de-
termine A (Lemma 4). As noted in Section 2.2, the lattice
might contain holes of unvisited nodes, which have to be

discovered in the end. For this task, Muds uses the same
approach as Ducc [10].

The mayor difference of this traversal strategy to Ducc’s
traversal strategy lies in the check that decides which nodes
are traversed next: Ducc checks the uniqueness of the node’s
column combination by inspecting the cardinality of the
node’s PLI; Muds checks whether the node’s column combi-
nation functionally determines the sub-lattice’s right hand
side A by testing for partition refinement as described in
Lemma 1 in Section 2.3.

Before Muds starts the graph traversal for R \ Z, it has
already determined several minimal FDs (see Section 5.1).
These known FDs are used for additional pruning in the
lattice: The combination of a left hand side with its right
hand side can never be the left hand side of an already known
minimal FD (see Section 2.3). The random walk on a sub-
lattice terminates when all candidates are checked or pruned.
Then, Muds continues with the remaining sub-lattices until
all FDs with right hand sides in R \ Z are found.

5.3 Shadowed FD discovery
The two previously described sub-algorithms of Muds’

FD discovery part do not yet find all FDs. This is due to the
fact that some FDs are shadowed (see Section 4.3). In the
following, we present an algorithm that finds and minimizes
these shadowed FDs by first extending and then minimizing
the left hand sides of already discovered FDs.

Shadowed FD discovery: Algorithm 2 shows the discov-
ery of the (not necessarily minimal) shadowed FDs. At first,
the algorithm calculates the potentially shadowed columns.
The columns are shadowed, because they occur in a right
hand side of an FD and, thus, are not discovered when the
algorithm deduces the FDs from UCCs in a previous step.

To find the missing FDs, the algorithm iterates over all
previously discovered FDs in line 2 of Algorithm 2. For
each FD, the algorithm iterates over the subsets in line 3
and creates a connector in line 4 that is used for a lookup
of potentially shadowed columns in line 5. With these shad-
owed columns, the algorithm creates a new left hand side
from the union of the current left hand side and the shad-
owed columns in line 6. The FD newLhs → fd.rhs obvi-
ously holds, because fd.lhs → fd.rhs holds and newLhs =
fd.lhs ∪ shadowedRhs. However, the FD newLhs→ fd.rhs
is not minimal and FDs that were previously not discov-
ered might be deduced by minimizing the FD newLhs →
fd.rhs. newLhs can contain many columns and be larger
than UCCs. Thus, the amount of columns can be reduced
prior to the minimization of the FD. This is a powerful prun-
ing step, which is shown in line 7-8 of Algorithm 2. The

Algorithm 2 Discover shadowed FDs

Require: map(lhs,rhs) of minimal FDs, minimal UCCs U
1: procedure discoverShadowedFDs(FDs, U)
2: for fd ∈ FDs do
3: for subset ∈ fd.lhs.getAllSubsets() do
4: connector ← fd.lhs \ subset
5: shadowedRhs ← FDs[connector ]
6: newLhs ← fd.lhs ∪ shadowedRhs
7: for reduceLhs ∈ removeUCCs(newLhs, U) do
8: shadowedTasks.add(reduceLhs, fd.rhs)

9: minimizeFDs(shadowedTasks)
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Algorithm 3 Remove UCCs from the left hand side

Require: column combination to minimize lhs, minimal
UCCs U

1: function removeUCCs(lhs, U)
2: reducedLhs ← {}
3: tasks.add(〈pos←0, remCol←{}〉)
4: subsetUniques ← U.getSubsetsOf(lhs)
5: while !tasks.isEmpty() do
6: task ← tasks.remove()
7: if task.pos ≥ subsetUniques.size() then
8: reducedLhs.add(lhs \ task.remCol)
9: continue

