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ABSTRACT

The rapid increase in generation and dissemination of online
video data has recently raised the demand on efficient and ef-
fective query processing techniques in large video databases.
In this paper, we first introduce a novel compact video rep-
resentation model to achieve high effectiveness, and then
propose to alleviate computational time complexity of the
well-known Earth Mover’s Distance by introducing a filter
approximation analyzing earth flows locally and restricting
the number of flows globally, ensuring completeness. More-
over, extensive experimental evaluation performed on high
dimensional real world datasets points out high efficiency
and effectiveness of the proposals, significantly reducing the
number of Earth Mover’s Distance computations and out-
performing the state of the art by up to two orders of mag-
nitude with respect to selectivity and query processing time.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval; H.2.4 [Database Management]: Sys-
tems—Multimedia databases

General Terms

Theory, Performance, Experimentation

Keywords

Earth Mover’s Distance, Lower Bound, Filter Distance, Ef-
ficient Query Processing

1. INTRODUCTION
With increasing ubiquity of the internet and rich diver-

sity of multimedia capture devices and social networking
and data sharing web sites, recent years have witnessed an
explosion in generation and collection of multimedia data,
in particular videos. As reported in [26], 100 hours of video
are uploaded to YouTube every minute, and over 6 billion
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hours of video are watched each month on the same web-
site. The resulting enormous amount of video data in the
technological world today makes efficient and effective query
processing indispensable for large video databases.

The Earth Mover’s Distance (EMD) [15] denoting strong
human perceptual similarity is proven to be a very effec-
tive distance-based similarity measure in various domains.
The EMD determines the dissimilarity between two data
objects by the minimum amount of work required to trans-
form one feature representation into another one. Each data
object, for example a video clip, can be represented by a sig-
nature denoting individual object-specific features, or by a
histogram consisting of shared features in the feature space
where histograms expose a special case of signatures. Signa-
tures which are also referred to as adaptive binning or indi-
vidual binning can be used to represent a wide spectrum of
data types, such as uncertain [3], medical [2], probabilistic
[25], and multimedia data [15, 24, 21, 22], as well as events
[19] and molecules [6]. The major advantage of the utiliza-
tion of the signatures is the high quality of content approxi-
mation coupled with similarity search and query processing
in various type of databases.

A signature is basically defined as a set of features, also
found as representatives in the literature, in a feature space.
Each feature is assigned a real-valued weight denoting the
number of features related to that corresponding feature.
This is carried out by first extracting the features and then
clustering them by using a clustering algorithm, such as k-
means algorithm. The resulting counters of the features in
the clusters form a signature which we refer to as an abso-
lute signature exhibiting individual total weights. Absolute
signatures are appropriate for applications for which differ-
ent characteristics and properties of data are of high impor-
tance, such as different image resolution or different video
clip length. Many applications rely on an additional prepro-
cessing step by which the absolute signatures are normal-
ized, leading to relative signatures exposing a uniform total
weight among all data objects. Below, we will immediately
show the limitations caused by this normalization step, and
how important the usage of absolute signatures is, partic-
ularly if partial similarity is involved. Overall, this paper
aims at efficient similarity query processing for absolute sig-
natures which is supported only little by existing work.

Relative signatures have often been utilized in numerous
applications [15, 1, 24, 21], however, absolute signatures and
similarity search using them are still unexplored. The di-
agnosis of various types of cancer or neurological diseases,
such as Alzheimer’s Disease [9] require absolute signatures
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Figure 1: Given images I1 and I2, the absolute sig-
nature S2 is found to be a part of the absolute signa-
ture S1 which consider individual absolute weights.
However, a normalization step results in relative sig-
natures R1 and R2 which are detected as non-similar.

in (bio)medical image classification and similarity search.
Rough and coarse boundaries of a cell makes it difficult to
determine if it is a cancer/tumor cell. Such biomedical im-
ages are commonly stored in fuzzy object databases where
each image is partitioned in a specific number of shells where
the assignment of a certain probability to each pixel is es-
sential, i.e. the absolute number of pixels for each shell is
important to store [20]. An extra normalization step af-
ter the feature extraction would lead to inappropriate fuzzy
object representation of the cells and, thus, to irrelevant re-
sults. In biotechnology, the metabolite identification and
quantification is an important task for which data normal-
ization results in obscuring variation of data where the chem-
ical properties cannot be preserved any more [10]. In addi-
tion, normalizing the metabolomic data affects its covariance
structure which is undesired by the experts.

To contribute to the reader’s understanding, we illustrate
the absolute and relative signatures in Figure 1. A common
task in partial similarity search is to determine if a particular
part of a given data object exists in the target dataset. Each
signature comprises representatives visualized by circles and
is based on the characteristic information of the presented
image, such as color. Image I1 comprises various fruits in-
cluding also a lemon, while the image I2 shows only a lemon
where the user intends to determine if a lemon exists in the
image I1. When the absolute signatures S1 and S2 are con-
sidered, S2 is found to be similar to S1, since it is detected as
a part of S1. However, if an additional normalization step is
applied to attain the relative signatures R1 and R2, they are
detected as non-similar. A closer look reveals that the two
images are evaluated as different images due to the utiliza-
tion of the normalization step after the feature extraction,
i.e. normalizing absolute signatures does not carry out the
required partial similarity search task. Another example is
the currently attractive and vital domain of video similarity
search, in particular near-duplicate video detection, where a
typical subclip video detection task [8], required for various
purposes as copyright protection and management, entails
the need to utilize absolute signatures so that a query subclip
can be detected in a given video dataset. Hence, depending
on the application, it is explicitly crucial to utilize absolute
signatures for queries and datasets, as normalization does

not attain partial similarity search tasks formulated and de-
manded by the user.

Since the empiric time complexity of the EMD is super-
cubic with respect to feature dimensionality, database com-
munity has devised research to propose efficient query pro-
cessing techniques for the EMD [15, 4, 1, 24, 25, 21]. While
existing efficiency improvement techniques for the EMD have
been successfully utilized on relative signatures, nevertheless
most of them have unfortunately the shortcoming that they
can only be applied to fixed-binned relative signatures. Fur-
thermore, they cannot be applied to absolute signatures de-
noting individual total weights which come up in numerous
applications and domains, such as in computer vision [13, 4],
multimedia databases [11], fuzzy object databases [20], and
biotechnology [10]. While the lower-bounding technique IM-
Sig (Independent Minimization for Signatures) [21] is proven
to result in efficient results, it can only be applied to relative
signatures, not to absolute signatures.

In this paper, we introduce a lower-bounding filter ap-
proximation technique IM-Sig∗ which is applicable to both
fixed-binned and adaptive-binned absolute and relative sig-
natures. In particular, our approach computes the same
filter distance as for IM-Sig on relative signatures, and on
top of this, our proposal can also be applied to the abso-
lute signatures, hence, filling the gap with respect to lower-
bounding the EMD on absolute signatures. To this end, we
focus on efficient query processing with the EMD on both
relative and absolute signatures in order to introduce a com-
prehensive solution, which is carried out by analyzing earth
flows locally and restricting the number of flows globally.
In addition, we take the video domain as an example in this
paper, however, it is noteworthy that our efficiency improve-
ment technique can be applied to all domains where complex
data objects need to be represented by relative or absolute
signatures, as mentioned above. The main contributions of
our paper are listed as follows:

• We introduce an adaptive-binning video representation
model applicable to the EMD (Section 3).

