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ABSTRACT
The World Health Organization (WHO) and drug regula-
tors in many countries maintain databases for adverse drug
reaction reports. Data duplication is a significant problem
in such databases as reports often come from a variety of
sources. Most duplicate detection techniques either have
limitations on handling large amount of data or lack effec-
tive means to deal with data with imbalanced label distribu-
tion. In this paper, we propose a scalable duplicate detec-
tion method built on top of Spark to address these problems.
Our method uses the kNN (k nearest neighbors) classifier to
identify labelled report pairs that are most useful for classi-
fying new report pairs. To deal with the high computational
cost of kNN, we partition the labelled data into clusters for
parallel computing. We give a method to minimize the cross-
cluster kNN search. Our experimental results show that the
proposed method is able to produce robust duplicate detec-
tion results and scalable performance.

1. INTRODUCTION
Adverse drug reactions, or ADRs, impose significant haz-

ards to public health. They are one of the leading causes
of hospitalization, disabilities, and death around the world.
ADRs incur significant costs to health-care systems [10, 19].
Post-marketing drug safety surveillance plays an increas-
ingly important role in ADR detection in comparison with
pre-marketing drug clinical trails as clinical trials have limi-
tations on the number of patients involved and the diversity
of patient groups. Post-marketing drug safety surveillance
mainly uses Spontaneous Reporting Systems (SRS) to detect
signals of potential ADRs. These signals are then further as-
sessed by experts to establish a causal relationship between a
drug and an ADR. The World Health Organization (WHO)
and drug regulators in many countries, such as the FDA
in the US and the TGA in Australia maintain databases
for adverse drug reaction reports. ADR reports are submit-
ted from a variety of sources including general practitioners,
pharmacists, hospitals, and consumers etc. The ADR report
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database is the major part of the reporting system. Many
drug safety assessment methods detect potential ADR sig-
nals through the comparison of the reported ADR ratio of a
specific drug and that of other drugs in the database. Dis-
proportionality often indicates a potential ADR signal [6, 7].
As these methods are sensitive to the number of ADR re-
ports, data quality in these databases is essential to the per-
formance of ADR detection. One significant problem faced
by such a database is report duplication. Duplicates often
result from two sources. First, reports from different data
sources have overlaps as the same ADR may be reported
by different organizations through different channels. Sec-
ond, the follow-up reports of the same ADR are wrongly put
as separate records in the databases. Duplicates may dis-
tort the report ratio of an ADR and affect the performance
of these methods significantly. Nkanza and Walop [17] re-
ported a 5% duplication rate in vaccine adverse event data,
providing an indication of the spread of the problem.

Duplicated reports in an ADR database are often not ex-
actly the same in each field. Table 1 shows two examples.
In the first example, report A and report B are duplicate,
but they differ in the reaction outcome description field and
report description field. In the second example, report C
and report D are duplicate, but they differ in patient age,
ADR name and report description field. The different values
in the patient age field are likely to be an error introduced
when entering a handwritten report.

A database record consists of multiple fields. Duplicate
detection techniques therefore have two levels: field match-
ing and record matching. Field matching mainly concerns
comparing numerical, categorical and string values in each
field. Record matching concerns whether two or more fea-
ture vectors formed by common fields belonging to different
records are duplicate.

There are many existing works on duplicate detection in
relational databases. Early works are referred as record
linkage with a focus on linking together two or more sep-
arately recorded pieces of information concerning an indi-
vidual case [16]. Large amount of work deals with the com-
parison of fields that can identify a particular record, such as
name, address, and age. The values of these fields are nor-
mally short strings. Many field matching techniques concern
approximate comparison of strings based on various similar-
ity metrics. Commonly used string similarity metrics include
edit distance [13], Hamming distance [8], cosine distance and
Jaccard coefficient [3] etc. Field matching alone is not able
to detect many duplicates, e.g., two string values in the sur-
name field can be totally different in the case that a woman
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(a)

Field Name Report A Report B
patient age 46 46
patient sex M M
patient state - -
onset date - -
reaction outcome description Unknown Recovered
drug name Atorvastatin Atorvastatin
ADR name Rhabdomyolysis Rhabdomyolysis
report description Reference number xxx is a literature The 46-year-old male subject started treatment

report received on 02-Oct-2013 pertaining with atorvastatin calcium 80 mg, start
to a 46 year-old male patient who date and duration of therapy unknown.
experienced rhabdomyolysis while on In 2009,the subject presented with myalgia
atorvastatin for the treatment of shoulder and hips for 2-3 weeks, minimal
unknown indication. weakness and was diagnosed with rhabdomyolysi

(b)

Field Name Report C Report D
patient age 84 34
patient sex F F
patient state Not Known Not Known
onset date 30/04/2013 00:00:00 30/04/2013 00:00:00
reaction outcome description Unknown Recovered
drug name Influenza Vaccine,Dtpa Vaccine Influenza Vaccine,Dtpa Vaccine
ADR name Vomiting,Pyrexia,Cough,Headache Cough,Headache,Choking sensation,Chills,Vomiting
report description On 30 April 2013, in the evening, within hours In the afternoon of 30-Apr-2013, the patient

of vaccination with Boostrix, the subject experienced uncontrollable cough for 2 hours,
experienced uncontrollable cough and felt then started choking and had to call an ambulance.
like she was chocking On the same She required oxygen before she felt better
night, the subject experienced headache.On and so didn’t go to hospital. She then
the 01-05-2013 at 3am, the subjet experienced. reported a headache, cold shive

Table 1: Sample duplicated reports.

changes her maiden name to her husband’s surname, but
they belong to the same record.

