
Practical Query Answering in Data Exchange
Under Inconsistency-Tolerant Semantics

Balder ten Cate
UC Santa Cruz

Google
btencate@ucsc.edu

Richard L. Halpert
UC Santa Cruz

rhalpert@ucsc.edu

Phokion G. Kolaitis
UC Santa Cruz

IBM Research - Almaden
kolaitis@ucsc.edu

ABSTRACT
Exchange-repair semantics (or, XR-Certain semantics) is a
recently proposed inconsistency-tolerant semantics in the
context of data exchange. This semantics makes it possi-
ble to provide meaningful answers to target queries in cases
in which a given source instance cannot be transformed into
a target instance satisfying the constraints of the data ex-
change specification. It is known that computing the an-
swers to conjunctive queries under XR-Certain semantics is
a coNP-complete problem in data complexity. Moreover,
this problem can be reduced in a natural way to cautious
reasoning over stable models of a disjunctive logic program.

Here, we explore how to effectively perform XR-Certain
query answering for practical data exchange settings by
leveraging modern sophisticated solvers for disjunctive logic
programming. We first present a new reduction, accompa-
nied by an optimized implementation, of XR-Certain query
answering to disjunctive logic programming. We then eval-
uate this approach on a benchmark that we introduce here
and which is modeled after a practical data exchange prob-
lem in computational genomics. Specifically, we present a
benchmark scenario that mimicks a portion of the UCSC
Genome Browser data import process. Our initial results,
based on real genomic data, suggest that the solvers we ap-
ply fail to take advantage of some critical exploitable struc-
tural properties of the specific instances at hand. We then
develop an improved encoding to take advantage of these
properties using techniques inspired by the notion of a re-
pair envelope. The improved implementation utilizing these
techniques computes query answers ten to one thousand
times faster for large instances, and exhibits promising scal-
ability with respect to the size of instances and the rate of
target constraint violations.

Categories and Subject Descriptors
H.2 [Database Management]: Systems—relational
databases, rule based databases, query processing

©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0
EDBT 2016 Bordeaux, France

General Terms
Theory, Algorithms, Design

Keywords
Data exchange, certain answers, repairs, consistent query
answering, disjunctive logic programming, stable models

1. INTRODUCTION
Data exchange is the task of transforming data structured

under a source schema into data structured under a target
schema in such a way that all constraints in a fixed set of
source-to-target constraints and in a fixed set of target con-
straints are satisfied. During the past decade, there has been
an extensive and multifaceted investigation of data exchange
(see the monograph [1]). There are two main algorithmic
problems in data exchange: the problem of materializing an
instance that, together with a given source instance satisfies
all constraints (such an instance is a called a solution of the
given source instance) and the problem of computing the
certain answers to a query over the target schema, i.e., the
intersection of the answers to the query over all solutions of
a given source instance. In data exchange settings with a
non-empty set of target constraints, it frequently happens
that a given source instance has no solution. In particular,
this may happen when the source instance at hand contains
inconsistencies or conflicting information that is exposed by
the target constraints. The standard data exchange frame-
works are not able to provide meaningful answers to target
queries in such circumstances; in fact, the certain answers to
every target query trivialize. To address this problem and
to give meaningful answers to target queries, we recently
introduced the framework of exchange-repair semantics (or,
XR-Certain semantics) [8]. This is an inconsistency-tolerant
framework that is based on the notion of source repairs,
where, informally, a source repair is a source instance that
differs minimally from the original source data, but has a
solution. In turn, source repairs give rise to the notion of
the XR-Certain answers to target queries, which, by defini-
tion, are the intersection of the answers to the query over all
solutions of all source repairs of the given source instance. It
should be noted that inconsistency-tolerant semantics have
also been investigated in the context of data integration (see,
e.g., [7, 17]) and in the context of ontology-based data ac-
cess (OBDA) (see, e.g., the recent survey [5]). In [9], which
is the full version of [8], we provided a detailed comparison
between the XR-Certain semantics and the inconsistency-
tolerant semantics in these two other frameworks. In partic-

Series ISSN: 2367-2005 233 10.5441/002/edbt.2016.23

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.23

ular, we showed that, as regards consistent query answering,
the exchange-repairs framework and the OBDA framework
can simulate each other.

A data exchange task is specified using a schema map-
ping M = (S,T,Σst,Σt), where S is the source schema,
T is the target schema, Σst is a set of constraints between
S and T, and Σt is a set of constraints on T. The most
extensively studied schema mappings are the ones in which
Σst is a set of source-to-target tuple-generating dependen-
cies (s-t tgds) and Σt is a weakly-acyclic set of target tuple-
generating dependencies (target tgds) and target equality-
generating dependencies (target egds) [11]. Note that tuple-
generating dependencies are also known as GLAV (global-
and-local as view) constraints; as special cases, they contain
the classes of GAV (global-as-view) constraints and LAV
(local-as-view) constraints. In [8], it was shown that com-
puting the XR-Certain answers to target conjunctive queries
is a coNP-complete problem in data complexity; in fact, this
intractability persists even in the case in which Σst is a set
of GAV constraints and Σt is a set of egds. Moreover, a con-
nection with disjunctive logic programming was unveiled in
[8] by showing that the XR-Certain answers of conjunctive
queries can be rewritten as the cautious answers of a union
of conjunctive queries with respect to the stable models of a
disjunctive logic program over a suitably defined expansion
of the source schema.

Here, our main aim is to explore how to effectively perform
XR-Certain query answering for practical data exchange set-
tings by leveraging modern sophisticated solvers for disjunc-
tive logic programming. Disjunctive logic programming is
a suitable formalism for coping with the intractability of
XR-Certain query answering because it goes beyond the nat-
ural expressiveness of SQL while still remaining in a declara-
tive framework. Our first technical result is a new improved
reduction, accompanied by an optimized implementation, of
the problem of computing the XR-Certain answers of queries
in the context of data exchange to the problem of comput-
ing the certain answers of queries with respect to the stable
models of disjunctive logic programs. We then evaluate this
approach on a benchmark that we introduce here and which
is modeled after a practical data exchange problem in com-
putational genomics. Specifically, we present a benchmark
scenario that mimics a portion of the data import process of
the UCSC Genome Browser (https://genome.ucsc.edu/),
a widely used genomics resource that “contains the reference
sequence and working draft assemblies for a large collection
of genomes.” We believe that data sets from computational
sciences, such as computational genomics, are particularly
in need of concepts and techniques that, like XR-Certain
answers, eliminate the unquantifiable uncertainty that arise
from constraint violations.

We carry out two experimental evaluations using real ge-
nomic data. The first is based on what we call a monolithic
approach, which generates a disjunctive logic program from
a given query and source instance, and then runs the clingo
solver from the Potassco collection [12]. The results of this
evaluation suggest that the solver fails to take advantage
of some critical exploitable structural properties of the spe-
cific instances at hand. Intuitively, the cost of transforming
the data from the source schema into the target schema is
embedded in the execution cost of running each individual
query, which causes large instances to become unworkable
even for simple queries. In view of this, we develop a dif-

ferent segmentary approach that utilizes an improved en-
coding to take advantage of the aforementioned structural
properties using techniques inspired by the notion of a repair
envelope. The improved implementation utilizing these tech-
niques computes query answers ten to one thousand times
faster than the monolithic approach for large instances, and
exhibits promising scalability with respect to the size of in-
stances and the rate of target constraint violations.

2. PRELIMINARIES
This section contains definitions of basic notions and a

minimum amount of background material on data exchange
and on disjunctive logic programming. More detailed infor-
mation about schema mappings and certain answers can be
found in [1, 11].

Instances, Queries, and Homomorphisms. Fix an infi-
nite set Const of elements, and an infinite set Nulls of ele-
ments such that Const and Nulls are disjoint. A schema R
is a finite set of relation symbols, each having a designated
arity. An R-instance is a finite database I over the schema
R whose active domain is a subset of Const∪Nulls. A fact
of an R-instance I is an expression of the form R(a1, . . . , ak),
where R is a relation symbol of arity k in R and (a1, . . . , ak)
is a member of the relation RI on I that interprets the sym-
bol R. Every R-instance can be identified with the set of
its facts. We say that an R-instance I ′ is a sub-instance of
an R-instance I if I ′ ⊆ I, where I ′ and I are viewed as sets
of facts. If I is an R-instance and R′ ⊆ R, then by the R′-
restriction of I we will mean the subinstance of I containing
only those facts that involve relations from R′.

We assume familiarity with conjunctive queries (CQs) and
unions of conjunctive queries (UCQs). The answers to a
query q in an instance I are denoted by q(I), and we denote
by q↓(I) the answers of q on I that contain only values from
Const.

