
Scalable Public Transportation Queries
on the Database

Alexandros Efentakis
Research Center “Athena”
Artemidos 6 & Epidavrou,
Marousi 15125, Greece

efentakis@imis.athena-innovation.gr

ABSTRACT
Recent scientific literature focuses on answering Earliest Ar-
rival (EA), Latest Departure (LD) and Shortest Duration
(SD) queries in (schedule-based) public transportation net-
works. Unfortunately, most of the existing solutions ope-
rate in main memory, making the proposed methods hard
to scale for larger instances and difficult to integrate in a
multi-user environment. This work proposes PTLDB (Pub-
lic Transporation Labels on the DataBase), a novel, scalable,
pure-SQL framework for answering EA, LD and SD queries,
implemented entirely on an open-source database system.
Moreover, we formulate four new types of queries targeting
public transportation networks, namely the Earliest Arrival
and Latest Departure k-Nearest Neighbor (kNN) and One-
to-many queries and propose novel ways to efficiently answer
them within PTLDB. Our experimentation will show that
the proposed solution is fast, scalable and easy to use, mak-
ing our PTLDB framework a serious contender for use in
real-world applications.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and
GIS; G.2.2 [Graph Theory]: Graph algorithms

General Terms
Algorithms, Design

Keywords
Transportation networks, kNN queries, One-to-many queries

1. INTRODUCTION
Recent algorithmic advances have been very efficient in

solving vertex-to-vertex queries on graphs, for a variety of
different graph types and instances. For road networks, la-
test papers focused on supporting additional types of shortest-
path (SP) queries, including one-to-all (finding SP distances

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

from a source vertex s to all other graph vertices) [8, 15],
one-to-many (computing the SP distances between the source
vertex s and all vertices of a set of targets T) [11, 15],
range (find all nodes reachable from s within a given times-
pan) [15], many-to-many (calculate a distance table between
two sets of vertices S and T) [11] and k-Nearest Neighbor
(kNN) queries in [12, 17, 21]. For large-scale networks, the
works of [4, 9, 20], proposed methods for solving vertex-to-
vertex queries, whereas the works of [16] and [14] deal with
more complex queries, such as k-Nearest Neighbor, Reverse
k-Nearest Neighbor (RkNN) and one-to-many queries, either
on main memory or inside a database. Finally, for schedule-
based public transportation networks recent works, either
expand existing shortest-path techniques originally used for
road networks, or work directly on the provided timetable.
Most of the recent methods targeting public transit networks
are surveyed in the latest literature overview on transporta-
tion networks of [5].

Despite the inherent different characteristics between those
three types of graph networks (road, large-scale and public
transportation networks), the prevailing technique that ex-
cels at all of them is the 2-hop labeling or hub labeling (HL)
algorithm of [18],[6], in which we store a two-part label L(v)
for every vertex v: a forward label Lf (v) and a backward
label Lb(v). These labels are then used to very fast answer
vertex-to-vertex shortest-path queries. This technique has
been adapted successfully to (i) road networks [2, 3, 10],
(ii) undirected, unweighted graphs in [4, 9, 20] and (iii) has
also been extended to public transportation networks in [7]
and [23]. The HL method has also been applied success-
fully for one-to-many, many-to-many and kNN queries in
road networks [11, 12] and kNN and RkNN queries in the
context of large-scale networks in [16].

Although hub labeling is an extremely efficient shortest-
path technique on main memory, there are very few works
that extend those results for secondary storage. HLDB [13]
stores the precomputed labels for road networks in a com-
mercial database system and translated the hub labeling,
vertex-to-vertex distance query to plain SQL commands.
Moreover, it showed how to answer kNN queries and k-best
via points, again with simple SQL queries. The work of [20]
proposed HopDB, a C++ customized solution that utilizes
secondary storage during preprocessing for large-scale net-
works. Efentakis et al. proposed the COLD framework [14]
that stores hub-labels for large-scale networks in an open-
source database engine and answers vertex-to-vertex, one-
to-many, kNN and RkNN queries, using SQL commands.

In this work, we focus on timetable, public transporta-

Industrial and Applications Paper

Series ISSN: 2367-2005 527 10.5441/002/edbt.2016.50

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.50

tion networks and present a novel database framework that
may service several route-planning queries on such networks.
Our pure-SQL, PTLDB (Public Transporation Labels on
the DataBase) framework, extends the hub labeling tech-
nique for public transportation networks, as presented in
Timetable Labeling (TTL) [23] and may answer multiple
variations (Earliest Arrival, Latest Departure and Shortest-
Duration) of vertex-to-vertex queries, entirely within a da-
tabase. Moreover, we formulate four new types of route-
planning queries for public transit, namely the Earliest Ar-
rival and Latest Departure k-Nearest Neighbor (kNN) queries
and their one-to-many versions, i.e., namely the Earliest
Arrival and Latest Departure one-to-many queries. These
newly defined public-transit queries may be very useful for
a variety of applications utilizing public transport, such as
mobile travel guides, transportation and urban planning or
geomarketing applications. Our experimentation will show
that the proposed PTLDB framework may answer all those
different types of queries efficiently, while its implementation
with an open-source database engine makes PTLDB very
easy to integrate into existing multi-user, real-world appli-
cations. Additionally, each type of query may be answered
with a simple SQL command, making our results easily re-
producible by anyone. Thus, the PTLDB framework is the
only database solution that focuses on public-transportation
networks, while ensuring excellent performance that is fast-
enough for real-time applications.

The outline of the remainder of this work is as follows.
Section 2 presents related work. Section 3 describes the
novel PTLDB framework and its implementation details.
Experiments establishing the benefits of PTLDB are pro-
vided in Section 4. Finally, Section 5 gives conclusions and
directions for future work.

2. BACKGROUND AND RELATED WORK
In this section we will present related work, relative to the

hub labeling method for directed weighted graphsG(V,E,w),
where V is the set of vertices, E ⊆ V xV is the set of arcs
and w is a positive weight function E → R+. We will also
discuss the latest adaptations of this specific technique for
public transportation networks.

2.1 Hub Labeling
In the 2-hop labeling or Hub Labeling (HL) algorithm

of [18, 6], preprocessing stores at every vertex v a forward
Lf (v) and a backward label Lb(v). The forward label Lf (v)
is a vector of pairs (u, dist(v, u)), with u∈V . Likewise, the
backward label Lb(v) contains pairs (w, dist(w, v)). Ver-
tices u and w are denoted as the hubs of v. The generated
labels conform to the cover property, i.e., for any s and g,
the set Lf (s) ∩ Lb(g) must contain at least one hub that is
on the shortest s − g path. To find the network distance
dist(s, g) between any two vertices s and g, a HL query
seeks the hub v ∈ Lf (s) ∩ Lb(g) that minimizes the sum
dist(s, v) + dist(v, g). By sorting the pairs in each label
by hub, this takes linear time by employing a coordinated
sweep over both labels. The HL technique has been success-
fully adapted for road networks in [2, 3, 10]. In the case
of large-scale graphs, the Pruned Landmark Labeling (PLL)
algorithm of [4] orders vertices by degree and then during
preprocessing, performs one BFS per graph vertex, starting
from the highest-order / degree vertices. At each iteration,
each individual BFS is pruned by using the hub labels cal-

culated from the previous searches. Later, Delling et al. [9]
improve the suggested vertex ordering and the storage of the
hub labels for maximum compression. The HL method has
also been extended to one-to-many, many-to-many and kNN
queries on road networks in [11] and [12] respectively. The
recent work of [16] has also proposed ReHub, a novel main-
memory algorithm that extends the Hub Labeling approach
to efficiently handle Reverse k-Nearest Neighbor (RkNN)
queries on large-scale networks.

