
Strudel: Framework for Transaction Performance Analyses
on SQL/NoSQL Systems

Junichi Tatemura
NEC Labs America

tatemura@nec-labs.com

Oliver Po
NEC Labs America

oliver@nec-labs.com
Zheng Li

Univ. of Massachusetts Lowell
zli@cs.uml.edu

Hakan Hacıgümüş
NEC Labs America

hakan@nec-labs.com

ABSTRACT
The paper introduces Strudel, a development and execu-
tion framework for transactional workloads both on SQL and
NoSQL systems. Whereas a rich set of benchmarks and per-
formance analysis platforms have been developed for SQL-
based systems (RDBMSs), it is challenging for application
developers to evaluate both SQL and NoSQL systems for
their specific needs. The Strudel framework, which we have
released as open-source software, helps such developers (as
well as providers of NoSQL stores) to build, customize, and
share benchmarks that can run on various SQL/NoSQL sys-
tems. We describe Strudel’s architecture and APIs, its com-
ponents for supporting various NoSQL stores (e.g., HBase,
MongoDB), example benchmarks included in the release,
and performance experiments to demonstrate usefulness of
the framework.

1. INTRODUCTION
As a large number of web applications adopt cloud com-

puting platforms, various types of “NoSQL” systems have
emerged and been employed as scalable and elastic data
stores. They are expected to serve transactional workloads1

of an application that interacts with a large and varying
number of users on top of commodity server resources (typ-
ically in the cloud).

Now that application developers have many choices of
NoSQL systems as well as SQL systems (i.e., RDBMSs),
they face various questions (which we would call “SQL-or-
NoSQL questions”): When should we use a NoSQL store in-
stead of a traditional RDBMS? How can we choose a NoSQL
system that suits for our purpose? With a particular NoSQL
system, what kind of trade-off do we face between scalabil-
ity/elasticity gain and the cost of reduced consistency/in-
tegrity support? What about other alternatives such as

1We focus on user-facing transactional application work-
loads instead of analytic ones.

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

purchasing a parallel RDBMS product or sharding (parti-
tioning) open-source RDBMSs?

Standard benchmarks (such as TPC-C) have been very
helpful for evaluating and choosing RDBMS products. On
the other hand, the effort on benchmarking for NoSQL does
not seem catching up with the evolution of NoSQL systems.
Currently, YCSB [16, 12] is the most commonly used bench-
mark for NoSQL, but it mainly focuses on micro-benchmarking
of key-value read/write operations. As NoSQL supports
various features such as transaction and more complicated
queries, more benchmarks are needed to capture the require-
ments behind such features.

It is challenging to develop benchmarks, especially to com-
pare SQL-based systems and NoSQL systems together, given
many different query APIs. It is also challenging to cover
the wide range of the application needs. A transactional
data store is just part of a larger application system, and
its role and requirements are significantly different among
applications.

Thus, we can hardly expect that a limited number of stan-
dard benchmarks are enough for transactional workloads
over SQL/NoSQL systems. Given the variety of data stores
and the variety of application needs, we need a way to ef-
ficiently develop a large and evolving suite of benchmarks,
from micro-benchmark level to application-level, with min-
imum engineering effort in terms of (1) developing a new
benchmark on existing SQL/NoSQL systems and (2) sup-
porting a new SQL/NoSQL system for existing benchmarks.

In this paper we introduce our development and execu-
tion framework, called Strudel, for transactional benchmark
workloads with expectation to contribute to the benchmark-
ing effort in the community.

The design philosophy of the Strudel framework is to pro-
vide composability and reusability with (1) decomposing
benchmark implementations into small components with mul-
tiple abstraction layers and (2) employing a configuration
description language to combine these components into a
specific workload in a reproducible and shareable manner.
In order to bridge the gaps among various data stores, the
framework provides multiple abstraction layers: most no-
tably Entity DB API and Session Workload framework. A
configuration description language is adopted in the frame-
work to enable developers to compose a system and workload
with custom properties in XML.

We have used and kept extending the framework for years
through our research and product development of elastic re-
lational stores (SQL engines on top of KVS [25]). As it

Industrial and Applications Paper

 

 

Series ISSN: 2367-2005 580 10.5441/002/edbt.2016.55

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.55


has matured as a generic and extensible framework, we re-
cently released it (including benchmarks and SQL/NoSQL
supports as described later) as open source software[9] for
wider development purposes.

In this paper, we describe the design and architecture of
the Strudel framework, its support on various NoSQL sys-
tems, benchmark examples we have developed, and perfor-
mance experiments to demonstrate usefulness of the frame-
work.

2. RELATED WORK
YCSB The Yahoo! Cloud Serving Benchmark (YCSB) [16,

12] is the most commonly used benchmark for NoSQL sys-
tems. However, from our objective to conduct performance
studies on transactional aspects of SQL and NoSQL sys-
tems, the original YCSB has very limited support of trans-
actional workloads. Researchers have extended YCSB to ex-
periment transactions over multiple key-value objects (e.g.,
[17]). With an appropriate framework, we should be able to
share such custom efforts to serve for more general applica-
tion performance analyses.

As NoSQL systems evolve from a simple Key-Value store,
there are increasing needs of performance studies with higher-
level (i.e., application-level) workloads, which are especially
important to compare SQL systems and NoSQL system from
the application developers’ viewpoints. YCSB++ [23] ex-
tends the original YCSB to evaluate advanced features of
NoSQL systems (HBase and Accumulo). The features that
are relevant to transactional workload evaluation include (1)
pushing filtering to the data store, (2) measurement of data
staleness due to weak consistency. One possible idea is to in-
tegrate such features with the Strudel framework to evaluate
advanced NoSQL features not only for micro-benchmarks
but also for application-level benchmarks.

OLTP-Bench OLTP-Bench [18, 6] is an extensible testbed
for benchmarking RDBMSs for (primarily) transactional work-
loads. Our framework and OTLP-Bench are not mutually
exclusive but complimentary. We focus on a special class
of OLTP problems where developers have “SQL or NoSQL”
questions. OLTP-Bench, aiming for more general OLTP use
cases, provides a lot of useful features that our framework
misses, such as sophisticated (e.g., more realistically skewed)
data and workload generation and a rich set of SQL work-
loads (including traditional ones that we do not focus on).
A skilled developer may reuse these features combined with
the Strudel framework.

Performance studies There have been various perfor-
mance studies reported on NoSQL systems, including the
the original work of YCSB [16]. For an example of per-
formance studies from the application’s viewpoint, Klein et
al.[22] report their performance evaluation of NoSQL sys-
tems for a healthcare application. Their customer (a health-
care provider) requests them to evaluate NoSQL technolo-
gies for a new electronic healthcare record system to replace
the current version that uses an RDBMS. They developed
evaluation tests by modifying the code of YCSB to fit the
application’s data model. With an appropriate development
framework provided, their development could have been eas-
ier. In addition, whereas their study excludes RDBMSs
(according to the customer requirements), it would need
more engineering effort, in general, to compare NoSQL with
RDBMSs.

Floratou et al. [20] report comparative performance stud-

ies between SQL and NoSQL systems, including comparison
between SQL Server and MongoDB for YCSB workloads.
We hope Strudel is useful to extend such studies to cover
more NoSQL systems and various benchmarks that capture
application-level requirements.