• We propose an analytic solution IM-Sig∗ for adaptive-
binned signatures without any weight restriction (Sec-
tion 5.1-5.2).

• We show the optimality of our solution leading to the
lower-bounding property of the IM-Sig∗, ensuring ex-
act query processing with the EMD (Section 5.3).

• We develop an algorithm for our proposal and analyze
the computational time complexity (Section 5.4).

• Experiments on real world data show the efficiency and
efficacy of our approach (Section 6).

2. RELATED WORK
Efficient Query Processing with the EMD. Various

efficient query processing techniques have been proposed for
the EMD on histograms, i.e. fixed-binned signatures. [1]
proposed to lower-bound the EMD via Lp-based distances
and constraint relaxation. [24] developed dimensionality re-
duction techniques for the EMD where reduced cost matri-
ces are utilized relying on the original cost matrix. Further-
more, [25] derived a lower bound of the EMD by utilizing
the primal-dual theory in linear programming on top of B+-
trees. In addition, [16] proposed to lower-bound the EMD by
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Table 1: Overview of the lower bounds to the Earth
Mover’s Distance regarding feature representations

signatures
lower bounds individual
to the EMD adaptive binning signature weight
Lp-based [1]
RedEMD [24]
PrimalDual [25]
Rubner [15] �
IM-Sig [21] �
Pemd [4] � �
IM-Sig∗ � �

projecting histograms on a vector and approximating their
distance by a normal distribution. It is noteworthy that
the limitation of all aforementioned approaches is that they
are applicable to histograms sharing the same features in
a feature space, not to adaptive-binned signatures denoting
individual features per data object. As mentioned in the
previous section, since histograms denote a special case of
signatures by utilizing shared features instead of individual
features per data object, it is of vital importance to pro-
pose comprehensive methods applicable to signatures. [15]
proposed to lower-bound the EMD by computing the dis-
tance between mean signatures. Although the filter time
is remarkably low, the efficiency of the query processing is
hampered by the worse selectivity resulting in high refine-
ment time. Moreover, a considerable limitation lies in the
fact that it cannot be applied to absolute signatures, as will
be presented in Section 4. Another efficiency improvement
technique for signatures is proposed by [21], which is based
on the relaxation of the target constraint of the EMD by
local examination of each feature in the source signature.
While this method indicates high efficiency improvement,
it is nevertheless not applicable to absolute signatures with
individual total weights. Furthermore, [4] proposed to lower-
bound the EMD on signatures by computing the EMD val-
ues for projected signatures each of which comprises features
projected on an individual dimension of the feature space.
Note that the latter approach is applicable to both relative
and absolute signatures. The overview of the applicability
of existing lower-bounding methods and our approach IM-
Sig∗ with respect to feature representations is depicted in
Table 1.

Video Similarity Search Models. Video similarity
search in video databases has been a challenging research
area where there have been numerous attempts to provide
effective similarity search techniques. [18] (vitri) summa-
rizes each video into a small number of clusters each of which
includes similar frames. The similarity between two videos
is determined by simply estimating the number of similar
frames, neglecting the temporal information. [27] (fras) is
another approach which is an improvement of [18], symboliz-
ing video sequences on a frame basis. The limitation of both
approaches lies in the determination of a threshold which is
supposed to specify the similarity between any two frames.
[8] (vdt) proposes to transform a video from a sequence of
histograms denoting frames into a one-dimensional distance
trajectory where the distance is determined via a reference
point. This model is contingent upon frame elements which
may lead to performance limitations regarding generation of

(a) video clip (b) video signature

(c) video subclip (d) subclip signature

Figure 2: Illustration of a video clip and a subclip
with the visualization of their video signatures.

video representations of a high number of frames, and the
segmentation of linear segments requires the determination
of a threshold regarding the distance between two consec-
utive frames, which is not robust to outliers. [7] (bcs) is
another video clip representation model utilizing the princi-
pal component analysis in order to specify a bounded range
of data projections along each coordinate axis. This method
neglects temporal information causing a restriction, in par-
ticular for long video clips. Not least, all aforementioned
approaches propose to represent each frame only by a his-
togram in RGB color space.

3. NOVEL VIDEO REPRESENTATION
In this section, we propose our novel video model Video

Signature (vis) which utilizes the determination of indi-
vidual features and related weights denoting the number
of assigned features, leading to a particular compact video
clip representation. Unlike frame-based and sequence-based
models [7, 8, 18, 27], our model is not contingent upon
frames or keyframes, attaining great flexibility via exploiting
any requested feature types, such as color, position, contrast,
and coarseness. On top of this, the proposal implicitly takes
the temporal information into consideration which does not
require extra effort at all, since the temporal information is
utilized as an individual dimension of the underlying feature
space. Mathematically, let (F, δ) be a feature space where F
is a set of features coupled with a ground distance function
δ : F × F → R. Any video clip is represented by a finite
set of features x1, . . . , xn ∈ F. We refer to a video signature
as a finite set of features (so-called representatives) each of
which is assigned a non-negative real number corresponding
to the number of features assigned to that representative.
The formal definition is given below.

Definition 1 (Video Signature). Given a feature
space (F, δ), a video signature V is defined as V : F → R≥0,
subject to |RV | < ∞ , where RV := {x ∈ F |V (x) > 0} ⊆ F
denotes the set of representatives of V .
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According to the definition above, each representative con-
tributes to the video representation by taking a positive real
number V (x) ∈ R≥0 as weight. Any video signature, hence,
includes an individual set of representatives and weights
which leads to an appropriate video representation.

The illustration of a video clip and a subclip with their
corresponding video signature visualizations are depicted
in Figure 2. The signatures comprise 50 representatives
which are visualized as spheres based on position, color,
texture, and temporal information. In the visualization,
positional (X,Y) and temporal (T) dimensions are explic-
itly utilized to contribute to the reader’s understanding,
where the size of each sphere refers to the weight of that
representative. This figure epitomizes the video approxi-
mation and modeling with respect to subclip video detec-
tion: Obviously, the individual total weight of the abso-
lute signature of the video clip (b) is greater than that for
the subclip video (d) which facilitates the utilization of the
EMD to determine the dissimilarity between them in order
to solve the desired subclip detection task. If they were
normalized, the desired task would not be solved, since the
EMD would then determine total similarity between the two
videos, which does not correspond to the user’s intention.
In the upcoming sections, the term signature refers to a
video signature. As will be presented in Section 6, mod-
eling videos as video signatures highly contributes to effec-
tiveness results. For the sake of simplicity, in the follow-
ing sections, we utilize the class of non-negative signatures
S+ := {V |V ∈ RF∧0 < |RV | < ∞∧∀x ∈ F : V (x) ∈ R≥0} in-
cluding video signatures whose representatives denote non-
negative weights. In the following section, we present the
EMD and the utilized filter-and-refine architecture.

4. EARTH MOVER’S DISTANCE
In this section, we present the well-known Earth Mover’s

Distance which can be utilized in a filter-and-refine archi-
tecture in order to boost the query processing. Initally in-
troduced in the computer vision domain, the Earth Mover’s
Distance (EMD) [15] computes the dissimilarity between two
signatures by transforming one signature into another one.
The formal definition is given below.