The active domain of an instance I is the set of values from
Const∪Nulls that occur in facts of I. By a homomorphism
from an R-instance I to another R-instance I ′, we mean a
map h from the active domain of I to the active domain of I ′,
such that h(c) = c for all c ∈ Const, and such that for every
fact R(v1, ..., vn) ∈ I we have that R(h(v1), . . . , h(vn)) ∈ I ′.

Schema Mappings. A tuple-generating dependency (tgd)
over a schema R is an expression of the form ∀x(φ(x) →
∃yψ(x,y)), where φ(x) and ψ(x,y) are conjunctions of
atoms over R. Tgds are also known as GLAV (global-and-
local-as-view) constraints. Two important special cases are
the GAV constraints and the LAV constraints. A GAV con-
straint is a tgd of the form ∀x(φ(x) → P (x)) (that is, the
right-hand side of the implication consists of a single atom
without existential quantifiers) and a LAV constraint is a
tgd of the form ∀x(R(x) → ∃yψ(x,y)) (that is, the left-
hand side of the implication consists of a single atom).

Let S and T be disjoint schemas, called the source schema
and the target schema. A source-to-target tgd (s-t tgd, or,
source-to-target GLAV constraint) is a tgd as defined above,
where φ(x) is a conjunction of atoms over S and ψ(x,y) is
a conjunction of atoms over T.

An equality-generating dependency (egd) over a schema R
is an expression of the form ∀x(φ(x) → xi = xj) with φ(x)
a conjunction of atoms over R.

234

For the sake of readability, we will frequently drop univer-
sal quantifiers when writing tgds and egds.

A schema mapping is a quadruple M = (S,T,Σst,Σt),
where S is a source schema, T is a target schema, Σst is a
finite set of s-t tgds, and Σt is a finite set of tgds and/or
egds over the target schema. We will also call such schema
mappings glav+(glav, egd) schema mappings. In the spe-
cial case where Σst consists of (source-to-target) GAV con-
straints and Σt consists of GAV constraints and/or egds, we
will say that M is a gav+(gav, egd) schema mapping.

Universal Solutions and Certain Answers. Let M =
(S,T,Σst,Σt) be a schema mapping, and let I be a source
instance. As usual in data exchange, we will assume that
the source instances we consider do not contain null values.

A target instance J is a solution for a source instance I
w.r.t. M if the pair (I, J) satisfies the constraints of M,
that is, I and J together satisfy Σst, while J satisfies Σt.
In general, a source instance may have many solutions. A
universal solution for I (with respect to M) is a solution
J for I such that for all solutions J ′ of I, there is a homo-
morphism h from J to J ′. Universal solutions are considered
the preferred solutions in data exchange. One reason for this
is that universal solutions can be used to compute certain
answers to target queries.

If q is a query over the target schema T, then the certain
answers of q with respect to I and M are defined as

certain(q, I,M) =⋂
{q(J) : J is a solution for I w.r.t. M}

It was shown in [11] that, if J is a universal solution for a
source instance I w.r.t. a schema mappingM, then for every
conjunctive query q, it holds that certain(q, I,M) = q↓(J).

Weak Acyclicity and the Chase. If M = (S,T,Σst,Σt)
is an arbitrary glav+(glav, egd) schema mapping, then a
given source instance may have no solution or it may have a
solution, but no universal solution. For this reason, in [11]
the concept of weak acyclicity was introduced, and it was
shown that, when Σt is the union of a weakly acyclic set of
target tgds and a set of egds, then, for all source instances
I, a solution exists if and only if a universal solution exists.
Moreover, the chase procedure can be used to determine in
polynomial time (data complexity) whether a solution for
I exists and, if so, to construct a universal solution for I
in time polynomial in the size of I. The obtained solution,
which we will denote by chase(I,M) (when it exists), is
known as the canonical universal solution of I. We refer to
[11] for more details, including the definition of weak acyclic-
ity and of the chase procedure.

By a glav+(wa-glav, egd) schema mapping we will
mean a schema mapping M = (S,T,Σst,Σt), where Σst

is a finite set of s-t tgds, and Σt is the union of a weakly
acyclic set of target tgds and a set of egds. We spell out
here two basic facts that are used in several arguments in
this paper: let M be any glav+wa-glav schema mapping
(without egds). Then (i) every source instance I has a solu-
tion (and hence has a canonical universal solution), and (ii)
whenever I ′ ⊆ I, then chase(I ′,M) ⊆ chase(I,M). The
latter is also known as the monotonicity of the chase.

Disjunctive Logic Programming. A disjunctive logic pro-
gram (DLP program) Π over a schema R is a finite collection
of rules of the form

α1 ∨ . . . ∨ αn ← β1, . . . , βm,¬γ1, . . . ,¬γk.

where n,m, k ≥ 0 and α1, . . . , αn, β1, . . . , βm, γ1, . . . , γk are
atoms formed from the relations in R ∪ {=, 6=}, using the
constants in Const and first-order variables. A DLP pro-
gram is said to be ground if it consists of rules that do not
contain any first-order variables. A model of Π is an R-
instance I over the domain Const that satisfies all rules of
Π (viewed as universally quantified first-order sentences). A
minimal model of Π is a model M of Π such that there does
not exist a model M ′ of Π where the facts of M ′ form a
strict subset of the facts of M . For a ground DLP Π over a
schema R and an R-instance M over the domain Const, the
reduct ΠM of Π with respect to M is the DLP containing,
for each rule α1 ∨ . . .∨ αn ← β1, . . . , βm,¬γ1, . . . ,¬γk, with
M 6|= γi for all i ≤ k, the rule α1 ∨ . . .∨αn ← β1, . . . , βm. A
stable model of a ground DLP Π is an R-instance M over the
domain Const such that M is a minimal model of the reduct
ΠM . See [13] for more details. The cautious answers to a
query q, w.r.t. a DLP program Π (under the stable model
semantics) are defined as⋂

{q(s) | s is a stable model of Π} .

The stable model semantics is the most widely used seman-
tics of DLP programs, and many solvers have been developed
that support reasoning over stable models. In particular,
stable models of disjunctive logic programs have been well-
studied as a way to compute database repairs ([18] provides
a thorough treatment).

3. EXCHANGE REPAIR FRAMEWORK
We briefly recall here the exchange-repair framework that

was introduced in [8]. The development of this framework
was motivated by the observation that the definition of
certain(q, I,M) trivializes when a source instance I has no
solution w.r.t. a given schema mappingM. XR-Certain an-
swers were proposed as a semantics that provides meaningful
answers to queries in such cases.

Definition 1. [8] Let M = (S,T,Σst,Σt) be a schema
mapping, let I be an S-instance.

1. A source instance I ′ is said to be a source repair of
I with respect to M if I ′ ⊆ I, I ′ has a solution with
respect to M, and no instance I ′′ with I ′ (I ′′ ⊆ I
has a solution with respect to M.

2. We say that a pair (I ′, J ′) is an exchange-repair so-
lution (or XR-Solution) for I with respect to M if I ′

is a source repair of I with respect to M and J ′ is a
solution for I ′ with respect to M.

3. For a query q over the target schema T, the XR-certain
answers to q in I w.r.t. M is the set

XR-Certain(q, I,M) =⋂
{q(J ′) | (I ′, J ′) is an XR-Solution for I w.r.t. M}.

Note that, whenever a source instance I does have so-
lutions w.r.t. M, then, for all queries q, we have that

235

XR-Certain(q, I,M) = certain(q, I,M). While the XR-
Certain semantics takes inspiration from the well-established
notions of database repairs and consistent query answers [2,
4], the precise definition of the semantics reflects impor-
tant assumptions that are specific to the context of data
exchange. Specifically, the definitions of XR-Solution and
XR-Certain reflect the fact that in a data exchange setting,
it is preferred to make tgds satisfied by deriving additional
facts, rather than by deleting facts; and the data used to
answer target queries should derive from coherent sets of
source facts.

It was shown in [8] that, in the case of glav+(wa-glav,
egd) schema mappings, the data complexity of XR-Certain
query answering for conjunctive queries is coNP-complete
(note that the restriction to weakly acyclic schema map-
pings is necessary here, since it follows from results in [11]
that the same problem is undecidable for arbitrary glav+
(glav, egd) schema mappings). Furthermore, several ap-
proaches to query answering were studied in [8]. In partic-
ular, it was shown that, for glav+(wa-glav, egd) schema
mappings, XR-certain answers can be computed by means
of a disjunctive logic program. We discuss this approach in
the next section.