Record matching considers each field as an element of a
feature vector of a record. It combines the differences among
common fields of two or more records to determine whether
they are duplicate. The ways of combining field similarities
of records differentiates record matching techniques. Some
techniques calculate the probability of difference of values in
each common field, converts these probabilities to log values
and add them together [16, 11, 12]. Some techniques use su-
pervised decision tree induction and unsupervised clustering
to determine if a record is likely to match a set of other data
records [5]. Active learning is also used for record matching
to reduce the amount of training data [20].

However, the effectiveness of existing duplicate detection
techniques on ADR databases is not well investigated mainly
due to the slow progress of the industryâĂŹs adopting infor-
mation technologies. We collaborate with the Therapeutic
Goods Administration (TGA) in Australia and use the ADR
reports they collected during 6 month period to carry out
this work. In this paper, we study the duplicate detection
problem in ADR databases with a focus on detection per-
formance and system scalability that is important for fast
growing data in this area. Our contributions are as below:

1. To identify duplicates in ADR reports, pairwise dis-
tances between these reports often need to be calcu-
lated. The distribution of duplicate pairs and non-
duplicate pairs is highly imbalance. This poses a sig-
nificant challenge when selecting report pairs from a
large dataset to train a classifier for exploiting useful
information. The classification results are highly influ-
enced by the overwhelming majority of non-duplicate
report pairs. There is no generally applicable classi-
fication method to address this issue. We develop a

kNN based method to address this problem for ADR
reports. kNN is helpful for the classifier to learn from
individual reports and makes the classification results
easy to understand. It also offers flexibility through as-
signing weights to the information carried in the neigh-
bors in decision making. Our extensive experiments
show that our method produces more robust detection
results in comparison to SVM based classifiers.

2. A drug regulator database in a country with a rela-
tively small population may already contain a large
number of ADR reports that easily overwhelms the
computing capacity for effective duplicate detection.
In addition, kNN is both data- and compute-intensive
when the dataset grows large. The MapReduce model
is a convenient way to scale up the duplicate detection.
However, its Google and open source implementation
are mainly optimized for batch jobs so far [22]. Du-
plicate detection for ADR databases has a potential
use-case for interactive and fast detection of duplicates
for a specific report. Apache Spark [24] has the poten-
tial to support interactive data analytics. We imple-
ment a Spark based parallel system to support fast and
scalable kNN classification for duplicates. Taking ad-
vantage of the distributed memory management and
parallel data processing support offered by Spark, the
system is able to handle large amount of ADR reports
in a scalable manner.

The rest of this paper is organized as follows: Section 2
introduces the background technologies of our work; Sec-
tion 3 defines the problem; Section 4 describes the system
and our Fast kNN classification method; Section 5 gives the
evaluation results of the performance of the system; Sec-
tion 6 summarizes related works; and Section 7 concludes
the paper.

552



2. BACKGROUND

2.1 kNN Classification
In a D-dimensional space D, s and t are two vectors rep-

resenting two data objects. We use d(s, t) to denote the
distance between s and t. Consider S and T are two sets
of such vectors, for a vector s ∈ S, we denote its k near-
est neighbors according to a given distance function in T
as knn(s, T, k). We assume that each t ∈ T is associated
with a label Lt, Lt ∈ {−1,+1}. The labels of vectors in S
are unknown. We use knn+(s, T, k) to denote the vectors
in knn(s, T, k) with label “+1” and knn−(s, T, k) to denote
vectors with label “−1”. kNN classifier assign a label to s
according to the following equation (note that the number
of vectors in knn(s, T, k) is an odd number):

Ls =

{
+1,

∑
t∈knn+(s,T,k) Lt +

∑
t∈knn−(s,T,k) Lt > 0

−1,
∑

t∈knn+(s,T,k) Lt +
∑

t∈knn−(s,T,k) Lt < 0

(1)
Assigning labels to each s ∈ S according to their nearest
neighbors requires a kNN join operation between S and T
to identify k nearest neighbors of set S in T , denoted as
S nknn T .

S nknn T = {(s, knn(s, T, k)|∀s ∈ S} (2)

2.2 Spark
Spark [24] is a cluster computing framework that sup-

ports iterative and interactive data processing. It provides
a level of data abstraction called resilient distributed datasets
(RDDs) [23] to represent a set of immutable data objects.
These data objects can be partitioned among a number of
cluster nodes. RDDs are fault-tolerant and can be recon-
structed when their hosting nodes fail.

There are two types of operations that can be applied to a
RDD in the Spark framework: transformations and actions.
A transformation contains operations that produces a new
RDD from an existing RDD while an action returns a value
after operating on a RDD. Operations are often executed in
parallel on a RDD. In addition to support map, reduce and
aggregate operations on a RDD, Spark also offers operations
such as join, union and cartesian to manipulate multiple
RDDs. Different to MapReduce, RDDs where map and re-
duce operate on can be persistent in memory in nodes of the
cluster, which greatly improves the efficiency of iterative and
interactive applications. A duplicate detection system like
the one discussed in this paper is an iterative process that
contains data processing of multiple stages and it fits the
Spark framework well.