3. ARCHITECTURE
Figure 1 illustrates the layered architecture of the Strudel

framework that provides composability and reusability in
benchmark application development. The abstraction layers
are visualized as orange boxes with underscored italic words
(representing the names of APIs). Among them, Java Per-
sistence API (JPA) is a Java standard for object-relational
mapping (that converts Java object manipulation to SQL
queries). The Strudel framework provides the other APIs.

Entity DB is a simplified data access API that covers
transactional data access features that are common in var-
ious NoSQL systems as well as relational databases (Sec-
tion 4). Basic implementation of Entity DB on a NoSQL
system would not be very difficult (we also provide another
API, Transactional KVS, to make it easier). If a benchmark
is implemented on Entity DB API, it can run on various
NoSQL systems as well as RDBMSs that support the JPA
standard.

The Session Workload is a framework that helps develop-
ers to implement benchmark application on different data
access APIs (Entity DB, JPA, and native NoSQL APIs) by
reusing the code as much as possible (Section 5).

Figure 1: Layered Architecture of Strudel

In Figure 1, red boxes labeled with [A] are components
a developer needs to implement for each benchmark appli-
cation, and green boxes with [D] are implemented for each
NoSQL system. The label [A,D] indicates a component to
be implemented for each pair of a benchmark and a NoSQL
system, and our goal is to minimize such components.

A developer can conduct a specific experiment by com-
bining these components with a particular set of configu-
ration parameters. We employ a configuration description
language for such experiments to make experiments repro-
ducible and individual components reusable across different
experiments (Section 6).

Strudel also provides workload management and execu-
tion engines for experiments in a cluster environment in an

581



automated manner (Section 7).

4. ENTITY DB API
Entity DB API is one of the abstraction layers that are

useful to develop workloads that can run on various data
stores. It employs a subset of JPA (Java Persistence API)
to fill the gap between SQL and NoSQL systems. JPA is a
standard Java API for Object-Relational Mapping, provid-
ing a way to map Java objects (entities) and relational tables
and a way to access data in a relational database through
such Java objects.

JPA provides a basis for us to abstract out the details
of underlying data stores so that application developers can
focus on data handling in an object-oriented manner. How-
ever, to most NoSQL systems, JPA is not applicable directly
since the concept of object-relational mapping relies on ex-
pressive power and declarativeness of SQL and the relational
model.

Thus, we have designed a simplified version of APIs that
consists of standard Java annotations (e.g., @Entity, @Id)
of JPA and extended annotations as well as simplified data
access methods. Whereas this API is not meant for appli-
cation production use (missing various features required in
production)2, it would support simplified application proto-
types to quickly compare data store alternatives before the
real application version is developed.

4.1 Entity Group Annotations
One of the key difference of NoSQL systems from the tra-

ditional RDBMS is that not all the data items are equal
in terms of transactional data access. Distributed transac-
tions are often expensive in a commodity cluster (especially
cloud) environment in order to handle a large number of con-
current read/write accesses with high availability under a
short response time requirement of interactive applications.
Thus, most NoSQL systems provide a way to compromise
transactional consistency for scalability to avoid distributed
transaction as much as possible. In a typical case, a NoSQL
system allows ACID data access only on a data set associ-
ated with a single key. HBase [2] (open source implementa-
tion of Bigtable [15]) provides an atomic check-and-update
operation on a single row of a (big)table. For transactions
over multiple rows, we need to use an external transaction
manager (e.g., Omid [19]) to implement concurrency control
and recovery.

In order to provide a common API to incorporate such
transaction support, we adopt the concept of entity groups.
Helland [21] argued that, in order for an application to be
truly scalable, it must forgo expensive distributed transac-
tions; instead, each transaction must operate on a uniquely
identifiable collection of data (i.e., entity groups) that lives
on a single machine. Google Megastore [14] supports entity
group as a way to associate multiple entities to a group key
and guarantee efficient ACID transactions within a single
group.

We introduce a set of annotations to specify entity groups
in a similar way to Megastore. In addition to standard anno-
tations (@Entity, @Id, @IdClass), we introduce the following
annotations: @Group, @GroupId, @GroupIdClass.

2For production use, there is an open source product,
for example, DataNucleus that supports common APIs
for Java data persistence on some of NoSQL systems:
http://www.datanucleus.org/

We illustrate how these annotations are used in an ex-
ample benchmark (which emulates an auction application)
in Figure 2 . The code uses the JPA standards to define
Bid Java class as an entity (@Entity) with a compound
key (sellerId, itemNo, bidNo) (as annotated with @Id),
which is packaged as one object of a class BidId (@IdClass).

@Group( parent = AuctionItem . class )
@Entity
@Indexes ({

@On( property = ”auct ionItemId ”) ,
@On( property = ”use r Id ”)

})
@GroupIdClass ( ItemId . class )
@IdClass ( BidId . class )
public class Bid {

@GroupId @Id private int s e l l e r I d ;
@GroupId @Id private int itemNo ;
@Id @GeneratedValue
private int bidNo ;
private double bidAmount ;
private long bidDate ;
private int use r Id ;

Figure 2: Example code with annotations

With extended annotations, a benchmark developer can
associate two entity classes together (as a parent-child rela-
tionship) in one group by specifying @Group annotation at
a child class to indicate its parent. In this example, Bid
is associated with AuctionItem (so that we can consistently
access all the bids on one particular auction item and update
the item when the maximum bid price changes). A group id
(@GroupId) is a member of a compound key (a group key)
that specifies a group instance. A set of group ids on an
entity class must be a subset of the set of ids (i.e., a (com-
pound) primary key) that are annotated with @Id.

4.2 Data Access Operations
CRUD Operations Entity DB API supports basic CRUD

(Create-Read-Update-Delete) operations: (1) create (2) get,
(3) update, and (4) delete operations (Figure 3). They
(roughly) correspond to persist, find, merge, and remove op-
erations of EntityManager, a data access interface of JPA3.

Secondary Key Access Unlike JPA, the current Entity
DB API does not support a SQL-like query language or au-
tomatic retrieval of related entities with a join column (i.e.,
annotations such as @OneToMany, @ManyToOne). Instead, it
provides a way to read multiple instances of the same entity
class by specifying one of the entity’s property as a secondary
key (getEntitiesByIndex in Figure 3).

Group Transactions The current version of the frame-
work only supports a transaction within an entity group (de-
signing API to indicate a “global” transaction is a plan for
a future version). A transaction starts with a given group
key and commits after multiple CRUD operations. Figure 4
shows an example of transaction execution. The applica-
tion code gives an instance of EntityTask interface to the
EntityDB API (”edb.run()”), then the underlying Entity

3A subtle difference from JPA is that there is no concept
of attachment/detachment in the current version: an ap-
plication always needs to use an update operation to apply
changes in an entity Java object to the database.

582



<T> T get ( Class<T> ent i tyC la s s , Object key ) ;
void c r e a t e ( Object en t i t y ) ;
void update ( Object en t i t y ) ;
void de l e t e ( Object en t i t y ) ;
<T> List<T> getEnt i t i e sByIndex (

Class<T> ent i tyC la s s , S t r ing property ,
Object key ) ;

Figure 3: EntityDB Interface (partial)

DB implementation runs the instance of EntityTask by giv-
ing an EntityTranscation object (run(EntityTransaction
tx)). The entity task (i.e., the application code) uses this
transaction handler (tx) to issue multiple CRUD operations.