10: unique ← subsetUniques[task.pos]
11: if (task.remCol ∩ unique).isEmpty() then
12: tasks.add(〈pos←task.pos + 1,

remCol←task.remCol〉)
13: continue
14: for column ∈ unique.columns do
15: tasks.add(〈pos←task.pos + 1,

remCol←task.remCol ∪ column〉)
16: return reducedLhs

method removeUCCs() compares the FD to the previously
discovered UCCs. If newLhs contains at least a single UCC,
a part of the UCC is removed and multiple reducedLhs are
returned that do not contain any UCC. This is possible be-
cause no left hand side that contains a UCC can yield a
minimal FD. This approach allows the algorithm to skip
steps in the minimization of the FD, because the initial left
hand sides are already smaller. In line 9, the algorithm min-
imizes the reduced left hand sides. After this step, all FDs
in the dataset are discovered. In the following, we describe
the methods removeUCCs() and minimizeFDs() in detail.

Shadowed FD pruning: As previously described, we are
not interested in left hand sides that contain UCCs, because
they cannot yield minimal FDs. Algorithm 3 shows the min-
imization of left hand sides by removing parts of UCCs. The
resulting left hand sides do not contain any UCC. For a sin-
gle non-minimized left hand side multiple reduced left hand
sides may be generated.

We use tasks and a queue to avoid recursive method calls
that is shown in line 3. Then, the algorithm calculates all
UCCs that are contained in the left hand side in line 4. For
each task, we save the next UCC that must be removed (pos)
and the columns that should be removed from the initial left
hand side to create a UCC-free left hand side(remCol). The
algorithm iterates over the tasks in line 5-15. Lines 7-9 show
a task that already iterated over all contained UCCs. Thus,
the calculation of the reduced left hand side is finished and
the reduced left hand side is added to the result in line 8.
If at least a single UCC must be removed from the current
left hand side, the algorithm obtains this UCC in line 10.
Lines 11-13 check if the current UCC is completely removed
due to the columns in remCol. If this is the case, Muds
continues with the next UCC by adding the task with an
increased pos index in line 12. Lines 13-15 show the ac-
tual removal of columns. The algorithm iterates over the
columns in the UCC in line 14. For each column, a new
task is generated in line 15, where the current column is re-
moved. When all tasks are processed, the algorithm returns
the reduced left hand sides in line 16.

Algorithm 4 Discover and minimize potential FDs

Require: shadowed Tasks tasks, map(lhs,rhs) of minimal
functional dependencies FDs

1: procedure minimizeFds(tasks, FDs)
2: while !tasks.isEmpty() do
3: task ← tasks.remove()
4: currentRhs = task.rhs
5: for subset ∈ task.lhs.getDirectSubsets() do
6: validFD ← checkFDs(subset, task.rhs)
7: if validFDs.isEmpty() then
8: continue
9: currentRhs ← currentRhs \ validFDs

10: tasks.add(〈lhs←subset, rhs←validFDs〉)
11: FDs[task.lhs] ← FDs[task.lhs] ∪ currentRhs

Shadowed FD minimizing: Muds calls Algorithm 4 in
Algorithm 2 to minimize FDs. The algorithm also uses a
task queue to avoid recursive method calls. For every shad-
owed FD task containing a potential left and right hand side,
Muds generates all direct left hand side subsets (line 5).
These subsets might already determine the right hand side.
Afterwards, the algorithm checks, which FDs actually hold
on the current subset’s left hand side and then removes these
dependencies from the superset’s right hand side, because
they are not minimal (lines 6-9). Then, Muds creates new
tasks for all direct subsets (lines 10). The set of minimal FDs
is updated with the known superset’s minimal FDs (line 11).
When all tasks have been processed, the algorithm termi-
nates. At this stage, all shadowed FDs have been discovered
and minimized.