Definition 2. Let X,Y ∈ S+ be two signatures over a
feature space (F, δ) and δ : F× F → R be a ground distance
function. The Earth Mover’s Distance EMD : S+×S+ → R
between X and Y is defined as a minimum-cost flow of all
possible flows F = {f |f : F× F → R} = RF×F as:

EMD(X,Y ) = min
f∈F

⎧⎪⎨
⎪⎩

∑
x∈F

∑
y∈F

f(x, y) · δ(x, y)

min{∑
x∈F

X(x),
∑
y∈F

Y (y)}

⎫⎪⎬
⎪⎭ ,

subject to constraints NC ∧ SC ∧ TAC ∧ FC with:
NC: ∀x, y ∈ F f(x, y) ≥ 0, SC: ∀x ∈ F

∑
y∈F

f(x, y) ≤ X(x),

TAC: ∀y ∈ F
∑
x∈F

f(x, y) ≤ Y (y), and

FC:
∑
x∈F

∑
y∈F

f(x, y) = min{∑
x∈F

X(x),
∑
y∈F

Y (y)}.

The EMD is the minimum cost required to transform
one signature into another one by guaranteeing the non-
negativity (NC), source (SC), target (TAC), and total flow
constraints (FC), as given above. Hence, the EMD denotes
a linear optimization problem and can be solved by simplex
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Figure 3: (a) The EMD between absolute signatures
X and Y is EMD(X,Y ) = 1. (b) Rubner(X,Y ) =
δ(x′, y′) = 2 � EMD(X,Y ) holds, i.e. Rubner filter
is not a lower bound to the EMD on absolute signa-
tures denoting individual total weights.

algorithms. Figure 3(a) illustrates an example EMD com-
putation between two signatures X,Y where 1 unit earth is
transferred from x2 ∈ RX with a distance of 1, resulting in
the EMD value of 1×1 = 1. It is worth noting that the abso-
lute signatures X and Y exhibit individual total weights of 2
and 1, respectively, where the total flow constraint FC guar-
antees that the minimum of the total weights is transferred
from the source signature X to the target signature Y .

Given two signatures X,Y with total weights mX , mY ,
and a norm-based ground distance function δ, the Rubner
filter distance [15] is defined as: δ

(
(
∑

x∈RX
X(x) · x)/mX ,

(
∑

y∈RY
Y (y) · y)/mY

)
, as depicted in Figure 3(b): x′ and

y′ refer to weighted mean features of X and Y from (a), re-
spectively. The Rubner filter computes δ(x′, y′) = 2 which,
however, does not lower-bound the EMD. As illustrated by
this example, the restriction of the Rubner filter is that it
cannot be applied to absolute signatures.

Filter-and-refine Architecture. One of the efficiency
improvement methods utilized in k-nearest-neighbor (k-nn)
query processing is the filter-and-refine architecture model
comprising filter and refinement steps [5, 17, 12], as summa-
rized in Figure 4. In the filter step, a filter LBd generates a
set of candidates which is then refined in the refinement step
by utilizing the exact distance d (here EMD). A filter ideally
fulfills the following properties: First, its computation is at-
tained more efficiently than for the exact distance computa-
tion (efficiency). Second, LBd lower-bounds d, i.e. the final
refined set includes all objects from the result set, guarantee-
ing no false dismissals, as it holds ∀x, y : LBd(x, y) ≤ d(x, y)
(completeness). Third, the generated set of candidates is
smaller if LBd is tighter, leading to lower computation cost.
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Figure 4: Multistep query processing

In this paper, we utilize a multistep approach which is
proven to be optimal in the number of candidates [17]. Af-
ter a ranking is generated by using a filter distance, it is
processed as long as the filter distance does not exceed the
exact distance of the current kth-nearest neighbor where the
result set and the kth-nearest neighbor distance are contin-
uously updated. After giving the EMD and filter-and-refine
architecture, we below present our proposed technique IM-
Sig∗ applicable to both absolute and relative signatures.
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5. LOWER-BOUNDING THE EMD

ON SIGNATURES
In this section, we first deal with the shortcoming of the

existing approach IM-Sig, and then present our proposed
comprehensive lower-bounding technique IM-Sig∗ on signa-
tures, irrespective of any prior information about their total
weights. Then, we theoretically show that our analytic so-
lution is both feasible and optimal, which is thus a lower
bound to the EMD on all type of signatures including ab-
solute and relative signatures with individual and uniform
total weights, respectively. We finally present the computa-
tional algorithm of our technique and its complexity analy-
sis.

Our approach has two attractive advantages: First, it is
applicable to both relative and absolute signatures, yielding
high flexibility with respect to query processing and explicit
user-driven tasks, such as subclip video detection, as men-
tioned before. Second, it is a generic solution regarding ef-
ficient query processing which is not restricted to the video
domain, and, hence, can be applied to any other domain,
such as multimedia, computer vision, and medicine.

5.1 IM-Sig
∗

and the Limitations of IM-Sig
The filter approximation technique Independent Minimiza-

tion for Signatures (IM-Sig) [21], based on target constraint
relaxation of the EMD, was originally proposed to lower-
bound the EMD on signatures with uniform total weight.
Below, we first give the formal definition of the comprehen-
sive lower-bounding technique IM-Sig∗, irrespective of any
prior information about the total weights of signatures, and
then present the shortcoming of IM-Sig via illustrative ex-
amples.

Definition 3 (IM-Sig∗ Filter Distance). Let (F, δ)
be a feature space with a distance function δ and X,Y ∈ S+

be two non-empty positive signatures with weights mX =∑
x∈F

X(x) and mY =
∑
y∈F

Y (y). The comprehensive filter dis-

tance Independent Minimization for Signatures IM-Sig∗ :
S+ × S+ → R≥0 between X and Y is defined as a mini-
mization over all possible flows F = {f |f : F× F → R}:

IM-Sig∗(X,Y ) = min
f∈F

⎧⎨
⎩
∑
x∈F

∑
y∈F

δ(x, y)

min(mX ,mY )
f(x, y)

⎫⎬
⎭ ,

subject to constraints NC ∧ SC ∧ TC ∧ FC with:
NC: ∀x, y ∈ F f(x, y) ≥ 0, SC: ∀x ∈ F

∑
y∈F

f(x, y) ≤ X(x),

TC: ∀x, y ∈ F : f(x, y) ≤ Y (y), and
FC:

∑
x∈F

∑
y∈F

f(x, y) = min{∑
x∈F

X(x),
∑
y∈F

Y (y)}.