The reason behind this rather convoluted API design (in-
stead of providing usual begin/commit operations) is to ab-
stract out transaction retry handling, especially for opti-
mistic concurrency control. A transaction of applications
for NoSQL systems is often simple and lightweight. It is
easy to retry the entire transaction when a commit request
fails under optimistic concurrency control. In order to an-
alyze the impact of transaction conflict in different NoSQL
systems, we want experiment different retry policies without
changing the application code.

BidResult r = edb . run (Bid . class , itemId ,
new EntityTask<BidResult >() {

public BidResult run ( Ent i tyTransact ion tx ) {
AuctionItem item =

tx . get ( AuctionItem . class , i temId ) ;
i f ( item == null ) {

return BidResult .NONE;
}
i f ( bid . amount ( ) <= item . getMaxBid ( ) ) {

return BidResult .LOST;
}
tx . c r e a t e ( bid ) ;
item . setMaxBid ( bid . amount ( ) ) ;
tx . update ( item ) ;
return BidResult .SUCCESS;

}
} ) ;

Figure 4: Example of group transaction

4.3 Auxiliary Data Maintenance
Entity DB API supports two features that involve main-

tenance of auxiliary data in the underlying data store: (1)
values for automatic unique key generation and (2) indices.

Auto Key Generation Entity DB API lets the devel-
opers specify the standard @GeneratedValue annotation to
use a generated unique value for an id. Just as the standard
JPA, an underlying implementation can choose a way to
generate unique values based on the data store’s capability.

The major difference from the standard specification is the
uniqueness requirement: In JPA, @GeneratedValue is used
to generate a unique value within a table. In Entity DB, it
can only be locally unique: it is required that the compound
group/primary keys that include this id as a member are
unique. For example, in Figure 2, the id bidNo is automat-
ically generated when a Bid entity instance is created. In
fact, itemNo is also a generated value specified in the Aution-
Item class definition. The value of itemNo must be unique

within a particular user (identified with sellerId), and the
value of bidNo must be unique within a particular auction
item.

This local uniqueness requirement gives the underlying
data store more freedom to use a scalable and efficient way
to generate values.

Indices To use secondary-key data access, the developers
need to explicitly specify an index on a property of an en-
tity. Notice that the role of an index at logical design level
is different from the case with relational databases where
selection of an index is logically transparent from queries.
Thus, we introduce a special annotation (@Indexes) sepa-
rated from JPA’s index annotation (@Table.indexes).

One non-trivial semantics of this index-based entity access
is its consistency under a specific entity group design. In
terms of transaction isolation, an index entry can be seen
another (system-defined) entity, and question is whether it
is grouped together with the entities it refers to.

An index can be included (and is included by default)
in the group if the compound index key (i.e., a set of ids)
includes the compound group key. We call such an index
an in-group index and otherwise we call it an out-of-group
index. For example, in Figure 2, there are two indices on
AuctionItemId (which is in fact a compound key with sell-
erId and itemNo) and userId. The former index is in-group
(the index key equals to the group key) and the latter index
is out-of-group.

If the index is not included in the group, we cannot prevent
a phantom read : a transaction cannot read the all the bids
on the same item (which is done through the index) in an
isolated manner (e.g. it cannot be isolated from insertion of
a new bid).

In the current Entity DB, we only allow an index on im-
mutable columns: the value is specified only at creation of
an entity instance and does not change until the instance is
deleted.

4.4 Implementations

4.4.1 Generic Transactional KVS
Whereas Entity DB API is simplified for minimum sup-

port for entity data access, it still needs engineering efforts
to develop an implementation for a particular NoSQL sys-
tem. We provide yet another API for transactional key-
value data access so that a provider of a NoSQL system
can quickly implement this further simplified API instead of
directly implementing Entity DB.

In Transactional KVS, a data record is just a pair of byte-
array key and value, and records are grouped by a group
key (another byte array). Data access is done by a group
transaction (started with a group key) and simple put/get
operations.

The framework provides an Entity DB implementation for
Transactional KVS, which automates (1) mapping from en-
tities to byte array key-value objects, (2) index management,
and (3) auto key generation.

Index and Key generation As a baseline implemen-
tation of Entity DB API, we implemented an index and a
key-generation counter as sets of key-value objects on top
of the Transactional KVS data model. For each index key,
we create an object with the index key and a value that en-
codes the pointers to the indexed entities. A counter object
is created for each parent key (i.e., the compound primary

583



key except an ID to be generated) of an entity, and its value
is a counter number.

Consider the example in Figure 2 when an application
workload creates a new instance of Bid entity. Bid has two
indices (auctionItemId and userId) and a generated key
(bidNo). There are three auxiliary key-value objects up-
dated when we create a new Bid (which is a new key-value
object by itself): (a) an index object of type auctionItemId

with key (sellerId, itemNo), (b) an index object of type
userId with key userId, and (c) a counter object of type
Bid with key (sellerId, itemNo). Among them only the
object a is included in the group with the Bid entity, and
creation of Bid involves a following sequence of three trans-
actions:

1. updates a counter object c and acquires a new value
for bidNo.

2. updates an index b to insert a key of Bid (sellerId,

itemNo, bidNo) using the result of transaction 1.

3. updates an index a and creates a new key-value object
for a Bid entity.

The order of these transactions is important to keep an in-
dex b consistent. Even if another transaction accesses the
index b between transaction 2 and 3 (or even if transaction
3 fails), it will just read a dangling pointer in the index to
a non-existent entity, which does not cause inconsistency.
On the other hand, if these transactions create a Bid entity
but fail to update the index b, it results in inconsistency
(i.e., the existing entity cannot be accessed by the index).
When the entity is deleted, the order of transactions will
become opposite. When the entity is updated, we do not
update the index (i.e., the current Entity DB assumes keys
are immutable).

Notice also that the counter object c could have been up-
dated in the transaction 3 if there were no out-of-group index
such as b (that needs a new committed value of bidNo from
c). In this case, creation of an entity is done by a single
transaction and the counter c and index a is implemented
with a single key-value object since their have the same key.

We have developed the following implementations of Trans-
actional KVS.

HBase [2] To implement transactions, we employ HBase’s
check-and-put operation, which is in general called a compare-
and-swap (CAS) operation and operates value comparison
(read) and update (write) in an atomic manner.

Since check-and-put is applicable only to a single row, all
the records (entities) that belong to the same group must
be packed into one row. To do this, we implement each key-
value record as a column name-value pair (HBase/Bigtable’s
columns are created in an ad-hoc manner).

In addition to these columns, each row has a special col-
umn that holds a transaction version. When the Entity DB
starts a transaction, it will read the current value of this
transaction version on a row that corresponds to an instance
of entity group. All the updates are buffered at the client
side during the transaction. At a commit request, the En-
tity DB issues a check-and-put operation that applies the
buffered updates to the corresponding row if the current
transaction version equals to the one at the beginning of the
transaction.