5.4 Subset pruning tree
As described in Section 5.3, Muds also finds shadowed

FDs. For each left hand side X, it needs to look-up all min-
imal UCCs that are subsets of X. The näıve implementa-
tion of this operation iterates over the list of minimal UCCs
and performs a subset check for each minimal UCC. With
an increasing number of attributes, the number of minimal
UCCs increases as well, which makes this operation increas-
ingly expensive. Therefore, we organize all minimal UCCs
in a prefix tree that guarantees an efficient look-up of UCC
subsets.

The concept of prefix trees was first presented by De La
Briandais [7]. For the construction of our prefix tree, we
assume that the columns in all column combinations are
sorted (e.g. by their position in the dataset). Figure 5 de-
picts an exemplary prefix tree for UCCs. Level 1, which is
the root node of the prefix tree, stores all columns that oc-
cur as the first column in any column combination. For each
entry in level 1, a node in level 2 may exist. These nodes
store the second columns of column combinations that share
the same first column. This pattern continues for the other
levels. The last column of a column combination can be
identified as an entry that has no child node.

The Muds algorithm uses the prefix tree to efficiently find
subsets of minimal UCCs: Given a column combination X,
we need to find all subsets of X that are contained in the
prefix tree. To find them, we iterate over the sorted columns
of X. For each column in X, we check whether the column
is contained in level 1 of the prefix tree. If the column is not
contained, we discard that column and continue with the
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Level 1
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Figure 5: Prefix tree for seven column combinations

next column of X. If it is contained, we visit the associated
node in level 2. There, we perform the same check with
the remaining columns of X. Then, we go to level 3 and
so on. Two conditions can stop the search: First, we find
a matching node entry that has no associated node in the
next level. This means that we found a subset of X. Second,
there are no remaining columns in X, because we discarded
all of them, but we have not reached the end of a path in
the prefix three. Then, the current path does not lead to a
valid subset of X. In both cases, we need to trace back and
start over with the remaining columns of X.

6. EVALUATION
We compare Muds (Sec. 5), Holistic Fun (Sec. 3.2), and

the composition of baseline algorithms (Sec. 2) using the
Metanome data profiling framework1. The framework pro-
vides a standardized execution environment for pre-packaged
profiling algorithms. In this way, common tasks like file I/O,
user interaction, and result handling are decoupled from the
algorithms allowing for fair comparisons. Metanome and all
algorithms use OpenJDK 1.7 64-Bit. We show that the al-
gorithms have different characteristics and sweet spots, but
that Muds is preferable in general.

Hardware. We execute our experiments on a Dell Pow-
erEdge R620 with CentOS 6.4. The machine has 128 GB
DDR3 RAM, of which 120 GB are assigned to the Java
virtual machine, and two Intel Xeon E5-2650 (2.00 GHz,
Octa-Core) CPUs. Because the implementations of our al-
gorithms are all single threaded, only one of the cores is
actually used.

Datasets. For the row scalability experiment in Section 6.1,
we use the Universal Protein Resource2 (uniprot) dataset. It
is a public dataset about protein sequences and their func-
tions and contains 539,165 rows and 223 columns. For the
column scalability experiment in Section 6.2, we use the
ionosphere [3] dataset. This dataset contains radar data
of the ionosphere and features 351 rows and 34 columns
(and many dependencies). Our third dataset, the North
Carolina Voter Registration Statistics3 (ncvoter) dataset,
contains non-confidential data about 7,503,575 voters from
North Carolina and features 94 columns. We use this data-
set for the evaluation in Section 6.4. For our experiments
described in Section 6.3, we use additional real world data-
sets from the UCI machine learning repository [3]. The
section also compares the performance of Muds with the

1www.metanome.de
2www.uniprot.org Accessed: 2015-03-03
3ftp://alt.ncsbe.gov/data/ Accessed: 2015-03-03

performance of Tane [11], the most popular FD discovery
algorithm, to show that Muds can also compete with non-
holistic FD algorithms. Finally, we discuss dataset proper-
ties that Muds’ FD discovery is optimized for in Section 6.5.

