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ABSTRACT 

The preservation of privacy when publishing spatiotemporal 
traces of mobile humans is a field that is receiving growing 
attention. However, while more and more services offer 
personalized privacy options to their users, few trajectory 
anonymization algorithms are able to handle personalization 
effectively, without incurring unnecessary information distortion. 
In this paper, we study the problem of Personalized (K,∆)-

anonymity, which builds upon the model of (k,δ)-anonymity, 
while allowing users to have their own individual privacy and 
service quality requirements. First, we propose efficient 
modifications to state-of-the-art (k,δ)-anonymization algorithms 
by introducing a novel technique built upon users’ personalized 
privacy settings. This way, we avoid over-anonymization and we 
decrease information distortion. In addition, we utilize dataset-
aware trajectory segmentation in order to further reduce 
information distortion. We also study the novel problem of 
Bounded Personalized (Κ,∆)-anonymity, where the algorithm gets 
as input an upper bound the information distortion being accepted, 
and introduce a solution to this problem by editing the (k,δ) 
requirements of the highest demanding trajectories. Our extensive 
experimental study over real life trajectories shows the 
effectiveness of the proposed techniques.  
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1. INTRODUCTION 

With the rapid development of information and communication 
technologies, the advent of mobile computing and the increasing 
popularity of location-aware services, the volume of mobility data 

gathered daily by service providers has exploded. It is safe to 
predict that this trend will continue in the near future. Publishing 
such information allows researchers to analyze humans’ 
trajectories and extract behavioral patterns from them, in order to 
support decision-making.  

However, publishing datasets consisting of humans’ trajectories 
creates threats regarding the privacy of the individuals involved. 
This occurs when the spatiotemporal traces that users leave 
behind are combined with other publicly available information, 
which can reveal their identity, as well as other sensitive 
information about them (place of residence, sexual orientation, 
religious or political beliefs, etc.). Thus, it becomes necessary to 
develop methods providing privacy-preservation in mobility data 
publishing, where a sanitized version of the original dataset is 
published while the maximum possible data utility is maintained. 
A number of anonymization methods have been proposed so far, 
with most of them adopting the concept of k-anonymity, the 
fundamental principle which states that every entry of a published 
database should be indistinguishable from at least k–1 other 
entries. For example, trajectories are grouped into clusters of at 
least k members and published as cylindrical volumes which 
‘conceal’ the individual trajectories [1][2], points of trajectories 
are suppressed so that adversaries with partial knowledge of a 
trajectory cannot identify a specific one amongst at least k–1 
others [13], and so on.  

Figure 1(a) illustrates an example dataset consisting of 5 
trajectories, where each trajectory is associated with its own k-
anonymity requirement, whereas Figure 1(b) illustrates the 
anonymization provided by W4M [2], a state-of-the-art (k,δ)-
anonymity algorithm, assuming (a universal) k = 3 requirement 
(i.e., the maximum  of the particular requirements). Clearly, the 
result fails to maintain the trend of the original data. However, if 
we could have taken into account the specific users’ privacy 
preferences (i.e., the different k’s in Figure 1(a)), two clusters 
instead of one would have been created, as illustrated in Figure 
1(c); this is the first objective of this paper. Moreover, if we could 
have performed an appropriate segmentation of trajectories in sub-
trajectories before the anonymization process, the distortion 
would be even less, as illustrated in Figure 1(d); this is the second 

objective of this paper. (In this example, the δ- parameter effect is 
not discussed but it is similar to that of k.) 
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Figure 1: (a) a set of five trajectories along with the 

anonymization result provided by (b) universal k; (c) 

personalized ki; (d) segmentation and personalized ki. 

As revealed by the previous example, an important drawback of 
most of the existing anonymization methods is that they are based 
on universal (e.g. k = 3) rather than user-defined privacy 
requirements. This lack of personalization may lead to 
unnecessary anonymization and data utility loss for users whose 
privacy requirements are overvalued and to inadequate 
anonymization and violation of privacy for users whose 
requirements are undervalued. Towards this goal, state-of-the-art 
techniques, such as [1][2] can be extended to use a user-specific 
privacy threshold k and uncertainty diameter δ. On the other hand 
[9] offers personalization by introducing trajectory-specific 
privacy requirements, however it ignores service quality, as it will 
be discussed in Section 2. In contrast, the method we propose uses 
trajectory-specific values to determine each user’s specific 
privacy level and service quality requirements, therefore reducing 
data utility loss and improving service quality.  

An additional shortcoming of the existing anonymization methods 
that are based on clustering is that they function at the trajectory 
level. As a result, when dealing with trajectories that are on the 
whole very different to each other, though they maintain some 
similar parts, these algorithms fail to recognize this situation and 
either assign such trajectories to different clusters (i.e., k-
anonymity sets) or assign them into the same cluster after 
considerable spatiotemporal translation. This failure to recognize 
and make use of similarities between parts of trajectories is 
counter-intuitive and increases the overall distortion. In our 
proposal, we deal with this problem by utilizing trajectory 
segmentation in order to discover similar sub-trajectories and use 
those as the basis of our clustering process. 

In this paper, we present the so-called Who-Cares-about-Others’-

Privacy (WCOP) suite of methods for publishing spatiotemporal 
trajectory data using personalized (K,∆)-anonymity, extending the 
concept of (k,δ)-anonymity as introduced in [1][2], where, for 

each user ui, ki dictates the required privacy level of the specific 
user and δi functions as a service quality threshold. In addition, we 
adopt a privacy-aware trajectory segmentation phase, during 
which trajectories are partitioned into sub-trajectories. This phase 
allows the clustering algorithm to discover similarities between 
the trajectories and assign the respective partitions into clusters, 
the members of which require the least necessary editing to fulfill 
(K,∆)-anonymity, thus keeping distortion as low as possible. 
Finally, we present an approach aiming at controlling the 
information loss caused by the anonymization. The most 
demanding trajectories, i.e., the ones corresponding to users who 
require to be hidden among a large number of other users (hence, 
high k) in a small region (thus, low δ), are edited in order to be 
made less demanding, thus decreasing anonymization distortion.  

Summarizing, in this paper, we make the following contributions: 

• We propose WCOP-CT, an algorithm that extends [1][2] for 
spatiotemporal trajectory data publication based on the 
assumption that users have different privacy preferences. 

• We extend WCOP-CT to WCOP-SA, by incorporating a 
trajectory segmentation phase aiming to facilitate the 
discovery of patterns shared between parts of trajectories, thus 
decreasing the distortion caused during the anonymization 
process. 

• We propose WCOP-B, an algorithm able to control the level 
of the anonymization distortion by data assessment and 
requirements relaxation. 

• Finally, we conduct a comprehensive set of experiments over 
a real trajectory dataset, in order to evaluate our approach. 

The rest of the paper is structured as follows: Section 2 presents 
related work. Section 3 formulates the two problems to be 
addressed: Personalized (K,∆)-anonymity and Bounded 

Personalized (K,∆)-anonymity, respectively. Sections 4 and 5 
provide effective solutions to the above two problems, 
respectively. Our experimental study is presented in Section 6. 
Finally, Section 7 concludes the paper.  

2. RELATED WORK 

The methods proposed so far in order to tackle the issue of 
privacy-preserving mobility data publishing mostly adopt the 
principle of k-anonymity, which was originally proposed for 
relational databases [12]. In the context of mobility data, 
trajectories of moving objects are time ordered sequences of (p, t) 
pairs, where p denotes the place a moving object was located at 
recorded time t, usually assuming linear interpolation between 
consecutively recorded locations. Such a trajectory dataset is 
considered k-anonymized if each trajectory is indistinguishable 
from at least k−1 other trajectories. Given the complicated nature 
of spatiotemporal data and the dependence of consecutive points 
in a trajectory, attributes (p, t) are considered both sensitive and 
quasi-identifiers at the same time. Under this setting, methods 
similar to those used for relational data can be employed to 
achieve anonymization. 