Regarding secondary-storage solutions, Jiang et al. [20]
propose their HopDB algorithm for constructing an efficient
HL index when the given graphs and the corresponding in-
dex are too large to fit into main memory. Abraham et al. [1]
introduced the HLDB system, which answers distance and
kNN queries in road networks entirely within a database
by storing the hub labels in database tables and translating
the corresponding HL queries to SQL commands. In [14],
Efentakis et al. presented the pure-SQL COLD framework
(COmpressed Labels on the Database) for answering mul-
tiple exact distance queries (vertex-to-vertex, kNN, RkNN
and one-to-many) for large-scale networks, in a open-source
database engine. Despite the fact that each type of query
was translated to just few lines of SQL code, experiments
have showed that COLD provides excellent performance and
is thus, fast enough for real-time applications.

2.2 Public transportation networks
For methods targeting public transportation networks be-

fore 2015, one can refer to the latest related literature over-
view of [5]. In this section, we will mainly focus on the latest
research works that appeared in 2015.

Recently, the hub labeling method has also been extended
for public transportation networks, in Public Transit Label-
ing presented in [7] and Timetable Labeling (TTL) presented
in [23]. Since our work builds on Timetable Labeling (TTL),
we will follow the notation presented there. A schedule-
based, public transportation network may be modeled as a
multigraph G, where each vertex is associated with a station
or stop (i.e, “distinct locations where one may board a tran-
sit vehicle” [7]) and each arc from a vertex u to a vertex v
represents a trip b that departs from stop u at timestamp td
and arrives at v at timestamp ta. Thus, each arc e may be
represented with a tuple < u, v, td, ta, b >, where b, td, ta are
the trip, departure time and arrival time of e respectively
and ta − td is the corresponding duration of the arc. The
arc e is an outgoing arc for vertex-stop u and an incoming
arc for vertex-stop v. Thus, there are multiple arcs connect-
ing the same pair of vertices-stops that correspond to the
different trips connecting those two stops together.

Timetable labelling (TTL) is a extension of Hierarchi-
cal Hub Labeling [3] for public transportation networks.
The TTL index preprocessing, computes two sets of labels,
Lin(v) and Lout(v), for each vertex-stop v, such that each
label in Lin(v) (or Lout(v)) is a tuple describing a “fast”
path that ends at (starts from) v. TTL assumes there is
a strict vertex ordering, which, defines the relative impor-
tance of each vertex with respect to the others. Hence, the
rank r(v) of a vertex v is an integer ∈ [1, |V |]. It is as-
sumed that the vertex v ranks lower (i.e., is less important)
than u, when r(v) > r(u). When given a timetable graph G
and a node order r, the TTL index can be uniquely con-
structed. The output of TTL preprocessing is two sets of
labels, Lin(v) and Lout(v) for each vertex-stop v, whereas

528

each label contains tuples < hub, td, ta, pivot, b > represent-
ing a fast transit path between stops v and hub, passing
through stop pivot, using trip b and departing at td and
arriving at ta. The pivot information is required for recon-
structing the full path, when it is comprised of multiple trips
and is set to null, when the corresponding tuple describes
a direct trip between stops v and hub (i.e., b 6=null). Note,
that the label sets Lin(v) and Lout(v) for a vertex v only
contain paths between v and vertices of higher order.

The labels calculated during the TTL preprocessing may
be used for answering the following three types of queries:

• Earliest Arrival (EA). Given two stops s and g ∈ G
and a starting timestamp t, the earliest arrival EA(s, g, t)
query seeks the path with the earliest arrival time
among those paths that (i) start from s no sooner
than t and (ii) end at g.

• Latest Departure (LD). Given two stops s and g and an
ending timestamp t′, the latest departure LD(s, g, t′)
query seeks the path with the latest departure time
among those paths that (i) start from u and (ii) end
at v no later than t′.

• Shortest Duration (SD). Given two stops s and g, a
starting t and an ending t′ timestamp, the shortest
duration SD(s, g, t, t′) query seeks the path with the
shortest duration among those that (i) start from s no
sooner than t and (ii) end at g no later than t′.

During the query phase, TTL only has to visit the labels
of stops s and g (without accessing the original graph G) and
select the best solution from three candidate cases: (i) Tu-
ples in Lout(s) where hub = g, (ii) Tuples in Lin(g) where
hub = s and (iii) Combining all tuples l1 ∈ Lout(s) and
l2 ∈ Lin(g) where l1.hub = l2.hub and l1.ta <= l2.td. The
experimentation in [23], showed that TTL may answer EA,
LD and SD queries in less than 30µs, while requiring pre-
processing time of less than 17min for all datasets.

In this work, based on the lessons learnt from the pre-
vious COLD database framework [14], that answers multi-
ple distance queries on large-scale graphs, we will: (i) show
how to efficiently store the labels created from Timetable la-
belling for public transportation networks into a database,
(ii) translate the corresponding EA, LD and SD queries
into simple SQL commands (iii) formulate four new types
of queries for public transportation networks, namely the
Earliest Arrival and Latest Departure k-Nearest Neighbor
(kNN) and the Earliest Arrival and Latest Departure one-
to-many queries and (iv) show how to efficiently answer
those additional queries, by using simple SQL commands
within the same database framework, implemented entirely
on a popular, open-source database engine. The resulting
PTLDB (Public Transporation Labels on the DataBase)
framework will be described in the following section.

3. THE PTLDB FRAMEWORK
This section presents the PTLDB (Public Transporation

Labels on the DataBase) database framework. PTLDB can
answer multiple route-planning queries (Earliest Arrival [EA],
Latest Departure [LD], Shortest Duration [SD] vertex-to-
vertex, EA, LD k-Nearest Neighbor and EA, LD one-to-
many) for public transportation networks using SQL com-
mands. Since PTLDB builds on the Timetable Labeling

Figure 1: An example timetable graph G with 7 vertices
(stops) and 4 trips (each highlighted with a different color).
Timestamps are in 100s, i.e., 360=>36,000s (10:00h). Ver-
tex 0 is the highest order vertex, followed by vertices 1,2,3,4

Table 1: The created labels for the example graph G
Lout(v) Lin(v)

v < hub, td, ta,pivot,b > < hub, td, ta,pivot,b >
0 < 0, 360, 360,−1,−1 > < 0, 360, 360,−1,−1 >
1 < 0, 324, 360, 0, 1 > < 0, 360, 396, 0, 2 >

< 1,324,324,−1,−1 > < 1, 324, 324,−1,−1 >
< 1, 396, 396,−1,−1 > < 1, 396, 396,−1,−1 >

2 < 0, 324, 360, 0, 2 > < 0, 360, 396, 0, 1 >
< 2,324,324,−1,−1 > < 2, 324, 324,−1,−1 >
< 2, 396, 396,−1,−1 > < 2, 396, 396,−1,−1 >

3 < 0, 324, 360, 0, 3 > < 0, 360, 396, 0, 4 >
< 3,396,396,−1,−1 > < 3, 396, 396,−1,−1 >

4 < 0, 324, 360, 0, 4 > < 0, 360, 396, 0, 4 >
< 4,396,396,−1,−1 > < 4, 396, 396,−1,−1 >

5 < 0, 288, 360, 1, 1 > < 0, 360, 432, 1, 2 >
< 1, 288, 324, 1, 1 > < 1, 396, 432, 1, 2 >

< 5,432,432,−1,−1 > < 5, 432, 432,−1,−1 >
6 < 0, 288, 360, 2, 2 > < 0, 360, 432, 2, 1 >

< 2, 288, 324, 2, 2 > < 2, 396, 432, 2, 1 >
< 6,432,432,−1,−1 > < 6, 432, 432,−1,−1 >

(TTL) [23], we will explain the basic concepts presented
there. We chose PostgreSQL [22] for our implementation,
given that it is a popular, open-source RDBMS. Although
we use some PostgreSQL-specific data-types (namely arrays)
and SQL extensions, we use only features included in its
standard installation, without any third-party extensions.