3. THE PROBLEM
An adverse drug reaction report database A stores reports

continuously collected by a regulator. We consider that a
set of new reports, denoted by R arrive in the database
may contain duplicates among themselves as well as with
existing reports in the database. The problem is to identify
the following set of report pairs:

Dupe(R,A) = {(r, h)|sim(r, h) < ε, ∀r ∈ R, ∀h ∈ A∪R−r}
(3)

in which, sim is a scoring function that measures the similar-
ity between two reports and ε is a threshold that determines
whether two reports are duplicate.

Duplicate detection within database A can been seen as
a recursive process in which reports are sorted according
to their arrival time to the database and reports with later
arrival time are checked for duplication against those with
earlier arrival time.

Note that even though an ADR database may contain 5%
of reports that have at least one duplicate in the database,
when it comes to the number of duplicated report pairs, the
rate of duplicates is much lower. This is because the number
of report pairs grows quadratically with the number of re-
ports and non-duplicate report pairs grows much faster than
duplicate report pairs. This results in highly imbalanced dis-
tribution of duplicate and non-duplicate report pairs in the
dataset derived from A.

4. THE SYSTEM

4.1 The Workflow
The workflow for duplicate detection in ADR database is

shown in Figure 1. It contains the following major compo-
nents:

• Report database: The report database stores reports
collected by a regulator and new reports are continu-
ously added to this database.

• Text processing module: Our system contains a text
processing component to clean up text data in a re-
port using common natural language processing tech-
niques. Free text plays an increasingly important role
in ADR reports as consumers increasingly participate
in reporting drug side effects to regulators in recent
years. Free text in a report not only is helpful for un-
derstanding drug side effects, but also contains useful
information to identify duplicated reports. Compared
to string fields such as name and address in existing
duplicate detection systems, a free text field such as
“report description” is significantly longer with major-
ity of them being 250 and 300 characters long. This
requires NLP techniques to extract useful information
from the text for duplicate detection. On the other
hand, regulators also increasingly monitor various data
sources that contain large amount of text for ADR re-
lated information.

• Pairwise distance computing module: The module com-
putes the pairwise distance among a set of reports in-
cluding selected reports from the database and new
reports arriving to the system.

• Training datasets (labelled datasets): The system main-
tains two temporary databases for duplicate detection:
one contains report pairs that are known to be du-
plicate; the other contains samples of non-duplicate
report pairs. The initial duplicate/non-duplicate la-
belling is done manually by domain experts from drug
regulators, in our case, the TGA. Afterwords, the col-
lection of report pairs in the two temporary databases
are dynamically adjusted when new duplicates and
non-duplicates are identified. Note that the duplicate
report pair database stores all known duplicates while
the non-duplicate report pair database only keeps a
subset of known non-duplicates. The difference is due
to the highly imbalanced distribution of duplicate and
non-duplicate pairs.
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Figure 1: The workflow of the system – the dashed line represents that the source data becomes part of the
target data when the processing finishes.

• Classification module: The report pairs are fed into
the classification module that computes the scores for
each pair and generates a list of duplicate pairs given a
score threshold. Many classification algorithms fit into
this system framework. We use kNN classifier as the
default one for this application area. One advantage
of kNN is that the classification results are easy to ex-
plain with human intuition and the basis of decision
making can be justified clearly. This characteristics is
particularly useful when the training dataset is highly
imbalanced and global algorithms are difficult to sep-
arate them with general models.

4.2 Report Distance Calculation
A typical ADR report contains fields as shown in Table 2.

Due to different missing data rates in different fields as well
as schema inconsistency in data sources, common practices
choose a subset of fields as input for duplicate detection.
The fields used in our method are highlighted in bold fonts.
The selection of fields is based on the WHO system as de-
scribed in [18]. In the selected fields, patient age (“calculated
age”) is numerical type. Patient sex, residential state and
onset date are treated as categorical data type. ADR name
(“MedDRA PT code”) and drug name (“generic name de-
scription”) have string type. Different methods deal with
string type differently, e.g., they are treated as categorical
type in probability based methods and programming level
string type in SVM based methods. As mentioned, free text
becomes increasingly important in ADR reporting systems,
we therefore include the report description field in our du-
plicate detection system and treat it as string type.

For a numerical field, if the values of two reports in the
field is the same, the distance is 0, otherwise 1. The same
calculation applies to categorical field types. For fields of
string type, we use Jaccard similarity coefficient to measure
the distance between two values as below:

d(S1, S2) = 1− |S1 ∩ S2|
|S1 ∪ S2|

(4)

in which, |S| is the size of set S. The free text field is of
string type, but as mentioned earlier, majority of values in
the free text field are between 250 and 300 characters long.
In order to eliminate the impact of typographical errors or

different ways of constructing sentences, we apply common
techniques to tokenize the content in the report description
field, remove stop words, and then stem tokenized words to
their root forms before computing their distances.

The distances of values in these selected fields of any two
reports form a distance vector between the report pair. The
comparison between two distance vectors, i.e., measuring
how similar a report pair is in comparison to another pair
of reports, is based on the Euclidean distance between the
two distance vectors of the two pairs.