Hoh and Gruteser’s method [6] is an example of data perturbation 
with a goal of decreasing an adversary’s certainty of correctly 
identifying a user. To do that, the so-called Path Perturbation 
algorithm creates fake intersection points between couples of non-
intersecting trajectories if they are close enough. The crossing 
points must be generated within a specific time-window and 
within a user-specified radius, which indicates the maximum 
allowable perturbation and desired degree of privacy. Terrovitis 
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and Mamoulis [13] proposed an approach that uses suppression. 
Trajectories are modeled as sequences of locations where users 
made transactions and an adversary is assumed to have partial 
knowledge of users’ visited locations and their relative order, 
therefore an incomplete projection of the dataset. Based on this 
assumption the algorithm seeks to eliminate the minimum amount 
of locations from trajectories so that the remaining trajectories are 
k-anonymous w.r.t. an adversary’s partial knowledge. Always 
Walk with Others (AWO) [11] is a generalization-based approach, 
which transforms trajectories into series of anonymized regions, 
while assuming adversary’s partial or full knowledge of a 
trajectory. To achieve anonymity, the algorithm creates groups 
with representative trajectories and then iteratively adds to them 
their closest trajectories until they consist of k members. After 
that, k points from each anonymized region are randomly selected 
and connected to points similarly generated in adjacent regions in 
order to form k new trajectories. Monreale et al. [10] propose k-
anonymization using spatial generalization of trajectories. In 
particular, their method finds characteristic points of trajectories 
and applies spatial clustering to them. The centroids of those 
clusters are then used for Voronoi tessellation of the area covered 
in the dataset dividing it into cells with at least k trajectories. 
Trajectories are formed by segments linking those cells. 

Never Walk Alone (NWA) [1] and its extension Wait For Me 
(W4M) [2], proposed by Abul et al., follow a clustering-based 
approach which takes advantage of the inherent uncertainty of a 
moving object’s location introducing the concept of (k,δ)-
anonymity. An object’s location at a given time is not a point, but 
a disk of radius δ, and the object could be anywhere inside that, so 
a trajectory is not a polyline, but a cylinder consisting of 
consecutive such disks. To achieve k-anonymity, each trajectory is 
assigned to a group of at least k−1 other trajectories using a 
greedy clustering algorithm. Then, the trajectories of each cluster 
are spatially translated so that they will all lie entirely within the 
same cylinder (uncertainty area) of radius δ/2. W4M is a variant 
of NWA that uses the time-tolerant EDR distance function [4] 
during the clustering phase in order to overcome the limitations of 
Euclidean distance. Moreover, W4M performs spatio-temporal 
instead of spatial translation to the trajectories. All the 
aforementioned approaches offer no degree of personalization 
since they assume that all users share the same privacy level k 
which is application-determined.  

The most related to our work is the one proposed by Mahdavifar 
et al. [9]. It introduces the idea of non-uniform privacy 
requirements, where each trajectory is associated with its own 
privacy level indicating the number of trajectories it should be 
indistinguishable from. Trajectories are first divided into groups 
depending on their privacy level. Clusters are then created by 
randomly selecting a centroid and adding to the cluster the 
trajectories nearest to it if their EDR distance is lower than a 
threshold, until the maximum privacy requirement within the 
cluster is satisfied. If the requirements are not satisfied, groups 
with lower privacy levels are progressively searched for 
trajectories to be added to the cluster, until all the privacy 
requirements are met. Finally, the trajectories of each cluster are 
anonymized using a matching point algorithm that generates an 
anonymized trajectory as the cluster’s representative. While this 
approach offers a greater degree of personalization than others, it 
still leads to a compulsory trade-off between privacy and quality 
for each user. If a trajectory has a high privacy requirement k, it 
will very likely be part of a large cluster, thus suffering from 
increased information loss and low data utility, since the user 
cannot set a ‘quality’ requirement. 

3. PROBLEM FORMULATION 

In this section, we present the formal background and definition 
of the Personalized (K,∆)-anonymity problem in two variations. 
We assume that the trajectory τ of a moving object is a polyline in 
3-dimensional space represented as a sequence of time-stamped 
locations: (p1, t1), (p2, t2), …, (pn, tn), t1 < t2 < … < tn. During the 
non-recorded time periods (ti, ti+1), we assume linear interpolation, 
i.e., the object moves along a straight line from pi to pi+1 with a 
constant speed. 

Following the definition adopted by [1], an uncertain trajectory 
buffer is defined as a cylindrical volume of diameter δ centered at 
an object’s expected trajectory. Formally: 

Definition 1 (uncertain trajectory): Given a trajectory τ defined in 

[t1, tn] and an uncertainty threshold δ, τδ is the uncertain 

counterpart of trajectory τ, defined as follows: for each 3-

dimensional point (p, t) in τ, its uncertainty area is the horizontal 

disk centered at (p, t) with diameter δ. The trajectory volume of τ
δ
, 

denoted by Vol(τδ) is the union of all such disks for every t ∈ [t1, 

tn]. A possible motion curve of τ is any continuous function fPMC
τ : 

Time→R
2
 defined on the interval [t1, tn], such that for any t ∈ [t1, 

tn], the 3-dimensional point (fPMC
τ(t), t) lies inside the uncertainty 

area at time t. � 

Definition 2 (co-localized trajectories): Two trajectories τ1, τ2, 

both defined in [t1, tn], are considered co-localized w.r.t. δ, if for 

each point (p1, t) in τ1 and (p2, t) in τ2, t ∈ [t1, tn], it holds that the 

Euclidean distance d(p1, p2) ≤ δ; we write Colocδ(τ1, τ2) omitting 

the time interval [t1, tn]. � 

Definition 3 ((k,δ)-anonymous set of trajectories): Given a set of 

trajectories S, an uncertainty threshold δ, and an anonymity 

threshold k, S is (k,δ)-anonymous iff |S| ≥ k and Colocδ(τi, τj) for 

each τi, τj ∈ S. � 

A dataset D of moving object trajectories is considered (k,δ)-
anonymous if each of its members belongs to a (k,δ)-anonymity 
set. If D does not meet this requirement, then it should be 
transformed into a sanitized version, called Ds, which satisfies the 
aforementioned condition. Hence: 

Definition 4 ((k,δ)-anonymity): Given a dataset D of moving 

object trajectories, an uncertainty threshold δ, and an anonymity 

threshold k, (k,δ)-anonymity is satisfied by transforming D to Ds, 

such that for each trajectory τs ∈ Ds there exists a (k,δ)-anonymity 

set S ⊆ Ds, τs ∈ S, and the distortion between D and Ds is minimal. 
� 

One of the possible approaches to transform a dataset to its 
sanitized version is the spatiotemporal translation of the trajectory 
points. Distortion usually measures the difference between the 
original and the sanitized data. A trajectory’s distortion is defined 
as the sum of its point-wise distances to its sanitized version. In 
case the trajectory is an outlier, thus removed from the 
anonymized dataset, the distortion is proportional to the number 
of the distorted moving points of the original trajectory. The total 
distortion caused by sanitizing the entire database is defined as the 
aggregation of its individual trajectories’ distortion. 