Omid [5] Omid is a transaction server on top of HBase in
order to realize ACID transactions over multiple rows [19]. It

employs optimistic multi-version concurrency control using
multi-versioning of HBase (each row can have multiple ver-
sions associated with (logical or physical) timestamps). For
each transaction, Omid server issues a new timestamp value,
with which a transaction client puts updates to HBase rows.
A commit request is sent to the Omid server and ensured
after conflict check and writing a log entry for recovery. Al-
though it is a centralized server, the required computation at
the transaction server is lightweight and it will not become
a bottleneck for scalability easily. For our Entity DB imple-
mentation, we also implemented sharded Omid servers, by
applying hash partitioning over the group key and routing a
transaction request to one of multiple Omid servers. In our
small-scale experiments up to 10 HBase region servers, how-
ever, we did not need more than one Omid server to achieve
scalability (Section 8.2).

MongoDB [3] MongoDB’s update operation is atomic for
a single document and consists of query part and update part
(i.e., a more general form of the CAS operation). Similar
to the HBase implementation, we pack entities of the same
group into one document. In the query part of the update,
we include the document id (that corresponds to a group
key) and a value of a transaction version (stored as a field
in a document).

TokuMX [10] TokuMX is an enhanced version of Mon-
goDB. One of the enhancements is to support a multi-statement
transaction over multiple documents whereas the original
MongoDB only supports a single statement transaction (i.e.,
an update operation) over a single document. A client can
begin and commit or rollback a transaction. During a trans-
action, a client can read and update multiple documents.
Isolation is achieved by locking documents (i.e., it takes pes-
simistic concurrency control).

One big limitation in the current TokuMX version is it
does not support a multi-statement transaction for sharded
document collections (i.e., partitioned data).

Our Entity DB implementation uses a cluster of inde-
pendent TokuMX servers and partition data based on the
group key. It emulates sharded MongoDB with application-
level request routing. Since a transaction for one group key
is always executable with a single server, we can employ
TokuMX’s multi-statement transaction.

This implementation has a limitation when it is used in
practice: it does not support rebalancing of partitions (or
“chunks” in MongoDB’s terminology), which is one of the
most important feature of NoSQL to provide elasticity.

4.4.2 Java Persistence API
The Strudel framework includes an implementation of En-

tity DB API using JPA so that a benchmark on Entity DB
can run on any RDBMSs as long as it supports JPA. It
is straightforward to implement Entity DB API using JPA
since most of the features of Entity DB have the direct coun-
terpart in JPA.

The implementation automatically translates a secondary
key access to a query in JP QL, JPA’s standard query lan-
guage (which is then translated to SQL of a specific RDBMS).

In order to optimize physical design of the database, the
developer can use any other JPA annotations. For exam-
ple, selection of indices is an independent decision from the
secondary key access specification (@Indexes) of Entity DB
API: the developer specifies indices using the standard JPA
(i.e., indexes attribute of @Table annotation).

584



4.4.3 Native Implementations
Our framework lets the developer implement a custom

way to map entity access to a specific NoSQL system. We
expect a future version of Strudel include such custom im-
plementations for popular NoSQL systems.

For example, by mapping parent-child relationship to a
specific data model supported by a NoSQL system, we can
eliminate some of the indices specified in @Indexes as fol-
lows:

Nested data structure Various NoSQL systems, such
as HBase and MongoDB, support a nested data structure:
HBase’s column family can be used to represent a set of
child records (e.g., a set of bid records on a particular auc-
tion item). MongoDB’s data model is a document, allowing
to group entities in a flexible manner. If the secondary key
to access is the parent key (e.g., auctionItemId index in
Figure 2), we can retrieve these nested entities in one oper-
ation.

Range key access. HBase employs range partition to
distribute a table and supports a range query on the row
ID. By encoding parent-child relationship as a prefix of a
row ID, we can efficiently implement a secondary key access
(if the secondary key to use is a parent key).

5. SESSION WORKLOAD FRAMEWORK
Although Entity DB provides a common API which is rea-

sonably implementable for many NoSQL systems, it is often
too restrictive for a specific NoSQL system or an RDBMS,
which have more advanced features that can contribute to
higher application workload performance.

We provide another abstraction layer, Session Workload,
at an application level for session-oriented workloads so that
developers can create benchmarks that can run various data
access APIs besides Entity DB API.

The Session Workload framework enables developers to
build workloads that emulate interactive applications in a
similar way to TPC-W [11] (emulating e-commerce) and
RUBiS [8] (emulating auction) benchmarks.

Emulated user interaction for each user is called a session,
which consists of a sequence of actions (called interactions).
An interaction is a unit of the application’s work, which is
a predefined data accessing procedure without user inter-
vention (one interaction may execute multiple transactions
to perform a unit of work). A user issues a request for an
interaction one by one (with optional intervals called “think
time”). A user behavior is modeled as a state transition and
the next interaction request is chosen based on the prede-
fined probability and the results of the previous interactions.

The Session Workload framework makes the benchmark
code reusable and customizable through the following fea-
tures: (1) Interaction interface that separates data access
logic and other part of benchmark code, and (2) highly con-
figurable parameters including state transition definitions.

5.1 Interaction Interface
Figure 5 shows the interface for interactions. An inter-

action must implement three parts: prepare, execute, and
complete. When an execution engine runs one interaction,
it calls these three methods in this order.

The prepare operation is to generate a parameter that
indicates a specific action that the interaction will take in the
next execute operation. Typically, this operation emulates
a thinking process of a human for this interaction (i.e. not

the application side procedure). For example, an auction
benchmark emulates how a bid price is decided given the
current session state (e.g., information on the auction item
retrieved in the past interactions).

The execute operation implements the actual action that
accesses the data. Given the parameter (param) generated
by prepare and the data access API (db), the method per-
forms transactions with the data store.

The complete operation defines how the session state is
modified based on the result of execute operation. For ex-
ample, to emulate a human’s browsing activities on a web
application, the result of a browsing interaction includes a
list of retrieved items. The complete operation may choose
one of such items as “current item of interest” (i.e. part of
the state). The modified state is used in the following inter-
action, which may take an action on the chosen item (e.g.,
placing a bid).

public interface I n t e r a c t i on<T> {
void prepare ( ParamBuilder paramBuilder ) ;
Result execute (Param param , T db ,

Resu l tBu i lde r r e s ) ;
void complete ( S ta t eMod i f i e r mod i f i e r ) ;

}

Figure 5: Interface for Interaction

We designed to split these methods so that we can imple-
ment a benchmark in a reusable manner for multiple data
access APIs, as we describe in the following.

Generic Interaction Interface The Interaction inter-
face employs Java’s Generics to parameterize a data access
API and reuse the benchmark code as much as possible. In
Figure 5, the type variable T corresponds to a class of data
access API (e.g., EntityDB and JPA’s EntityManager). The
application code can be written agnostic to a specific data
access API as long as it does not need to know what T actu-
ally is. For example, the prepare method does not have to
know if an interaction is used with EntityDB or any other
API.

Abstract Interaction Classes To make a benchmark
reusable for many data access methods, a developer is en-
couraged to create an abstract interaction class for each in-
teraction in the benchmark. An abstract interaction class
implements two methods of the interface, prepare and com-

plete, and lets its sub-class implement the remaining exe-

cute method.
In the benchmarks we have developed, we implement both

EntityDB and EntityManager (JPA) versions of interactions.
These two implementations share majority of the benchmark
code (e.g., entity definitions, data generation, workload pa-
rameter generation, state transition) (see Section 8.6 for de-
tails).