6.1 Scalability on rows
In the following experiment, we evaluate the scalability

of our algorithms Muds and Holistic Fun with respect
to the number of rows in the input dataset and compare
them to the baseline algorithm, which is the sequential ex-
ecution of Spider, Ducc, and Fun. Because of its length,
the uniprot dataset is best suited for row-scalability experi-
ments. Figure 6 depicts the execution times of the different
algorithms on uniprot with ten columns while varying the
dataset’s number of rows.
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Figure 6: Scalability with regard to the number of
rows on the uniprot dataset

The measurements show that all three algorithms scale
almost linearly with the number of rows. On this particular
dataset, Holistic Fun is the fastest algorithm; it is about
1/3 faster than the baseline, because Holistic Fun shares
the cost for I/O among the three profiling tasks and discov-
ers UCCs directly with the FDs. Muds, on the contrary, is
the slowest algorithm on uniprot, because the discovery of
shadowed FDs is particularly expensive on this dataset; if
many shadowed FDs are to be discovered, the costs for this
step also scale linearly with the number of rows.

6.2 Scalability on columns
The following experiment evaluates the algorithms with

regard to the number of columns: Using the ionosphere
dataset, we successively include more and more columns
from the original dataset in each run. The ionosphere data-
set is particularly interesting for column-scalability experi-
ments, because it contains many and large FDs – a challenge
for any FD discovery algorithm and a test of its pruning ca-
pabilities. The results are shown in Figure 7, which also
presents the number of discovered FDs in the dataset.

The experiment shows that the execution times of all three
algorithms scale exponentially with the number of columns,
which is due to the fact that the search space for UCCs
and FDs also grows exponentially. However, Muds scales
clearly better with the number of columns on the ionosphere
dataset than both Holistic Fun and the baseline, because
due to the UCC-first discovery approach Muds searches a
much smaller search space and the number of shadowed FDs
is manageable on ionosphere. The baseline and Holistic

313



0

10000

20000

30000

40000

50000

60000

70000

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

10 15 20 21 22 23

d
e

p
e

n
d

e
n

ci
e

s 
[#

]

e
xe

cu
ti

o
n

 t
im

e
 [

se
c]

columns [#]

MUDS HFUN baseline #INDs #FDs #UCCs

Figure 7: Scalability over the number of columns on
the ionosphere dataset.

Fun both spend 99% of their runtime on FD discovery for
23 columns, which gives Muds’ improved FD discovery a
significant advantage. For the same reason, Holistic Fun
performs only slightly better than the baseline; it optimizes
those algorithmic parts that make up only 1% of the overall
runtime.

6.3 Performance on various Datasets
The scalability experiments evaluated the performance of

Holistic Fun and Muds on the uniprot and the ionosphere
dataset. To verify the observations that we made on these
two datasets, we now evaluate the algorithms on various
real-world datasets from the UCI machine learning reposi-
tory [3]. These UCI datasets have been used in most related
work benchmarks and thus allow for comparability of re-
sults. We also add the Tane algorithm to this comparison
in order to investigate how Muds performs in comparison to
state-of-the-art non-holistic FD discovery. Table 3 lists the
execution times of the four profiling algorithms.

As in the scalability experiments, Holistic Fun always
performs slightly better than the baseline algorithm showing
that a holistic approach should always be preferred over the
sequential execution of individual profiling algorithms. The
experiment also shows that it strongly depends on the prop-
erties of the given input dataset whether Muds or Holis-
tic Fun is the overall best algorithm: For small numbers
of columns and higher numbers of rows, Holistic Fun ap-
pears to be the faster algorithm and for higher numbers of
columns and small numbers of rows, Muds performs best.
The number of columns, thereby, determines the algorithms’
performance much stronger than the number of rows as the
adult and the letter dataset show, on which Muds is up to
factor 48 faster than Holistic Fun.