Definition 5 (trajectory distortion due to translation): Given a 

trajectory τ ∈ D defined in [t1, tn] and its sanitized version τs ∈ Ds, 

the translation distortion (TD) over τ due to its translation into τs
 

is defined as:  

 ����, ��	 = �∑ 
�����, �����	�∈���,��� 																	 |��| > 0|�| ∙ �																																																|��| = 0� (1) 
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where |�|, |��| indicate the size (i.e., number of points) of the 

original and the sanitized trajectory, respectively, and Ω is a 

constant that penalizes distorted moving points. Summing for all 

trajectories, the total translation distortion over a trajectory 

dataset D due to its translation into Ds is defined as:  

 �����, ��	 = ∑ ����, ��	�∈�  (2) 

� 

Regarding Ω, in our experiments it corresponds to the maximum 
translation occurred during the anonymization process. 

The problem introduced in this paper is that of achieving 
anonymity of a trajectory dataset, where each trajectory prescribes 
its own (ki, δi) values, while keeping the total distortion as low as 
possible. The problem is formulated as follows: 

Problem 1 (Personalized (K,∆)-anonymity problem): Given a 

dataset D of moving object trajectories, D = {τ1, …, τn}, along 

with their respective anonymity preferences (ki, δi), and a trash 

size threshold trashmax, the Personalized (Κ,∆)-anonymity 

problem, where K = {k1, …, kn} and ∆ = {δ1, ..., δn}, is to find an 

anonymized version of D, Ds = {���, …, ���}, 0 ≤ n−m ≤ trashmax, 

where ���  is a (ki, δi)-anonymity version of τi and the total 

distortion, TTD(D, Ds), is minimal. � 

In the above definition, please note that m ≤ n, i.e., the cardinality 
of the output dataset Ds may be lower than that of the input dataset 
D. This is due to the fact that during the anonymization process 
some of the original trajectories may be moved to the trash bin, 
i.e., they are completely removed.  

A comment on Problem 1 is that the distortion caused in the 
original dataset due to anonymization is not controlled since it has 
to do with the nature of the trajectories, as well as the values of 
their anonymity preferences (ki, δi). Therefore, a natural variation 
of the above problem is that of anonymizing a database of 
trajectories of moving objects where each object has its own (ki, 
δi) values, while keeping a control over the overall distortion. This 
problem is formulated as follows: 

Problem 2 (Bounded Personalized (K,∆)-anonymity problem): 

Given a dataset D of moving object trajectories, D = {τ1, …, τn}, 

along with their respective anonymity preferences (ki, δi), a trash 

size threshold trashmax, and a distortion threshold distortmax, the 

Bounded Personalized (Κ,∆)-anonymity problem, where K = {k1, 

…, kn} and ∆ = {δ1, ..., δn}, is to find an anonymized version of D, 

Ds = {���, …, ���}, 0 ≤ n−m ≤ trashmax, where ���  is a (ki, δi)-

sanitized version of τi and the total distortion, Distortion(D, Ds)≤ 

distortmax. � 

The total distortion of the dataset when compared to its sanitized 
version, Distortion(D, Ds), is a formula consisting of two factors, 
i.e. the distortion from the translation during the anonymization 
step, TTD(D, Ds), which is calculated according to Eq.(2) along 
with the distortion caused from the editing phase, TE(D) (to be 
introduced in Section 5).  

A special case is when the solution Ds of Problem 1 also makes a 
solution to Problem 2, formally: Distortion(D, Ds) ≤ distortmax; in 
such case, nothing extra has to be done in order to provide a 
solution to Problem 2. In the general case, however, where 
Distortion(D, Ds) > distortmax, Problem 2 can be solved by 
relaxing the (ki, δi) constraints of those trajectories that are most 
responsible for the distortion caused; we call them, the most 
demanding ones, and a formulation of the demandingness of a 
trajectory will be defined in Section 5.  

4. PERSONALIZED (K,∆)-ANONYMITY 

In this section, we present a suite of methods for publishing 
spatiotemporal trajectory data using the personalized (K,∆)-
anonymity. In particular, Section 4.1 describes baseline solutions 
for providing personalized anonymization w.r.t. different users’ 
preferences. In section 4.2, we present an approach that provides 
personalized (K,∆)-anonymity based on trajectory segmentation. 

4.1 Baseline Solutions 

Given a trajectory dataset D along with personalized privacy 
requirements (ki, δi) for each trajectory τi, a baseline solution to 
Problem 1 consists of exploiting a state-of-the-art (k,δ)-anonymity 
algorithm, such NWA [1] or W4M [2], using a single, universal 
value for each k and δ. In order to satisfy every user’s privacy 
requirement, it is the maximum among all ki and the minimum 
among all δi that are assigned to the universal k and δ variables, 
respectively. The following algorithm, being the naïve version of 
our Who-Cares-about-Others’-Privacy (WCOP) suite of methods, 
illustrates this solution. As already discussed, Function k-δ-

anonymity( ) in Line 3 of the algorithm corresponds to a state-of-
the-art (k,δ)-anonymity algorithm, such as NWA or W4M. 

Algorithm 1. WCOP-NV 

Input: (1) a trajectory dataset, D = {(τ1, k1, δ1), …, (τn, kn, δn)}; (2) a 

trash size threshold, trashmax, (3) a maximum cluster radius threshold, 

radiusmax 
Output: A sanitized trajectory dataset, Ds = {���, …, ���} 

1. � !" ← � !#$%#& 
2. �'() ← �'(#$*#& 
3. Ds ← k-δ-anonymity(D, � !", �'(), trashmax, radiusmax) 

4. return Ds 
 

In order to improve this very crude attempt of satisfying 
personalized (K,∆) values, we propose an alternative approach 
directly using the user-specific privacy requirements and being 
based on clustering and translation, called WCOP-CT (where 
‘CT’ stands for Clustering and Translation). WCOP-CT follows 
the general structure of W4M, consisting of two phases: a greedy 

clustering phase, which has been shown in [1] to have the best 
effectiveness/efficiency ratio, followed by a spatiotemporal 

translation phase, which uses Edit Distance on Real sequence 
(EDR) distance function [4] in order to modify each cluster to 
make it an anonymity set. During the first phase, a pivot trajectory 
is randomly selected and a cluster is formed around it by its k−1 
unvisited closest neighbors. Then the unvisited trajectory that is 
farthest away from previous pivots is selected as a new pivot, and 
the process is repeated until clusters satisfying certain criteria. 
During the second phase, each cluster formed in the previous 
phase is transformed into a (k,δ)-anonymity set. 

The input of WCOP-CT algorithm is a dataset D consisting of n 

trajectories τi along with their personalized privacy requirements 
(ki, δi), a trashmax value that bounds the size of trash, which 
contains the outliers suppressed during the clustering process 
(phase 1 of the algorithm) in order to improve the quality of the 
final output and the maximum allowable cluster radius, radiusmax. 
The output of the algorithm is the personalized (K,∆)-anonymized 
dataset Ds. 
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Algorithm 2. WCOP-CT 

Input: (1) a trajectory dataset, D = {(τ1, k1, δ1), …, (τn, kn, δn)}; (2) a 

trash size threshold, trashmax, (3) a maximum cluster radius threshold, 

radiusmax 

Output: A sanitized trajectory dataset, Ds = {���, …, ���} 

1. Ds ← ∅ 

2. γ ← WCOP-Clustering(D, trashmax, radiusmax)   

/* Clustering phase*/ 

3. for each cluster C ∈ γ do 

4.  Cs ← ∅ 

5.  τc ← pivot of C; δc ← �'(#$*#& in C 

 /* Translation phase */  

6.  for each τ ∈ C do                                           

7.   τs ← WCOP-Translation(τ, τc, δc) 

8.   Cs ← Cs ∪ {τs} 

9.  end for 

10.  Ds ← Ds ∪ Cs 

11. end for 

12. return Ds 
 

In detail, WCOP-CT works as follows: the operation WCOP-

Clustering (line 2) extracts a set of clusters γ from the original 
dataset. Then, for each cluster (represented by the corresponding 
pivot trajectory), the algorithm defines its own δ value, which is 
the �'(#$*#&	among its members (lines 3-5). All trajectories 
contained on the current cluster are translated by the WCOP-

Translation operation (lines 6-7). The procedure is repeated until 
all trajectories of all clusters are anonymized.  