Information Fields
Case Details case number, report date

Patient Details calculated age, sex, weight code, eth-
nicity code, residential state

Reaction Infor-
mation

onset date, date of outcome, reac-
tion outcome code, reaction out-
come description, severity code, sever-
ity description, report description,
treatment text, hospitalisation code,
hospitalisation description, MedDRA
Low Level Term (LLT) code, LLT
name, MedDRA Preferred Term
(PT) code, PT name

Medicine Infor-
mation

suspect code, suspect description,
trade name code,trade name text,
trade name description, generic name
code, generic name description,
dosage amount, unit proportion code,
dosage form code, dosage form de-
scription, route of administration code,
route of administration description,
dosage start date, dosage halt date

Reporter Details reporter type, report type description

Table 2: Data fields of an ADR report in TGA data.
The bold font indicates fields used in our duplicate
detection method.
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4.3 Fast kNN Classification
With the pairwise distances calculated, a kNN join is ap-

plied to labelled report pairs, denoted by T , and report pairs
containing new reports, denoted by S. The classification of
a report pair s ∈ S is based on the score computed from its
nearest neighbors in T . Due to the imbalanced distribution
of positive and negative labels, the negative report pairs eas-
ily overwhelm the positive ones. We therefore normalize the
score using the distance between two pairs as below.

scores =
∑

t∈knn+(s,T,k)

1

sim(s, t)
−

∑
t∈knn−(s,T,k)

1

sim(s, t)

(5)
The label of s is therefore determined by the following equa-
tion, in which θ is a given threshold:

Ls =

{
+1, scores ≥ θ
−1, scores < θ

(6)

4.3.1 Parallelization Strategy
Consider the number of report pairs in T is n and the

number of report pairs in S is m, the computing complexity
of kNN classification is O(m·n) for join and O(m·k) for score
calculation. n exhibits quadratic growth with the number of
reports. The amount of data to process easily overwhelms a
single server. To make the classification scalable, we parti-
tion T and S into a set of clusters, denoted by {T1, T2, ..., Tb}
and {S1, S2, ..., Sc} respectively. The cluster size in a parti-
tion is adjusted to fit into the memory capacity of a comput-
ing node. A naive parallelization strategy is to apply kNN
join for each partition group {(Ti, Sj)|1 ≤ i ≤ b, 1 ≤ j ≤ c}
and then merge the nearest neighbors from each partition
group. This approach does not reduce the overall comput-
ing complexity and incurs high data transfer cost as each
partition in S needs to compare with all partitions in T .
The merge of intermediate nearest neighbors may poten-
tially become another bottleneck that limits the scalability.

To address this problem, we exploit the locality of report
pairs in T in partitioning. We first partition report pairs
using k −means clustering to obtain c clusters. The center
of each cluster is calculated and stored in memory. Note
that clusters produced by k − means form a Voronoi di-
agram where each report pair in a cluster is closer to the
center of the cluster it belongs to than to any other cluster
centers. We then assign each report pair s ∈ S to a cluster
whose center is the closest to s comparing to other cluster
centers. It is likely that most of the k nearest neighbors of
s are within the cluster it is assigned, i.e., most of report
pairs in knn(s, T, k) can be found in knn(s, Ti, k) where Ti

is the cluster to which s is assigned. Certainly, there are
chances that some of the k nearest neighbors of s are in
clusters sharing borders with the cluster. The two scenarios
are illustrated in Fig. 2.

Our method therefore consists of two stages to deal with
the two scenarios. In the first stage, we compute the k near-
est neighbors within a partition to which each s ∈ S is as-
signed. In the second stage, the cross-cluster comparison is
performed for those testing report pairs falling into the sec-
ond scenario in Fig. 2. The key technical challenge is how
to determine whether it is necessary to check neighbor par-
titions when identifying the k nearest neighbors of a testing
report pair.

4.3.2 Observations

(a) (b)

Figure 2: kNN under partitioned dataset: the cir-
cle represents the cluster center of a partition; the
triangle represents a testing report pair s; the dark
square represents a positive report pair in knn(s, T, k)
and the light square represents a negative report
pair in knn(s, T, k). (a) knn(s, T, k) are all in one par-
tition; (b) knn(s, T, k) are in different partitions.

To address this problem, we develop an optimization algo-
rithm that intends to prune unnecessary cross-cluster com-
parisons. The algorithm is based on the following observa-
tions:

1. The number of positively labelled report pairs is small
and it incurs low computational cost to calculate dis-
tances between these positive report pairs and report
pairs in testing dataset.

2. When the k nearest neighbors of s ∈ S are all labelled
negative, there is no ground to classify s as a duplicate
report pair.

3. When the distance between s and its nearest positive
neighbor is greater than that between s and the k-th
nearest negative neighbor in a subset of T , it is clear
that there is no positive report pair in the knn(s, T, k).

4. As mentioned above, k−means produces Voronoi par-
titions on the training report pairs, hence the hyper-
plane, denoted by h that separates two partitions is
in the middle between the two cluster centers of the
two partitions. If the distance between s ∈ S and its
k-th nearest neighbor, denoted by sk in the partition
to which it is assigned is less than its distance to the
hyperplane, the distance between s and sk, denoted by
d(s, sk) is certainly less than distances from s to any
report pairs in the other partition.