5.2 Session State Transition
A benchmark workload based on the Session Workload

framework can be easily customized for a specific experi-
ment. A state transition model that emulates a user behav-
ior is given at run-time as an XML data. Figure 6 shows an
example of an XML element (session) that contains state
transitions (transitions). The session element typically
contains various other parameters that take part of the ses-
sion state in order to customize behavior of the interactions.

585



<s e s s i o n>
<packageName . . . />
<Trans i t i on s>

<t r a n s i t i o n name=”START”>
<next name=”HOME”/>

</ t r a n s i t i o n>
<t r a n s i t i o n name=”HOME”>

<next name=”SELL AUCTION ITEM” prob=”0 .2 ”/>
<next name=”SELL SALE ITEM” prob=”0 .1 ”/>
<next name=”VIEW AUCTION ITEMS BY SELLER” prob=”0 .1 ”/>
<next name=”VIEW SALE ITEMS BY SELLER” prob=”0 .1 ” />
<next name=”VIEW AUCTION ITEMS BY BUYER” prob=”0 .1 ”/>
<next name=”VIEW SALE ITEMS BY BUYER” prob=”0 .1 ”/>
<next name=”VIEW BIDS BY BIDDER” prob=”0 .1 ”/>
<next name=”VIEW WINNING BIDS BY BIDDER” prob=”0 .1 ”/>
<next name=”END” prob=”0 .1 ”/>

</ t r a n s i t i o n>
<t r a n s i t i o n name=”SELL AUCTION ITEM”>

<next name=”HOME”/>
</ t r a n s i t i o n>

Figure 6: State transition in XML

5.3 Benchmarks
The current Strudel also includes example implementa-

tions of benchmarks for micro-level and application-level ex-
periments on top of the Session Workload framework.

Micro Benchmark The Micro benchmark emulates a
simplified user content management application in order to
serve as a microbenchmark. The data and workload scale
in terms of user IDs. To represent different patterns of user
data access, the user content consists of the following four
types of entities:

• personal items represent content privately owned by
individual users. Each user has a set of items as one
entity group (i.e., the number of groups scales as the
number of users). An item is only read and written by
its owner.

• shared items represent shared content written and read
by the users. Items are grouped into multiple entity
groups associated with set IDs (which give another
scaling factor besides the user IDs).

• public items represent individual users’ content that
are open to the public for reading. An item is only
written by its owner but can be read by other users.

• message items represent content exchanged from one
user to another, having a sender ID and a receiver ID.

The benchmark defines various read-write and read-only
interactions for each type of entities. A developer can com-
pose a workload by creating a state transition that includes
any subset of these interactions. By mixing interactions on
these four types of entities, a developer can emulate the need
of a specific application to some degree without coding a new
benchmark.

In Section 8, we use personal items and shared items to
demonstrate various scenarios of transaction performance
analyses.

Auction Benchmark For application-level benchmarks,
we have implemented an auction benchmark, which is sim-
ilar to AuctionMark in OLTP-Bench [6] and RUBiS bench-
mark [8] but customized to use entity groups. The Bid entity
in Figure 2 is part of this benchmark (shown after omitting
some detailed code).

6. CONFIGURATION DESCRIPTION LAN-
GUAGE

The Strudel framework provides abstraction layers to sep-
arate a benchmark application into various customizable
pieces from a data access API implementation of a spe-
cific data store to a parameter generation of a benchmark
workload. In order to combine these pieces together as one
specific benchmark experiment, we employ a configuration
description language that is similar to ones used for sys-
tem component deployment in Grid and cloud infrastruc-
tures [13, 24, 7]. We have separately released this language
as open source software called Congenio [1].

Our XML-based language supports the following features:
(1) inheritance (@extends attribute), (2) document unfold-
ing (foreach element), (3) reference resolution (@ref at-
tribute), and (4) value expression (See the web site [1] for
more details of the language).

With @extends, an experiment document can refer to ex-
isting templates (that define various components such as
benchmarks and data stores) and customize the default val-
ues of these templates. With foreach elements, an exper-
iment document can generate a set of documents, each of
which corresponds to one workload execution with a specific
set of parameters. Figure 7 illustrates such an experiment
document to run an auction benchmark on HBase with dif-
ferent number of data servers (5, 10) and different workload
scales (i.e. the number of users and worker servers).

<j obSu i t e>
<f o r each name=” s c a l e ”>

<s><w>1</w><u>10000</u></ s>
<s><w>2</w><u>20000</u></ s>
<s><w>4</w><u>40000</u></ s>

</ fo reach>
<f o r each name=”se rv e r ” sep=” ”>5 10</ fo reach>
<job extends=”auction−hbase ”>

<workerNum r e f=” s c a l e /w”/>
<serverNum r e f=” s e rv e r ”/>
<userNum r e f=” s c a l e /u”/>

</ job>
</ jobSu i t e>

Figure 7: Job definition in XML

The definition of an experiment in Figure 7 refers to a spe-
cific job template as illustrated in Figure 8. A job template
combines various components including a workload (bench-
mark), database (access to data stores), and cluster (worker
servers that run workloads).

<job>
<workerNum>1</workerNum>
<serverNum>1</serverNum>
<userNum>10000</userNum>
<threadsPerWorker>200</ threadsPerWorker>
<c l u s t e r extends=” c l u s t e r ”> . . .</ c l u s t e r>
<database extends=”tkvs−hbase ”>

<name>auct ion</name>
. . .

</database>
<workload>

<s e s s i o n extends=”se s s i on−auct ion ”>
<numOfThreads r e f=”threadsPerWorker ”/>
. . .

</ s e s s i o n>
<measure> . . .</measure>

</workload>
<r epor t> . . .</ repor t>

</ job>

Figure 8: Example of job composition

When the execution platform (Section 7) runs an exper-
iment with a given job definition, it records a document
after inheritance resolution along with other information

586



(measured results, etc.). After inheritance resolution, the
document includes all the information imported from other
documents (referred to by @extends). This is very useful
to reproduce the same experiments. In our lab, we use a
version control system (git) to commit this document and
experiment results together in the same version.

7. EXECUTION PLATFORM
Strudel’s execution platform consists of the workload man-

ager and a cluster of workers.
The workload manager starts with a given job definition

XML file (in the configuration description language) and in-
teracts with worker servers as well as servers of SQL/NoSQL
systems. The workload manager has the following features:

• server configuration and start-up (invoking external
scripts for NoSQL/SQL systems).

• data generation and population

• workload control and workflow management

• performance monitoring (JMX) and aggregation of the
reports from workloads.

• performance reporting as JSON files.

The Strudel framework does not include the individual scripts
to configure and start/stop servers since it depends on the
infrastructure (e.g., whether the system is deployed on the
cloud platform, a Hadoop cluster, or a simple cluster servers
mounting a shared file system).

The actual workload is run by a cluster of worker nodes
that receive a workload definition from the workload man-
ager. A worker is a workload execution engine that is de-
ployed on a cluster of server machines. The workload man-
ager coordinates a cluster of workers to run a benchmark
workload in a scalable manner (a large number of threads)
to put enough load on a scalable data store.