While the non-negativity (NC), source (SC), and total
flow constraints (FC) remain unchanged for the EMD and
IM-Sig∗, the target constraint (TC) of IM-Sig∗ relaxes that
for the EMD by allowing that any single incoming flow (in-
stead of total incoming flows) may not exceed the target ca-
pacity. If the signatures exhibit uniform total weights, i.e. if
they are relative signatures, the approach IM-Sig [21] can be
applied. However, in other cases an appropriate solution is
required for the computation of the filter approximation on
any kind of signatures with relative or absolute weights. For
all possible cases, we propose to compute the comprehen-
sive IM-Sig∗ by analyzing earth flows locally and restricting
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(d) EMD flow

Figure 5: IM-Sig, IM-Sig∗, and EMD flows illus-
trated on two absolute signatures. Since IM-Sig is
not defined on absolute signatures exhibiting indi-
vidual total weights, there is neither a deterministic
solution nor a computable minimum-cost flow (a-b).
IM-Sig∗ flow (c) computes an optimal flow which ful-
fills the minimum-cost property, lower-bounding the
EMD (d) on both absolute and relative signatures.

the number of flows globally. In other words, our approach
IM-Sig∗ computes the same flow as for IM-Sig for relative
signatures and on top of this, IM-Sig∗ can be applied to the
absolute signatures to lower-bound the EMD.

In order to give the underlying basic notion and to clar-
ify the difference between our approach IM-Sig∗ and IM-Sig,
we examine the illustrations given in Figure 5. Numbers 1-5
denote the positions in the 1-dimensional feature space, and
the ground distance between any representatives with posi-
tions i and j is computed via |i − j|, such as δ(x2, y2) = 1.
The signatures X,Y are illustrated with 2 representatives
each, where their weights are denoted in buckets. Since IM-
Sig is not defined on absolute signatures, there does not
exist a computable minimum-cost flow. Nonetheless, if we
try to apply the naive IM-Sig algorithm to these absolute
signatures denoting individual total weights, we face two
main problems: First, there exists no deterministic solution
since IM-Sig basically transfers earth from each represen-
tative xi to its nearest neighbors in the target signature
Y . Since there is no specific predefined order of the rep-
resentatives for the earth transfer from X to Y , one can
arbitrarily start with any representative. The first non-
deterministic solution of IM-Sig (Fig. 5(a)) would transfer
earth from x1 to its nearest neighbors y1 and y2, resulting
in IM-Sig(X,Y ) = 1

2
× (1 · 1 + 1 · 2) = 1.5. Another non-

deterministic solution of IM-Sig (Fig. 5(b)) would transfer
earth from x2 to its nearest neighbors y2 and y1, resulting in
IM-Sig(X,Y ) = 1

2
×(1·1+1·4) = 2.5. Second, the computed

IM-Sig values do not necessarily yield optimal solutions,
which can be inferred from the application of the optimal
IM-Sig∗ on the example (Fig. 5(c)): Our approach first ranks
the representative pairs (xi, yj) with respect to their ground
distance values in ascending order, and then the earth is
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transferred from X to Y by taking this order into considera-
tion, as well as all constraints given in Def. 3. Hence, we con-
sider the permutation of ((x1, y1), (x2, y2), (x1, y2), (x2, y1))
with the ground distance values of 1,1,2, and 4. In this way,
first 1 unit earth is transferred from x1 to y1 and then again
1 unit earth is transferred from x2 to y2 after which the op-
timal solution is attained, fulfilling the IM-Sig∗ constraints:
IM-Sig∗(X,Y ) = 1

2
×(1 ·1+1 ·1) = 1. In addition, the EMD

(Fig. 5(d)) is computed as EMD(X,Y ) = 1
2
× (1 ·1+1 ·1) =

1, where we observe that the IM-Sig∗ computes not only
the minimum-cost flow but also the feasible solution, lower-
bounding the EMD on these absolute signatures. As a re-
sult, this example illustrates that IM-Sig is unfortunately
not applicable to absolute signatures with individual total
weights and there is demand on novel efficient query pro-
cessing techniques to solve the existing problem.

So far, we have seen the shortcomings of IM-Sig and de-
duce that there is need for new comprehensive lower-bounding
techniques applicable to any kind of signatures without any
restriction. Below, we present our novel analytic solution
with respect to the computation of IM-Sig∗. For the defini-
tions and theoretical analysis in the remainder of the paper,
we assume that a feature space (F, δ) is given with a distance
function δ, and we refer to non-empty positive signatures
X,Y ∈ S+.

5.2 Analytic Solution
In order to propose our novel analytic solution for IM-Sig∗,

we first give the definitions of the local feasible set, extensive
flow, and global feasible set which are required to define the
IM-Sig∗ flow, as will be given in Definiton 7. The local
feasible set of a representative x in the source signature X
exhibits the greatest set of nearest neighbors in the target
signature Y , where the total weight of its nearest neighbors
may not exceed the capacity of x. The formal definition is
given below.

Definition 4 (Local Feasible Set). Given two sig-
natures X,Y ∈ S+, let (y1, . . . , yl) be a permutation of RY

with respect to a feature x ∈ F such that i ≤ j ⇒ δ(x, yi) ≤
δ(x, yj). The local feasible set Sx

X,Y ⊆ RY is defined as
the greatest set of nearest neighbors of x in RY whose total
weight does not exceed X(x): yi ∈ Sx

X,Y ⇔ ∑i
j=1 Y (yj) <

X(x). Let further k = |Sx
X,Y | be the greatest index in Sx

X,Y ,
then ŷx /∈ Sx

X,Y is defined as the feature directly following yk
regarding the same permutation:

ŷx =

{
yk+1 if k < l = |RY |
y∗ ∈ F\RY else

Note that if |Sx
X,Y | = |RY |, i.e. the cardinality of the local

feasible set of the representative x is the same as that for
the representative set of the target signature Y , ŷx /∈ RY is
an arbitrarily chosen feature in the feature space which does
not belong to RY , since the capacity of x exceeds the total
signature weight of the target signature, i.e. X(x) > mY .
The aim of the extensive flow fe is to transfer earth from

the source signature X to the target signature Y by filling
up the nearest neighbors of each x ∈ RX in the target sig-
nature so that for each x all the earth it owns is completely
transferred to its nearest neighbors in the target signature.
Note that the extensive flow does not take the individual
total weights of the signatures into consideration. Techni-

cally, the local feasible set Sx
X,Y is utilized to define the flow

whose definition is given as follows.

Definition 5 (Extensive Flow). Given two signatures
X,Y ∈ S+, let SX,Y (x) be the local feasible set for any fea-
ture x ∈ F (Def. 4). The extensive flow fe : F × F → R is
defined as follows:

fe(x, y) =

⎧⎪⎪⎨
⎪⎪⎩
Y (y) if y ∈ Sx

X,Y

X(x)− ∑
y′∈Sx

X,Y

Y (y′) if y = ŷx ∧ ŷx ∈ RY

0 else

The extensive flow fulfills three constraints of IM-Sig∗,
namely the non-negativity, source, and IM-Sig∗ target con-
straint, which can be summarized in Corollary 1 as follows.

Corollary 1. Given two signatures X,Y ∈ S+, fe ful-
fills the following constraints: non-negativity(NC): ∀x, y ∈
F fe(x, y) ≥ 0, source(SC): ∀x ∈ F

∑
y∈F

fe(x, y) ≤ X(x),

IM-Sig∗ target(TC): ∀x, y ∈ F fe(x, y) ≤ Y (y).