4. BASIC APPROACH TO QUERY AN-
SWERING

Based on the initial results in [8], we pursue here the devel-
opment of a practical system for XR-Certain query answer-
ing via disjunctive logic programming, leveraging modern
sophisticated solvers. Note that the emergence of such pow-
erful solvers for NP-hard problems has already enabled prac-
tical solutions for many other computationally hard prob-
lems in industry. Concretely, in this section, we present a
first implementation of XR-Certain query answering based
on a translation along the lines of [8], that takes as input a
schema mapping M and a source instance I, and produces
a single, typically large, DLP program whose stable mod-
els describe the XR-solutions of I w.r.t. M. We refer to
this as the monolithic approach, in order to contrast it with
another approach, which will be presented in Section 6, in-
volving multiple DLP programs of smaller size.

The first step in this approach consists of a reduction from
the general case of glav+(wa-glav, egd) schema mappings
to the case of gav+(gav, egd) schema mappings.

Theorem 1 ([8]). If M = (S,T,Σst,Σt) is a glav+
(wa-glav, egd) schema mapping and q a conjunctive query
over T, then there exist a gav+(gav, egd) schema map-

ping M̂ and union of conjunctive queries q̂ such that
XR-Certain(q, I,M) = XR-Certain(q̂, I,M̂).

The resulting schema mapping may in general be exponen-
tially larger than the original. However, as we will see in
Section 5.2, our implementation incurs only a modest in-
crease when applied to our benchmark.

Next, in [8], we present a very natural and concise encod-
ing of XR-Certain for gav+(gav, egd) schema mappings as
the cautious answers over the parallel circumscription of a
disjunctive logic program Π. In [15] it was shown that the
problem of finding such models can be subsequently reduced
to that of computing stable models of a translation of Π into
a new disjunctive logic program. However, the translation
involved requires the explicit representation of the herbrand

base of the source instance, which can be prohibitively large
even for small source instances. We now present an im-
proved, direct reduction of XR-Certain to the cautious an-
swers over stable models of a disjunctive logic program.

In order to facilitate the discussion below, it is convenient
to introduce the notion of a canonical XR-Solution. An
XR-Solution (I ′, J ′) for I w.r.t. M is said to be a canon-
ical XR-Solution if J ′ is a canonical universal solution for I ′

w.r.t. M, that is, J ′ = chase(I,M).
For any gav+(gav, egd) schema mapping M =

(S,T,Σst,Σt), let ΠM be the DLP program given in Fig-
ure 1. Observe that the schema of the program ΠM con-
tains multiple distinct copies of each relation from S ∪ T.
The program in Theorem 2 intends to describe the canoni-
cal XR-Solutions of a source instance. Suppose (I ′, J ′) is a
canonical XR-Solution for some source instance I w.r.t. a
gav+(gav, egd) schema mapping M = (S,T,Σst,Σt), and
let J be the canonical universal solution for I w.r.t. the tgds
of M. The program introduces three predicates for each
source relation, one with the original name meant to con-
tain the facts of I, one subscripted with d (“deleted”) meant
to contain the facts of I \I ′, and one subscripted with r (“re-
mains”) meant to contain the facts of I ′. The program also
introduces these same three predicates for each target rela-
tion, plus a fourth subscripted with i (“incidentally deleted”)
meant to contain the target facts in J \J ′ that are also con-
tained in some subset J ′′ ⊇ J ′ of J that is consistent with
Σt (that is, they are not in a canonical XR-Solution but they
may appear in some other XR-Solution).

For every stable model M of ΠM, we denote by IM and
JM the S-instance and T-instance consisting of those facts
R(a) in the relevant schema for which Rr(a) ∈M .

Theorem 2. Let M = (S,T,Σst,Σt) be a gav+(gav,
egd) schema mapping and I a source instance. The XR-
solutions of I w.r.t. M are precisely those pairs of instances
that are of the form (IM , JM) for some stable model M of
ΠM ∪ I.

Corollary 1. Let M be a gav+(gav, egd) schema
mapping. For every union of conjunctive queries q and for
every source instance I,

XR-Certain(q, I,M) =⋂
{qr(s) | s a stable model of ΠM ∪ I}

where qr is the query formed from q by replacing every oc-
currence of a relation R with Rr.

With this new encoding, we can now compute XR-Certain
using the disjunctive logic program ΠM∪I, whose size is lin-
ear in the combined size of the source instance and schema
mapping. The DLP generated using the prior approach
of [8], in contrast, is lower-bounded in size by |adom(I)|s,
where s is the maximum arity of the relations in the source
schema.

5. SCENARIO: GENOME BROWSER
Scientific data is a potentially important application of

XR-Certain query answering because research decisions and
discoveries are often made based on data drawn from a vari-
ety of sources, and because unquantifiable uncertainty must

236

For each tgd (R1(x,y) ∧ ... ∧ Rn(x,y)→ T(x)) ∈ (Σst∪Σt),
construct a chase rule, deletion rule, and target remainder
rule respectively:

T(x) ← R1(x,y), ..., Rn(x,y).
R1d(x,y) ∨ ... ∨ Rnd(x,y) ← Td(x), R1(x,y), ..., Rn(x,y),

¬R1i(x,y), ...,¬Rni(x,y).
Tr(x) ← R1r(x,y), . . . , Rnr(x,y).

For each egd (R1(x) ∧ ... ∧ Rn(x)→ xi = xj) ∈ Σt, con-
struct a deletion rule:

R1d(x) ∨ ... ∨ Rnd(x) ← R1(x), . . . , Rn(x), xi 6= xj ,
¬R1i(x), ...,¬Rni(x).

For each relation R ∈ S, construct a source remainder rule:

Rr(x) ← R(x),¬Rd(x)

For each relation R ∈ T, construct an incidental deletion
rule, and the one-of-three rules:

Ri(x) ← R(x),¬Rr(x),¬Rd(x)
⊥ ← Rr(x), Rd(x)
⊥ ← Rr(x), Ri(x)
⊥ ← Rd(x), Ri(x)

Figure 1: Procedure to construct the disjunctive logic pro-
gram ΠM

be eliminated from the data before a decision or discovery is
made. The guarantee given by XR-Certain query answers –
that all possible repairs of the source instance agree on them
– is a natural fit for these circumstances.

Inspired by the UCSC Genome Browser, we present a
benchmark that uses real data: a loose simulation of the
genome browser data import process. The UCSC Genome
Browser database is constructed using a variety of algo-
rithms and public data sources. Our benchmark focuses
on the human gene model, a set of genomic sequences which
putatively capture the portion of the human genome that
encodes proteins. The UCSC Genome Browser algorithms
compute these sequences from a reference genome by com-
puting alignments for known/observed proteins and tran-
scripts from the UniProt and GenBank databases [14]. For
our purposes, we treat the set of transcripts as given (that
is, as a source instance rather than the result of a compu-
tation), and we provide a schema mapping mimicking how
this data, plus a significant volume of data from the Ref-
Seq, Entrez Gene, and UniProt databases, are combined
and transformed into the UCSC Genome Browser database.
Our schema mapping makes several loose approximations of
scientific reality which serve to maximize the portion of the
genome browser schema that we populate, but which also in-
troduce some inconsistency to the data. It is for this reason
that we say our schema mapping merely mimicks the true
UCSC Genome Browser data import process, even though
our target schema is faithful to the real database.

The RefSeq and EntrezGene databases are not avail-
able for download in a flat relational format. The RefSeq
database is offered in a text file format, within which the
data are arranged in a nested fashion with transcripts as the
top-level elements. Every transcript has associated source
and reference information (documenting how and by whom

Table 1: Source Instances

total # of total # of
Database Relations Attributes Tuples
UCSC* 2 13 165,920
RefSeq 5 38 706,923
EntrezGene 1 3 431,114
UniProt 1 3 4,405,573
*Transcript alignments and crossreference only.

it was observed), and each may have subsections specify-
ing what protein it encodes and what gene it is transcribed
from. These subsections often link to other databases us-
ing external protein and gene identifiers. Our ETL step
places transcripts, sources, references, genes, and proteins
into five separate respective relations, all keyed by transcript
accession identifier. The EntrezGene database is available
in ASN.1 format, which we first convert to xml using the
gene2xml tool from the NCBI ToolBox [19]. From the re-
sulting xml, we extract the desired fields into a single table
using the xtract tool from NCBI Entrez Direct [20].