The Session Workload is one type of workloads the workers
can run. It can run any custom workloads if they implement
a workload interface defined in the Strudel framework. For
example, it should be easy to develop a special workload
that runs the YCSB benchmark.

8. DEMONSTRATION
In this section, we demonstrate some use cases of Strudel

to conduct performance experiments. Notice that the objec-
tive of the following experiments is not a formal performance
study to state any conclusive claims on a particular data
store but a demonstration of the features of our framework.

8.1 System Settings
In our experiments, we use the following settings.
HBase [2] We use HBase version 1.1.1 on top of Hadoop

version 2.7.1. HBase servers consist of a single master server
(which manages the entire system and metadata) and a set
of region servers (which manages data partitions (i.e., re-
gions)). In the experiments, we mean the number of region
servers by the number of data servers. A region server is col-
located with Hadoop HDFS data node (to maximize locality
of I/O). The name node of HDFS is located separately in a
dedicated server. HBase also requires ZooKeeper processes
to achieve coordination across servers. We use 3 ZooKeeper

processes collocated with the master server and two of the
region servers.

Omid [5] We use version 0.8.0. Omid works with HBase
and we use the same setting for HBase as the HBase-only
data store. Omid supports multiple ways to persist trans-
action status for recovery. We use the default of the cur-
rent version: storing the states on HBase. We use the same
HBase cluster with the application (benchmark) workloads.
In the experiment, we use only one Omid server and the
number of data server refers to the number of region servers
as in the case of the HBase-only setting.

MongoDB [3] MongoDB’s version is 3.0.5. To employ
sharding (horizontal data partitioning), we need to deploy
3 config servers (just like ZooKeeper for HBase) and a set
of shard servers (which we refer to by “data servers” in the
experiments). We also need “mongos” servers that route ap-
plications’ requests to appropriate shard servers. We deploy
one mongos server for each worker server as it is a common
use case to collocate a mongos server with an application
server.

TokuMX [10] For TokuMX we use version 2.0.1. As men-
tioned in Section 4.4, when we use multi-statement trans-
action with TokuMX, we cannot use sharding (automated
partitioning). So we deploy a set of independent single-node
TokuMX servers (which we call “data servers”), and let our
EntityDB implementation route data access to these servers
(emulating the application-level sharding).

MySQL [4] For experimenting JPA-based implementa-
tion of benchmarks, we use MySQL (Ver 14.14 Distrib 5.1.73)
with default settings. We only use a single server MySQL
in this demo.

Server machines. We use cluster machines in our lab
with the following features: CentOS 6.6 (Linux 2.6.52), Intel
Xeon E5620 2.40 GHz 16 core CPU , 16GB 1333 MHz RAM,
Intel Pro2500 SATA SSD 240GB. Some OS parameters (e.g.,
the maximum number of open files) are set as data store
providers recommend.

8.2 Data Store Scalability
First, we demonstrate a simple workload running on var-

ious data stores and show how these stores scale with an
increasing number of data servers.

Based on the Micro benchmark, we composed a work-
load executing a single interaction that updates 4 personal
items in the same group (which is randomly chosen from 1
M groups). We configure the workload so that transactions
never conflict with each other: Each execution thread ran-
domly chooses one user ID from an individual pool that is
disjoint from the pools of other threads and uses the ID to
choose a group (that belongs to this user).

We measure the throughput of the workloads using 1600
session concurrency (16 workers each of which runs 100 threads
that keep running the update interaction without think time)
for different data stores (except Omid) with changing the
number of data servers (3, 5, 10). We made sure that the
throughput is saturated (i.e., increasing session concurrency
does not increase the throughput).

For Omid, we needed a larger number, 10800 (36 workers
and 300 threads per worker), of concurrency to saturate the
same number of data stores: Because one interaction takes
longer time, a larger concurrency is needed to generate a suf-
ficient number of read/write operations on the data stores.
Using the Omid transaction server with HBase adds some

587



overhead (longer response time for each interaction and a
larger number of data servers to achieve a throughput num-
ber) but it does not limit scalability at least for 10 region
servers.

For MySQL we show the result of the JPA-based imple-
mentation (the figure has only one bar for a single server
MySQL execution). We also ran the same workload on
the Entity DB-based implementation but it did not show
any significant performance difference for this simple work-
load (hence, it is omitted). In fact, these two implementa-
tions would generate the same SQL queries. Notice that the
throughput of MySQL is good as a single data server: A 3-
node NoSQL system does not achieve the same throughput
per data server. This observation is consistent with [20],
which reports the superior efficiency of an RDBMS com-
pared to NoSQL stores. If the application workload can fit
with a single data server, an RDBMS might be the most
cost effective approach. If elasticity (dynamic re-balancing
of partitions) is not required, purchasing a parallel RDBMS
product may pay off for its efficiency.

In this demonstration, we did not cover parallel RDBMS
products but it would be easy to run the same workload as
long as the product is given with JPA support.

Figure 9: Throughput of item update interactions
(4 items per interaction, 1600 concurrent sessions)
on different number of data servers.

8.3 Transaction Concurrency
The result of the previous experiment demonstrates effi-

ciency of a lightweight implementation of entity-group trans-
action with a simple check-and-update (HBase) compared to
an approach with an additional transaction server (Omid).
One drawback of this approach is that there is no concur-
rency allowed within a group (i.e., concurrent updates on
the same group will fail). In many applications, this may
not be a problem: when a group is associated with an in-
dividual user, a single user would not issue a large number
of concurrent transactions. However it would not be always
the case (e.g., auction bidding).

The next experiment we demonstrate is to see the trade-off
between HBase (single-row transaction) and Omid (multi-
row transaction) in terms of transaction concurrency. We
use a workload that updates one shared item randomly cho-
sen from a randomly chosen group. We fix the total number
of items (80K) and change the size of group (400, 40, 4
items per group). From the viewpoint of the Omid trans-
action manager, these cases are identical (no difference be-

tween intra-group and inter-group). But for HBase, the to-
tal number of groups will decide the concurrency limit of the
workloads (if two transaction updates different items in the
same group, they will conflict with each other and only one
can be successful). The result with 3200 concurrent sessions
on 5 data servers (region servers) is shown in Figure 10. As
the number of groups becomes smaller, HBase’s throughput
degrades and becomes worse than Omid.

Figure 10: Throughput under different transac-
tion concurrency: 3200 concurrent sessions, 5 data
servers, 1 update/interaction, 80K items in G shared
groups (K items/group)

It is beneficial to use a transaction server when the con-
currency within a group needs to be high, even if it adds
significant extra overhead (additional commit processing)
compared to the main part of transaction (amount of read-
/write),

In a real application development setting, developers will
need to manage the trade-off by building workloads to em-
ulate the application’s needs and conducting similar exper-
iments.

8.4 Transaction Conflict
Recall that TokuMX is an enhanced version of MongoDB

and supports a multi-statement transaction based on locking
of documents (data items). An application developer would
wonder how and when this feature should be used. One
interesting experiments using our framework would be com-
parison between optimistic concurrency control with Mon-
goDB (single-document transactions) and pessimistic con-
currency control with TokuMX (multi-document transac-
tions).

At high-level, we know a rule of thumb, which is to take
a pessimistic approach when conflict will likely happen in
order to avoid unnecessary re-computation. But it always
depends on a specific case.