The corollary above directly follows from Def. 4 and Def. 5.
After defining the local feasible set and extensive flow, we
now define global feasible set which is required for IM-Sig∗

flow. The global feasible set SX,Y exhibits the greatest set
including pairs (xi, yj) of representatives from both signa-
tures, where the set includes all pairs for which the cor-
responding representative yj receives a positive amount of
earth from xi. An important condition which needs to be
fulfilled is that the pairs (xi, yj) are ranked according to
their ground distance values in ascending order. Hence, the
pairs are tracked at a global level, i.e. both signatures’ rep-
resentatives are taken into consideration, not only those of
the target signature.

Definition 6 (Global Feasible Set). Given two sig-
natures X,Y ∈ S+, let p = ((x1, y1), . . . , (xn, yn)) be a
permutation of RX × RY such that i ≤ j ⇒ δ(xi, yi) ≤
δ(xj , yj). The global feasible set SX,Y ⊆ RX × RY is the

greatest set satisfying (xi, yi) ∈ SX,Y ⇔ ∑i
j=1 fe(xj , yj) <

min(mX ,mY ), where k = |SX,Y | is the greatest index in
SX,Y and (x̂, ŷ) /∈ SX,Y is defined as (x̂, ŷ) = (xk+1, yk+1)
which directly follows (xk, yk) regarding p.

The global feasible set SX,Y comprises all pairs from RX×
RY sorted according to their ground distances in ascending
order where the total amount of the flow coupled with such
pairs may not exceed the minimum of the total weights of
the signatures. The pair (x̂, ŷ) is concerned in denoting the
last possible flow in the permutation p so that the total flow
constraint is guaranteed.

Recall that our goal is to introduce a solution for any
pair of signatures, including both relative and absolute total
weights, and overcome current limitations. To this end, we
explicate our proposed technique IM-Sig∗ flow which trans-
fers the minimum amount of total weights of given two sig-
natures from the source signature X to the target signature
Y . This is achieved by transferring earth by the utiliza-
tion of the global feasible set which tracks the pairs of rep-
resentatives allowing for appropriate flows with respect to
non-negativity, source, and target constraints. IM-Sig∗ flow
additionally takes the total flow constraint into considera-
tion which is significantly required to yield both feasible and
optimal solution to the IM-Sig∗ minimization problem. The
formal definition of IM-Sig∗ flow is given below.
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(b) EMD flow

Figure 6: Illustration of the novel IM-Sig∗ flow and
the EMD flow on signatures.

Definition 7 (IM-Sig∗ flow). Given two signatures
X, Y ∈ S+, let SX,Y be the global feasible set with m =
min(mX , mY ). For any x, y ∈ F IM-Sig∗ flow is defined as:

fS(x, y) =

⎧⎪⎪⎨
⎪⎪⎩
fe(x, y) if (x, y) ∈ SX,Y

m− ∑
(x′,y′)∈SX,Y

fe(x
′, y′) if (x, y) = (x̂, ŷ)

0 else

In order to contribute to the reader’s understanding, we
illustrate the novel comprehensive IM-Sig∗ flow by means
of an example in Figure 6(a). Numbers 1-7 expose the po-
sitions in the 1-dimensional feature space, and the ground
distance between any representatives with positions i and j
is computed via |i− j|. Two signatures X,Y are illustrated
with 2 representatives each, where their weights are de-
picted in buckets. The required permutation is given as p =
((x1, y1), (x2, y1), (x2, y2), (x1, y2)) with distances 1,2,3,6, re-
spectively. The global feasible set SX,Y = {(x1, y1), (x2, y1)}
is then determined as the greatest set whose total flow may
not reach the minimum of the total weights of X,Y , i.e.
1 + 1 < min(10, 6) = 6. Thus, the pair (x̂, ŷ) = (x2, y2) is
the last element in the permutation which allows for flow
with an amount of only 4 to fulfill the total flow constraint.
Hence, IM-Sig∗ is computed as 1

6
×(1×1+2×1+3×4) = 2.5 .

Not least, when compared with the EMD (Figure 6(b)) com-
puted as 1

6
× (1 × 1 + 3 × 5) = 2.66, it is obvious that the

novel IM-Sig∗ flow leads to a very tight lower bound to the
EMD on absolute signatures.

So far, we have seen that the analytic solution IM-Sig∗

flow can be introduced in order to boost the query process-
ing with the EMD on signatures irrespective of their total
weights. Below, we would like to show that our analytic
solution is feasible and optimal with respect to the IM-Sig∗

constraints which leads to the conclusion that the utilization
of IM-Sig∗ flow indeed leads to a lower bound to the EMD
on any kind of signatures.

5.3 Theoretical Investigation
Now, we investigate our proposal with respect to its fea-

sibility and optimality regarding IM-Sig∗ constraints. First,
we show that the proposed IM-Sig∗ flow is a feasible flow
fulfilling 4 constraints of non-negativity, source, IM-Sig∗ tar-
get, and total flow, which is given by Theorem 1. Then, we
show that IM-Sig∗ flow is an optimal flow, i.e. there exists
no other flow which results in lower overall cost than that
for IM-Sig∗ flow (Theorem 2). Finally, by the utilization of
both theorems, we deduce that the utilization of the pro-
posed IM-Sig∗ flow leads to the lower bound to the EMD on
signatures, irrespective of their total weights.

Feasibility Analysis. In order to show the feasibility
of our approach, we consider the constraints in Def. 3 and
show that these constraints are fulfilled.

Theorem 1 (Feasibility of IM-Sig∗ flow). Given
signatures X,Y ∈ S+ with total weights mX =

∑
x∈F

X(x)

and mY =
∑
y∈F

Y (y), IM-Sig∗ flow fS fulfills the follow-

ing constraints: non-negativity (NC): ∀x, y ∈ F fS(x, y) ≥
0, source (SC): ∀x ∈ F

∑
y∈F

fS(x, y) ≤ X(x), IM-Sig tar-

get (TC): ∀x, y ∈ F fS(x, y) ≤ Y (y), and total flow (FC):∑
x∈F

∑
y∈F

fS(x, y) = min(mX ,mY ).

Proof. For the proof we consider each constraint given
above and show that they are fulfilled regarding the defini-
tion of IM-Sig∗ flow given in Def. 7. For any pair of features
x, y, IM-Sig∗ flow between these features does not exceed
the extensive flow between them, i.e. given two signatures
X,Y ∈ S+, for any x, y ∈ F it holds: fS(x, y) ≤ fe(x, y),
following from Def 5 and Def. 7. We denote this fact by
the notation � and use it below, where necessary. NC:
∀x, y ∈ F : fS(x, y) ≥ 0. There exist three cases to examine:
Case 1 : (x, y) /∈ SX,Y ∧ (x, y) 
= (x̂, ŷ). ⇒ fS(x, y) = 0.
Case 2 : (x, y) ∈ SX,Y . ⇒ fS(x, y) = fe(x, y) ≥ 0, by
Cor. 1. Case 3 : (x, y) = (x̂, ŷ). Since

∑
(x,y)∈SX,Y

fe(x, y) <

min(mX ,mY ) holds for any two signatures X and Y , we can
write the following statement:∑

(x′,y′)∈SX,Y
fe(x

′, y′) < min(mX ,mY ) ⇒ min(mX ,mY )−∑
(x′,y′)∈SX,Y

fe(x
′, y′) > 0

Def. 7⇒ fS(x, y) ≥ 0. SC: ∀x ∈

F :
∑
y∈F

fS(x, y) ≤ X(x).
∑
y∈F

fS(x, y)
(�)

≤ ∑
y∈F

fe(x, y)
SC Cor.1≤

X(x). TC: ∀x, y ∈ F : fS(x, y) ≤ Y (y). fS(x, y)
(�)

≤
fe(x, y)

TC Cor.1≤ Y (y).
FC:

∑
x∈F

∑
y∈F

fS(x, y) = min(mX ,mY ).
∑
x∈F

∑
y∈F

fS(x, y) =

∑
(x,y)∈RX×RY

fS(x, y) =
∑

(x,y)∈SX,Y

fS(x, y) + fS(x̂, ŷ)
Def.7
=∑

(x,y)∈SX,Y

fe(x, y) +min(mX ,mY )− ∑
(x′,y′)∈SX,Y

fe(x
′, y′) =

min(mX ,mY ).