The scenario of observation 4 is shown in Fig. 3, where the
distance between s and the partition hyperplane is d(s, h),
the distance between s and the closest report pair sx in the
other partition is d(s, sx). d(s, h) can be derived according
to [9] as below:

d(s, h) =
d(s, pj)

2 − d(s, pi)
2

2 · d(pi, pj)
(7)

in which, pi and pj denote the center of partition Ti and
Tj respectively. As d(s, b) is the shortest distance between
s and the hyperplane b and connecting s and sx needs to
cross the hyperplane, we have d(s, sx) ≥ d(s, b) according to
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the triangle inequality. Therefore when d(s, sk) ≤ d(s, b), it
is not necessary to include the partition Tj with center Cj

in the searching for knn(s, T, k).
Algorithm 1 describes the steps for selecting additional

partitions to be included kNN computing for a report pair
s. Line 2 – 5 is based on observation 1 – 3 and line 6 – 12 is
based on observation 4.

d
(s

,s
k)

d(s, sx)pi pj

s

sk

sx

Partition boundary(h)

d(s, h)

Figure 3: Additional partition selection for kNN un-
der partitioned datasets: pi and pj represent two
partition centers; the triangle represents a testing
report pair s.

Algorithm 1 Additional Partition Selection

Require: s ∈ S
Require: knn(s, Ti, k)
Require: min(s, T+): the mininal distance between s and

positive report pairs in T
Require: The centers of partitions : {pj |1 ≤ j ≤ b}
1: partitions = {}
2: d(s, sk) = max(knn(s, Ti, k))
3: if d(s, sk) ≤ min(s, T+) then
4: return partitions
5: end if
6: for 1 ≤ j ≤ b, j 6= i do
7: compute d(s, hij) using Equation 7. hij denotes the

hyperplane separating Ti and Tj .
8: if d(s, sk) > d(s, hij) then
9: partitions = partitions ∪ Tj

10: end if
11: end for
12: return partitions

4.3.3 The Classification Algorithm
Algorithm 2 gives main steps of implementing the dupli-

cate detection method described above with Spark primi-
tives of transformations and actions. The stage 1 (intra-
cluster comparison stage) is performed in line 6 – 8. The
stage 2 (cross-cluster comparison stage) is performance in
line 9 – 16. Stage 2 first computes the distances of the
testing report pair to all positive training pairs. It skips

cross-cluster comparison if the top k most similar report
pairs obtained so far are all negative, indicating there will
not be any positive training report pairs closer than the k-th
nearest negative report pairs. Otherwise, cross-cluster com-
parisons are performed in line 12 – 15. The output score of
each report pair is used to assign a label to the pair accord-
ing to Equation 6.

Algorithm 2 Fast kNN Classification.

Require: A training dataset T containing report pairs la-
belled as duplicate or non-duplicate

Require: A testing dataset S containing unlabelled report
pairs

Require: b – the number of clusters for partitioning T ; c –
the number of partitions for S

1: use k − means to partition T into b clusters:
{T1, T2, ..., Tb} with cluster centers of these partitions
denoted by P = {p1, p2, ..., pb}

2: run map operation to compute distances between P and
s ∈ S

3: assign s the partition i where dist(s, pi), (1 ≤ i ≤ b) is
minimal for vectors in P .

4: randomly split S into c partitions : {S1, S2, ..., Sc}
5: for i = 1 to c do
6: run join operation on Si and T− based on cluster IDs

(T− denotes the negative report pairs in T )
7: run map operation to compute the similarity between

joined report pairs
8: run aggregate operation to obtain the top k most sim-

ilar report pairs for each s ∈ Si based on the output
of the previous step

9: run map operation to compute distances between s ∈
Si and T+ (T+ denotes the subset of positive report
pairs in T )

10: run map operation to combine the results from step 8
and step 9 to update the top k most similar reports
pairs to s

11: if the output of step 10 contains at least one positive
report pair then

12: run map operation on {(s, knn(s, T, k))} for s ∈ Si

to compute a set of additional partitions to compare
using Algorithm 1

13: run join operation on Si and additional partitions
for s ∈ Si to compare

14: run map operation to compute the similarity be-
tween joined report pairs

15: run union and reduce operation to merge top k
nearest neighbors in each partition for s ∈ Si

16: end if
17: run map to calculate the score for s ∈ Si according to

Equation 5
18: end for
19: return all s ∈ S and corresponding scores

4.3.4 Further Pruning of the Testing Dataset
To further reducing the execution time of kNN classifica-

tion, we can prune some report pairs from the testing dataset
before applying the classifier. As shown in Equation 6, a
pre-defined θ determines the label of a report pair. When
the distance between a testing report pair and its positively
labelled k-nearest neighbor is further than a threshold, the
neighbor offers little hint to the label of the testing report
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pair because of the low similarity between the two pairs.
This observation can be used to prune the testing dataset.