Our complete schema mapping is available for down-
load at https://users.soe.ucsc.edu/~rhalpert/

xr-benchmarks/. Table 1 summarizes the data sources.
We represent the given part of UCSC’s gene model with

two tables, ComputedAlignments, which holds data about
the transcripts themselves, and ComputedCrossref, which
holds a cross-reference between UCSC“known gene IDs”(re-
ferred to here as “transcripts”) and the closest correspond-
ing external database transcript identifier (usually a RefSeq
accession) and protein identifier (usually a UniProt or Ref-
Seq accession). Our hand-written schema mapping specifies
how these tables and the RefSeq, EntrezGene, and UniProt
databases are used to populate the target schema. It also
applies a key constraint to each target relation, per industry
best-practice. Many of the key constraints are specified by
the Genome Browser’s schema, while some are not specified
but are reasonable constraints that are in fact satisfied by
the Genome Browser data.

The true Genome Browser’s process computes a single
coherent truth which may differ from that represented in
the external databases. Our schema mapping, on the other
hand, consolidates these sources into the target schema, and
this gives rise to some inconsistency. The key constraints on
the knownGene and kgXref tables prove critical in this re-
gard: they enforce that each transcript have exactly one
value for the exon count, and one gene symbol, respectively.
Since values from both the UCSC gene model and from the
other sources are used to populate the relevant attributes,
this effectively gives rise to constraint violations when the
UCSC gene model disagrees with RefSeq on the number of
exons, and when RefSeq and EntrezGene collectively list
more than one gene symbol. These two circumstances are
expected to arise a small fraction of the time. The relevant
parts of the schema mapping are depicted in Figure 2.

The knownIsoforms relation groups transcripts into clus-
ters, where each cluster represents a gene. The Genome
Browser computes this relation based on genomic coordi-
nates [14]. Our schema mapping populates the knownIso-
forms relation using a naive simplification of this approach:
transcripts that share either an Entrez Gene ID or a gene
symbol are made to reside in the same cluster. These two

237

(A)

Acc

ExonCount

...

ComputedAlignments

exonCount

...

knownGene

name

exonCount

...

(B)

Gene

Symbol

...

GenBankToEntrez

Symbol

...

refLink

name

...

kgXref

kgID

geneSymbol

...

(C)

knownToLocusLink ./ knownIsoforms

kgID

entrez

clusterId

kgXref ./ knownIsoforms

kgID

geneSymbol

...

clusterId

Figure 2: Critical parts of the schema mapping. Single ar-
rows represent value propagation via tgds, and double ar-
rows represent functional dependencies (egds). Keys (also
egds) are underlined. (A) Competing values for the exon
count. (B) Competing values for the gene symbol. (C) Clus-
tering of transcripts according to Entrez Gene ID and gene
symbol. The indicated egds give rise to equalities between
nulls.

approaches are incomparable. Ours relies on existing gene
symbol annotations from Entrez and UniProt, as well as
crossreference annotations on UCSC transcripts, all of which
have different levels of rigor and completeness. The known-
Isoforms table is thus included in our schema mapping pri-
marily to exercise the interaction of existentially quanti-
fied values with egds, which is a differentiating feature of
weakly acyclic schema mappings versus other types of syn-
tactic restrictions of glav+(glav, egd) schema mappings
(e.g., gav+(gav, egd) or separable [6] schema mappings).
This part of the schema mapping is depicted in Figure 2.

5.1 Benchmark Data and Queries
We wish to test the scalability of our implementation rel-

ative to two factors: the instance size and the proportion of
the source tuples “involved” in egd violations (called “sus-
pect” tuples), which we make precise with the notion of a
source repair envelope defined in Section 6.2). To this end,
we define a set of instances having specified sizes and ra-
tios of suspect to total source tuples. In order to construct
our test instances, we chase the unmodified source instances
with the schema mapping and compute which source tuples
are suspect. We call this the raw result. Then, each test in-
stance is produced by selecting a randomized subset of the
source instances with the desired size and ratio of suspect
to total tuples in one particular table (ComputedCrossref),
which we use as a rough proxy for the ratio for the entire
source. Thus, for the largest size (“full”), the maximum ratio
is the ratio found in the raw result (2.9%), and there is only
one such instance. For the smaller instances, we are able to
select enough suspect tuples to produce larger ratios. We
use a randomized selection procedure to materialize a set of
instances for each profile; six (at 3% suspect) for small and
medium instances, three per ratio for large instances, and,
necessarily, just one full instance (at 2.9% suspect). The
characteristics of these instances are given in Table 2.

Table 2: Test instances have sizes small (S), medium (M),
large (L), and full (F), and 0, 3, 9, or 20 percent of their
transcripts suspect.

instance: L0 L3 L9 L20
source tuples 321k 322k 316k 301k
total tuples 716k 724k 731k 748k
suspect transcripts 0% 3% 9% 20%
suspect tuples* 0% 2.0% 5.8% 13.4%

instance: S3 M3 L3 F3
source tuples 3.5k 36k 322k 1,846k
total tuples 7.9k 77k 724k 5,354k
suspect transcripts 3% 3% 3% 2.9%
suspect tuples* 1.8% 1.8% 2.0% 3.4%
*includes source and target

Table 3 lists our query suite. Queries labeled “epN” are
adapted from the EQUIP query suite [16]: five of the 21
queries given there are applicable to our target schema. Ad-
ditional queries labeled “xrN” are new queries created to
exercise the critical parts of the schema mapping, including
what is XR-Certain knowledge in the knownGene relation,
and what pairs of transcripts reside in the same cluster in
the knownIsoforms relation. In our experiments, we run the
queries sequentially.

5.2 Monolithic Implementation and Results
Using the reduction given in Theorem 2, we have imple-

mented a monolithic approach to XR-Certain query answer-
ing. Our monolithic implementation takes as input a glav+
(wa-glav, egd) schema mapping (encoded as text), an ar-
bitrary source instance (via a JDBC connection string), and
a union of conjunctive queries over the target schema (also
text). The schema mapping is transformed into a gav+(gav,
egd) schema mapping using an optimized version of the re-
duction in Theorem 1, and the query is transformed into a
new union of conjunctive queries using the same reduction.
These transformations take an average of 18.7 seconds com-
bined, and the resulting schema mapping is approximately
seven times larger than the original (from 33 tgds and 26
egds to 339 tgds and 67 egds). We generate a separate dis-
junctive logic program for each query and instance, and run
them using clingo 4.4.0, a solver from the Potsdam Answer
Set Solving Collection[12] (Potassco).

All experiments are run on an 8-core Intel Core i7-2720QM
CPU @2.20GHz with 16GB RAM, running Ubuntu 14.04
LTS (Linux 3.13.0 SMP x86 64). The plots of Figure 3 de-
pict the runtime for these programs versus the percentage
of suspect tuples and versus the instance size, respectively,
with a line for each query. The latter is a log-log plot, since
each instance size is an order of magnitude larger than the
last.

These results illustrate a significant problem with this
monolithic logic program approach: the cost of transform-
ing the data from the source schema into the target schema
is embedded in the execution cost of each individual query,
which causes large instances to become unworkable even for
simple queries. Additionally, the rapid increase in query
runtimes as instance size increases, even for queries whose
answers should be easy to compute, suggest that this imple-
mentation fails to take advantage of some exploitable struc-
ture in the instance and schema mapping. This is perhaps
a symptom of the fact that the disjunctive logic program’s
rules are no simpler for areas of the source and target in-

238

Table 3: Query Suite, with approximate answer counts for the large-size instances.