Optimality Analysis. To prove that IM-Sig∗ with the
proposed flow lower-bounds the EMD, we present that it
yields the minimum overall cost among all possible flows by
showing that any arbitrarily chosen feasible flow f results in
a higher or equal overall cost than that for the IM-Sig∗ flow.

Theorem 2 (Optimality of IM-Sig∗ flow). Given
signatures X,Y ∈ S+ with mX =

∑
x∈F

X(x), mY =
∑
y∈F

Y (y),

and set of all possible flows F , fS is the minimum-cost flow
minimizing the overall cost with respect to IM-Sig∗:

fS = argmin
f∈F

{∑
x∈F

∑
y∈F

δ(x,y)
min(mX ,mY )

f(x, y)

}
.

Proof. We show that any arbitrarily chosen flow f differ-
ent from the proposed flow fS does not lead to lower over-
all cost. Due to space limitations, we present the idea of
the proof instead of giving all the theoretical details. Since
f and fS are feasible, the total amount of earth moved is
min(mX ,mY ). Let RX = E ∪ L ∪ M , where E, L, M in-
clude features from which fS transfers an equal, smaller, or
greater amount of earth than f , respectively:
E := {x ∈ RX | ∑

y∈RY

fS(x, y) =
∑

y∈RY

f(x, y)}
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L := {x ∈ RX | ∑
y∈RY

fS(x, y) <
∑

y∈RY

f(x, y)}
M := {x ∈ RX | ∑

y∈RY

fS(x, y) >
∑

y∈RY

f(x, y)}.

For any x ∈ RX and any amount of earth m ≤ X(x), the
minimum-cost local earth distribution regarding the target
constraint is attained by transferring earth from x to its
nearest neighbors y1, . . . , yl in RY where it holds 1 ≤ i ≤
j ≤ l ⇒ δ(x, yi) ≤ δ(x, yj), which can also be inferred from
[21]. We refer this fact via the notation � below, where re-
quired. Now, we consider 3 cases:
Case 1: For any x ∈ E, the amount of earth transferred
by fS is the same as that of f . By Def.7, fS transfers earth
from any x to its nearest neighbors in RY , and by (�) it
is guaranteed that it yields the lowest cost regarding any
x ∈ E. Thus, we can conclude:∑
x∈E

∑
y∈RY

δ(x, y) · fS(x, y) ≤ ∑
x∈E

∑
y∈RY

δ(x, y) · f(x, y).
Case 2: For any x ∈ M , the total amount of earth fS
transfers from x exceeds that of f . We partition the amount
of earth X(x) belonging to the feature x into two parts:
m=

M (x) is the amount of earth which each flow transfers to
the features in RY . The remaining X(x) −m=

M (x) amount
of earth is then transferred only by fS so that it totally
transfers more earth than f . Regarding m=

M (x), by (�) fS
attains the minimum cost by filling up its nearest-neighbors
in RY (consideration of local distance order of y ∈ RY ). By
Def.7, fS only transfers earth regarding the pairs (x, y) with
δ(x, y) ≤ δ(x̂, ŷ) (consideration of the global distance order
of (x, y) ∈ RX ×RY ).
Case 3: For any x ∈ L, the total amount of earth fS trans-
fers from x is smaller than that of f . We partition the
amount of earth X(x) belonging to the feature x into two
parts: m=

L(x) is the amount of earth which each flow trans-
fers to the features in RY . The remaining X(x) − m=

L(x)
amount of earth is then transferred by only f so that it to-
tally transfers more earth than fS. Regarding m=

L(x), by
(�) fS attains the minimum cost by filling up its nearest-
neighbors in RY (consideration of local distance order of
y ∈ RY ). We know fS can only transfer earth regarding
pairs (x, y) with δ(x, y) ≤ δ(x̂, ŷ), and it does not transfer all
the earth from x. In addition, it fills up the features y ∈ RY

regarding all pairs (x, y) with x ∈ L and δ(x, y) < δ(x̂, ŷ).
In best case, f distributes m=

L(x) amount of earth as fS dis-
tributes, or f distributes it in another way. In the latter case,
the last pair (x′, y′) used for the distribution by f satisfies
δ(x̂, ŷ) ≤ δ(x′, y′). Thus, the only place where f transfers
the remaining X(x)−m=

L(x) amount of earth involves only
the pairs (x, y) satisfying δ(x̂, ŷ) ≤ δ(x′, y′) ≤ δ(x, y) (con-
sideration of the global distance order again).
By the facts elucidated in Case 2 and 3, and the constraint
FC, it is concluded:

∑
x∈M

∑
y∈RY

δ(x, y) · (fS(x, y)− f(x, y)) ≤∑
x∈L

∑
y∈RY

δ(x, y) · (f(x, y)− fS(x, y)). As a result, after con-

sidering all the facts, we attain the final statement as follows:∑
x∈RX

∑
y∈RY

δ(x, y) · fS(x, y) ≤ ∑
x∈RX

∑
y∈RY

δ(x, y) · f(x, y) ,
which indicates that the overall cost induced by any fea-
sible flow f does not lead to lower overall cost than that of
fS. In other words, the proposed flow fS is proven to be the
minimum-cost flow.

As mentioned above, Theorem 2 states that IM-Sig∗ flow
is an optimal flow by showing that there exists no other flow

resulting in lower overall cost than that for IM-Sig∗ flow.
Lower-bounding the EMD with IM-Sig∗. After pre-

senting that IM-Sig∗ flow is feasible and optimal, we be-
low show the third significant theoretical result (Theorem 3)
from which we deduce that the utilization of IM-Sig∗ flow
leads to the lower bound to the EMD on signatures, regard-
less of their total weights.

Theorem 3 (Lower-bounding EMD). Given any two
signatures X,Y ∈ S+ with total weights mX , mY , it holds:

IM-Sig∗(X,Y ) ≤ EMD(X,Y ).

Proof. By Theorem 1 and 2, fS (Def. 7) is a feasible and
minimum-cost flow regarding constraints of IM-Sig∗. Hence,
there exists no other flow leading to smaller overall cost.

Consequently, the theoretical results provide confirmatory
evidence that the proposed IM-Sig∗ flow can be utilized as
a filter distance function lower-bounding the EMD on sig-
natures, including both absolute and relative signatures. To
this end, we can present a computational algorithm to com-
pute IM-Sig∗ between any signatures, given as below.