3.1 Vertex-to-Vertex (v2v) queries
The PTLDB framework uses the labels generated by the

Timetable Labeling (TTL) of [23] for public transportation
networks. The respective TTL implementation (and the re-
spective datasets) were made publicly available by the au-
thors at [24]. To highlight the results of this process, the la-
bels for the example timetable graphG of Figure 1 are shown
in Table 1. The labels Lout(v) and Lin(v) for each vertex /
stop v is a vector of tuples < hub, td, ta, pivot, b > sorted
by hub, td (see Section 2). To answer vertex-to-vertex (v2v)
queries between two stop s and g, TTL only has to visit the
labels Lout(s) and Lin(g) and select the best solution from
three candidate cases: (i) Tuples in Lout(s) where hub = g,
(ii) Tuples in Lin(g) where hub = s and (iii) Combining all
tuples l1 ∈ Lout(s) and l2 ∈ Lin(g) where l1.hub = l2.hub
and l1.ta <= l2.td. Although selecting between those three
cases is trivial for a main memory algorithm, it is complex
to adapt in a database context. Thus, we need to gener-
ate for every v ∈ G, some extra “dummy” tuples in both

529

Lout(v) and Lin(v) with hub = v and td = ta for every DIS-
TINCT (hub, td) combination existing in Lout(u) and for
every DISTINCT (hub, ta) combination existing in Lin(u).
Those dummy tuples for our example graph are highlighted
in bold. Note that, those dummy tuples are only a small
fraction (< 10%) of the total number of tuples and hence,
they add minimal overhead to the PTLDB framework’s per-
formance. By generating those dummy tuples, we can en-
sure that each vertex-to-vertex query may be answered by
combining exactly one tuple l1 ∈ Lout(s) and one tuple
l2 ∈ Lin(g) where l1.hub = l2.hub and l1.ta <= l2.td, i.e.,
we unified the three separate cases of TTL query processing
into one. Thus, the answer to the EA(1, 1, 324) query is 324
by combining the tuples <1,324,324, . . . >, present in both
Lout(1) and Lin(1).

Code 1: Vertex-to-vertex (v2v) queries for PTLDB

1 WITH outp AS

2 (SELECT UNNEST(hubs) AS hub ,

3 UNNEST(tds) AS td,

4 UNNEST(tas) AS ta

5 FROM lout WHERE v=s),

6 inp AS

7 (SELECT UNNEST(hubs) AS hub ,

8 UNNEST(tds) AS td,

9 UNNEST(tas) AS ta

10 FROM lin WHERE v=g)

11 /* For EA queries */

12 SELECT MIN(inp.ta)

13 /* For LD queries */

14 SELECT MAX(out.td)

15 /* For SD queries */

16 SELECT MIN(inp.ta-outp.td)

17 FROM outp ,

18 inp

19 WHERE outp.hub=inp.hub AND outp.ta <=inp.td

20 /* For EA,SD queries */

21 AND outp.td >=t

22 /* For LD,SD queries */

23 AND inp.ta <=t’

After generating the additional dummy tuples for simpli-
fying the TTL vertex-to-vertex queries, we need to store the
respective Lout(v) and Lin(v) labels in the database, as two
separate DB tables denoted lout and lin, respectively. Simi-
lar to the previous work COLD [14], we take advantage of
the fact that PostgreSQL features an array data type that
allows columns of a DB table to be defined as variable-length
arrays. Hence, in PTLDB we store hubs, departure times-
tamps td and arrival timestamps ta for a vertex (all ordered
by hub, td) as arrays in three separate columns (i.e., hubs,
tds and tas) in a single row. The resulting lout and lin DB
tables are shown in Tables 2 and 3. Similar to COLD, this
approach has considerable advantages: (i) The lout and lin
DB tables have exactly |V | rows (ii) Each of those DB tables
has the column v as primary key, minimizing the size of the
respective index. (iii) For any v2v query, PTLDB needs to
access exactly two rows, regardless of the sizes of |Lout(s)|
and |Lin(g)|, thus minimizing the secondary-storage utiliza-
tion, even working inside a database. In case of timetables
changing depending on the weekday (e.g., weekdays vs week-
ends) or the time of the year (e.g., on holidays) in PTLDB
we would need to have different versions of the lout and
lin DB tables, for servicing each different period. Also note

that in PTLDB, we do not need to store the pivot or the
trip information, since if we wanted to reconstruct the full
path, it would make more sense to store on the database the
expanded path for each tuple generated by the TTL prepro-
cessing. After all, this is another advantage of databases,
also suggested by previous efforts like [1].

The resulting SQL commands for all types (Earliest Ar-
rival, Latest Departure and Shortest Duration) of vertex-to-
vertex queries for PTLDB are shown in Code 1, where the
user may choose between the lines 12, 14 and 16 and lines
21, 23 depending on the specific type of query. We use Com-
mon Table Expressions (CTEs) for greater readability and
we exploit the fact that PostgreSQL “guarantees that paral-
lel unnesting” for hubs, tds and tas for each nested query
“will be in sync”, i.e., each tuple < hub, td, ta > is expanded
correctly since for the same v the respective arrays have the
same number of elements1. It is obvious that the PTLDB
vertex-to-vertex query is very simple, since it is implemented
with just a few lines of SQL code and at the same time, it
is highly optimized since it only has to fetch only one row
from each lout and lin DB tables.

Theorem 3.1.1. The PTLDB v2v query is correct.

Proof. By adding the dummy tuples to the lout and lin
DB tables, we can guarantee that the solution to any vertex-
to-vertex query is a combination of one tuple l1 ∈ lout and
one tuple l2 ∈ lin with l1.hub = l2.hub and l1.ta <= l2.td
(Line 19). Considering the fact that PostgreSQL guarantees
correct unnesting of the hubs, tds and tas arrays (line 2-
4, 7-9) for the respective rows for u and v and the extra
conditions specific for each type of query (Lines 12,14 and
16 and lines 21, 23) then the resulting PTLDB vertex-to-
vertex query is correct.

3.2 EA and LD kNN queries
The k-Nearest Neighbour (kNN) query, either for Eu-

clidean space or for network databases, is a very well-studied
problem in database systems due to its wide range of appli-
cations. Unfortunately, it has not been extended yet, to
public transportation networks. To this propose, we for-
mulate the Earliest Arrival and Latest Departure k-Nearest
Neighbour (kNN) queries for schedule-based timetable net-
works, according to the following definitions:

• Earliest Arrival kNN query (EA-kNN). Given a stop q,
a set of target-stops T and a starting timestamp t, the
earliest arrival EA−kNN(q, T, t, k) query seeks the k-
distinct stops ∈ T with the earliest arrival time among
the paths that (i) start from q no sooner than t and
(ii) end in any stop ∈ T .

• Latest Departurel kNN query (LD-kNN). Given a stop q,
a set of target-stops T and an ending timestamp t, the
latest departure LD−kNN(q, T, t, k) query seeks the
k-distinct stops ∈ T with the latest departure time
from stop q from among the paths that (i) start from
q and (ii) end in any stop ∈ T no later than t.

Both these type of queries may be used in a wide range
of useful applications, such as an tourist deciding to visit
the nearest Point of Interest (POI) using public transport

1http://stackoverflow.com/a/23838131

530

Table 2: The lout table used in PTLDB for the example
graph G

v hubs tds tas
.
1 {0, 1, 1} {324, 324, 396} {360, 324, 396}
.
4 {0, 4} {324, 396} {360, 396}
.