When analyzing the algorithms’ performance on the dif-
ferent datasets in detail, we find that some minimal FDs in
datasets where Muds is clearly faster than Holistic Fun
have very large left hand sides. The Holistic Fun algo-
rithm, then, must traverse many nodes in the lattice, which
is expensive. Muds, in contrast, utilizes the minimal UCCs
for pruning and the depth first search strategy in order to
traverse a much smaller part of the lattice. This leads to
a clear performance advantage. So in general, the perfor-
mance of Holistic Fun and Muds depends on the position
of the FDs in the lattice. If the minimal FDs have small
left hand sides, Holistic Fun is the better algorithm, be-

Dataset Col Row FDs basel. Hfun Muds Tane
iris 5 150 4 .1s .1s .1s .6s
balance 5 625 1 .3s .1s .1s .9s
chess 7 28k 1 2.0s .9s 1.5s 2.0s
abalone 9 4k 137 1.3s .6s 1.1s 1.0s
nursery 9 12k 1 2.3s 1.9s 3.1s 3.1s
b-cancer 11 699 46 .8s .6s .5s 1.4s
bridges 13 108 142 .8s .7s .6s 1.3s
echocard 13 132 538 1.0s .6s 1.6s .8s
adult 14 48k 78 126s 118s 9.9s 81.2s
letter 17 20k 61 706s 636s 13.2s 326.0s
hepatitis 20 155 8k 462s 450s 88.1s 10.9s

Table 3: Runtime comparison on 11 real world data-
sets

cause the overhead of finding shadowed FDs in Muds is un-
proportionately large. But if there are FDs with large left
hand sides in the dataset, Muds is more efficient. Because
the average size of minimal FDs correlates with number of
columns, we can choose Muds or Holistic Fun based on
the number of columns. Section 6.5 discusses the difference
between Holistic Fun and Muds in more detail.

When comparing the runtimes of Muds with the run-
times of Tane, we observe up to 8 times slower runtimes
on the hepatitis dataset, where many shadowed FDs exist.
However, we also see that the holistic algorithm can outper-
form the non-holistic algorithm by orders of magnitude: It
is 8 times faster on the adult dataset and 24 times faster on
the letter dataset. This is possible if Muds finds favorable
pruning conditions, i.e., FDs with large left hand sides. The
algorithm can, then, prune much more efficiently than Tane,
which makes Muds also the better FD algorithm here.

6.4 Analysis of MUDS’ phases
Our previous experiments identified Muds’ last phase,

namely the discovery of shadowed FDs, to be its most com-
putationally expensive phase. We now analyze the different
phases in more detail. Figure 8 depicts the execution time
for each phase of the algorithm. We ran this experiment on
20 columns and 10,000 rows of the ncvoter dataset.
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Figure 8: Runtime of Muds’ different phases on the
ncvoter dataset with 10,000 rows and 20 columns

As the measurement show, the computational effort spent
on Spider and Ducc is almost negligible. The last two
phases that detect shadowed FDs, however, are the perfor-
mance bottleneck of Muds in this experiment. We observe a
22 times higher execution time than in the previous phases.
The generate shadowed tasks phase iterates over the already
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found FDs and creates tasks for possibly shadowed FDs.
Each task immediately checks if the FDs holds. These FD
checks consume 78% of the time in this phase. Because the
found FDs are not necessarily minimal, Muds then mini-
mizes the valid FDs in the minimize shadowed tasks phase.
The FD checks in this phase take 90% of the phase’s time.
If the number of discovered shadowed FDs is high, the min-
imization is very expensive, because minimizing FDs corre-
sponds to a top-down FD discovery that scales exponentially
with the number of columns. In both phases, the primary
time-consuming operation is the PLI intersect, which is nec-
essary to check whether an FD holds. However, the exe-
cution time distribution between the phases of the Muds
algorithm is dataset specific and especially disadvantageous
in this experiment. Nevertheless, we observed that the shad-
owed FD finding part is the most expensive phase of Muds
on all datasets.

