
PARAGON: Parallel Architecture-Aware Graph Partition
Refinement Algorithm

Angen Zheng
University of Pittsburgh

Pittsburgh, PA, USA
anz28@cs.pitt.edu

Alexandros Labrinidis
University of Pittsburgh

Pittsburgh, PA, USA
labrinid@cs.pitt.edu

Patrick Pisciuneri
University of Pittsburgh

Pittsburgh, PA, USA
php8@pitt.edu

Panos K. Chrysanthis
University of Pittsburgh

Pittsburgh, PA, USA
panos@cs.pitt.edu

Peyman Givi
University of Pittsburgh

Pittsburgh, PA, USA
pgivi@pitt.edu

ABSTRACT
With the explosion of large, dynamic graph datasets from various
fields, graph partitioning and repartitioning are becoming more and
more critical to the performance of many graph-based Big Data ap-
plications, such as social analysis, web search, and recommender
systems. However, well-studied graph (re)partitioners usually as-
sume a homogeneous and contention-free computing environment,
which contradicts the increasing communication heterogeneity and
shared resource contention in modern, multicore high performance
computing clusters. To bridge this gap, we introduce PARAGON,
a parallel architecture-aware graph partition refinement algorithm,
which mitigates the mismatch by modifying a given decomposition
according to the nonuniform network communication costs and the
contentiousness of the underlying hardware topology. To further
reduce the overhead of the refinement, we also make PARAGON
itself architecture-aware.

Our experiments with a diverse collection of datasets showed
that on average PARAGON improved the quality of graph decom-
positions computed by the de-facto standard (hashing partitioning)
and two state-of-the-art streaming graph partitioning heuristics (de-
terministic greedy and linear deterministic greedy) by 43%, 17%,
and 36%, respectively. Furthermore, our experiments with an MPI
implementation of Breadth First Search and Single Source Short-
est Path showed that, in comparison to the state-of-the-art stream-
ing and multi-level graph (re)partitioners, PARAGON achieved up to
5.9x speedups. Finally, we demonstrated the scalability of PARAGON
by scaling it up to a graph with 3.6 billion edges using only 3 ma-
chines (60 physical cores).

1. INTRODUCTION
It is well-known that graph (re)partitioning has been extensively

studied in the area of scientific simulations [14, 34]. Yet, its impor-
tance is continuously increasing due to the explosion of large graph
datasets from various fields, such as the World Wide Web, Pro-

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

tein Interaction Networks, Social Networks, Financial Networks,
and Transportation Networks. This has led to the development of
graph-specialized parallel computing frameworks, e.g., Pregel [21],
GraphLab [19], and PowerGraph [13].

Pregel, as a representative of these computing frameworks, em-
braces a vertex-centric approach where the graph is partitioned across
multiple servers for parallel computation. Computations are often
divided into a sequence of supersteps separated by a global syn-
chronization barrier. During each superstep, a user-defined func-
tion is computed against each vertex based on the messages it re-
ceived from its neighbors in the previous step. The function can
change the state and outgoing edges of the vertex, send messages
to the neighbors of the vertex, or even add or remove vertices/edges
to the graph.

Traditional Graph Partitioners Clearly, the distribution of the
graph data across servers may impact the performance of target ap-
plications significantly. Graph partitioning has been studied for
decades [14, 34], attempting to provide a good partitioning of the
graph data, whereby both the skewness and the communication
(edge-cut) among partitions are minimized as much as possible,
in order to minimize the total response time for the entire compu-
tation. However, classic graph partitioners such as METIS [23] and
Chaco [7] do not scale well with large graphs.

Streaming Graph Partitioners Streaming graph partitioners (e.g.,
DG/LDG [39], arXiv’13 [11], and Fennel [42]) have been proposed
in order to overcome the scalability challenges of classic graph
partitioners, by examining the graph incrementally. One of the
main shortcomings of these approaches is that they also assume
uniform network communication costs among partitions as classic
graph partitioners do. That is, they all assume that the communica-
tion cost is proportional only to the amount of data communicated
among partitions. This assumption is no longer valid in modern
parallel architectures due to the increasing communication hetero-
geneity [47, 8]. For example, on a 4 ∗ 4 ∗ 4 3D-torus interconnect,
the distance to different nodes starting from a single node varies
from 0 to 6 hops.