Table 3: The lin table used for PTLDB for the example
graph G

v hubs tds tas
.
1 {0, 1, 1} {360, 324, 396} {396, 324, 396}
.
4 {0, 4} {360, 396} {396, 396}
.

Table 4: The ea knn naive table for the example graph G,
T = {4, 6} and k = 1

hub td vs tds
0 360 {4,6} {396,432}
2 396 {6} {432}
4 396 {4} {396}
6 432 {6} {432}

(EA-kNN) or how a city visitor may determine his remain-
ing time for finishing his breakfast, before reaching one of
his preferred POI-destinations by 11:00 (LD-kNN). To the
best of our knowledge, this is the first time that these queries
have been formalized for public transit networks and there-
fore we are not aware of any previous approach tackling
them. Throughout this work we assume that targets are
not changing, which is a reasonable assumption for pub-
lic transportation networks, since, e.g., for location based
services we already know the stops that are located near
attractive POIs or the most visited city-landmarks. In the
following sections, we will show how to efficiently solve those
queries within PTLDB. For our example graph G (Figure 1)
and the remainder of this section, we assume that target
stops are 4 and 6, i.e., T = {4, 6}

3.2.1 Implementation
In this section, we will mainly discuss EA-kNN queries.

The solution to LD-kNN queries will be directly analogous.
Typically, to solve kNN queries with the hub labeling method,
we need to group the Lin tuples of the targets by hub [1,
16, 14] and keep the k-best entries per hub. Unfortunately,
this approach cannot be extended directly to public trans-
portation networks, due to the condition l1.ta <= l2.td
that must always hold. A naive solution to this problem,
would be to group the Lin tuples of the targets per hub
and td instead, and again keep the best distinct k-entries
per hub, td ordered by ta, with ties broken arbitrarily. The
results of this process would then be stored in the DB ta-
ble ea knn naive, with the data structure shown in Ta-
ble 4. As seen there, for k = 1, hub = 0 and td = 360
we only need to keep the best entry that corresponds to
v = 4 and td = 396. The primary key of ea knn naive table
will be the (hub, td) combination. After building this table,
the EA-kNN(q, T, t, k) query may be solved by the SQL of
Code 2, that combines the row of lout DB table that cor-
responds to vertex q, with the ea knn naive table. There-
fore the EA−kNN(0, {4, 6}, 360, 1) will have the correct an-
swer (4, 396), i.e., the NN of vertex 0 for departure time 360
or later is the vertex 4 with arrival time 396. As showcased
in [14], it makes sense to create one large ea knn naive table
for the maximum value kmax of k (e.g., for k = 16) that
may be serviced by the DB framework and that same table
will be used for all kNN queries up to k = kmax. In this
case, we only need to retrieve k-entries per (hub, td) com-
bination and thus we only expand vs[1 : k] and tas[1 : k]

(Lines 14-15) for k < kmax.

Code 2: EA-kNN naive query for PTLDB

1 WITH n1 AS

2 (SELECT v, hub , td, ta

3 FROM

4 (SELECT v AS v,

5 UNNEST(hubs) AS hub ,

6 UNNEST(tds) AS td,

7 UNNEST(tas) AS ta

8 FROM lout

9 WHERE v=q) n1a

10 WHERE td >=t)

11 SELECT v2,MIN(n2.ta)

12 FROM n1,

13 (SELECT hub , td,

14 UNNEST(vs[1:k]) AS v2,

15 UNNEST(tas[1:k]) AS ta

16 FROM ea_knn_naive) n2

17 WHERE n1.hub=n2.hub

18 AND n2.td >=n1.ta

19 GROUP BY v2

20 ORDER BY MIN(n2.ta), v2

21 LIMIT k;

Theorem 3.2.1. The naive EA-kNN query is correct.

Proof. The naive EA-kNN query joins the l1 tuples in q
row of DB table lout, with the l2 tuples of ea knn naive
DB table with l1.hub = l2.hub and l1.ta <= l2.td. Since for
each individual (hub, td) combination the ea knn naive DB
table stores the top-k (earliest arrival) entries, this ensures
that the naive EA-kNN query provides correct results.

Although the EA-kNN naive query is very simple, it can-
not scale well for large metropolitan networks. In a realistic
setting, multiple buses or trains leave the same hub every
few minutes and therefore for each hub we will have multi-
ple td entries. Thus, the size of ea knn naive DB table and
its primary key index will vastly increase (even after keeping
only the best k-entries per hub, td). The number of rows that
should be joined will also grow, making queries too slow for
real-time applications. Hence, we must further group entries
per hub and create a condensed knn ea DB table. Ideally,
each tuple contained in the q row of lout DB table should
be joined with only a single row in the knn ea table, dur-
ing a EA-kNN query. To achieve that, we can group hub
entries per hour of departure, i.e., making a separate entry
per hub and hour of departure for the available timestamp
ranges of td in lin DB table. The resulting knn ea table
will have the data structure showcased in Table 5 and the
combination of hub, dephour as a primary key. For a specific
hub and hour, e.g., hub = 0, dephour = 10, (i) the columns
tds−exp, vs−exp and tas−exp, contain ALL tuples of lin

531

Table 5: The knn ea table data structure
hub dephour vs tas tds-exp vs-exp tas-exp

top-k entries (v) top-k entries (ta) all entries (td) all entries (v) all entries (ta)
0 0 hub = 0, hour ≥ 1 hub = 0, hour ≥ 1 hub = 0, 0 ≤ hour ≤ 1 hub = 0, 0 ≤ hour ≤ 1 hub = 0, 0 ≤ hour ≤ 1

top-k entries (v) top-k entries (ta) all entries (td) all entries (v) all entries (ta)
0 1 hub = 0, hour ≥ 2 hub = 0, hour ≥ 2 hub = 0, 1 ≤ hour ≤ 2 hub = 0, 1 ≤ hour ≤ 2 hub = 0, 1 ≤ hour ≤ 1
. .

top-k entries (v) top-k entries (ta) all entries (td) all entries (v) all entries (ta)
1 0 hub = 1, hour ≥ 1 hub = 1, hour ≥ 1 hub = 1, 0 ≤ hour ≤ 1 hub = 1, 0 ≤ hour ≤ 1 hub = 1, 0 ≤ hour ≤ 1

top-k entries (v) top-k entries (ta) all entries (td) all entries (v) all entries (ta)
1 1 hub = 1, hour ≥ 2 hub = 1, hour ≥ 2 hub = 1, 1 ≤ hour ≤ 2 hub = 1, 1 ≤ hour ≤ 2 hub = 1, 1 ≤ hour ≤ 1

for targets T , with hub = 0 and td between 10:00 and 11:00
ordered by td, whereas (ii) the columns vs and tas contain
only the best top-k (earliest arrival) distinct entries for tar-
gets T and hub = 0, td≥11:00.

Thus, the optimized EA-kNN query must implement those
two separate cases: (i) Expanding the l2 tuples for a spe-
cific hub between e.g., 10:00 and 11:00 contained in DB
columns tds−exp, vs−exp and tas−exp (still checking that
l1.ta <= l2.td for those entries) and (ii) Expanding the l3
tuples that leave the specific hub after 11:00. As showcased
earlier, both cases are included in a single row per hub of the
knn ea DB table. The resulting query is shown in Code 3.
For combining those aforementioned cases we still have to
use the UNION operator (Line 30) and for increasing perfor-
mance, the JOIN between the lout and knn ea DB tables
happens AFTER expanding the lout tuples for q row and
BEFORE expanding the tuples in knn ea DB table (Lines 1-
18). Note, that if each row in lout DB table contains on av-
erage |Lout|/|V | tuples, then the optimized EA-kNN query
will always access at most |Lout|/|V | rows from the knn ea
DB table, thus minimizing secondary storage utilization.