The main difference between the proposed WCOP-CT and, e.g. 
W4M is that, whereas in W4M a pivot is selected and then 
invariably grouped along with its k−1 closest neighbors in order to 
form a cluster, in WCOP-CT each cluster has its own, non-fixed k 
value. It can easily be seen that this approach results in clusters of 
non-fixed size ranging between 2 and maxi{ki}. In the same spirit, 
the spatiotemporal editing phase of WCOP-CT, called WCOP-
Translation in Algorithm 2, differs to that of W4M in that there is 
no universal δ applied to all clusters, but each cluster is edited 
based on its own δc value, which is the mini{δi} among its 
members. 

The core of WCOP-CT, i.e., the clustering step under the name 
WCOP-Clustering(D, trashmax, radiusmax) in Algorithm 2 above, is 
listed in Algorithm 3 below. WCOP-Clustering follows the 
general structure of the respective algorithm of W4M and Greedy 
Clustering, where W4M is based on. After forming clusters, each 
of them is separately processed and transformed into a (k,δ)-
anonymity set, with (k,δ) being values specific to the cluster. Here 
we follow the approach proposed in [2], which achieves that by 
using the cluster’s pivot as reference and editing the other 
trajectories so that they are co-located with it (see Section 3) and 
also have the same number of points as the pivot. The difference 
with our method is that each cluster uses its own δ value for co-
localization instead of a universal value. 

In detail, WCOP-Clustering iteratively selects pivot trajectories to 
function as centers of clusters, with pivots being selected at 
random from amongst the available active trajectories (Line 4). A 
pivot’s (ki, δi) values serve as the initial (k,δ) requirements of its 
candidate cluster (Line 6). The algorithm then successively adds 
to the candidate cluster the nearest unvisited neighbor of the pivot 
and updates the cluster’s k and δ, until the cluster’s size is enough 
to satisfy its k requirement, which equals to the maximum ki value 
among its members (Lines 7-11).  

Algorithm 3. WCOP-Clustering 

Input: (1) a trajectory dataset, D = {(τ1, k1, δ1), …, (τn, kn, δn)}; (2) a 

trash size threshold, trashmax, (3) a maximum cluster radius threshold, 

radiusmax 

Output: A set of clusters γ 

1.  repeat 

2.  Active ← D; Clustered ← ∅; Pivots ← ∅; Trash ← ∅ 

3.  while Active ≠ ∅ do 

4.   τ, ← random(τ) | τ ∈ Active 

5.   c./.size ← 1  

6.   c./ . k	← τ,. k; c./. δ	← τ,. δ 

7.   while (c./ . k > c./. size) do 

8.    c./← {τ,} ∪ {NN of τ, ∈ D − Clustered} 

9.    c./. size ← c./ . size + 1 

10.    c./. k ← max(c./. k,τ77. k) 

11.    c./. δ	← min(c./. δ, τ77. δ) 

12.   end while 
13.   if max.;<=/Dist(τ,, τ) ≤ radiusmax then 

14.    Active ← Active − c./ 

15.    Clustered ← Clustered ∪ c./ 

16.    Pivots ← Pivots ∪ {τ,}  

17.   else  

18.    Active ← Active − {τ,} 

19.  end while 

20.  for each τ ∈ D − Clustered do 

21.   τ, ← argminτ′∈Pivots|cτ′p.size≥τ.k−1,			cτ′p≤τ.δDist�τ′, τ	 
22.   if Dist(τ,, τ) ≤ radiusmax then 

23.    c./ ← c./ ∪ {τ} 

24.   else  

25.    Trash ← Trash ∪ {τ} 

26.  end for 

27.  increase(radiusmax) 

28. until |Trash |≤ |Trashmax| 

29. return {c./  | �M∈ Pivots } 

 

Once all possible clusters have been formed, the remaining 
unassigned trajectories are assigned to the cluster of their closest 
pivot, on condition that their ki can be satisfied by the cluster’s 
size (including themselves), their δi are not smaller than the 
cluster’s current δ, and their addition will not increase the 
cluster’s radius beyond radiusmax (Lines 20-23). If a trajectory 
cannot be added to any cluster without violating a condition, it is 
moved to the trash (Line 25). If the solution found results in trash 
with size larger than the trashmax threshold, the radiusmax 
constraint is relaxed and the process starts again from the 
beginning until a solution is achieved that satisfies the trashmax 
size requirement (Lines 27-28). As output, the algorithm returns 
only the clusters formed, excluding the suppressed trajectories 
implicitly (Line 29). 

After the clusters have been defined, Algorithm 2 proceeds to the 
necessary spatiotemporal translation. Since trajectories may not be 
of the same size, the EDR time-tolerant distance function is 
responsible to minimize the necessary number of operations so as 
to make them indistinguishable. The goal of the editing operations 
(i.e. translate points towards pivot, remove deleted points, insert 
new points) that are performed to a trajectory is to make it more 
similar to the pivot. Algorithm 4 describes the translation 
procedure that is followed by WCOP-CT. 
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Algorithm 4. WCOP-Translation 

Input: (1) a trajectory τ, (2) cluster’s pivot trajectory τc, (3) cluster’s 

uncertainty threshold δ< 

Output: Anonymized trajectory τs 

1. edit←EDR_op_sequence(τ, τc) 

2. τs ←<> 

3. i, j ←1 

4. for all op	∈	edit do 

5.  if op=remove(τ<,N) then 

6.   τs.append(<random_point_in_circle(τ<,N. x, τ<,N. y, δ</2	, τ<,N. t>) 

7.   j←j+1 

8.  else 
9.  if op=match(τR, τ<,N) then 

10.   τs.append(<transl(τR. x, τR. y, τ<,N. x, τ<,N. y, δ</2	, τ<,N. t>) 

11.   i←i+1 

12.   j←j+1 

13.  else 

14.   i←i+1 

15. end for 

16. return τs 
 

As a first step, the algorithm reconstructs the sequence of the 
required operations (Line 1). In case of a point deletion from the 
pivot trajectory τc, the algorithm instead of deleting, it creates a 

new point randomly inside the circle of radius 
)ST  around the 

corresponding point in τc (Lines 5-7). Recall that in our case each 
cluster has its own δc equal to mini{δi} among its members. 
Differently, when the deletion concerns trajectory τ, the point is 
permanently removed (Lines 13-14). If a matching between τ and 
τc occurs, then operation transl is responsible to ensure that the 

distance between them will be equal or less than 
UVT . If the two 

points match w.r.t. the temporal dimension, then trajectory’s point 
is transferred inside the circle to a point having the minimum 
distance translation from the original one. Else, the temporal 
coordinate value of the pivot’s point is used and the point is 
spatially translated again inside the circle with radius equal to or 

less than 
)ST  (Lines 9-12). 