5.4 Computational Algorithm

Algorithm 1: IM-Sig∗ computation

input : signatures X, Y , ground distance δ
output: IM-Sig∗ between signatures X and Y

1 cost = 0
2 construct minHeap for RX ×RY regarding δ
3 minWeight = min(mX ,mY )
4 initialize sourceCap(x) = X(x) for each x ∈ RX

5 remainingEarth = minWeight
6 while remainingEarth > 0 do
7 (x, y) = minHeap.poll()
8 if sourceCap(x) > 0 then
9 if Y (y) ≥ remainingEarth then

10 earth = min{remainingEarth, sourceCap(x)}
11 else
12 earth = min{sourceCap(x), Y (y)}
13 end
14 cost = cost+ δ(x, y) · earth
15 sourceCap(x) = sourceCap(x)− earth
16 remainingEarth = remainingEarth− earth

17 end

18 end
19 return cost/minWeight

Algorithm. The pseudo code of IM-Sig∗ computation for
both absolute and relative signatures with our proposed flow
construction is depicted in Algorithm 1. After a min-heap is
constructed over RX ×RY with respect to distance values in
ascending order (line 2), the algorithm extracts (x, y) with
the smallest distance from the min-heap (line 7), until earth
in an amount of the minimum weight of both signatures is
transferred to Y totally (line 6). Each extracted pair from
the min-heap refers to an element in the global feasible set
SX,Y , and the amount of earth transferred is determined
by taking the remaining earth, current source capacity of x,
and target capacity of y into consideration (lines 8-17).

Complexity Analysis. Assuming n = |RX |,m = |RY |,
the min-heap construction is performed in computation time
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Figure 7: Precision-recall graphs.

complexity O(n ·m). For each pair extraction from the min-
heap, in worst case log(n · m) many steps are required to
ensure the heap property again.

Note that for any given signatures X,Y , it holds that
|SX,Y | < |RX ×RY |, i.e. the global feasible set SX,Y which
is the greatest set whose total flow may not reach the mini-
mum of the total weights of both signatures, and hence, its
cardinality is smaller than the number of all possible pairs
of representatives in the signatures X and Y . Since the
number of extractions from the min-heap is contingent on
min(mX ,mY ) and is bounded by |SX,Y | < |RX ×RY |, only
t many pair extractions are required with t < n ·m. Thus,
the filter distance computation can be carried out in time
complexity O(t · log(n ·m)) with the proposed IM-Sig∗ flow.

6. EXPERIMENTAL EVALUATION
Experimental Setup. Results presented in this section

expose averages over a query workload of 50 where queries
are randomly chosen. All methods are implemented in JAVA
and evaluated on a single-core 2.3 GHz machine with Win-
dows Server 2008 and 10 GB of main memory, without par-
allelization. While we utilize Manhattan distance as ground
distance, our approach can, nevertheless, be combined with
any ground distance function.

We use three real world datasets. First, we take the data
in [14] of 3636 videos and generate approximately 100 near-
duplicate copies for each video by altering brightness, con-
trast, playback speed, resolution, frame order, adding over-
lay text, borders, and modifying content by frame deletion,
yielding a database (NDVINE) of 350,000 videos with 3636
ground truth categories. Second, we use WORLD consist-
ing of 1020 videos we downloaded from vine.co(Vine) and
youtube.com, sorted manually into 34 categories (such as
soccer, beach, and forest) of videos which are determined as
visually similar according to human perception. For effec-
tiveness experiments, we use the aforementioned databases
incorporating video category information. Third, we use
the dataset from [23] including 250,000 public social videos
of Vine, which we refer as PUBVID. We conduct efficiency
experiments with the latter and NDVINE to attain appropri-

Table 2: Single distance computation time (ms)

Distance
Dim. Fdbq Fqdb Fmax Pemd Rubner EMD
4 0.0018 0.0023 0.0037 0.0068 0.0005 0.0266
8 0.0051 0.0052 0.0102 0.0070 0.0004 0.0331
16 0.0224 0.0229 0.0452 0.0137 0.0006 0.0858
32 0.1021 0.1035 0.2053 0.0287 0.0012 0.4784
64 0.4740 0.4801 0.9535 0.0651 0.0022 3.9208

ate evaluation regarding data cardinality. We generate video
signatures of different dimensionalities as described in Sec-
tion 3 with position, color, contrast, coarseness and temporal
information, while for effectiveness experiments we generate
2 different types of video signatures to recognize the contri-
bution of the temporal information to results: vis t and vis
denote our novel video signature model with and without
temporal information, respectively. In addition, since for
any signatures X,Y , IM-Sig∗(X,Y ) ≤ max(IM-Sig∗(X,Y ),
IM-Sig∗(Y,X)) ≤ EMD(X,Y ) holds, we implement 3 vari-
ations of the algorithm from [17] to evaluate efficiency of
query processing, and let Fqdb, Fdbq, Fmax refer to fil-
ter distance functions with our proposed flow computation
where earth is transferred from query signatures to database
signatures, from database signatures to query signatures,
and where the maximum of both filter distances is utilized in
multistep algorithm, respectively. Furthermore, in efficiency
experiments we set k=100 for k-nearest-neighbor query pro-
cessing. The databases used here are available upon request.

Effectiveness Experiments. Figure 7 shows precision-
recall graphs of our novel video signature models (vis t,
vis), in comparison to four state-of-the-art methods: video
triplets (vitri) [18], frame-sequence symbolization (fras) [27],
bounded coordinate systems (bcs) [7], and video distance
trajectories (vdt) [8]. Results summarized in Figure 7(a)-
(b) provide confirmatory evidence that our model outper-
forms the state of the art for both near-duplicate detection
(NDVINE) and visual similarity search (WORLD). Consid-
ering temporal dimension in the signature model yields bet-
ter precision for NDVINE, since videos in the same cate-
gory exhibit a similar temporal ordering. As illustrated in
Figure 7(c)-(d), the precision of our models increases with
higher signature dimensionality (10-50), as we expected.

Efficiency Experiments. It is noteworthy to remind
again that our approach computes the same filter distance
as for IM-Sig on relative signatures, and it corresponds to
Fdbq in the experimental results presented in this section.
First, we evaluate the influence of signature dimensionality
on processing time of single distance computation on PUB-
VID dataset (Table 2). Note that Pemd and Rubner refer to
the existing methods of projected EMD filter [4] and Rub-
ner filter [15]. Since EMD can be computed in super-cubic
time in signature dimensionality, it exhibits the highest val-
ues, while Fmax’ performance is almost 2 times slower than
Fqdb abd Fdbq, corresponding to our expectation. Rubner
shows the lowest time cost by only computing the ground
distance among average signatures.