Theorem 3.2.2. The construction of the knn ea DB ta-
ble and the corresponding EA-kNN query are correct.

Proof. For the EA-kNN query (q, T, t), assume there is
a tuple l1 =< h, td, ta > with td ≥ t for the query vertex q,
included in the lout DB table. The EA-kNN query will join
this tuple with exactly one row in the knn ea DB table for
which hub = h and dephour = FLOOR(ta/3600). This
specific knn ea row contains (i) all l2 tuples of targets T
for hub = h and dephour between FLOOR(ta/3600) and
FLOOR(ta/3600)+1 (we still need to check for those entries
that l1.ta <= l2.td) but (ii) only the best top-k (earliest
arrival) distinct l3 tuples for targets T that leave hub = h
after FLOOR(ta/3600) + 1. There is no need to search for
any other tuples for hub = h after FLOOR(ta/3600) + 1
because all other tuples will have worst arrival time than
the l3 tuples. Also, there is no need to look for any other
tuples for hub = h before FLOOR(ta/3600), because the
l1 trip arrives at hub h after FLOOR(ta/3600). Since the
EA-kNN query will similarly join all tuples in lout DB that
leave query vertex q after timestamp t, the resulting EA-
kNN query is correct.

Considering the choice of an hour as the tuning parameter
for grouping the knn ea DB table entries, we could have
chosen any other valid time interval to that purpose. In fact,
we have even experimented with other intervals (smaller or
larger than an hour) but (i) when smaller intervals are used,
the respective knn ea table has more rows (which makes
queries slower) and (ii) when larger intervals are used (e.g., 3
hours) the number of tuples stored in tds − exp, vs − exp

and tas − exp columns vastly increases, which counteracts
the benefit of the smaller number of total rows. Thus, a time
interval of an hour seems like the best compromise between
those two scenarios and worked well for all tested datasets.
However, it can be tuned according to the specific use-cases
and user needs for a particular public transit network.

In the case of LD-kNN queries, the corresponding knn ld
table will have a similar data structure to the knn ea ta-
ble. There are some main differences though: (i) Entries are
grouped by hub and hour of ARRIVAL, i.e., for a specific
hub and hour, e.g., hub = 0, arrhour = 10, the columns
tds−exp, vs−exp and tas−exp, contain all tuples of lin for
targets T , with hub = 0 and ta between 10:00 and 11:00
ordered by td. Likewise, the combination of hub, arrhour
will be the primary key. (ii) The columns vs and tds (and
not tas as before) contain only the best top-k (latest depar-
ture) distinct entries for targets T and hub = 0, ta≤10:00.
The corresponding LD-kNN query (see Code 4) will also be
slightly different (e.g., MIN(n3.ta), MIN(n2.ta) will be re-
placed by MAX(n1_td) or the DESC ordering) but it will still
offer the same performance benefits as before.

3.3 EA and LD One-to-many queries
Similar to kNN, we formulate the Earliest Arrival and

Latest Departure One-to-many queries for schedule-based
timetable networks, according to the following definitions:

• Earliest Arrival One-to-many query (EA-OTM). Gi-
ven a stop q, a set of target-stops T and a starting
timestamp t, the earliest arrival EA − OTM(q, T, t)
query seeks the earliest arrival time for all target-stops
for trips that start from q no sooner than t.

• Latest Departurel One-to-many query (LD-OTM). Gi-
ven a stop q, a set of target-stops T and an ending
timestamp t, the latest departure LD − OTM(q, T, t)
query seeks the latest departure times for trips starting
from q and end in any stop ∈ T no later than t.

Again the EA-OTM and LD-OTM queries have a wide
range of useful applications, such as transportation plan-
ning (e.g., find faraway stops) or geomarketing applications
(e.g., nearby what stop one must build a franchise store to
be more easily reachable by clients). To the best of our
knowledge, this is also the first time that these queries have
been formalized for public transportation. How to efficiently
solve them within PTLDB, will be shown in the following.

For answering the EA-OTM query, we need to build a
new otm ea DB table that will have the data structure
showcased in Table 6. In the otm ea table the columns
hub, dephour (= hour of departure), tds − exp, vs − exp
and tas − exp are identical to the knn ea DB table and

532

Code 3: EA-kNN and EA-OTM queries for PTLDB

1 WITH n1 AS

2 (SELECT v,hub , td, ta

3 FROM

4 (SELECT v,

5 UNNEST(hubs) AS hub ,

6 UNNEST(tds) AS td,

7 UNNEST(tas) AS ta

8 FROM lout

9 WHERE v=q) n1a

10 WHERE td >=t),

11 n1b AS

12 (SELECT n1bb.*,

13 n1.ta AS n1_ta

14 n1.td AS n1_td

15 /* EA-kNN query */

16 FROM knn_ea n1bb ,n1

17 /* EA-OTM query */

18 FROM otm_ea n1bb ,n1

19 WHERE n1bb.hub=n1.hub

20 AND n1bb.dephour=FLOOR(n1.ta /3600))

21 SELECT v2,MIN(ta)

22 FROM (

23 (SELECT v2,MIN(n3.ta) AS ta

24 FROM

25 (SELECT

26 /* EA-kNN query */

27 UNNEST(tas[1:k]) AS ta,

28 UNNEST(vs[1:k]) AS v2

29 /* EA-OTM query */

30 UNNEST(tas) AS ta,

31 UNNEST(vs) AS v2

32 FROM n1b) n3

33 GROUP BY v2

34 ORDER BY MIN(n3.ta),v2

35 /* EA-kNN query */

36 LIMIT k

37)

38 UNION

39 (SELECT n2.v2,MIN(n2.ta) AS ta

40 FROM

41 (SELECT n1_ta ,

42 UNNEST(tds_exp) AS td,

43 UNNEST(vs_exp) AS v2,

44 UNNEST(tas_exp) AS ta

45 FROM n1b) n2

46 /* Check for l1.ta <=l2.td */

47 WHERE n1_ta <=n2.td

48 GROUP BY n2.v2

49 ORDER BY MIN(n2.ta),v2

50 /* EA-kNN query */

51 LIMIT k

52)) S53

53 GROUP BY v2

54 ORDER BY MIN(ta),v2

55 /* EA-kNN query */

56 LIMIT k;

Code 4: LD-kNN and LD-OTM queries for PTLDB

1 WITH n1 AS

2 (SELECT v,hub ,td,ta

3 FROM

4 (SELECT v,

5 UNNEST(hubs) AS hub ,

6 UNNEST(tds) AS td,

7 UNNEST(tas) AS ta

8 FROM lout

9 WHERE v=q) n1a),

10 n1b AS

11 (SELECT n1bb.*,

12 n1.ta AS n1_ta ,

13 n1.td AS n1_td

14 /* LD-kNN query */

15 FROM knn_ld n1bb ,n1

16 /* LD-OTM query */

17 FROM otm_ld n1bb ,n1

18 WHERE n1bb.hub=n1.hub

19 AND n1bb.arrhour=FLOOR(t/3600))

20 SELECT v2,MAX(td)

21 FROM (

22 (SELECT v2,MAX(n3.n1_td) AS td

23 FROM

24 (SELECT n1_td , n1_ta ,

25 /* LD-kNN query */

26 UNNEST(tds[1:k]) AS td,

27 UNNEST(vs[1:k]) AS v2

28 /* LD-OTM query */

29 UNNEST(tds) AS td,

30 UNNEST(vs) AS v2

31 FROM n1b) n3

32 WHERE n3.td >=n1_ta

33 GROUP BY v2

34 ORDER BY MAX(n3.n1_td) DESC , v2

35 /* LD-kNN query */

36 LIMIT k

37)