Query Answers
ep1() :- refLink(symbol, , acc, protacc, , , ,), kgXref(ucscid, , spid, , symbol, , , , ,) 1*
ep2(protacc) :- refLink(symbol, , acc, protacc, , , ,), kgXref(ucscid, , spid, , symbol, , , , ,) 6,000
ep3(protacc,spid) :- refLink(symbol, , acc, protacc, , , ,), kgXref(ucscid, , spid, , symbol, , , , ,) 12,000
ep15(symbol) :- kgXref(ucscid, , , , symbol, refseq, , , ,), refLink(, product, refseq, , , , entrez,) 1,500
ep16(symbol,entrez) :- kgXref(ucscid, , , , symbol, refseq, , , ,), refLink(, product, refseq, , , , entrez,) 1,500
xr1() :- knownGene(kgid, ch, sd, txs, txe, cs, ce, exc, exs, exe, pac, alignid) 1*
xr2(kgid) :- knownGene(kgid, ch, sd, txs, txe, cs, ce, exc, exs, exe, pac, alignid) 10,000
xr3(kgid, ch, sd, txs, txe, cs, ce, exc, exs, exe, pac, ai) :- knownGene(kgid, ch, sd, txs, txe, cs, ce, exc, exs, exe, pac, ai) 10,000**
xr4() :- knownIsoforms(cluster, transcript1), knownIsoforms(cluster, transcript2) 1*
xr5(transcript1) :- knownIsoforms(cluster, transcript1), knownIsoforms(cluster, transcript2) 10,000
xr6(transcript1, transcript2) :- knownIsoforms(cluster, transcript1), knownIsoforms(cluster, transcript2) 35,000
*boolean **projection-free

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 2 4 6 8 10 12 14

se
co

n
d
s

percent suspect

Query Duration vs. Suspect Percentage, L0, L3, L9, L20 instances

ep15
ep16
ep1
ep2
ep3
xr1
xr2
xr3
xr4
xr5
xr6

 0.1

 1

 10

 100

 1000

 10000

 100000

 1000 10000 100000 1e+06 1e+07

se
co

n
d
s

total source and target tuples

Query Duration vs. Instance Size, S3, M3, L3, F3 instances

ep15
ep16
ep1
ep2
ep3
xr1
xr2
xr3
xr4
xr5
xr6

Figure 3: Performance of XR-Certain query answering using clingo.

stances that are unaffected by egd violations than for those
that are affected. In the following section, we will develop
techniques to identify and exploit such structure by ground-
ing the egds.

6. ENHANCED APPROACH TO QUERY
ANSWERING

Although the monolithic approach serves as a precise,
straightforward specification of XR-Certain answers, it does
not lend itself to fine-grained optimization. In this sec-
tion, we present practical adaptations and optimizations to
XR-Certain query answering that are motivated by our ex-
perimentation with the monolithic implementation, and that
draw on techniques described in the literature for query an-
swering over inconsistent databases, specifically, the notion
of repair envelopes introduced by Eiter et al. [10]. We split
query answering into two phases. The first, the “exchange
phase”, is a tractable-time query-independent preprocessing
step, which enables the second, the “query phase”, in which
XR-Certain answers to a particular query are computed by
solving a collection of small disjunctive logic programs. Al-
though the problem at hand is coNP-complete, this new
segmentary approach allows us to answer queries by solving
many small hard problems rather than one large one. At the
end of this section, we evaluate an implementation based on
this enhanced approach.

6.1 Candidate Answers
The following definition of candidate answers effectively

provides an upper bound on the set of XR-Certain answers
of a query, in the sense that the latter is always a subset of
the former.

Definition 2. Let M = (S,T,Σst,Σt) be a gav+(gav,
egd) schema mapping.

1. We denote by Mtgd the schema mapping
(S,T,Σst,Σ

tgd
t) where Σtgd

t consists of the tgds
from Σt. That is, all egds are dropped.

2. The canonical quasi-solution of a source instance I
w.r.t. M is the canonical universal solution of I
w.r.t. Mtgd.

3. For every UCQ q over T, the candidate answers to q
w.r.t. I and M are q(J), where J is the canonical
quasi-solution of I w.r.t. M.

Proposition 1. LetM = (S,T,Σst,Σt) be a gav+(gav,
egd) schema mapping. Let I be an S-instance. Let J be the
canonical quasi-solution of I w.r.t. M.

1. For all canonical XR-Solutions (I ′, J ′) for I w.r.t. M,
it holds that J ′ ⊆ J .

2. For every UCQ q, we have that XR-Certain(q, I,M) ⊆
q(J). That is, every XR-Certain answer is indeed a
candidate answer.

Proof. Let (I ′, J ′) be a canonical XR-Solution for I
w.r.t.M. SinceM is gav+(gav, egd) and J ′ is the canoni-
cal universal solution for I ′ w.r.t.M, J ′ is simply the closure

239

of I ′ w.r.t. the tgds of M. Therefore J ′ is also the canoni-
cal universal solution for I ′ w.r.t. Mtgd. Finally, since the
chase procedure is monotone [11] and I ′ ⊆ I, we have that
J ′ ⊆ J .

The second item follows directly from the first, since
UCQs are monotone queries.

6.2 Source Repair Envelopes
It is often possible to exclude a large portion of the

database from high-complexity computations. We will de-
fine a notion similar to a repair envelope from [10] but suited
to the setting of data exchange.

Definition 3. Let M be a glav+(wa-glav, egd) schema
mapping and I a source instance. A subset E of I is a source
repair envelope if (I \ I ′) ⊆ E for all source repairs I ′.

We will now see that we can restrict our attention within
a source repair envelope when computing source repairs.

Proposition 2. Let M be a glav+(wa-glav, egd)
schema mapping, I a source instance, and E ⊆ I a source
repair envelope for I w.r.t. M. Then {I ′ | I ′ is a source
repair of I w.r.t. M} = {E′ ∪ (I \E) | E′ is a source repair
of E w.r.t. M}.

Proof. Claim: I ′ ∩ E is a source repair of E.
Suppose for the sake of contradiction that I ′ ∩ E is not a
source repair of E. Then either I ′∩E has no solution (which
cannot be the case due to monotonicity of the chase) or I ′∩E
is strictly contained in a source repair E′′ of E. But then
E′′ must be contained in a source repair I ′′ of I. However,
the definition of a source repair envelope tells us that I ′′

contains all of E′′ ∪ (I \ E). Hence it contains I ′, so I ′

wasn’t a source repair of I after all.
Claim: if E′ is a source repair of E then E′ ∪ (I \E) is a

source repair of I.
Indeed, E′ must be contained in a source repair of I, and
by the definition of a source repair envelope, that source
repair of I must contain all of (I \E). Therefore it contains
E′ ∪ (I \ E). However, it cannot be a strict superset of
E′ ∪ (I \ E) because then E′ could be extended to a larger
source repair of E.

There are many ways to calculate a source repair enve-
lope (e.g., I is a trivial source repair envelope). Consider
the ideal source repair envelope, given by I −

⋂
{I ′ | I ′ is

a source repair for I w.r.t. M}. Equivalently, the ideal
source repair envelope is the minimal source repair envelope
for I w.r.t.M. The next result tells us that computing this
envelope is hard.

Theorem 3. Fix a schema mappingM. Let the intersec-
tion of source repairs membership problem be the following
decision problem: given a source instance I, and a fact f
of I, is f contained in the intersection of all source repairs
(that is, is f ∈

⋂
{I ′ | I ′ is a source repair for I w.r.t. M})?

There is a gav+(gav, egd) schema mapping for which this
problem is coNP-hard.

Proof. The result is proven by reduction from the com-
plement of 3-colorability. Let G = (V,E) be a graph,
with edge set E = {e1, . . . , en}. IG is the source instance,
with active domain V ∪{1, . . . , n}, containing, for each edge
ei = (a, b) the fact E(a, b, i, i+1); for each vertex a ∈ V , the

facts Cr(a), Cg(a), Cb(a); and one additional fact, namely
F (n, 1).
M is the schema mapping consisting of the source-to-

target tgds

• E(x, y, u, v) ∧ Cz(x)→ E′(x, y) (for z ∈ {r, g, b})

• E(x, y, u, v) ∧ Cz(x)→ F ′(u, v) (for z ∈ {r, g, b})

• Pz(x)→ P ′
z(x) (for z ∈ {r, g, b})

• F (u, v)→ F ′(u, v)

and target constraints

• E′(x, y) ∧ P ′
z(x) ∧ P ′

z(y) ∧ F ′(u, v) → u = v (for all
z ∈ {r, g, b})

• F ′(u, v) ∧ F ′(v, w)→ F ′(u,w)

• F ′(u, u) ∧ F ′(v, w)→ v = w

Note that I has no solutions with respect to M, regardless
of whether G is 3-colorable. This is because a solution J of I
has to contain a directed cycle of F ′-edges (of length n), and
F ′ must be transitive, which means that J would have to
include facts of the form F ′(i, i), leading to an egd violation.
Indeed, every source-repair of I must either (i) omit at least
one of the E-facts, or (ii) omit all Pz-facts (z ∈ {r, g, b}) for
some vertex or (iii) omit the F (n, 1) fact. It is then not hard
to see that G is 3-colorable if and only if some source repair
omits F (n, 1). Note that, if G is 3-colorable, then there is
a source repair that retains all E-facts and that retains at
least one Pz-fact for each vertex (z ∈ {r, g, b}). This source
repair must then omit the F (n, 1) fact. If, on the other hand,
G is not 3-colorable, then every source repair has to satisfy
(i) or (iii) and, consequently, will include F (n, 1).

The hardness established in Theorem 3 shows that com-
puting the ideal source repair envelope is not helpful, given
that the purpose of a source repair envelope is to help reduce
the need for high-complexity computations. Our next result
pertains to a source repair envelope that can be computed
in PTIME.