When the testing dataset is large and the positive training
pairs accumulate along time, it is necessary to speedup the
computation of distances between each report pair in the
testing dataset and each labelled positive report pair in the
training dataset. We cluster the report pairs labelled as
positive and use the cluster centers to determine whether a
report pair in the testing dataset should be included in the
classification. Assume the distance threshold between two
report pairs is a function of θ, denoted as f(θ), The process
is described as below:

Step 1. Cluster the positive report pairs into l clusters using
k-means. We denote the cluster centers as cpi(0 <
i < l);

Step 2. Compute the distance of the furthest report pair to
its center in each cluster. We denote these distances
as dcpi(0 < i < l);

Step 3. For each report pair t in the testing report pair set,
do the following:

(a) For each 0 < i < l, calculate dist(t, cpi);

(b) if any dist(t, cpi) ≤ dcpi + f(θ), include t into
the testing set;

Fig. 4 shows an example of the process in 2-dimensional
space. cpi and cpj are the centers of two clusters of positive
report pairs. For simplicity, we assume the positive report
pairs are partitioned into only two clusters. The inner circles
are formed using the distance between the furthest report
pair and the center in each cluster. The shortest distance
between the dashed circle and its corresponding inner circle
is f(θ). In Fig. 4, p and q are testing report pairs. p is
outside of both dashed circles and those positive report pairs
are considered not helpful to decide the label of p. p is
therefore pruned from the testing dataset. On the other
hand, q is close enough to cpi (within its dashed circle) and
the positive report pairs in the cpi cluster may carry useful
information for labelling q. q is therefore included in the
testing dataset for classification.

p

q
cpi

cpj

Figure 4: Pruning the testing dataset:“+”represents
a positive report pair and “-” represents a negative
report pair. The triangle represents a testing report
pair.

5. EVALUATIONS
We implement the duplicate detection system in Java with

Spark 1.2.1 API. We evaluate the performance of our sys-
tem in a cluster consisting of 14 physical nodes. Each node

has 2 x Intel Xeon E5-2660@2.20GHz CPU (8 cores) and
128GB physical RAM, in which 96GB is allocated to con-
tainers. The connection among nodes is via Infiniband net-
works. The OS in each node is Debian Wheezy. Cloudera
CDH5 (5.0.0) with Hadoop 2.3.0 is installed with Yarn mode
on. We run multiple executors on these nodes.

5.1 Datasets
We obtain ADR report data from TGA Australia. TGA

maintains a database to store ADR reports submitted by
various parties and collected by themselves. The sources
that submit reports to the database include pharmaceutical
companies, hospitals, general physicians, patients etc. TGA
provides us 10, 382 ADR reports they collected for a period
of six months from July 2013 to December 2013. These
reports consist 286 pairs of reports labelled as known dupli-
cates. These duplicates were annotated by officers of TGA.
Table 3 summarizes the dataset.

Report Period 1 Jul. 2013 - 31 Dec. 2013
Number of cases 10,382
Number of fields per report 37
Number of unique drugs 1,366
Number of unique ADRs 2,351
Known duplicate pairs 286

Table 3: Summary of TGA dataset.

The fields in each report in this dataset are listed in Ta-
ble 2.

5.2 Fast KNN Performance

5.2.1 Baseline
Many classification methods are applicable to duplicate

detection problem where distance vectors of report pairs are
classified as similar or different. Support vector machine
(SVM) is a popularly used one in duplicate detection [2, 20].
In our evaluation, we use a SVM classifier as the baseline for
comparison.

SVM based methods take distance vectors between each
pair of reports as input and map them into a high-dimensional
space. These methods then use a hyperplane to separate dis-
tance vectors that represent duplicate report pairs and those
representing non-duplicate report pairs. The hyperplane is
obtained through learning from a training dataset contain-
ing labelled duplicates and non-duplicates. The hyperplane
maximizes its margins to points belonging to the two dif-
ferent classes. With the hyperplane, new report pairs are
considered duplicates if their distance vectors fall into the
match side of the hyperplane with a large margin; otherwise,
they are considered non-duplicates.

5.2.2 Precision and Recall
We measure the classification performance using the area

under precision and recall curve (AUPR). Precision and re-
call are defined as below in our case:
precision = number of correctly identified duplicate pairs

number of total identified duplicate pairs

recall = number of correctly identified duplicate pairs
number of total true duplicate pairs
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AUPR shows how the precision values vary with different
recall values. AUPR is able to visualize the difference of
algorithms compared to other metrics and suitable for highly
imbalanced datasets [4]. The goal to improve an algorithm
with the precision-recall curve metric is to move the curve
towards the upper-right corner.

Fig. 5 compare the performance of our Fast kNN algo-
rithm and SVM. Fig. 5(a) and Fig. 5(b) show AUPR curves
under different training dataset sizes. It is clear that in both
cases, our algorithm significantly outperforms SVM based
method. The main reason is that with highly imbalanced
datasets, it is difficult to build a consistent model using SVM
while large number of negative report pairs are surrounding
few positive report pairs.

One way to improve the consistency of SVM classifier is to
sample representative report pairs into the training dataset
in hope that the model is applicable of a wide range of testing
dataset. We implement an improved SVM classifier called
SVM clustering by clustering training set and make sure
report pairs in small clusters are included in the training
dataset. Fig. 5(c) shows the actual area size varies with
training dataset sizes under the three classification meth-
ods. It is easy to see that sampling a variety of report pairs
into the training dataset does not have significant impact
to SVM performance. Our method improves the classifica-
tion performance by 19.1% in average in comparison to SVM
classifier.

5.2.3 Effect of k
We also examine the impact of k on the classification

performance and execution time. The results are shown in
Fig. 6. We vary k from 5 to 21 and the variation of AUPR
values is not significant, as shown in Fig. 6(a). This is due to
that the score calculation takes the distance of a neighbor to
the report pair being classified into account in Equation 5,
which eliminates the impact of neighbors that are far away
from the report pair to classify.