In this example, a workload consists of a single interac-
tion that updates 4 items in a randomly chosen group. The
difference from the experiments in Figure 9 is that there are
(varying degrees of) conflicts. We use 3200 concurrent ses-
sions that update items in 3200 groups under the following
three conditions: (1) 400 personal items per group: each
thread will keep updating its own group (i.e., no conflict),
(2) 400 shared items per group: each thread will randomly
choose one of 3200 groups and choose 4 from 400 items (i.e.,
mild conflict), (3) 40 shared items per group: each thread

588



will randomly choose one of 3200 groups and choose 4 from
40 items (i.e., heavy conflict). The results are shown in Fig-
ure 11.

We notice the difference besides the concurrency control
in the two versions: they are also different in allowed trans-
action concurrency (just like HBase and Omid). The Mon-
goDB version of entity group transaction cannot have con-
currency within a group. Hence, we do not see the difference
between the case 2 and 3 for MongoDB. Their throughput
values are almost equal to each other and are much lower
than the throughput in the case 1.

On the other hand, the TokuMX version employ a lock
for each item (i.e., document) and it looks very effective in
the case 2 showing only slight degradation from the case 1.

However, the behavior of the TokuMX version is quite
different in the case 3, showing a very low performance. In
fact most of the transactions fail due to either deadlock or
failure to acquire a lock, and these transaction will keep
retrying until they finish successfully.

To compare optimistic and pessimistic concurrency con-
trol under heavy conflict, there is a fundamental difference
in the cost of retrying transactions. In this particular case
of optimistic concurrency control using CAS operations, the
conflict relationship among transactions is very simple and
there will be no deadlock: i.e., at least one of the conflicting
transactions will “win.” Although retrying involves ineffi-
ciency, there is always progress in the computation. On the
other hand, the pessimistic concurrency control may suffer
from deadlock, in which case nobody wins. Thus, to ensure
progress of the computation, the execution threads need to
back off and wait longer time before retrying In fact, the
above result is after tuning the back-off policy using config-
uration options provided by the Strudel framework.

Figure 11: Throughput under different degree of
conflict: 3200 concurrent sessions, 5 data servers,
4 updates/interaction over 3200 shared/personal
groups

When it is very cheap to retry a transaction, the opti-
mistic concurrency control can be an easier approach. In a
practical setting, employing pessimistic concurrency control
might be tricky in a cluster environment (especially when
the system is built with open-source components and de-
ployed on the cloud platform). Careful performance analysis
is necessary to validate if it is really worth employing. The
best approach would depend on the requirement of a specific
application, and our tool can help the developer to explore

various options.

8.5 Application-level Performance
To demonstrate a scenario of an application-level perfor-

mance analysis, we compare HBase and MySQL using the
auction benchmark. For MySQL we use two benchmark
implementations based on Entity DB API and JPA, respec-
tively.

The JPA version of auction benchmark uses join queries
when they are applicable. For example, in an interaction
that shows the information on all the bidding by a particular
bidder, the tables of items and bids are joined together. In
the auction workload, all the interactions that use join are
read-only, and the number of tables joined is always 2.

Figure 12: Throughput of auction benchmark with
different session concurrency on different data stores

In this experiment, we increase the session concurrency
from 200 to 3200 (200 threads per worker server) without
think time on the same number of data servers (10 for HBase
and 1 for MySQL). The number of users (and the size of the
data set) is made proportional to the session concurrency
(50 users per thread). The throughput of the workload is
visualized in Figure 12.

As expected, HBase is scalable for an increasing number of
concurrent user sessions. One observation, however, is that
its throughput values are lower than the values of a single
MySQL server when the number of concurrent sessions is
small. This implies that MySQL’s execution of interactions
with SQL is more efficient than executing the same interac-
tions with put/get operations of HBase.

Another observation is that the JPA-based version per-
forms better than Entity DB-based version on MySQL when
the session concurrency is small, whereas the upper limit of
throughput does not seem much different between these two
implementations.

To see more detail of the efficiency of interaction execu-
tion, Figure 13 visualizes the average response time of in-
dividual interactions when the session concurrency is small
(200). For the purpose of presentation, we only visualize
5 interactions picked up from 15 interactions used in the
workload.

First, we observe the response time of two read-write in-
teractions: sell-auction-item and store-bid. One noticeable
point is that the store-bid interaction takes much longer
time than the sell-auction-item on HBase (whereas the sell-
auction-item performs similarly among three data stores).

589



Figure 13: Response time of different interaction
types in auction benchmark on different data stores
(session concurrency = 200)

The store-bid interaction creates one Bid entity and updates
one AuctionItem entity in one transaction (i.e. updating one
row). In fact, however, creating one Bid involves two addi-
tional row updates for out-of-group auxiliary data items: a
key-generation counter and an index on the bidder id. On
the other hand, key-generation and index maintenance are
internal operations for MySQL, adding only negligible over-
head.

We see much larger difference between HBase and MySQL
for read-only interactions. We picked up three read-only
interactions to represent three types of queries: (1) view-
auction-items-by-seller gets auction items with a secondary
key (the user ID of a seller). It illustrates different use of an
index in Entity DB and JPA, (2) view-bids-by-bidder gets
bids by a particular bidder as well as the corresponding auc-
tion items. The JPA-version uses a two-table join query
with Bid and AuctionItem, (3) view-winning-bids-by-bidder
gets bids by a particular bidder that won the auction items.
The JPA-version uses a two-table join query with additional
filtering conditions.

The view-auction-items-by-seller interaction reveals the
difference in HBase and MySQL Entity DB: MySQL uses
its internal index mechanism to implement Entity DB’s sec-
ondary key access, which is more efficient than an index
object implemented on top of HBase. For this interaction,
MySQL uses the same SQL for Entity DB version and JPA
version (hence similar performance).

The view-bids-by-bidder interaction takes much longer time
in Entity DB versions (MySQL and HBase) compared to the
JPA-based implementation that uses a join query. However,
the JPA-based implementation did not gain further benefit
by adding filtering conditions for the view-winning-bids-by-
bidder.

In a real development case, we need to take response time
requirements for individual interactions to choose an imple-
mentation strategy. For example, 200 milliseconds for the
view-bids-by-bidder interaction of HBase in the figure might
not be acceptable for an interactive web application. The
current implementation of this interaction executes a nested
loop of get operations to emulate a join of Bid and Auc-
tionItem. A possible improvement is to issue get operations
asynchronously to hide latency of individual get responses.

8.6 Code Reusability

In addition to the above experiment scenarios, we also
demonstrate the reusability of the code enabled by the Strudel
framework.

Table 1 shows the size of components to implement the
Entity DB interface for each NoSQL store. Each cell con-
tains the lines of code and the number of classes (in a paren-
thesis). In the table, TKVS refers to the code of Transac-
tional KVS (Section 4.4) that is commonly used by every
implementation.

Table 1: The size of store components: lines of code
(number of classes)

TKVS HBase Omid MongoDB TokuMX
3130 (36) 796 (6) 454 (4) 680 (4) 507 (4)

Table 2 shows the size of components to implement Auc-
tion and Micro benchmarks. The labels entity, param, and
base correspond to definition of entity objects, parameters
used in session interactions, and abstract interaction classes
(Section 5), respectively. The remaining two columns, En-
tity DB and JPA, are components specific to data access
APIs. The table does not include XML files that define ses-
sion state transitions, which are part of configuration the
developer can customize for specific experiments. The ses-
sion state transition is agnostic to data access APIs.