38 UNION

39 (SELECT n2.v2,MAX(n2.n1_td) AS td

40 FROM

41 (SELECT n1_td ,n1_ta ,

42 UNNEST(tds_exp) AS td,

43 UNNEST(vs_exp) AS v2,

44 UNNEST(tas_exp) AS ta

45 FROM n1b) n2

46 WHERE n2.td >=n1_ta

47 AND n2.ta <=t

48 GROUP BY n2.v2

49 ORDER BY MAX(n2.n1_td) DESC , v2

50 /* LD-kNN query */

51 LIMIT k

52)) S53

53 GROUP BY v2

54 ORDER BY MAX(td) DESC , v2

55 /* LD-kNN query */

56 LIMIT k;

533

Table 6: The otm ea table data structure
hub dephour vs tas tds-exp vs-exp tas-exp

best entry per target (v) best entry per target (ta) all entries (td) all entries (v) all entries (ta)
0 0 hub = 0, hour ≥ 1 hub = 0, hour ≥ 1 hub = 0, 0 ≤ hour ≤ 1 hub = 0, 0 ≤ hour ≤ 1 hub = 0, 0 ≤ hour ≤ 1

best entry per target (v) best entry per target (ta) all entries (td) all entries (v) all entries (ta)
0 1 hub = 0, hour ≥ 2 hub = 0, hour ≥ 2 hub = 0, 1 ≤ hour ≤ 2 hub = 0, 1 ≤ hour ≤ 2 hub = 0, 1 ≤ hour ≤ 1
. .

best entry per target (v) best entry per target (ta) all entries (td) all entries (v) all entries (ta)
1 0 hub = 1, hour ≥ 1 hub = 1, hour ≥ 1 hub = 1, 0 ≤ hour ≤ 1 hub = 1, 0 ≤ hour ≤ 1 hub = 1, 0 ≤ hour ≤ 1

best entry per target (v) best entry per target (ta) all entries (td) all entries (v) all entries (ta)
1 1 hub = 1, hour ≥ 2 hub = 1, hour ≥ 2 hub = 1, 1 ≤ hour ≤ 2 hub = 1, 1 ≤ hour ≤ 2 hub = 1, 1 ≤ hour ≤ 1

the combination (hub, dephour) again serves as the primary
key. The only difference is in the vs and tas columns, where
we must store the best tuple (earliest arrival) per vertex
for the following hours, instead of only the top-k entries
over all targets (as in knn ea table), i.e., the vs and tas
columns will store at-most |V | tuples per row, instead of
only k. Although this makes the resulting EA-OTM query
slower, its SQL implementation is practically identical to the
EA-kNN query (see Code 3). We only need to replace the
knn ea table with otm ea (Line 16), remove the LIMIT k

clauses (Lines 36,51,56) and use UNNEST(tas), UNNEST(vs)

(Lines 30,31) instead of the lines 27,28.
Likewise, for LD-OTM queries we need to build the cor-

responding otm ld DB table that follows the same structure
as knn ld DB table, except that in the vs and tds columns,
we must store the best tuple (latest departure) per vertex
for the PREVIOUS hours, instead of only the top-k entries
over all targets (as in knn ld table). The respective LD-
OTM query is very similar to the previous LD-kNN query,
as showcased in Code 4.

Conclusively, for any query vertex q (containing on av-
erage |Lout|/|V | tuples), then the proposed kNN and One-
to-many queries will always access at most |Lout|/|V | rows
from the respective knn or otm DB tables. Thus, it will be
hard to achieve better secondary storage utilization inside
a database. It is important to note that once we load the
TTL labels and create the lout and lin DB tables, all the
auxiliary DB tables within PTLDB (namely the knn ea,
knn ld, otm ea and otm ld) may also be created by sim-
ple SQL commands (the corresponding queries were omitted
due to space restrictions). This fact also demonstrates that
PTLDB is truly a pure-SQL framework for servicing multi-
ple route-planning queries on public transportation graphs.
In the following experimentation section, we will benchmark
PTLDB ’s performance for various real-world datasets.

4. EXPERIMENTAL EVALUATION
To assess the performance of PTLDB on various pub-

lic transportation graphs, we conducted experiments on a
workstation with a 4-core Intel i7-4771 processor clocked at
3.5GHz and 32Gb of RAM, running Ubuntu 14.04. In our
experiments, we use the same 11 public transportation net-
works from [19] , as in Timetable Labeling (TTL) [23], where
“each dataset records the timetable of the public transporta-
tion network of a major city or country on a weekday” [23].
The characteristics of these networks and the necessary TTL
preprocessing (using the vertex ordering files provided by its
authors) for creating the labels are presented in Table 7. The
graphs’ average degree is between 53 and 413 and the TTL
algorithm creates 630 − 7, 230 tuples per vertex, requiring
4.5− 353.6s for the labels’ construction.

Table 7: Public transportation graphs statistics
TTL

Avg Preproc.
Graph |V| |E| degr. |HL|/|V| Time (s)

Austin 2K 317K 119 1,600 11.3
Berlin 12K 2,081K 153 1,734 184.7
Budapest 5K 1,446K 252 2,486 54.4
Denver 10K 7,11K 75 1,190 27.3
Houston 10K 1,113K 113 2,196 72.6
Los Angeles 15K 1928K 127 2,572 194.5
Madrid 4K 1,913K 413 7,230 338.5
Roma 9K 2,281K 258 4,370 353.6
Salt Lake City 6K 330K 53 630 4.5
Sweden 51K 4,072K 76 775 179.1
Toronto 10K 3,300K 305 2,987 262.1

PTLDB was implemented in PostgeSQL 9.3.6, 64bit with
the same settings used in [14] (8192Mb shared buffers and
64Mb temp buffers). We conducted experiments belonging
to the following query types: (i) Earliest Arrival (EA), La-
test Departure (LD) and Shortest Duration (SD) vertex-to-
vertex, (ii) Earliest Arrival (EA) and Latest Departure kNN
and (iii) Earliest Arrival (EA), Latest Departure (LD) one-
to-many. For each experiment, we used 1,000 random start
vertices (and goal vertices for vertex-to-vertex queries), re-
porting the average running time. Starting timestamps for
EA and SD queries are randomly selected from the first quar-
ter of timestamp ranges, whereas ending timestamps for LD
and SD queries are randomly selected from the fourth quar-
ter of timestamp ranges, to ensure that in the majority of
the cases we actually get trip results that service a particular
type of query. Contrarily, selecting timestamps randomly
from all available ranges would significantly lower query
times, since a significant percent of those queries would pro-
vide no results (no trip would fill the suggested criteria). Be-
fore each experiment, we restart the PostgreSQL server for
clearing its internal query cache and we also clear the operat-
ing system’s cache for accurate benchmarking. All kNN and
one-to-many charts are plotted in logarithmic scale. Note
that (i) PTLDB is the only pure-SQL framework tailored for
servicing public transportation queries and (ii) to the best of
our knowledge there is no previous work or any working sys-
tem trying to tackle EA, LD kNN and one-to-many queries
for such networks. Thus, we only present our results, since
there is no previous secondary-storage work for comparison.

4.1 Performance on HDD
In our first round of experiments, we ran experiments on

an HDD, specifically a SATA3, ST3000DM001, 7200rpm
Seagate Barracuda disk with 64Mb cache.