6.5 Favorable dataset properties for MUDS
From our previous experiments, we learned that Muds

usually performs best on datasets with ten or more columns.
But the number of columns is only one possible indicator for
the performance of Muds over Holistic Fun. In both algo-
rithms, the discovery of FDs is the most expensive part. So
to understand the difference between these two approaches
better, we have to compare the two FD search strategies in
more depth. Depending on the size of these search spaces
on the given dataset, one or the other algorithm is superior.

Holistic Fun searches for FDs by starting at the bottom
of the lattice and, then, traverses the nodes level-wise until
all minimal FDs are found. Thereby, it classifies visited ele-
ments into free sets and non-free sets to prune non-minimal
FD candidates. The size of Holistic Fun’s search space is,
hence, defined by the height of the lattice levels that hold
the minimal FDs; the higher the algorithm has to search,
the longer it takes

Muds first computes all minimal UCCs and, then, searches
for FDs in two different search spaces: The first search starts
from the minimal UCCs and traverses the lattice in a top-
down strategy until all minimal FDs are found (see Sec-
tion 5.1). All nodes that Muds traverses in this way are
subsets of minimal UCCs and non-free sets in the classifi-
cation of Fun. Because this search space approaches the
minimal FDs from the top down, it differs greatly from the
search space of Holistic Fun. The second search space of
Muds uses only the columns in R\A for the construction of
sub-lattices that are then traversed bottom-up, depth-first
(see Section 5.2). This search space overlaps with Holis-
tic Fun’s search space, but it is much smaller depending
on the size of R \A. Furthermore, Muds’ depth-first search
reaches minimal FDs on high lattice levels much faster than
Holistic Fun’s breath-first search.

So Muds also performs best, if the minimal FDs and min-
imal UCCs are located on low lattice levels. In comparison
to Holistic Fun and any bottom-up, breath-first FD dis-
covery algorithm Muds performs best when:

1. The minimal UCCs lie close to the minimal FDs in the
lattice.

2. The minimal UCCs lie on high lattice levels so that
the minimal FDs lie on high lattice levels as well.

3. Many columns participate in at least one minimal UCC,
i.e., the column set R \A is small.

Criterion 1 is intuitively clear, because the size of Muds’
first search space shrinks with the distance of minimal UCCs
and FDs. Criterion 2 seems to be a disadvantage for Muds,
because it increases the size of the second search space; but
Muds’ second search space is (a) much smaller than Holis-
tic Fun’s search space and (b) the depth-first search out-
performs the breath-first search if this search depth is large.
Criterion 3 is a big advantage for Muds, because its bottom-
down search is much faster than the bottom-up search (see
Section 6.4).

So now it becomes clear, why Muds scales better with
the number of columns than Holistic Fun: The average
distance between minimal UCCs and minimal FDs growths
only slightly with the number of columns so that Criterion 1
always holds; the average height and number of both min-
imal UCCs and minimal FDs growths constantly so that
Criterion 2 becomes increasingly advantageous for Muds;
the chances for columns being part of some minimal UCC
with some other columns also increases with the number of
columns so that the size of column set R \A increases only
slightly making Criterion 3 hold.

The number of columns is, however, only an indirect indi-
cator for the performance of Muds. If the Criteria 1 to 3 do
not hold in a particular dataset or if the dataset comprises
many rows (see Section 6.1), a lot more columns would be
needed to make Muds faster than Holistic Fun. So we
could, instead, use the number and size of minimal UCCs
to choose the FD discovery strategy: Because Muds calcu-
lates the minimal UCCs before it starts the FD discovery,
one could choose Muds’ FD discovery part if many, large
UCCs have been found or the Fun algorithm if few, small
UCCs are found. In practice, however, making the decision
based on the number of columns is easier and similarly pre-
cise, because the properties “many” and “large” depend on
the actual number of rows and columns so that they are
non-trivial to define.