Table 2: The size of benchmark components: lines
of code (number of classes)

entity param base Entity DB JPA
Auction 943 (9) 202 (3) 1346 (17) 1090 (18) 1043 (17)
Micro 681 (8) 212 (4) 1004 (19) 931 (19) 985 (19)

Notice that a more important point than the number of
lines is separation of concerns achieved by the framework.
For example, the benchmark components that are specific
to data access APIs only need to implement individual data
reads and writes that appear in the interactions.

8.7 Other Scenarios
Besides the scenarios the above demonstration covers, we

have also used the Strudel framework for our research and
development in a more customized manner. We developed
custom components for our proprietary systems to run var-
ious experiments, including: (1) elasticity analysis to eval-
uate dynamic server scaling out (using a custom workflow
that invokes various scripts to control data migration while a
workload is running), (2) evaluation of bulk-loading APIs of
NoSQL systems (using a custom workload that is not based
on the session workload framework).

Especially, the elasticity analysis is essential to evaluate
NoSQL systems. In a future version, we plan to include a
generalized version of our custom components in the frame-
work.

9. FUTURE WORK
We consider the following items in the future version of

Strudel:

590



• Extended Entity DB API as a larger subset of JPA
to incorporate more powerful query functionality of
NoSQL (e.g. MongoDB) such as mapping parent-child
entity relationship to a nested document (which en-
ables retrieving parent and children together in one
operation).

• Supporting multi-entity-group transactions on Entity
DB API in a generic way to cover various solutions of
multi-key transactions on NoSQL systems.

• Native EntityDB support of representative NoSQL sys-
tems such as HBase and MongoDB (Section 4.4.3).

• Better support of online analyses (e.g., an additional
framework for scale-out analysis)

• Various data/workload generation (e.g. integration
with such features from YCSB, OLTP-Bench).

• Better and easier integration with underlying infras-
tructure (e.g., software containers (e.g., Docker), re-
source managers (Hadoop YARN), and cloud platforms)
as well as software configuration and deployment tools
(e.g., Puppet [7]).

In actual applications, scalable transaction support is only
part of the data management support. There are other
data management features that must be considered: (1)
entity search, (2) integration with analytic workloads. In
either case, the developer has to choose if these functional-
ity should be achieved by the same data store that serves
transactions or done by external systems (search engines or
analytic stores). Choice of SQL and NoSQL systems must
take such features into account, which are beyond the scope
of the current framework.

10. CONCLUSION
We introduce Strudel, a development and execution frame-

work for transactional workloads both on SQL and NoSQL
systems. Entity DB API provides a way to develop a bench-
mark using a common access API that is reasonably im-
plementable on various NoSQL systems as well as RDBMS
(through JPA). Session Workload framework provides an-
other abstraction layer to decouple logic on data access (with
a particular access API) from other logic in the benchmark
(such as session state transition and parameter generation).
We have implemented Entity DB API for various NoSQL
systems by introducing a lower level API for transactional
key-value access. A future version of the framework will ex-
plore custom EntityDB implementation on individual NoSQL
systems to exploit advanced features of these systems (such
as a query on a nested data structure).

11. REFERENCES
[1] Congenio: Configuration generation language.

github.com/tatemura/congenio.

[2] HBase. www.hbase.apache.org.

[3] MongoDB. www.mongodb.org.

[4] MySQL. www.mysql.com.

[5] Omid. github.com/yahoo/omid.

[6] Otlp-bench. oltpbenchmark.com.

[7] Puppet. puppetlabs.com.

[8] RUBiS: Rice university bidding system. rubis.ow2.org.

[9] Strudel. github.com/tatemura/strudel.

[10] TokuMX. www.percona.com/software/mongo-
database/percona-tokumx.

[11] TPC-W. www.tpc.org/tpcw.

[12] Ycsb. github.com/brianfrankcooper/YCSB.

[13] CDDLM configuration description language
specification version 1.0.
www.ogf.org/documents/GFD.85.pdf, 2006.

[14] J. Baker, C. Bond, J. Corbett, and J. J. Furman et al.
Megastore: Providing scalable, highly available storage
for interactive services. In CIDR, pages 223–234, 2011.

[15] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and
R. Gruber. Bigtable: A distributed storage system for
structured data. In OSDI, pages 205–218, 2006.

[16] B. F. Cooper, A. Silberstein, E. Tam,
R. Ramakrishnan, and R. Sears. Benchmarking cloud
serving systems with YCSB. In Proceedings of the 1st
ACM Symposium on Cloud Computing, SoCC 2010,
Indianapolis, Indiana, USA, June 10-11, 2010, pages
143–154, 2010.

[17] S. Das, D. Agrawal, and A. El Abbadi. Elastras: An
elastic, scalable, and self-managing transactional
database for the cloud. ACM Trans. Database Syst.,
38(1):5:1–5:45, Apr. 2013.

[18] D. E. Difallah, A. Pavlo, C. Curino, and
P. Cudré-Mauroux. Oltp-bench: An extensible testbed
for benchmarking relational databases. PVLDB,
7(4):277–288, 2013.

[19] D. G. Ferro, F. Junqueira, I. Kelly, B. Reed, and
M. Yabandeh. Omid: Lock-free transactional support
for distributed data stores. In IEEE 30th International
Conference on Data Engineering, Chicago, ICDE
2014, IL, USA, March 31 - April 4, 2014, pages
676–687, 2014.

[20] A. Floratou, N. Teletia, D. J. DeWitt, J. M. Patel,
and D. Zhang. Can the elephants handle the nosql
onslaught? Proc. VLDB Endow., 5(12):1712–1723,
Aug. 2012.

[21] P. Helland. Life beyond distributed transactions: an
apostate’s opinion. In CIDR, pages 132–141, 2007.

[22] J. Klein, I. Gorton, N. Ernst, P. Donohoe, K. Pham,
and C. Matser. Performance evaluation of nosql
databases: A case study. In Proceedings of the 1st
Workshop on Performance Analysis of Big Data
Systems, PABS ’15, pages 5–10, New York, NY, USA,
2015. ACM.

[23] S. Patil, M. Polte, K. Ren, W. Tantisiriroj, L. Xiao,
J. López, G. Gibson, A. Fuchs, and B. Rinaldi.
Ycsb++: Benchmarking and performance debugging
advanced features in scalable table stores. In
Proceedings of the 2Nd ACM Symposium on Cloud
Computing, SOCC ’11, pages 9:1–9:14, New York, NY,
USA, 2011. ACM.

[24] R. Sabharwal. Grid infrastructure deployment using
smartfrog technology. In Proceedings of the
International Conference on Networking and Services,
ICNS ’06, pages 73–, Washington, DC, USA, 2006.
IEEE Computer Society.

[25] J. Tatemura, O. Po, W.-P. Hsiung, and H. Hacigümüs.
Partiqle: an elastic sql engine over key-value stores. In
SIGMOD Conference, pages 629–632, 2012.

591


	Strudel: A Framework for Transaction Performance Analyses on SQL/NoSQL SystemsJunichi Tatemura, Oliver Po, Zheng Li, Hakan Hacigumus