534

Figure 2: EA, LD and SD v2v queries on a HDD

4.1.1 Vertex-to-vertex queries
Figure 2 shows results for vertex-to-vertex (v2v) queries

for PTLDB. Results show that LD queries are 35% faster
than EA queries, because in the LD queries we select times-
tamps from the fourth quarter of timestamp ranges where
there are less trips than the beginning of the day (as in
EA queries). SD queries are on average 26% slower than
EA queries, due to the increased complexity of the query.
In all cases, EA and SD queries take less than 19.2ms and
LD queries take less than 7.7ms, which is an considerable
achievement, since even main memory solutions (before TTL)
would require a few ms for vertex-to-vertex queries and the
suggested datasets [23]. Moreover, we may answer such
queries with a simple SQL command inside a database, which
ensures scalability, regardless of the numbers of users or
the size of the datasets and with a performance that is fast
enough for real-time online applications.

4.1.2 kNN queries
In this section, we provide the PTLDB ’s results for EA

and LD kNN queries. Similar to previous works [14], we will
experiment with varying values of k and target density D,
i.e., the ratio |T |/|V |, where T is the set of target-stops in the
graph and |V | is the total number of vertices. As explained
in Section 3.2.1, for database frameworks it makes sense to
create large knn tables for the maximum value kmax of k
that will be serviced by the respective framework. Thus, we
have created two versions of kNN DB tables for PTLDB, one
for kmax = 4 and one for kmax = 16. Then, the kNN DB
table for kmax = 4 is used for answering kNN queries for
k = 1, k = 2 and k = 4 and the kNN table for kmax = 16
is used for answering kNN queries for k = 8 and k = 16.

In our first set of kNN experiments, we compare our op-
timized EA-kNN and LD-kNN queries (see Codes 3, 4) in
comparison to the corresponding naive kNN implementa-
tion (Code 2) for varying values of k. Results are presented
in Figure 3. Results show that the optimized versions are
11 − 53× faster than their naive counterparts. Thus, it re-
ally pays off to group tuples in the knn ea (and knn ld)
DB tables by departure (arrival) hour. For the remainder
of the paper, we will only provide results for the optimized
EA-kNN and LD-kNN queries, since those queries provide
significantly superior performance.

Figure 4 shows the absolute times of optimized EA-kNN
and LD-kNN queries for the same scenario, i.e., for D = 0.01
and varying values of k. Results show that the EA-kNN
queries require <64ms for all values of k (except the highest
ratio |HL|/|V | dataset of Madrid and k = 8, 16). LD-kNN

Figure 7: EA, LD and SD v2v queries on a SSD

queries are even faster, requiring less than 32ms on all cases.
In our third set of kNN experiments, we assess the per-

formance of PTLDB for varying values of D. For each
value for D, we have build separate versions of knn ea and
knn ld DB tables for D · |V | targets selected at random
from each dataset and kmax = 4. Figure 5 shows re-
sults for k = 4 and D = {0.001, 0.005, 0.01, 0.05, 0.1}. Re-
sults show, that although PTLDB ’s performance degrades
for larger values of D, kNN queries may still be answered
in less than 128ms (with the exception of Madrid for EA
queries and Toronto for LD queries and D = 0.1). For the
smaller datasets (Austin, Berlin, Budapest, Denver, Hous-
ton, Los Angeles, Salt Lake City, even Sweden) kNN queries
always take less than 32ms. Moreover, EA-kNN queries are
more robust to increasing values of D than LD-kNN queries
that perform significantly worse for denser targets (i.e., for
D = 0.1). Conclusively, the PTLDB framework provides
excellent kNN query performance for all values of D and k.

4.1.3 One-to-Many queries
In our third round of experiments, we assess the perfor-

mance of PTLDB for one-to-many queries. Figure 6 presents
the corresponding results for varying values of D (D =
{0.001, 0.005, 0.01, 0.05, 0.1}). PTLDB answers EA-OTM
queries in less than 512ms for all datasets and values of D
(except the Madrid and Toronto datasets that require 1084ms
and 751ms respectively for D = 0.1). For LD-OTM queries
PTLDB requires less than 256ms for all datasets and values
of D (except the Madrid, Roma and Toronto datasets that
require 303ms, 325ms and 349ms respectively for D = 0.1).
Note, that for such high values of D, the one-to-many query
almost degrades to the one-to-all query and hence, it cannot
get any faster on a secondary storage device.

4.2 Performance on SSD
Having established PTLDB ’s performance in the HDD,

we repeat most previous experiments on a SSD (a SATA3
Crucial CT512MX100SSD1 MX100 512GB 2.5”) to measure
how the secondary-storage device type impacts results.

4.2.1 Vertex-to-vertex queries
Results for all variants of vertex-to-vertex queries on the

SSD are shown in Figure 7. Results show that by using the
SSD, PTLDB is 3 - 20× faster for EA, 6 - 17× faster for LD
and 3 - 19× faster for SD vertex-to-vertex queries. Thus, EA
queries may now be answered in less than 2.5ms, SD queries
may now be answered in less than 3.2ms and LD queries may
now be answered in less than 0.6ms. Conclusively, the usage

535

k

1 2 4 8 16

S
p

e
e
d

u
p

8

16

32

64
Austin

Berlin

Budapest

Denver

Houston

Los Angeles

Madrid

Roma

Salt Lake City

Sweden

Toronto

(a) EA-kNN

k

1 2 4 8 16

S
p

e
e
d

u
p

8

16

32

64
Austin

Berlin

Budapest

Denver

Houston

Los Angeles

Madrid

Roma

Salt Lake City

Sweden

Toronto

(b) LD-kNN

Figure 3: Speedup of optimized kNN queries, in comparison to the naive versions for D = 0.01 and varying values of k

(a) EA-kNN (b) LD-kNN

Figure 4: kNN queries for D = 0.01 and varying values of k

(a) EA-kNN (b) LD-kNN

Figure 5: kNN queries for k = 4 and varying values of D

of SSD benefits significantly all vertex-to-vertex variations
within PTLDB and therefore PTLDB may easily be used for
public-transit real-time applications and such queries, since
query times always require less than 3.2ms.

4.2.2 kNN and One-to-many queries
In this section, we repeated all the kNN and one-to-many

experiments performed in Sections 4.1.2 and 4.1.3 on the
SSD. Results for kNN queries, D = 0.01 and varying values

of k are presented in Figure 8. Results show that for kNN
queries, the usage of the SSD does not provide any further
benefits (in fact sometimes the SSD performs slightly worse),
meaning that in PTLDB we have effectively minimized sec-
ondary storage utilization for kNN queries and thus, adding
a faster storage medium adds no performance benefits. The
same pattern was encountered on all experiments, for differ-
ent values of D or k, including the respective one-to-many
queries and therefore the resulting figures are omitted.

536

(a) EA-OTM (b) LD-OTM

Figure 6: One-to-many queries for varying values of D

(a) EA-kNN (b) LD-kNN

Figure 8: kNN queries for D = 0.01 and varying values of k on the SSD

4.3 Summary
Our experimentation has shown that our proposed PTLDB

framework provides excellent performance for all public trans-
portation planning queries. Using HDDs, PTLDB may an-
swer vertex-to-vertex queries in less than 19.2ms For SSDs,
this time drops down to 3.2ms. For the newly formulated
EA and LD kNN queries, PTLDB requires less than 64ms
and 32ms, for k = 16 and D = 0.01 for the vast majority
of the tested datasets. Even the EA and LD One-to-many
queries require less than 512ms and 256ms respectively, for
most datasets and varying values of D. Regarding memory
requirements, PTLDB is very modest, since all DB tables
and primary key indexes, including the lout, lin, knn ea,
knn ld (for all values of D and kmax = 4, 16) and the
otm ea, otm ld tables (for all available values of D) for all
tested datasets, require less than 12GB. Hence, PTLDB
may easily scale to even significantly larger datasets. Over-
all, not only PTLDB is the only pure-SQL framework tai-
lored for multiple public-transportation queries, offering ex-
cellent performance for real-time applications but the sim-
plicity of its SQL queries, makes its integration with existing
real-world applications very easy and seamless.