Architecture-Aware Graph Partitioners Architecture-aware graph
partitioners [24, 8, 46] have been proposed to improve the map-
ping of the application’s communication patterns to the underlying
hardware topology. Chen et al. [8] (SoCC’12) took architecture-
awareness a step further, by making the partitioning algorithm itself
partially aware of the communication heterogeneity. However, both
[8] and [24] (ICA3PP’08) are built on top of existing heavyweight
graph partitioners, namely, METIS [23] and PARMETIS [30], which

Series ISSN: 2367-2005 365 10.5441/002/edbt.2016.34

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.34

}} } }

Partitioners Streaming
Partitioners

Re-
Partitioners

Parallel
Re-Partitioners

Performance

Fe
at

ur
es

(a
rc

hi
te

ct
ur

e-
aw

ar
e,

 g
ra

ph
 d

yn
am

is
m

,
w

ei
gh

te
d

ed
ge

/v
er

te
x,

 v
er

te
x

si
ze

)
most

least
worst best

Metis

PARAGON

ica3pp'08

chaco sheep

tkde'15

scotcharXiv'13

DG/LDG

socc'12

ARAGON

ParMetisZoltan

LogGP

catchW

 Mizan

xdgp Hermes Fennel

Figure 1: Classification of all graph partitioners/re-partitioners ac-
cording to their features vs performance profile.

are known to be the best graph partitioners and repartitioners in
terms of partitioning quality but have poor scalability. Finally, al-
though Xu et al. [46] (TKDE’15) proposed a lightweight architecture-
aware streaming graph partitioner, the partitioner may lead to sub-
optimal performance for dynamic graphs [43].
Traditional Graph Repartitioners Most real-world graphs are
often non-static, and continue to evolve over time. Because of this
graph dynamism, both the quality of the initial partitioning and the
mapping of the application communication pattern to the underly-
ing hardware topology will continuously degrade over time, lead-
ing to (a potentially significant) load imbalance and additional com-
munication overhead. Considering the sheer scale of real-world
graphs, repartitioning the entire graph from scratch using [46, 8,
24], even in parallel, is often impractical, either because of the
long partitioning time or the huge volume of data migration the
repartitioning may introduce. To address this, several graph repar-
titioning algorithms have been proposed, such as Zoltan [1, 6] and
PARMETIS [30, 33]. Although they are able to greatly reduce the
data migration cost, they are all architecture-agnostic and do not
scale well with massive graphs.
Parallel/Lightweight Graph Repartitioners Parallel lightweight
graph repartitioners (e.g., CatchW [37], xdgp [43], Hermes [26],
Mizan [17], arXiv’13 [11], and LogGP [45]) have been proposed
to improve the performance and scalability of graph repartitioning.
Instead of seeking an optimal partitioning at once, these algorithms
adapt the graph decomposition to changes efficiently by incremen-
tally migrating vertices from one partition to another based on some
local heuristics. However, they are all oblivious of the nonuniform
network communication costs among partitions.
Limitations of the State-of-the-Art Despite the plethora of graph
partitioners and repartitioners (Figure 1), the current state-of-the-
art is suffering from two main problems:
• Graph (re)partitioners either consider architecture-awareness (for

CPU/network heterogeneity) or consider performance (i.e., par-
allel/lightweight implementation), but never both. This is illus-
trated in Figure 1, where the top-right corner is empty (except
for PARAGON, which is presented in this paper).
• No existing graph (re)partitioner considers the issue of shared

resource contention in modern multicore high performance com-
puting (HPC) clusters. Shared resource contention is a well-
known issue in multicore systems and has received a lot of at-
tention in system-level research [15, 41].