First, we introduce the notion of support sets for a target
fact. For an egd or GAV tgd σ and an instance I, we denote
by ground(σ, J) the set of all groundings of σ using values
from the active domain of I (that is, quantifier-free formulas
that can be obtained from σ by replacing universally quan-
tified variables by values from the active domain of I). Note
that, if J is a canonical quasi-solution for a source instance
I w.r.t. a gav+(gav, egd) schema mapping, then the active
domain of J is already included in the active domain of I.

Definition 4. Let M = (S,T,Σst,Σt) be a gav+(gav,
egd) schema mapping. Let I be an S-instance with canon-
ical quasi-solution J , and let f ∈ J be a fact.

• A support set for f is a set of the form {f1, . . . , fn}
where (f1 ∧ · · · ∧ fn → f) ∈ ground(Σst ∪ Σt, I), and
(I, J) |= f1 ∧ · · · ∧ fn. The set of all support sets of f
is denoted by support sets(f, I,M).

• The support closure for a set F of facts, denoted as
support*(F, I,M), is the smallest set containing F
such that whenever g ∈ support*(F, I,M), then all
facts that belong to a support set of g belong to
support*(F, I,M) as well.

240

Definition 5. Let M = (S,T,Σst,Σt) be a gav+(gav,
egd) schema mapping. Let J be the canonical quasi-solution
of I. Let

violations(I,M) =

{
f

∣∣∣∣ f occurs in the body of some
σ ∈ ground(Σt, I) with J 6|= σ

}
We say that a source fact f ∈ I is suspect (w.r.t. M) if it

belongs to support*(violations(I,M), I,M), and that it is
safe otherwise. The set of suspect facts of I is denoted by
Isuspect and the set of safe facts of I is denoted by Isafe.

The violation set is, intuitively, the set of facts that are
directly involved in an egd violation, while the violation clo-
sure is, intuitively, the set of facts that are, possibly in-
directly, involved in an egd violation. The notation Isafe
and Isuspect assumes that it is clear from the context which
schema mapping is being referred to.

Proposition 3. Let M be a gav+(gav, egd) schema
mapping and I a source instance. Then Isuspect is a source
repair envelope for I (w.r.t. M). Moreover, Isuspect can be
computed in polynomial time (data complexity).

To see that this proposition holds, suppose that some f ∈
I is omitted by a source repair I ′ of I. Then I ′ ∪{f} has no
solution. It follows that f must be in the violation closure
of I w.r.t.M (with the steps of the chase of I ′∪{f} serving
as proof of such). Therefore, f belongs to Isuspect.

The following example reminds us that Isuspect is not nec-
essarily a minimal source repair envelope.

Example 1. Let I = {P (a, b), P (a, c), Q(b, c)}, and let
M = ({P,Q}, {P ′, Q′}, {P (x, y) → P ′(x, y), Q(x, y) →
Q′(x, y)}, {P ′(x, y)∧P ′(x, y′)→ y = y′, P ′(x, y)∧P ′(x, y′)∧
Q′(y, y′)→ y = y′}). Then

Isuspect = {P (a, b), P (a, c), Q(b, c)}

However, the key constraint on P ′ forces every XR-Solution
to have at most one of P (a, b), P (a, c), so the second egd in
Σt is satisfied without eliminating Q(b, c). Indeed, the ideal
source repair envelope for I is {P (a, b), P (a, c)}.

Nonetheless, Isuspect is a potentially useful source repair
envelope: we vary the proportion of facts in Isuspect versus
Isafe in our test instances in order to evaluate the importance
of this measure.

We will now extend the notion of a source repair envelope
to include target instances.

Definition 6. Let M be a gav+(gav, egd) schema map-
ping, and I a source instance. Let J be the canonical quasi-
solution of I. Two sets E ⊆ I and F ⊆ J of facts, to-
gether comprise an exchange repair envelope (E,F) if, for
all canonical XR-Solutions (I ′, J ′) of I w.r.t. M, we have
that (I \ I ′) ⊆ E and (J \ J ′) ⊆ F .

It follows from Theorem 3 that computing the minimal
exchange repair envelope is hard. We will now see how to
extend an existing source repair envelope to the target, in
polynomial time.

Definition 7. Let M = (S,T,Σst,Σt) be a gav+(gav,
egd) schema mapping, and I be an S-instance. Let J be
the canonical quasi-solution of I w.r.t. M. Define the in-
fluence of a set of facts E ⊆ I, denoted influence(E, I,M),

as the smallest set containing E such that whenever g ∈
influence(E, I,M), every fact f that has a support set con-
taining g also belongs to influence(E, I,M).

Proposition 4. Let M be a gav+(gav, egd) schema
mapping and I a source instance. Let J be the canonical
quasi-solution of I w.r.t. M. Let E be a source repair enve-
lope for I w.r.t. M, and let F = influence(E, I,M). Then
(E,F) is an exchange repair envelope for I w.r.t. M.

In particular, (Isuspect, Jsuspect) is an exchange repair en-
velope for I, where Jsuspect = influence(Isuspect, I,M).

Proof. Let (I ′, J ′) be a canonical XR-Solution for I
w.r.t. M. Let t be a fact in J \ J ′. Since t is not in (I ′, J ′),
there must be some fact f in support*({t}, I,M) in I \ I ′.
Therefore, f is contained in the source repair envelope E, so
by definition we have that t ∈ influence(E, I,M).

Fact 1. The following two statements hold, where F is an
arbitrary set of target facts:

• The influence of the source restriction of the support
closure of F contains the support closure of F ; and

• A support closure of F and its influence are equal over
their source restrictions.

In light of the above, we can refer to violation influ-
ences instead of violation closures whenever we wish to work
with exchange repair envelopes rather than source repair en-
velopes. It is important to notice that a fact may have one
support set which places it in a violation influence, but also
another support set whose facts are not contained in any vi-
olation influence. Such facts lie in the difference between the
violation influence and the ideal exchange repair envelope,
but are nonetheless easy to identify.

6.3 Violation Clusters
Violation clusters are a concept that will help us fur-

ther reduce the combinatorial complexity of computing
XR-Certain answers. We start with a motivating example.

Example 2. Let I = {P1(a, b), P1(a, c), P2(a, b), P2(a, c),
. . . , Pn(a, b), Pn(a, c)}, and let

M = ({P1, . . . , Pn}, {Q1, . . . , Qn},
{P1(x, y)→ Q1(x, y), . . . Pn(x, y)→ Qn(x, y)},

{Q1(x, y) ∧Q1(x, y′)→ y = y′, . . . ,

Qn(x, y) ∧Qn(x, y′)→ y = y′})

There are 2n source repairs, which can be built by choosing
one source atom from each of the n relations, in every pos-
sible combination. In this sense, the set of source repairs for
this example is highly structured.

Now consider the query q(x):- Q1(x, y). Every source re-
pair of I w.r.t. M contains either P1(a, b) or P1(a, c), so we
can conclude that q(a) ∈ XR-Certain(q, I,M) by consider-
ing just the two possibilities for the the P1 relation. In so
doing, we ignore the other n− 1 relations and avoid having
to consider 2n source repairs.

In this section, we will generalize the above observation
and demonstrate that it can be used to reduce the size of
instances and schema mappings for which we must explore

241

all source repairs. To do so, we introduce a notion of inde-
pendence that captures when particular egd violations are
sufficiently isolated from each other to be processed sepa-
rately.

To simplify the presentation, it will be convenient to con-
sider schema mappingsM = (S,T,Σst,Σt) in which Σt may
contain grounded egds (where universally quantified vari-
ables have been replaced by constants). This will allow us
to more easily describe how an instance is carved up into
segments that can be processed independently. Intuitively,
each grounding of an egd describes one potential violation
of that egd. The notions of solutions, universal solutions,
source repairs, and exchange repair solutions all apply with-
out modification to schema mappings containing grounded
egds.

As a slight abuse of notation, when D is a set of target
constraints, we will writeM∪D to denote the schema map-
ping obtained by adding the constraints in D to the target
constraint set of a schema mapping M.