4.2 Personalized (K,∆)-Anonymity using 

Trajectory Segmentation 

In this section, we introduce a novel approach to the problem of 
Personalized (K,∆)-anonymity, which aims to improve upon the 
baseline solutions presented in the previous section by 
implementing trajectory segmentation, in order to increase 
clustering effectiveness and decrease distortion levels. A 
shortcoming of the two baseline solutions (WCOP-NV and 
WCOP-CT), which is common in all clustering methods, is that 
they use the trajectory as the smallest working unit. As a result, 
when two trajectories have some similar parts, but are 
significantly different on the whole, the algorithm is unable to 
discover and make use of those similar elements, leading to an 
overall increased distortion during clustering. In order to deal with 
this issue, our approach includes a trajectory segmentation phase, 
where trajectories are partitioned into sub-trajectories according to 
a set of privacy-aware criteria. It is these sub-trajectories that are 
then used as input for the anonymization stage of the algorithm 
that follows. While this segmentation incurs extra computational 
cost, it offers a distinct advantage in that it facilitates the 
discovery of patterns shared between parts of trajectories, which 
otherwise are significantly different on the whole. 

The so-called WCOP-SA (where ‘SA’ stands for Segmenting and 
Anonymizing), which is presented in Algorithm 5 below, is the 
generic two-step method that we propose. Given a dataset D 
consisting of n trajectories τi along with their personalized privacy 
requirements (ki, δi), in the first step the algorithm applies a 
trajectory segmentation process to produce the respective dataset 
of partitioned sub-trajectories Dp, followed by the second step that 
anonymizes those sub-trajectories. 

Algorithm 5. WCOP-SA 

Input: (1) a trajectory dataset, D = {(τ1, k1, δ1), …, (τn, kn, δn)}; (2) a 

trash size threshold, trashmax, (3) a maximum cluster radius threshold, 

radiusmax 
Output: A sanitized trajectory dataset, Ds = {���, …, ���}. 

1. Dp ← WCOP-Segmenting(D) 

2. Ds ← WCOP-Anonymizing(Dp, trashmax, radiusmax) 

3. return Ds 
 

An example of using WCOP-SA on a dataset partitioned using 
this method can be seen in Figure 1(d), where segments that are 
similar in terms of the number of their neighboring trajectories 
have been identified and grouped into sub-trajectories, which in 
turn have been assigned to appropriate clusters causing less 
spatiotemporal translation. WCOP-SA is by purpose generic, in 
that it does not strictly specify the algorithms used for 
segmentation and anonymization. Any algorithm of this kind can 
be used. However, in our experimental study (Section 6) we 
evaluate WCOP-SA using a trajectory-aware (Traclus [8]) vs. a 
neighborhood-aware segmentation algorithm (Convoys [7]) for 
the segmentation step, and WCOP-CT vs. WCOP-B (to be 
introduced in Section 5) for the anonymization step.  

  

(a) (b) 

τ1.1

τ2.1

τ3.1

τ3.2

0 1 2 3

τ2.2

τ3.3

 
(c) 

Figure 2: (a) a set of trajectories segmented by (b) Traclus and 

(c) Convoys partitioning-and-clustering algorithms. 

Why Traclus vs. Convoys? Traclus [8] is a well-known and 
widely-used partitioning and clustering framework that performs 
density-based clustering on line segments aiming at discovering 
common sub-trajectories instead of grouping trajectories as a 
whole. During this process, trajectories are first partitioned on 
segmentation points representing significant changes of the 
trajectory’s behavior (i.e. direction) by using the minimum 
description length principle.  
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Then, the directed line segments previously discovered are 
clustered with a variant of DBSCAN density-based clustering 
algorithm. However, the aforementioned approach does not 
properly incorporate the temporal dimension of trajectories as it 
spatially segments trajectories w.r.t their direction. A well-known 
temporal-awareness approach for clustering spatiotemporal 
trajectories is the one of Convoys [7]. It is a concept that uses 
different criteria for grouping the trajectories. A convoy is defined 
as a group of objects that has at least m objects, which are density-
connected with respect to a distance threshold e, during k 
consecutive time-instants. 

The difference between the two aforementioned approaches is 
illustrated in Figure 2. Let us assume three trajectories τ1, τ2, τ3 
(Figure 2(a)); when Traclus is applied for the segmentation of 
trajectories, the derived sub-trajectories (illustrated in Figure 2(b)) 
are constructed based on geometric parameters, actually, 
significant changes on their own direction. In contrast, Convoys 
performs segmentation by discovering neighboring trajectories 
that are moving together during a time period; as illustrated in 
Figure 2(c), τ2 and τ3 are moving together between t = 0 and t = 1 
while τ1 and τ3 between t = 1 and t = 2, thus two convoys are 
discovered, which are then used for the segmentation of the 
trajectories to 6 sub-trajectories.   

5. BOUNDED PERSONALIZED (K,∆)-

ANONYMITY 

In order to deal with the problem of Bounded Personalized (K,∆)-
anonymity defined in Section 3, where the requirement is to keep 
anonymization distortion below a given threshold, we extent the 
methods presented in the previous sections by introducing dataset 
assessment and requirement relaxation. Since distortion is due to 
spatiotemporal translation, a naïve approach would be to 
anonymize a dataset once, identify the trajectories, which have 
undergone the most translation and edit them. However, a 
trajectory τ might be translated not due to its own (k, δ) values, but 
in order to be assigned to a cluster that includes very demanding 
members, i.e., τ’s neighbors. Therefore, in order to decrease the 
overall distortion of a dataset, we argue that the most demanding 
trajectories should be detected and edited. 

By intuition, high values of k and low values of δ make a 
trajectory demanding. As such, a metric for the demandingness of 
a trajectory is defined as follows:  

Definition 6 (dataset-aware trajectory demandingness): Given a 

trajectory τ ∈ D with privacy requirements (k,δ), its dataset-

aware demandingness, ddem(τ, D)→[0,1], is defined as: 

 
WXY��, �	 = Z[ ∗ �.""�]^ +ZT ∗ )����.)  (3) 

where kmax>1 and δmin>0 correspond to the maximum k and 

minimum δ values of trajectories in D, respectively, and (k,δ) 

contribute to the overall value according to some weights, ∑Z# = 1 . 

� 

Eq. (3) formulates the intuition that trajectory demandingness is 
proportional to k and reversely proportional to δ. kmax and δmin are 
used for normalization purposes and the weights wi are introduced 
in order for the importance of the two components to be 
controlled, according to the application scenario. For simplicity, 
in the rest of the paper, the two components are equally weighted, 
i.e., w1 = w2 = ½.  

As an example, consider a dataset D consisting of 50 trajectories 
where kmax = 50 and δmin = 20. Table 1 below lists the top-5 
demanding trajectories of the dataset, where their demandingness 
has been calculated according to Eq. (3). Now assume that the 
overall distortion caused by the sanitization of the dataset D to Ds 
exceeds distortmax threshold. The two most demanding 
trajectories, i.e. τ21, τ5 could be edited in order to decrease the 
complexity of assigning them to a cluster. Trajectory τ21 requires 
to be hidden among other 49 neighbors within an area of diameter 
30 m. Similarly, trajectory τ5, less demanding, requires other 29 
neighbors within an area of diameter 20 m.  