Figure 8 presents efficiency results of the state of the art
(Rubner, Pemd) and our methods (Fqdb, Fdbq, Fmax).
With increasing data cardinality, Rubner exhibits the high-
est time cost, directly followed by Pemd, which are sub-
stantially outperformed by our methods regarding selectivity
and overall query time. In particular, Fmax computes 49.9
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Figure 8: Selectivity and efficiency results with the
state of the art.

and 36.1 times less EMD computations than Rubner and
Pemd at data cardinality 48K, respectively. Another result
matching our expectation is the constant behavior of Rub-
ner with the worst selectivity, irrespective of dimensionality,
while efficiency deterioration of Pemd is remarkable at a very
high rate with increasing dimensionality, where, again, our
methods outperform both existing approaches. The reason
behind these observations is that Rubner simply utilizes dis-
tance between average signatures, and Pemd considers single
EMD computations performed on each projected dimension,
neglecting flow approximation, as given in Section 2. In con-
trast, our methods explicitly approximate the original EMD
flow at a global level by tracking source and target capacity
of representatives, and ensuring constraints given in Def. 3,
attaining very high efficiency improvement. Furthermore,
experiments analyzing the effect of query parameter k for k-
nn query processing point out higher efficiency improvement
of our proposals. Moreover, we conduct experiments to in-
vestigate the applicability to absolute signatures by using
video subclip query signatures with varying total weights
(0.1-1.0), while ensuring that the weight of any database
video signature remains as 1 (Figure 9). Recall that Rubner
is not a lower bound here, as illustrated in Section 4, and
we observe considerably high selectivity difference between
Pemd and our methods, confirming our methods’ successful
application on absolute signatures. In particular, Pemd re-
fines 99% of all videos between query weights 0.1-0.4, while
Fmax refines only at most 0.1%, performing 432 times less
EMD computations than Pemd, attaining a selectivity im-
provement by two orders of magnitude. Note that query
time results regarding Figure 9 are omitted, since they ex-
pose very similar behavior as those for the number of EMD
computations.

After observing that our methods outperform the state
of the art, we below perform extensive experiments for our
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Figure 9: Results with the state of the art regard-
ing selectivity vs. individual total weight of query
signatures (absolute signatures).
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Figure 10: Results regarding selectivity and effi-
ciency on PUBVID database.

methods, by varying signature dimensionality, database car-
dinality, and query parameter k for k-nn query processing.

Figure 10 summarizes the efficiency improvement achieved
on PUBVID: Fmax indicates the best selectivity, in compar-
ison to other proposed variations, exhibiting the lowest num-
ber of EMD computations with increasing data cardinality
(50K-250K), and signature dimensionality(4-64), resulting
from the computation of a tighter lower bound in the ranking
phase of the multistep filter-and-refine algorithm [17]. Since
Fmax shows higher filter time, its overall time cost is higher
than that for the other two methods. Fqdb shows similar
selectivity results, but its lower filter time cost than that for
Fmax leads to the fact that Fqdb achieves the highest effi-
ciency improvement regarding database size, dimensionality,
and query parameter.

As depicted in Figure 11, evaluation results on NDVINE
first indicate an almost constant selectivity behavior for Fqdb
and Fmax regardig increasing data size, when compared to
Fdbq. This can be elucidated by the intrinsic essence of
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Figure 11: Results regarding selectivity and effi-
ciency on NDVINE database.

this database: With increasing data size near-duplicates of
videos emerging via various editing tasks can have similar
distances to each other, which affects the filter step. Hence,
the higher the data cardinality of near-duplicate video data-
bases, it is more worth using Fqdb to attain an almost
constant, low time cost, yielding a considerable advantage.
Second, with increasing signature size at a constant data
cardinality (250K), the number of promising objects pass-
ing Fdbq decreases after dimensionality 40, while Fmax and
Fqdb show lower time cost, in particular 1.3 % of selectiv-
ity at dimensionality 50 for Fmax. Third, we observe that
for all query parameters k (20-100), Fqdb and Fdbq show
almost constant behavior for query time due to their lower
filter time, matching our expectation.

For both databases, interestingly, Fdbq results in a higher
number of EMD computations than for Fqdb. To expound
this result, we perform experiments on another real world
dataset which we omit due to space limitations, and recog-
nize that selectivity results of Fdbq and Fqdb do not nec-
essarily differ from each other at a high rate. Hence, the
observed difference in selectivity and query time can be at-
tributed to the feature distributions of these databases and
the utilized queries, which cause Fqdb flow to be more sim-
ilar to the EMD flow than that for Fdbq. A future research
direction involves in further investigating this issue in detail.

Figure 12(a)-12(b) exhibit the effect of individual query
signature weights on the number of EMD computations by
fixing the total weight of any database video signature to 1.
In particular for Fqdb, the number of EMD computations
decreases with decreasing query weight, expounded by the
fact that the smaller the query weight, the closer Fqdb ap-
proximates the EMD flow. To understand it in more detail,
we analyze relative approximation error of Fqdb and Fdbq
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(b) NDVINE
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Figure 12: (a)-(b): Selectivity vs. individual to-
tal weight of query signatures. (c)-(d): Relative
approximation error vs. individual total weight of
query signatures for example signature pairs.

on example pairs of video signatures, summarized in Figure
12(c)-12(d). For smaller query weights, EMD distributes
the weight of query representatives more locally among rep-
resentatives of the database video, since capacities of target
representatives are far greater than those for query repre-
sentatives. Accordingly, since Fqdb distributes earth opti-
mally for each query representative, its flow is similar to the
EMD flow, allowing for a better approximation of the EMD
than for Fdbq, which meets our expectation. Note that the
flow approximation error increases especially after the query
weight of 0.5 for both variations. Analogously, the higher
the query weight, the better Fdbq approximates the EMD,
as a higher query weight causes the EMD to distribute the
weight of the database representatives more locally among
those of query, resulting in a similar flow to that for Fdbq.

Figure 13 summarizes absolute filter and refinement dis-
tances for 10-nn queries on an example from PUBVID at
a data cardinality of 1000 and dimensionality 16. Unlike
comprehensive overall results for PUBVID, we observe that
Fqdb leads to a higher number of refinements (75 in ranking
according to filter distance), while Fdbq and Fmax perform
50 and 43 EMD computations, respectively. A significant
result gathered from these figures is Fmax leads to the low-
est number of exact distance computations, irrespective of
the fact how well the other variants approximate the EMD
flow. All query time cost results depicted in aforementioned
figures point out the advantage of Fqdb with respect to di-
mensionality, data cardinality, and query parameter k.

7. CONCLUSION
In this paper, we presented how efficient and effective

query processing can be performed on high dimensional video
databases. We introduced a new compact video represen-
tation model, and proposed to alleviate computational time
complexity of the Earth Mover’s Distance (EMD) by a novel
filter approximation guaranteeing completeness (no false dis-
missals). Furthermore, we presented both an extensive the-
oretical analysis of our techniques and a computational al-
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Figure 13: Filter and refinement distance values on an example from PUBVID dataset for 10-nn queries.

gorithm. Moreover, proposed techniques expose two vital
advantages: First, they are applicable to both relative and
absolute signatures exhibiting uniform and individual total
weights, respectively, yielding high flexibility with respect to
query processing and explicit user-driven tasks, such as sub-
clip video detection. Second, they exhibit a comprehensive
solution which is not restricted to the video domain, and,
hence, can be applied to other domains, such as biotechnol-
ogy and biomedicine. Extensive experimental evaluation on
real world data indicates high efficiency, significantly reduc-
ing the number of EMD computations and outperforming
the state of the art by up to two orders of magnitude re-
garding selectivity and query time. As future work, we plan
to integrate our filter approximation in relational databases.
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