5. CONCLUSION
This work presented PTLDB, a novel SQL framework for

answering multiple route-planning queries for public trans-
portation graphs on a database. Our results showed that
PTLDB provides excellent query performance, minimum
secondary storage utilization and maximum scalability. More-
over, we have extended kNN and one-to-many queries for
public transportation networks and proposed how to effi-
ciently answer them within PTLDB, with a few lines of SQL
code. This establishes PTLDB as a competitive database-
driven solution for querying public transportation networks.

The paper gives the complete design and implementation
details of PTLDB using a popular, open-source database
engine, along with the exact SQL queries used in our im-
plementation. This easily allows the replication of our re-
sults and might provide the necessary foundation for other
researchers to expand the PTLDB framework towards han-
dling additional types of queries and novel use-cases. In
terms of future work, currently the PTLDB framework aims
at optimizing travel times, without taking the number of
transfers as an additional optimization criterion. Integrat-
ing this additional constraint would further improve the use-
cases and marketability of the PTLDB framework.

537

Acknowledgments
This work was partially funded by the project “Research
Programs for Excellence 2014-2016 / CitySense-ATHENA
R.I.C.” The author would also like to thank the authors of
Timetable Labeling (TTL) [23].

6. REFERENCES
[1] I. Abraham, D. Delling, A. Fiat, A. V. Goldberg, and

R. F. Werneck. Hldb: Location-based services in
databases. In SIGSPATIAL GIS. ACM, November
2012.

[2] I. Abraham, D. Delling, A. Goldberg, and R. Werneck.
A hub-based labeling algorithm for shortest paths in
road networks. In P. Pardalos and S. Rebennack,
editors, Experimental Algorithms, volume 6630 of
Lecture Notes in Computer Science, pages 230–241.
Springer Berlin Heidelberg, 2011.

[3] I. Abraham, D. Delling, A. V. Goldberg, and R. F.
Werneck. Hierarchical hub labelings for shortest paths.
In L. Epstein and P. Ferragina, editors, Algorithms –
ESA 2012, volume 7501 of Lecture Notes in Computer
Science, pages 24–35. Springer Berlin Heidelberg,
2012.

[4] T. Akiba, Y. Iwata, and Y. Yoshida. Fast exact
shortest-path distance queries on large networks by
pruned landmark labeling. In Proceedings of the ACM
SIGMOD International Conference on Management of
Data, SIGMOD 2013, New York, USA, pages
349–360, 2013.

[5] H. Bast, D. Delling, A. V. Goldberg,
M. Müller-Hannemann, T. Pajor, P. Sanders,
D. Wagner, and R. F. Werneck. Route planning in
transportation networks. CoRR, abs/1504.05140, 2015.

[6] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick.
Reachability and distance queries via 2-hop labels. In
Proceedings of the Thirteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’02, pages
937–946, Philadelphia, PA, USA, 2002. Society for
Industrial and Applied Mathematics.

[7] D. Delling, J. Dibbelt, T. Pajor, and R. Werneck.
Public transit labeling. In E. Bampis, editor,
Experimental Algorithms, volume 9125 of Lecture
Notes in Computer Science, pages 273–285. Springer
International Publishing, 2015.

[8] D. Delling, A. V. Goldberg, A. Nowatzyk, and R. F.
Werneck. Phast: Hardware-accelerated shortest path
trees. In Proceedings of the 2011 IEEE International
Parallel & Distributed Processing Symposium, IPDPS
’11, pages 921–931, Washington, DC, USA, 2011.

[9] D. Delling, A. V. Goldberg, T. Pajor, and R. F.
Werneck. Robust distance queries on massive
networks. In Algorithms - ESA 2014 - 22th Annual
European Symposium, Wroclaw, Poland, September
8-10, 2014. Proceedings, pages 321–333, 2014.

[10] D. Delling, A. V. Goldberg, and R. F. Werneck. Hub
label compression. In Experimental Algorithms, 12th
International Symposium, SEA 2013, Rome, Italy,
June 5-7, 2013. Proceedings, pages 18–29, 2013.

[11] D. Delling, A. V. Goldberg, and R. F. F. Werneck.
Faster batched shortest paths in road networks. In
ATMOS, pages 52–63, 2011.

[12] D. Delling and R. F. Werneck. Customizable

point-of-interest queries in road networks. In 21st
SIGSPATIAL International Conference on Advances
in Geographic Information Systems, SIGSPATIAL
2013, Orlando, FL, USA, November 5-8, 2013, pages
490–493, 2013.

[13] D. Delling and R. F. F. Werneck. Better bounds for
graph bisection. In Algorithms - ESA 2012 - 20th
Annual European Symposium, Ljubljana, Slovenia,
September 10-12, 2012. Proceedings, pages 407–418,
2012.

[14] A. Efentakis, C. Efstathiades, and D. Pfoser. Cold.
revisiting hub labels on the database for large-scale
graphs. In C. Claramunt, M. Schneider, R. C.-W.
Wong, L. Xiong, W.-K. Loh, C. Shahabi, and K.-J. Li,
editors, Advances in Spatial and Temporal Databases,
volume 9239 of Lecture Notes in Computer Science,
pages 22–39. Springer International Publishing, 2015.

[15] A. Efentakis and D. Pfoser. GRASP. Extending graph
separators for the single-source shortest-path problem.
In A. S. Schulz and D. Wagner, editors, Algorithms -
ESA 2014, volume 8737 of Lecture Notes in Computer
Science, pages 358–370. Springer Berlin Heidelberg,
2014.

[16] A. Efentakis and D. Pfoser. Rehub. extending hub
labels for reverse k-nearest neighbor queries on
large-scale networks. CoRR, abs/1504.01497, 2015.

[17] A. Efentakis, D. Pfoser, and Y. Vassiliou. Salt. a
unified framework for all shortest-path query variants
on road networks. In E. Bampis, editor, Experimental
Algorithms, volume 9125 of Lecture Notes in
Computer Science, pages 298–311. Springer
International Publishing, 2015.

[18] C. Gavoille, D. Peleg, S. Pérennes, and R. Raz.
Distance labeling in graphs. In Proceedings of the
Twelfth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’01, pages 210–219, Philadelphia,
PA, USA, 2001. Society for Industrial and Applied
Mathematics.

[19] GoogleTransitDataFeed. PublicFeeds. List of
publicly-accessible transit data feeds [online].
https://code.google.com/p/

googletransitdatafeed/wiki/PublicFeeds, 2015.

[20] M. Jiang, A. W. Fu, R. C. Wong, and Y. Xu. Hop
doubling label indexing for point-to-point distance
querying on scale-free networks. PVLDB,
7(12):1203–1214, 2014.

[21] B. Liao, L. U, M. Yiu, and Z. Gong. Beyond
millisecond latency k nn search on commodity
machine. Knowledge and Data Engineering, IEEE
Transactions on, 27(10):2618–2631, Oct 2015.

[22] PostgreSQL. The world’s most advanced open source
database [online]. http://www.postgresql.org/,
2015.

[23] S. Wang, W. Lin, Y. Yang, X. Xiao, and S. Zhou.
Efficient route planning on public transportation
networks: A labelling approach. In Proceedings of the
2015 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’15, pages 967–982,
New York, NY, USA, 2015. ACM.

[24] S. Wang, W. Lin, Y. Yang, X. Xiao, and S. Zhou.
Timetable labelling [online].
http://sourceforge.net/projects/ttl2015/, 2015.

538

	Scalable Public Transportation Queries on the DatabaseAlexandros Efentakis