Table 1: An example of editing the most demanding 

trajectories 

τi (ki, δi) ddem(τi, D) 

τ21 (50,30) 0.83 

τ5 (30,20) 0.8 

τ47 (23,100) 0.33 

τ15 (23,220) 0.27 

τ7 (20,200) 0.25 

 
How can we relax these requirements? Actually, we need a 
measure that indicates the degree of trajectory editing. For this 
purpose, we define trajectory edit cost as the ratio of the (k,δ)-

editing required for the particular trajectory over the (k,δ)-editing 
required for the most demanding one. Note that for a trajectory τ, 
its dataset-aware demandingness can be reduced by editing its k 
and/or δ values. 

Definition 7 (trajectory edit cost): Given a trajectory τ ∈ D with 

dataset-aware demandingness, ddem, defined over D, and a 
threshold trajectory τthres, the edit cost of trajectory τ, 0 ≤ costedit ≤ 

1, is defined as: 

 `ab�XW#���, �	 =	 (4) 

c 
WXY��, �	 − 
WXY���deX�, �	max�∈� 
WXY��, �	 − 
WXY���deX� , �	 , 'f	max�∈� 
WXY��, �	 ≠ 
WXY���deX�, �		
0																																														,																																								a�ℎijZ'bi

� 
where � !�∈� 
WXY��	 is the maximum dataset-aware 

demandingness among the trajectories in D. � 

As a threshold trajectory, τthres, we refer to the trajectory with the 
maximum acceptable demandingness in the ranking. All 
trajectories having a higher ranking (i.e. more demanding) are 
being edited. Back to Table 1, let us assume that the two most 
demanding trajectories need to be edited. Trajectory τ47 will be the 
threshold trajectory τthres. Thus, according to Eq. (4), the edit cost 
of τ21 equals to 1 while for τ5 it is equal to 0,94. 

The distortion caused by an edited trajectory can be measured as 
the number of its points multiplied by the maximum dataset 
translation, multiplied by the trajectory’s edit cost, which 
indicates the required editing degree compared to the maximally 
edited one.  

Definition 8 (trajectory distortion due to (k,δ) editing): Given an 

edited trajectory τ ∈ D, the contribution of trajectory τ to the 

overall distortion cost, distort, is defined as: 

 
'b�aj���, �	 = |�| ∙ Ω ∙ `ab�XW#���, �	 (5) 

where |τ| indicates the size of the trajectory (i.e. the number of its 

points) and Ω is a constant that penalizes distortion. The overall 
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editing distortion, DE, over a trajectory dataset D due to 

trajectory editing, is defined as:  

 �l��	 = ∑ 
'b�aj���,�	�∈�  (6) 

� 

Regarding Ω, as in Eq. (2), we define it to be the maximum 
translation occurred during the anonymization process. 

Definition 9 (dataset distortion): The total distortion of a dataset 

D due to its anonymization to Ds, is defined as the sum of the total 

distortion due to translation, TTD, and the total distortion due to 

editing, DE: 

 �'b�aj�'a(��, ��	 = �����, ��	 + �l��	                   (7) 

� 

WCOP-B (‘B’ stands for Bounded), which is presented in 
Algorithm 6 below, shows the generic concept we propose to 
tackle the Bounded Personalized (K,∆)-anonymity problem, as it 
was defined in Section 3. Note that, as a first step, a user is able to 
apply WCOP-CT on the original dataset. The output will be an 
anonymized dataset along with the distortion caused during the 
anonymization. The user is then capable to estimate the desired 
distortion thus determining distortmax. 

Algorithm 6. WCOP-B 

Input: (1) a trajectory dataset, D = {(τ1, k1, δ1), …, (τn, kn, δn)}; (2) a 

trash size threshold, trashmax; (3) a distortion threshold, distortmax; (3) 

an amount of editable trajectories, step. 
Output: A sanitized trajectory dataset, Ds = {���, …, ���} 

1. for each τ ∈ D do  
2.  Calculate 
WXY��, �	                                // according to Eq. (3) 

3. end for 

4. editsize ← step 

5. SortByDemandingness(D) 

6. repeat 

7.  ResetTrajectories(D) 

8.  Edited ← ∅; Trashed ← ∅; editcount ← 0 

9.  τ ← highest scoring trajectory 10.  τmnopq ← τrsptRmuvwxs[	
 / *Editing phase */  

11.  while editcount < editsize do                          

12.   Calculate costptRm�τ, D	                    // according to Eq. (4) 

13.   τ.k ← τmnopq. k 

14.   τ.δ ← τmnopq. δ 

15.   Edited ← Edited ∪ {τ} 

16.   editcount ← editcount + 1 

17.   τ ← next trajectory 

18.  end while 

   / * Anonymization phase */                                                                      

19.  Ds ← WCOP-CT(D, trashmax, radiusmax) 

20.  Calculate Distortion(D, Ds)                        // according to Eq. (7) 

21.  editsize ← editsize + step 

22. until (Distortion ≤ distortmax || editsize ≥ |D|) 

23. return Ds 
 

Algorithm WCOP-B-Edit-and-Anonymization works as follows: 
With the trajectory database and a distortion threshold distortmax 

given as input, the trajectories are first assessed in order for the 
algorithm to calculate the demandingness of each trajectory 
according to Eq. (3) (Lines 1-3). Then, the trajectories are sorted 
according to their demandingness, to facilitate the steps that 
follow (line 5). Based on the demandingness scores previously 
calculated, the (k,δ) values of the most demanding trajectories are 
edited, with editsize determining the amount of editable trajectories 
(Lines 11-18). In more detail, the goal of the editing process that 

follows is to edit the most expensive trajectories so that their 
editing score will become equal to the threshold trajectory’s 
editing score. Starting with the highest-scoring trajectory and 
continuing until editsize has been reached, the editing cost of each 
trajectory is calculated (lines 11-12). Trajectory’s k value is then 
decreased to the corresponding value of the threshold trajectory 
(lines 13). Next, the trajectory’s δ is increased up to threshold 
trajectory’s δ value (Line 14). The trajectory is then marked as 
‘edited’, the edit-counter is updated and the next-highest-ranking 
trajectory selected (Lines 15-17). After the editing phase is 
completed, the edited dataset D is given as input to the WCOP-CT 
algorithm, which produces an anonymized dataset Ds (Line 19). 
The total distortion of the dataset is then calculated according to 
Eq.(7) (Lines 20). If the total distortion is below the distortion 
threshold, distortmax, the algorithm ends and the anonymized 
dataset is given as output, otherwise the portion of the dataset that 
is marked for editing is increased (Line 21) and the editing - 
anonymization phase is repeated; this loop continues until either 
the distortion requirement is satisfied or the entire dataset has 
been edited (Line 22). 

It is worth to note that the method is valid for datasets consisting 
of either whole trajectories or segmented sub-trajectories. 
Therefore, it is the same algorithm that can be used in 
combination with either WCOP-CT or WCOP-SA (see line 19 in 
Algorithm 6). 

Since the distortion caused by the anonymization of a dataset is 
heavily dependent on the original data and the dataset’s privacy / 
quality requirements, it is possible that there will be combinations 
of strict distortion requirements and very demanding datasets that 
prohibit the discovery of a solution.  

6. EXPERIMENTAL STUDY 

In this section, we evaluate the effectiveness of our WCOP suite 
of methods for addressing the Personalized (K,∆)-anonymity 

problem and its Bounded variation, as defined in Section 3. 
Namely, our suite consists of four algorithms: WCOP-NV, 
WCOP-CT, and WCOP-SA that address the first problem and 
WCOP-B that addresses the second problem.  

We describe the experimental settings in Section 6.1. We make a 
base comparison between all the proposed algorithms in Section 
6.2, while in Section 6.3, we briefly discuss the effects of (k, δ) 
parameter values. In Section 6.4, we examine the results of having 
first partitioned the trajectories of the dataset into sub-trajectories 
using dataset-aware criteria. In Section 6.5, we validate the results 
of using trajectory editing to relax demanding trajectories’ 
requirements so as to decrease anonymization distortion.  