Definition 8. Let M = (S,T,Σst,Σt) be a gav+(gav,
egd) schema mapping. Let I be an S-instance. Let J be
the canonical quasi-solution for I w.r.t. M. Let σ1, σ2 ∈
ground(Σt, I) be distinct grounded egds with J 6|= σ1 and
J 6|= σ2. Let E1 be the ideal source repair envelope for I
w.r.t (Mtgd ∪ {σ1}), and let E2 be the ideal source repair
envelope for I w.r.t (Mtgd ∪ {σ2}). We say σ1 and σ2 are
pairwise-independent if source repairs(I,Mtgd ∪{σ1, σ2}) =
{(I \ (E1 ∪ E2)) ∪ E′

1 ∪ E′
2 | E′

1 ∈ source repairs(I ∩
E1,Mtgd ∪ {σ1}) and E′

2 ∈ source repairs(I ∩ E2,Mtgd ∪
{σ2})}. We say σ1 and σ2 are pairwise-dependent if they are
not pairwise-independent.

Consider the graph of all egd violations in the quasi-
solution and connect each pair of pairwise dependent egd
violations by an edge. Each connected component of this
graph is called a violation cluster. If σ1 and σn reside in
distinct violation clusters then we say σ1 and σn are inde-
pendent.

If a pair of violations is independent, by definition, their
XR-Solutions can be processed separately, then suitably re-
combined. Note that the above definition of violation clus-
ters does not provide us with a way to compute them ef-
ficiently, because the definition involves ideal source repair
envelopes. The following proposition provides an approxi-
mation.

Proposition 5. LetM = (S,T,Σst,Σt) be a gav+(gav,
egd) schema mapping. Let I be an S-instance. Let J be the
canonical quasi-solution I w.r.t. M. Let σ1, σ2 be distinct
grounded egds in ground(Σt, I) such that J 6|= σ1 and J 6|=
σ2. Let E1, E2 be ideal source repair envelopes for I w.r.t.
M∪σ1 and M∪σ2, respectively. If E1 and E2 are disjoint,
then σ1 and σ2 are pairwise-independent.

Proof. Suppose E1∩E2 = ∅, and let (I ′, J ′) be a canon-
ical XR-Solution for I w.r.t.M∪{σ1, σ2}. Let E′

1 = E1∩ I ′
and let E′

2 = E2 ∩ I ′. By definition of a source repair enve-
lope, (I\E1)∪E′

1 is an XR-Solution for I w.r.t.M∪{σ1}, and
likewise (I\E2)∪E′

2 is an XR-Solution for I w.r.t.M∪{σ2},
and since E1 and E2 are disjoint, it is easy to see that E′

1

is an XR-Solution for E1 w.r.t. M∪ {σ1, σ2} and E′
2 is an

XR-Solution for E2 w.r.t. M∪ {σ1, σ2}. Finally, since gav
chase is monotone, we have that (I \E1 \E2) ∪ (E′

1) ∪ (E′
2)

has a solution w.r.t. M∪ {σ1, σ2}, and there is no instance
I ′′ ⊂ I which strictly contains (I \ E1 \ E2) ∪ (E′

1) ∪ (E′
2)

and also has a solution w.r.t. M∪ {σ1, σ2}.

We can, in polynomial time, compute the support closure
for each egd violation, then compute an overapproximation
of the violation clusters based on the restriction to the source
schema of those closures. The next proposition follows sim-
ply from the definition of a support closure, but provides
some intuition and gives a shortcut for computing a source
repair envelope for a violation cluster.

Proposition 6. LetM = (S,T,Σst,Σt) be a gav+(gav,
egd) schema mapping. Let I be an S-instance. Let J be the
canonical quasi-solution for I w.r.t. M. Let σ1, . . . , σn be
a violation cluster (so each σi is a ground egd where J 6|=
σi), with support closures E1, . . . , En. Then E1 ∪ . . . ∪ En

is the support closure of the facts in σ1, . . . , σn, and its S-
restriction is a source repair envelope for I w.r.t. Mtgd ∪
{σ1, . . . , σn}

We have now seen how to compute a conservative ap-
proximation of the violation clusters for an instance w.r.t. a
given schema mapping. Proposition 6 makes clear the fact
that distinct violation clusters have disjoint source repair en-
velopes, and are therefore pairwise-independent themselves.
Definition 8 tells us that we can thus compute the source
repairs for an entire instance by computing separately the
source repairs for the envelope of each violation cluster. We
will now see how this supports query answering.

6.4 Answering Queries
We now show how to use the techniques introduced in the

previous sections to compute XR-Certain answers for unions
of conjunctive queries. In fact, without loss of generality, we
can restrict attention to projection-free atomic queries: Let
q(x):- φ1(x,y) ∨ . . . ∨ φn(x,y) be a union of conjunctive
queries with n clauses. Define t1, . . . , tn to be a set of new
gav tgds, where the head of each tgd is the head of q, and
the body of each tgd tk is φk(x,y). If we extend a canonical
quasi-solution J with the new relation symbol q, and chase
with t1, . . . , tn, the result will be J ∪{q(J)}. We will use the
notation XR-Certain(I,M∪ {t1, . . . , tn}) to denote the set
of facts in the intersection of all exchange repair solutions
for I w.r.t. M∪ {t1, . . . , tn}, and the term candidate facts
to refer to the tuples of any relation in T ∪ q.

Consider the definition of support sets in Section 6.2, and
suppose f is a candidate fact. By definition, f is XR-Certain
if it is contained in every exchange repair solution. Since ex-
change repair solutions satisfy the constraints of the schema
mapping, it is easy to see that f is XR-Certain if it has at
least one support set in every XR-Solution, or equivalently,
in every canonical XR-Solution.

Proposition 6 naturally extends to exchange repair en-
velopes. Thus we define a violation cluster influence to refer
to the union of the influences of the violations in a cluster.

Example 3. This example illustrates that a can-
didate fact f may belong to the influences of
multiple distinct violation clusters. Let I =
{P (a1, a2), P (a1, a3), Q(a1, a2), Q(a1, a3)}, and let
M = ({P,Q}, {R,S, T}, {P (x, y) → R(x, y), Q(x, y) →
S(x, y)}, {R(x, y)∧S(x, z)→ T (x, y, z), R(x, y)∧R(x, y′)→

242

y = y′, S(x, y), S(x, y′) → y = y′}). Then the violation
cluster influence for {R(a1, a2), R(a1, a3)} is{

P (a1, a2), P (a1, a3), R(a1, a2), R(a1, a3),
T (a1, a2, a3), T (a1, a3, a2), T (a1, a2, a2), T (a1, a3, a3)

}
and the violation cluster influence for S(a1, a2), S(a1, a3) is{

Q(a1, a2), Q(a1, a3), S(a1, a2), S(a1, a3),
T (a1, a2, a3), T (a1, a3, a2), T (a1, a2, a2), T (a1, a3, a3)

}
which are disjoint in their restriction to the source schema,
yet both contain the target facts T (a1, a2, a3), T (a1, a3, a2),
T (a1, a2, a2), and T (a1, a3, a3).

This example illustrates how distinct target violations
with non-overlapping source repair envelopes may jointly af-
fect target tuples; we cannot determine the status of tuples
in T without considering violations of both key constraints.

Suppose f is a candidate fact in T . Each support set
for f may be contained in only certain combinations of
XR-Solutions from the violation cluster influences contain-
ing f . So, to determine if f has at least one support set in
every XR-Solution w.r.t. the broader schema mapping, it is
necessary to consider all combinations of XR-Solutions from
the violation cluster influences containing f . We call the set
of violation clusters whose influences contain f the signature
of f , denoted signature(f). Recall that Isafe denotes the set
of source facts that are safe, that is, not suspect (Defini-
tion 5). In the following, let Jsafe denote chase(Isafe,M).

Theorem 4. Let M = (S,T,Σst,Σt) be a gav+(gav,
egd) schema mapping. Let I be an S-instance. Let J
be the canonical quasi-solution for I w.r.t. M. Let f be
a candidate fact in J . Let If-focus and Jf-focus be, respec-
tively, the source and target parts of

⋃
{V | V the influ-

ence for a violation cluster in signature(f)}. Then f ∈
XR-Certain(I,M) ↔ f ∈

⋂
{chase(J ′

f-focus ∪ Jsafe,Σt) |
J ′
f-focus ∈ XR-Solution(If-focus,M)}.
Proof Sketch. By definition, the violations in the

clusters in signature(f) are contained in Jf-focus. Thus
(If-focus, Jf-focus) is an exchange repair envelope for I w.r.t.
Mtgd augmented with those violations. Furthermore, all
of the violations in Jf-focus are pairwise independent of all
of the violations in J \ Jf-focus, from which we conclude
that every fact in every support set for f is contained in
(If-focus, Jf-focus) or in (Isafe, Jsafe).