On the other hand, increasing k does increase the execu-
tion time of the Fast kNN classifier. As shown in Fig. 6(b),
the execution time grows by 31% when k is increased from
5 to 21. This is mainly due to that a larger k potentially
increases the number of partitions to compare.

5.2.4 Effect of cluster number b
The parallelism is affected by the number of clusters in

the k − means step in Algorithm 2, which determines the
number of training dataset partitions as well as the number
of partitions of joined testing and training datasets. Fig. 7
shows how the system performance is affected by the set-
ting of the cluster number. Fig. 7(a) shows that as the
number of clusters increases, the overall number of intra-
cluster comparisons decreases in general, while the number
of additional clusters to check in the next phase increases
proportionally as shown in Fig. 7(b). The increase of cluster
number results in smaller number of report reports in each
cluster, which leads to the reduction of the total number of
intra-cluster comparisons. However, the trend stops when
the cluster number increases to 70 and the total number of
intra-cluster comparisons slightly increases. This is due to
the cluster sizes are uneven and the probability that a large
portion of report pairs in the testing dataset is assigned to
a large cluster increases. Therefore the overall comparison
number increases.

Note, the total number of additional clusters to check in-
creases in the second stage does not mean the total number
of cross-cluster comparisons increases. The shrinking cluster
size also reduces the number of comparisons in each cluster
in stage 2. As shown in Fig. 7(c), the total number of cross-
cluster report pair comparisons shows a decreasing trend as
the number of cluster increases. Similar to intra-cluster com-
parison stage, the trend stops when the number of clusters
increases to 70. It is also due to the uneven distribution of
cluster sizes.

The computational complexity of the cross-cluster com-
parison stage is low compared to the intra-cluster compari-
son stage. As shown in Fig. 8(a), the total number of cross-
cluster comparisons varies from 1.4% to 1.9% of the total
number of intra-cluster comparisons. This also indicates
that further reducing the number of cross-cluster compar-
isons is not able to have big impact on overall execution
time.

The execution time change with different cluster numbers
reflects the change of overall comparison number. Fig. 8(b)
shows that the execution time has a decreasing trend when
the number of clusters increases. When the cluster number
is set to a number below 25, the memory of each executor can
not accommodate joined partitions and frequent swapping
triggers a few task failures due to timeout. The automatic
retries significantly stretches the execution time. When the
cluster number increases from 25 to 55, the execution time
is reduced by 31%. When the cluster number becomes 70,
the execution time slightly increases by 5.7% comparing to
that when the cluster number is 55.

5.2.5 Scalability
We measure the scalability of Fast kNN from two aspects:

firstly, we examine how it scales with the size of training
dataset; secondly we investigate how it scales with the num-
ber of executors. As shown in Fig. 9, with different partition
number of the testing dataset, the execution time increases
proportionally with the increase of the training dataset size.
The execution time increases 1.4 – 2.1 times when the size
of training dataset increases 5 times.

Fig. 10(a) shows the execution time change with the num-
ber of executors. For different training dataset sizes, the in-
crease of executor number leads to the decrease of execution
time. The decrease trends become flatter as the executor
number increases. This is due to that the overhead of data
shuffle gradually increases while more nodes participate the
computation. For comparison purpose, we show the pairwise
distance computing time separately in Fig. 10(b). The input
data for pairwise distance computing is relatively small and
the data distribution cost is low in this step. As a result, its
speedup is significant when the number of executors further
increases. Fig. 10(a) and Fig. 10(b) also show that the time
used in the pairwise distance computing step is only a small
portion of the overall execution time.

5.2.6 Effect of Testing Set Pruning
In the following, we measure the effectiveness of the test-

ing set pruning method. We use 204, 736 randomly selected
report pairs as testing dataset. The training data contains
1, 000, 000 report pairs, in which 266 pairs are duplicate.
Fig. 11 shows the result. When the distance threshold is
set to 0.9, nearly 100% of the testing pairs are included in
the classification phase. When the threshold is set to 0.7,
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Figure 5: Comparison of area under precision and recall curve: kNN vs. SVM. Total number of testing pairs
– 20,000. (a) Total number of training pairs – 5 millions; (b) Total number of training pairs – 1 millions; (c)
Change of area sizes under precision and recall curves: the number of clusters in SVM clustering is set to 8.
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Figure 6: Effect of k: Total number of training pairs – 3 millions; Total number of testing pairs – 10,000. (a)
Area under precision-recall curve (AUPR) comparison; (b) The execution time comparison.

about 75% of testing pairs are included in the classification
phase. Setting the threshold to 0.5 does not produce signif-
icant pruning and 73% of testing pairs are included. When
the threshold is set to 0.3, 65% of testing pairs remain. The
pruning ratio is not exactly proportional to the threshold
setting because of the non-uniform distribution of both pos-
itive training report pairs and testing report pairs. Note
that all these threshold settings enable the duplicate report
pairs in the testing dataset being included for classification.

On the execution time of classification aspect, the reduc-
tion is significant. The threshold setting of 0.3, 0.5 and 0.7
reduces the execution time to 35%, 65% and 61% of the clas-
sification time without pruning. This is mainly due to the
reduced data transfer and memory use. Even though setting
the threshold to 0.5 slightly prunes more testing pairs than
setting it to 0.7, the classification time under threshold 0.5 is
slightly longer than that under threshold 0.7. It is related to
the report pair distribution and how balance the workload

of comparing these report pairs is among Spark data nodes
that store them.