6.1 Experimental Setting 

In this experimental study we use a real dataset to evaluate the 
performance of the examined algorithms. In particular, we use a 
sample of GeoLife dataset [14] reporting the traces of a group of 
individuals monitored in Beijing, consisting of 238 trajectories.  

The dataset used in our experiments is visualized in Figure 3 
whereas in Table 2, we report the characteristics of the dataset, 
namely the number of objects – users, the number of trajectories, 
|D|, the total number of spatiotemporal points composing those 
trajectories, the derived average speed, the half-diagonal of the 
minimum bounding box of the entire space that the dataset is 
covering, radius(D), and the duration of the dataset. 
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Figure 3: the trajectory dataset used in the experimental study 

(portion of GeoLife dataset). 

 

Table 2: Statistics of GeoLife dataset 

GeoLife 

# objects (users) 72 

# trajectories, |D| 238 

# spatiotemporal points 343,129 

avg. speed (in m/s) 6.36 

half-diagonal of entire 

space, radius(D) (in m) 
51,982 

dataset duration (in days) 1,477  

 
δmax parameter is set to 3% of radius(D). trashmax, i.e., the 
maximum number of trajectories that can be suppressed, is set to 
10% of |D|. Radiusmax is set equal to radius(D). Finally, the 
tolerance thresholds of the EDR, ∆ = {dx, dy, dt}, are set as 
heuristic functions of δmax: ∆ = {10 ∗ δmax, 10 ∗ δmax, 10 ∗ δmax / 

avg_speed}, where avg_speed is the average speed of all the 
moving objects in the dataset. 

The experiments were performed on an Intel Xeon 2 GHz 
processor with 4 Gb of RAM and all the proposed algorithms 
were implemented in C. 

6.2 Base Comparison 

In this section, a base comparison between the proposed 
approaches is presented, in order to prove the validity of our 
personalized approaches. The dataset is used for this experiment 
with randomly generated (k,δ) requirements for each trajectory, k ∈	 �2,	 100�,	 δ	 ∈	 �10,	 1400�. WCOP-NV finds the max{ki}, 
min{δi} values in the dataset and uses them for all trajectories, 
ignoring their individual requirements, essentially replicating the 
way W4M works. WCOP-CT does not take universal (k,δ) values 
as input, instead it parses each trajectory’s specific (ki,δi) 
requirements from the dataset and uses them throughout the 
process. Moreover, WCOP-SA algorithms first converts the 
dataset into a set of sub-trajectories and then WCOP-CT is applied 
in order to anonymize them w.r.t. user preferences. Finally, 
WCOP-B improves the overall distortion when the dataset is 
anonymized with WCOP-CT by editing the most demanding 
trajectories. 

Table 3 displays the results from the experiment previously 
described. In particular, it lists a number of useful statistics, such 
as the number of the input (sub-)trajectories, the number of 
created clusters, the number of trajectories and the number of 
trajectory points that ended to the trash bin, the discernibility 

metric [3], which measures the data quality of the anonymized 
trajectories, the number of created and deleted points on 
trajectories, the average spatial and temporal translation per 
trajectory, the total distortion according to Eq.(2) (for WCOP-B 
Eq. (7) is used), and the runtime. 

In particular, discernibility [3] aims at measuring the quality of 
the sanitized data. Given a set of clusters z� = $z�� , … , z��&	of D 
and the trash bin, Trash, it is defined as: 

 �| = ∑ |z��|T}#~[ + |�j bℎ| ∙ |�| (6) 

Lower values of discernibility imply that more data elements are 
becoming indistinguishable. 

Table 3: Comparison of WCOP-NV, WCOP-CT, WCOP-SA 

(Traclus & Convoys), WCOP-B anonymizing the GeoLife 

dataset with the same parameters (kmax=5, δmax=250) 

Algor. 

Stat. 

WCOP-

NV 

WCOP-

CT 

WCOP-
SA 

Traclus 

WCOP-
SA 

Convoys 

WCOP-

B 

# (sub-) 

trajectories 
238 238 17,717 272 238 

# clusters 21 55 4,412 3 51 

# trajectories  

moved to trash 
17 6 83 2 4 

# points moved to 

trash  
25,103 9,189 3,634 2,731 5,706 

discernibility 

(x10
3
) 

19.7 2.5 1,546 40.4 2.1 

# created points 14,995 41,056 176,706 75,785 47,946 

# deleted points 56,086 5,118 18,704 26,321 5,509 

avg. spatial 

translation (x10
6
) 

453 4,612 48 1,638 525 

avg. temporal 

translation (x10
6
) 

31,633 31,244 103 33,752 30,333 

total distortion 

(x10
12

) 
10.5 8.6 2.5 9.9 8.2 

runtime (seconds) 30 30 120 114 414 

 
WCOP-NV causes greater values of distortion when compared to 
the other approaches. The minimum distortion and the maximum 
discernibility metric appear when the input is a set of sub-
trajectories that are segmented with the use of Traclus algorithm, 
thus trajectories are assigned to clusters more effectively. 
Moreover, 7% of the trajectories and 7% of the trajectories’ points 
are trashed when they are anonymized by using universal (k,δ) 
privacy requirements, in contrast to WCOP-SA Traclus where the 
corresponding portions reaches 0.4% and 1% respectively. 
WCOP-B is able to decrease the overall distortion of the dataset 
by more than 20% when it is anonymized with WCOP-CT via 
editing the 6 most demanding trajectories (edit step is set to 1). 
Finally, runtime comparison shows that the approaches that 
anonymize sub-trajectories are slower than those that anonymize 
trajectories since a greater number of trajectories is processed. 
WCOP-B is even slower since every time that trajectories are 
edited it repeats the anonymization process until the distortion is 
lower than the threshold. 

Based on the visualization of the aforementioned experiments as 
illustrated in Figure 4, we can conclude that the original trajectory 
dataset (see Figure 3) was better anonymized by WCOP-CT 
(Figure 4(b)) than by WCOP-NV (Figure 4(a)). 
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Clearly, WCOP-NV was not able to maintain the trend of the 
original trajectories. due to the reduced number of the created 
clusters. WCOP-CT and WCOP-SA-Convoys (Figure 4(d)) better 
preserved the pattern of the original trajectories. WCOP-SA-
Traclus (Figure 4(c)) reports dense sanitized trajectories due to the 
segmentation of the original dataset that increased its size by 99%. 
Thus, we can argue that the result is expected.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4: Anonymized trajectories by (a) WCOP-NV; (b) 

WCOP-CT; (c) WCOP-SA-Traclus; (d) WCOP-SA-Convoys. 

6.3 The Effect of (K,∆) Parameters 

In this section, we examine the effects of using varying 
combinations of (K,∆) values with respect to the total information 
distortion caused by the anonymization. Each trajectory’s (k, δ) 
requirements are randomly generated, with k ∈ [2, kmax], δ ∈ [10, 
δmax]. As mentioned above, δmax parameter has been set to 3% of 
the dataset bounding rectangle’s radius. The kmax and δmax 
variables are varying on each iteration with kmax={5, 10, 25, 50, 
100} while δmax={50, 100, 250, 500, 1000, 1400}. 