This result gives us the following algorithm for computing
XR-Certain for an instance I and schema mappingM, using
a (hopefully large) Jsafe combined with, for each signature,
a (hopefully small) Jfocus. For the exchange phase: Chase
I with Mtgd, compute the violation set of I w.r.t. M, and
compute the support closure of each violation. Then mark
source facts safe if they do not reside in any violation closure,
chase Isafe with Mtgd, and mark every resulting fact safe.
Lastly, compute violation clusters, and the influence of each
cluster. For the query phase: Compute the candidate facts,
marking safe those with support sets in Jsafe. Next, com-
pute the signature of each unmarked candidate fact. Finally,
generate and solve a grounded disjunctive logic program to
compute XR-Certain w.r.t. M for (Ifocus, Jfocus) for each
signature. This program is the restriction to (Ifocus, Jfocus)
of the grounding of the program from Theorem 2. Facts in
(Ifocus, Jfocus)∩ (Isafe, Jsafe) may be represented by the value
true in the program.

6.5 Segmentary Implementation and Results
Using the techniques developed in this section, we have

implemented a segmentary approach to XR-Certain query
answering using Java 1.7.0 80, MySQL 5.5.42, and clingo
4.4.0. Our segmentary implementation takes as input a
glav+(wa-glav, egd) schema mapping (encoded as text),
an arbitrary source instance (via a JDBC connection string),
and a union of conjunctive queries over the target schema
(also text). As with the monolithic implementation, the
schema mapping is transformed into a gav+(gav, egd)
schema mapping. Additionally, the query is transformed
into an atomic query using the reduction described at the
beginning of Section 6.4.

Using the above algorithm, query answering is done in
two phases: the exchange phase, and the query phase. The
exchange phase materializes the target instance in MySQL
using a chase procedure written in Java. The detailed im-
plementation of the chase procedure is immaterial: here, we
use a semi-näıve chase. The exchange phase next computes
violation cluster influences, fact signatures, and the “safe”
part of the source and target instances (also in MySQL, run
from Java). The query phase appends candidate answers to
the target instance, marks “safe” candidates, and generated
disjunctive logic programs as explained in Section 6.4, which
are then solved using clingo. The results obtained from
clingo are used to mark each candidate either “accepted” or
“rejected”. The “safe” candidates and “accepted” candidates
together comprise the XR-Certain query answers.

Table 4: Duration of the exchange phase, in seconds.

instance L0 L3 L9 L20
duration 150.7 196.7 235.7 297.3

instance S3 M3 L3 F3
duration 36.5 50.8 196.7 2229.7

Table 4 gives the runtime of the exchange phase for each
instance. Notice that for large instances, the exchange phase
compares very favorably against the per-query runtime of
the monolithic approach described in Section 5.2. The plots
in Figure 4 give the performance of each query as we scale
the rate of violations and the instance size, respectively, with
the latter on a log-log scale. These results improve consider-
ably on the monolithic approach: the query phase runtimes
are between ten times and one thousand times faster for
large and full instances.

7. CONCLUDING REMARKS
We have implemented XR-Certain query answering and

evaluated it on real data using a benchmark that mimicks
the UCSC Genome Browser data import process. Our ex-
periments suggest that using the reduction from XR-Certain
to disjunctive logic programming to create a monolithic logic
program is not a viable approach using today’s best-of-breed
solvers. However, by efficiently computing a suitable overap-
proximation, our segmentary approach computes query an-
swers ten to one thousand times faster for larger instances,
and exhibits promising scalability with respect to both in-
stance size and the rate of target constraint violations.

We note that significant progress has recently been made
toward broadly applicable, reproducible schema mapping
benchmarks, in particular iBench [3]. We intend as fu-

243

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12 14

se
co

n
d
s

percent suspect

Query Duration vs. Suspect Percentage, L0, L3, L9, L20 instances

ep15
ep16
ep1
ep2
ep3
xr1
xr2
xr3
xr4
xr5
xr6

 0.01

 0.1

 1

 10

 100

 1000 10000 100000 1e+06 1e+07

se
co

n
d
s

total source and target tuples

Query Duration vs. Instance Size, S3, M3, L3, F3 instances

ep15
ep16
ep1
ep2
ep3
xr1
xr2
xr3
xr4
xr5
xr6

Figure 4: Performance of XR-Certain query answering using MySQL along with clingo.

ture work to further evaluate our segmentary implementa-
tion on such benchmarks. Nonetheless, our success with
our Genome Browser benchmark serves as evidence that
XR-Certain query answering may be efficiently computable
in practice for realistic applications.

8. ACKNOWLEDGMENTS
The research of all authors was partially supported by

NSF Grant IIS-1217869. Kolaitis’ research was also sup-
ported by the project “Handling Uncertainty in Data Inten-
sive Applications” under the program THALES.

9. REFERENCES
[1] M. Arenas, P. Barceló, L. Libkin, and F. Murlak.

Relational and XML Data Exchange. Synthesis
Lectures on Data Management. Morgan & Claypool
Publishers, 2010.

[2] M. Arenas, L. E. Bertossi, and J. Chomicki.
Consistent query answers in inconsistent databases. In
V. Vianu and C. H. Papadimitriou, editors, PODS,
pages 68–79. ACM Press, 1999.

[3] P. C. Arocena, B. Glavic, R. Ciucanu, and R. J.
Miller. The iBench integration metadata generator.
PVLDB, 9(3):108–119, 2015.

[4] L. E. Bertossi. Database Repairing and Consistent
Query Answering. Synthesis Lectures on Data
Management. Morgan & Claypool Publishers, 2011.

[5] M. Bienvenu and M. Ortiz. Ontology-mediated query
answering with data-tractable description logics. In
Reasoning Web. Web Logic Rules - 11th Int. Summer
School, pages 218–307, 2015.

[6] A. Cal̀ı, M. Console, and R. Frosini. Deep separability
of ontological constraints. CoRR, abs/1312.5914, 2013.

[7] A. Cal̀ı, D. Lembo, and R. Rosati. On the decidability
and complexity of query answering over inconsistent
and incomplete databases. In F. Neven, C. Beeri, and
T. Milo, editors, PODS, pages 260–271. ACM, 2003.

[8] B. ten Cate, R. L. Halpert, and P. G. Kolaitis.
Exchange-repairs: Managing inconsistency in data
exchange. In RR, volume 8741 of Lecture Notes in
Computer Science, pages 140–156. Springer, 2014.

[9] B. ten Cate, R. L. Halpert, and P. G. Kolaitis.
Exchange-repairs: Managing inconsistency in data

exchange, September 2015. arXiv
http://arxiv.org/abs/1509.06390, 29 pages; to
appear in the Journal of Data Semantics.

[10] T. Eiter, M. Fink, G. Greco, and D. Lembo. Repair
localization for query answering from inconsistent
databases. ACM Trans. Database Syst., 33(2), 2008.

[11] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa.
Data exchange: semantics and query answering.
Theor. Comput. Sci., 336(1):89–124, 2005.

[12] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski,
T. Schaub, and M. Schneider. Potassco: The Potsdam
answer set solving collection. AI Communications,
24(2):107–124, 2011.

[13] M. Gelfond and V. Lifschitz. The stable model
semantics for logic programming. In R. A. Kowalski
and K. A. Bowen, editors, ICLP/SLP, pages
1070–1080. MIT Press, 1988.

[14] F. Hsu, W. J. Kent, H. Clawson, R. M. Kuhn,
M. Diekhans, and D. Haussler. The UCSC known
genes. Bioinformatics, 22(9):1036–1046, 2006.

[15] T. Janhunen and E. Oikarinen. Capturing parallel
circumscription with disjunctive logic programs. In
J. J. Alferes and J. A. Leite, editors, JELIA, volume
3229 of Lecture Notes in Computer Science, pages
134–146. Springer, 2004.

[16] P. G. Kolaitis, E. Pema, and W.-C. Tan. Efficient
querying of inconsistent databases with binary integer
programming. PVLDB, 6(6):397–408, 2013.

[17] D. Lembo, M. Lenzerini, and R. Rosati. Source
inconsistency and incompleteness in data integration.
In KRDB, 2002.

[18] M. C. Marileo and L. E. Bertossi. The consistency
extractor system: Answer set programs for consistent
query answering in databases. Data Knowl. Eng.,
69(6):545–572, 2010.

[19] National Center for Biotechnology Information. NCBI
ToolBox, 2001.
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/.

[20] National Center for Biotechnology Information. Entrez
Programming Utilities, 2013.
http://www.ncbi.nlm.nih.gov/books/NBK25501/.

244

	Practical Query Answering in Data Exchange Under Inconsistency-Tolerant SemanticsBalder ten Cate, Richard Halpert, Phokion Kolaitis