The setting of the threshold directly affects the perfor-
mance improvement of testing set pruning. Potentially, the
setting can be learned from the labelled data, which we leave
as our future work.

6. RELATED WORK
We compare our method with closely related works on

parallelizing kNN join as well as approaches for handling
datasets with imbalanced label distribution.

C. Zhang et.al [25] describes a basic Block based data
partitioning method for kNN join using Hadoop. It then
proposes to build an index using R-tree for each local block
in a dataset. The built-in kNN functionality of R-tree is able
to speedup the kNN search in the local block. The method
does not reduce the overall computing and communication
complexity.
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Figure 7: Impact of the cluster number: Total number of training pairs – 4 millions; Total number of testing
pairs – 10,000. (a) The number of intra-cluster comparisons; (b) The number of additional clusters to check
for each element in the testing set; (c) The number of cross-cluster comparisons.
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Figure 8: Impact of the cluster number of training set on cross-cluster comparison: Total number of training
pairs – 4 millions; Total number of testing pairs – 10,000. (a) Ratios of cross-cluster/intra-cluster comparison
number; (b) The execution time change with the cluster number: memory size of each executor is 32GB.

W. Lu et.al [15] gives an improved algorithm for paral-
lelizing kNN join using MapReduce and aims to reduce the
search space. It partitions datasets into a Voronoi diagram.
The differences between our approach and [15] lie in the
following aspects: firstly, our method uses k − means to
partition the training dataset while [15] uses it as an option
in data pre-processing to select pivots (partition centers).
A map operation is then applied to use the selected piv-
ots to partition datasets and collect partition statistics. As
k−means produces Voronoi sets already, it is not necessary
to run another data partitioning operation. Secondly, our
approach uses the characteristics of imbalanced datasets to
reduce the cross-cluster comparison rather than introducing
another statistics collection step to achieve this goal. Our
experimental results show that the cross-cluster comparison
cost is low. Thirdly, our approach makes use of distributed
memory management of Spark to cache data partitions in
comparison to the ad-hoc caching mechanism in [15].

In addition, there are works on set-similarity join using
MapReduce [21] and Voronoi partitioning for MapReduce [1].
These works focus on identifying the nearest neighbors. Our
work differ from them in using kNN as a means for classi-
fying highly imbalanced datasets, which gives us additional
information for reducing the search space, e.g., when the
distance between a report pair and its nearest positively la-
belled neighbor is further than a given distance threshold,
the report pair is likely to be non-duplicate and therefore
pruned from the search space.

W. Liu and S. Chawla [14] illustrates the problem of im-
balanced label distribution in classification and proposes a
weighted method for handling imbalanced data in kNN clas-
sifier. Our results show that kNN classifier is more robust
and less affected by over-represented negative data than
SVM on detecting highly imbalanced duplicate/non-duplicate
report pairs. Further improving the classification perfor-
mance of kNN require careful analysis of similarity of report
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Figure 10: Execution time change with the number of executors: testing set size – 10,000; cluster number
of the training set – 48; block number – 5; executor memory size – 32GB; executor core – 1. (a) Overall
execution time; (b) Pairwise distance computing time (total number of reports – 10,382).

1 2 3 4 5

0
5

10
15

20
25

30

Training set size (million pairs)

E
xe

cu
tio

n 
tim

e 
(m

in
ut

es
)

1 2 3 4 5

0
5

10
15

20
25

30

Training set size (million pairs)

E
xe

cu
tio

n 
tim

e 
(m

in
ut

es
)

1 2 3 4 5

0
5

10
15

20
25

30

Training set size (million pairs)

E
xe

cu
tio

n 
tim

e 
(m

in
ut

es
)

block numer = 4
block number = 8
block number = 12

Figure 9: Scalability with the size of training
dataset: testing set size – 10,000; cluster number
of the training set – 32; total number of executors –
25 (32GB memory and 1 core).

pairs by taking additional domain knowledge into account,
which is our future work. Fortunately, the simplicity of kNN
provides flexibility to accommodate new models.

7. CONCLUSIONS
In this paper, we studied duplicate detection in adverse

drug reaction report databases. We proposed a Fast kNN
classification method to deal with highly imbalanced label
distribution in the dataset. Comparing to some datasets
used for evaluating kNN join methods, there were relatively
small number of fields chosen to calculate the pairwise dis-
tance vector between reports, however, the ADR report database
contained a long text field with non-trivial distance calcula-
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Figure 11: Effectiveness of pruning the testing
dataset:training set size – 1,000,000; cluster number
of the training set – 200; testing set size – 204,736;
cluster number of the testing set – 30; f(θ) (thresh-
old) is set to 0.3, 0.5, 0.7 and 0.9; executor number
– 20; number of cores per execution – 4.

tion complexity. We showed that our method is effective in
detecting duplicates in real ADR data and significantly out-
performs SVM based classifier. The system we implemented
using this method is capable of handling large amount of ad-
verse drug reaction report data in a scalable way. We built
the system using Spark. We effectively reduce the comput-
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ing complexity by exploiting label imbalance and Voronoi
partitioning of the training dataset. We also gave a method
to prune the testing dataset to further improve the perfor-
mance. We are not aware other parallel duplicate detection
system in practical use in this domain with rapidly growing
data and increasing importance. Our future work will focus
on load balancing among executors for better scalability.
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