7. RELATED WORK
Many data profiling applications, such as data integration

and data exploration, need to calculate various metadata at
once, but almost all existing algorithms focus on only one
task. We already introduced the most important related
algorithms for holistic data profiling in Section 2, so we now
give a more comprehensive overview on existing IND, UCC,
and FD discovery algorithms:

De Marchi et al. [8] presented one of the first algorithms
for IND detection. The algorithm constructs an inverted
index upon the values of all attributes to check them for
inclusions. This technique has been outperformed by the
Spider algorithm [4] that discards attributes early on. As
Spider is the currently most efficient algorithm for IND de-
tection, we integrated it in our holistic approaches.

The algorithms for UCC discovery can be separated in
two groups: row-based and column-based techniques. Gian-
nella et al. [9] presented a column-based algorithm that ge-
nerates relevant column combinations to check their unique-
ness. An improved version of this algorithm, HCA [1], uses
an optimized candidate generation and additional statisti-
cal pruning to find UCCs. In both algorithms the check for
uniqueness is costly. Gordian [16], in contrast, is a row-
based UCC discovery algorithm that organizes the data in
a prefix tree to check for UCCs. It traverses the tree to
determine maximal non-UCCs, which are then used to cal-
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culate the minimal UCCs. This is also costly if the number
of maximal non-UCCs is large. The currently most efficient
UCC algorithm Ducc [10] implements a combination of row-
based and column-based techniques: It builds upon efficient
data structures and uses UCCs and non-UCCs simultane-
ously for pruning. Due to the efficiency of Ducc’s random
walk strategy, we used it in our holistic algorithms.

While Tane [11], proposed by Huhtala et al., is the most
popular FD algorithm, it is often outperformed by Fun [14].
Tane and Fun both use partition refinement to identify FDs
and apriori-gen to traverse the search space. As Fun addi-
tionally incorporates a cardinality inference method that re-
duces the necessary partition intersect operations, it needs
to traverse an overall smaller number of candidates. The
CORDS algorithm by Ilyas et al. [12] is capable of identi-
fying various correlations and soft FDs. As the algorithm’s
identification process builds upon sampling techniques, it
only approximates the real result.

Although current profiling algorithms focus on one spe-
cific profiling task, there are some algorithms that already
leverage the knowledge about one type of metadata to draw
conclusions about another. The first work in this context
was contributed by Beeri and Bernstein [5] who used the
defined FDs in a relational database to find additional keys.
The algorithms Fun and HCA both use dependencies be-
tween FDs and UCCs for pruning. However, they use dis-
covered FDs to derive UCCs, while our algorithm Muds uses
discovered UCCs to derive FDs.

8. CONCLUSION
We investigated the problem of simultaneously discover-

ing three types of metadata: INDs, UCCs, and FDs. By in-
terleaving their calculation, we demonstrated how to share
common costs for I/O operations and the traversal of data
structures in order to reduce the overall profiling time. Fur-
thermore, we introduced new inter-task pruning and infer-
ence rules, in particular rules that derive possible FDs from
discovered UCCs. For the analysis of our holistic techniques,
we proposed the two algorithms Holistic Fun and Muds,
which jointly discover unary INDs, minimal UCCs, and min-
imal FDs. Holistic Fun always outperforms the sequential
execution of the Spider, Ducc, and Fun, the fastest of algo-
rithms for the respective tasks, by avoiding duplicate work.
The Muds algorithm, on the other hand, also facilitates the
additional inter-task pruning and inference rules giving it
a significant performance advantage on different real world
datasets: Our evaluation shows that Muds is up to 48 times
faster than Holistic Fun and the baseline if favorable (and
common) pruning conditions (many FDs and UCCs with
long left hand sides) are given. On such datasets, Muds
performs even faster than the fastest pure FD algorithm.
The number of columns and the size of discovered UCCs
can both be used to decide whether Muds or Holistic Fun
should be used.
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