Focusing on WCOP-CT, Figures 5(a) and 5(b) provide a visual 
representation of the total distortion and the discernibility metric, 
respectively, for different combinations of (ki, δi). It is clear that 
WCOP-CT is affected from the changes both in kmax and δmax 
parameters. However, there is a point in Figure 5(a) where while 
the distortion decreases with the increase of kmax, reaching the 
minimum values when k=50, a sudden increase appears when 
k=100. This is due to the fact that the number of the trash size 
increases up to a point that exceeds trashmax. When this occurs, 
radiusmax is enlarged in order to cluster more trajectories thus the 
number of the removed trajectories is shrinked but trajectories are 
spatially translated even more. This trend is obvious at the overall 
distortion and the discernibility metric when kmax=25 (Figures 5(a) 
and 5(b)). 

 

(a) 

 
(b) 

Figure 5: WCOP-CT: (a) total distortion and (b) discernibility 

for different combinations of (kmax, δmax). 

6.4 The Effect of Trajectory Partitioning 

In this section, we validate WCOP-SA algorithm. In particular, we 
compare the effects of using WCOP-CT with two different inputs 
of the GeoLife dataset, i.e. trajectories after being segmented into 
sub-trajectories using either Traclus [7] or Convoys [6]. 
Regarding k and δ, they were again randomly generated with k ∈	�2,	kmax�	and	δ	∈	�10,	δmax�. 
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(a) 

 
(b) 

Figure 6: total distortion for different combinations of (kmax, 

δmax) using (a) WCOP-SA-Traclus; (b) WCOP-SA-Convoys. 

 

(a) 

 
(b) 

Figure 7: discernibility for different combinations of (kmax, 

δmax) using (a) WCOP-SA-Traclus; (b) WCOP-SA-Convoys. 

As we observe in the base comparison (see Table 3), partitioning 
the dataset into sub-trajectories results in very high discernibility, 
caused by the significantly higher number of clusters. Moreover, 
the segmentation of trajectories also appears to cause substantially 
decreased information distortion especially when they were 
partitioned with the Traclus algorithm. Figures 6(a) and 6(b) 
illustrate the total distortion in both approaches which rises as the 
value of kmax increases. Discernibility metrics in Figure 7(a) and 
7(b) reports that the data quality is maintained either in lower or in 
higher values of kmax. It is worth noting that WCOP-SA with 

Traclus manages to increase the average quality by 99% and 
decrease the average total distortion by 43% compared to the 
corresponding average values of WCOP-CT. Similarly, WCOP-
SA when using the Convoys algorithm increases the average data 
quality by 31% and decreases the distortion by 2%. 

6.5 The Effect of Trajectory Editing 

In the final part of our experimental study, we examine the effects 
of trajectory editing based on the algorithm outlined in Section 5. 
Two different versions of GeoLife dataset are applied in this set of 
experiments, using different ranges of randomly assigned (k,δ) 
values, i.e. [25 , 500] and [100 , 1400], in order to examine the 
effect of edit on the final result and how privacy requirements can 
influence it. Secondly, in order to examine the effects of trajectory 
editing on datasets of whole trajectories and on datasets consisting 
of segmented sub-trajectories, we apply WCOP-B in both types of 
data. 

Figure 8(a) illustrates the effects of editing various numbers of 
trajectories for a dataset that corresponds to medium demanding 
users. In contrast, Figure 8(b) depicts the respective outcome but 
for much more demanding users. It is obvious that most of the 
approaches decreased 10% of their distortion by only editing the 
top-5 demanding trajectories apart from WCOP-SA-Traclus due 
to the increased number of sub-trajectories.  

 
(a) 

 
(b) 

Figure 8: WCOP-B: distortion for varying edit size values 

where (a) kmax = 25 and dmax = 500; (b) kmax = 100 and dmax = 

1400. 

It is not only that distortion changes in a non-monotone as edit 
size increases; we also observe that it can actually increase as edit 
size increases. This is due to the fact that each edited trajectory 
incurs a distortion penalty, which grows proportionally to the edit-
size. However, the distribution of demanding trajectories across 

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

5 10 25 50 100

D
is
to
rt
io
n
    (
x
1
0
6
)

kmax

δmax=50

δmax=100

δmax=250

δmax=500

δmax=1000

δmax=1400

6000000

7000000

8000000

9000000

10000000

11000000

12000000

13000000

14000000

5 10 25 50 100

D
is
to
rt
io
n
    (
x
1
0
6
)

kmax

δmax=50

δmax=100

δmax=250

δmax=500

δmax=1000

δmax=1400

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

5 10 25 50 100

D
is
c
e
rn
ib
il
it
y
    m
e
tr
ic
s     

kmax

δmax=50

δmax=100

δmax=250

δmax=500

δmax=1000

δmax=1400

0

10000

20000

30000

40000

50000

60000

70000

80000

5 10 25 50 100

D
is
c
e
rn
ib
il
it
y
    m
e
tr
ic
s     

kmax

δmax=50

δmax=100

δmax=250

δmax=500

δmax=1000

δmax=1400

0

5000000

10000000

15000000

20000000

25000000

0 5 6 10 13 14

D
is
to
rt
io
n
    (
x
1
0
6
)

edit    size

WCOP-CT

WCOP-SA Traclus

WCOP-SA Convoys

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

0 5 71

D
is
to
rt
io
n
    (
x
1
0
6
)

edit    size

WCOP-CT

WCOP-SA Traclus

WCOP-SA Convoys

435



the clusters and the distribution of (k,δ) values in the dataset 
significantly influence the degree to which relaxing additional 
trajectories’ requirements affect the clustering and anonymization 
phases. Therefore, higher percentage of edited trajectories does 
not guarantee decreased distortion, indicating that there exists an 
‘optimal’ edit-size value, where distortion is the minimum 
possible.  

7. CONCLUSIONS 

In this paper, we proposed a novel approach for anonymizing 
trajectories called Personalized (K,∆)-Anonymity, which uses 
user-specific privacy requirements. Based on this framework, we 
have developed WCOP-CT algorithm, which takes advantage of 
user-specific (k,δ) requirements in order to assign trajectories to 
clusters of minimal size, so as to avoid over-anonymization, 
increase data quality and decrease distortion. Expanding upon that 
framework, we made use of dataset-aware trajectory 
segmentation, in order to further improve our approach’s 
effectiveness, by partitioning trajectories to sub-trajectories that 
are more easily assignable to clusters. Additionally, we examined 
the concept of Bounded (K,∆)-Anonymity, whereby there is a 
threshold to the acceptable distortion caused by the anonymization 
process, and proposed methods for trajectory assessment and 
editing by relaxing the requirements of the most demanding 
trajectories without editing the spatiotemporal data. 

To show the effectiveness of our methods, we have performed 
experiments using the GeoLife dataset. Our personalized 
anonymity approach has been shown to significantly increase to 
the overall quality and to decrease of the total distortion of the 
anonymized datasets, while it has also been demonstrated that 
trajectory segmentation can improve data quality even further. 
Experimental results also show that our trajectory assessment and 
editing algorithms perform very well towards the goal of 
decreasing data distortion without altering the trajectories’ 
spatiotemporal information itself. 

Overall, we argue that we have provided a novel approach in 
mobility data anonymization. Using our WCOP suite of 
techniques, data analysts are able to preserve the quality of 
anonymized datasets taking advantage of user-specific privacy 
requirements combined with methods such as segmentation and 
trajectory editing. However, there is a number of points, such as 
sensitivity to (k,δ) values distribution, replacement of greedy 
clustering with a more sophisticated clustering method, sensitivity 
to segmentation method and alternative trajectory assessment and 
editing methods, which deserve further study in order to expand 
and improve upon the framework presented here. 
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