Our prior work We have previously presented an architecture-
aware graph repartitioner, ARAGONLB [48]. Although ARAGONLB
considers the communication heterogeneity for target applications,
it disregards the issue of shared resource contention, and the repar-
titioning itself is not architecture-aware. Moreover, the refinement
algorithm that ARAGONLB uses to improve the mapping of the ap-
plication communication pattern to the underlying hardware topol-
ogy requires the entire graph to be stored in memory by a single
server, which is infeasible for large graphs. Furthermore, the re-
finement algorithm is performed sequentially, which may become
a performance bottleneck. Finally, ARAGONLB assumes that com-
pute nodes used for parallel computation have the same number of
cores and memory hierarchies, which may not always be true.
Contributions In this paper, we present PARAGON, which over-
comes both limitations of the current state-of-the-art graph reparti-
tioners by extending ARAGONLB in the following aspects.
1. We separate the refinement algorithm, ARAGON, from ARAGONLB

as an independent component, and develop a parallelized ver-
sion of ARAGON, PARAGON, for large graphs (Section 3, 4, 5).
We further reduce the overhead of PARAGON by making it aware
of the nonuniform network communication costs (explained in
Section 2.1).

2. We identify and consider the issue of shared resource contention
in modern HPC clusters for graph partitioning (Section 2.2 & 6).

3. We perform an extensive experimental study of PARAGON with
a diverse set of 13 datasets and two real-world applications,
demonstrating the effectiveness and scalability of PARAGON
(Section 7).

2. MOTIVATION
In this section we explain the importance of architecture-awareness

(i.e., communication heterogeneity and shared resource contention)
for efficient graph (re)partitioners.

2.1 Communication Heterogeneity
For distributed graph computations on multicore systems, com-

munication can be either inter-node (i.e., among cores of different
compute nodes) or intra-node (i.e., among cores of the same com-
pute node). In general, intra-node communication is an order of
magnitude faster than inter-node communication. This is because
in many modern parallel programming models like MPI [27, 25], a
predominant messaging standard for HPC applications, intra-node
communication is implemented via shared memory/cache [16, 5],
while inter-node communication needs to go through the network
interface. Additionally, both inter-node and intra-node communi-
cation are themselves nonuniform.
Nonuniform Inter-Node Network Communication Modern par-
allel architectures, like supercomputers, usually consist of a large
number of compute nodes linked via a network. Consequently, the
communication costs among compute nodes vary a lot because of
their varying locations. For example, in the Gordon supercom-
puter [28], the network topology is a 4x4x4 3D torus of switches
with 16 compute nodes attached to each switch. As a result, the dis-
tance to different compute nodes starting from a single node varies
from 0 to 6 hops. Also, supercomputers often allow multiple jobs
to concurrently run on different compute nodes and contend for
the shared network links, limiting the effective network bandwidth
available for each job and thus amplifying the heterogeneity.
Nonuniform Intra-Node Network Communication Communi-
cation among cores of the same compute node is also nonuniform
because of the complex memory hierarchy. Communication among

366

Memory Controller
(Northbridge)

Memory

Socket 0 Socket 1

L2 L2
FSB Interface

core core core core

L1 L1 L1 L1

FSB Interface
L2 L2

FSB Interface

core core core core

L1 L1 L1 L1

FSB Interface

FSB FSB

(a) Uniform Memory Access (UMA) Architecture

core core core core

L2 L2 L2 L2
L3

Memory
Controller

Inter-socket
Link Controller

Memory

Socket 1

core core core core

L1 L1 L1 L1
L2 L2 L2 L2

L3

Memory
Controller

Inter-socket
Link Controller

Memory

Socket 0

QPI/HT

L1 L1 L1 L1

(b) Nonuniform Memory Access (NUMA) Architecture
Figure 2: Example Architectures of Modern Compute Nodes

cores sharing more cache-levels can achieve lower latency and higher
effective bandwidth than cores sharing fewer cache-levels. For ex-
ample, in the architecture described by Figure 2a, communication
among cores sharing L2 caches (e.g., between the first and second
core of Socket 0) offers the highest performance, while commu-
nication among cores of the same socket but not sharing any L2
cache (e.g., between the first and third core of Socket 0) delivers
the next highest performance. Communication among cores of dif-
ferent sockets performs the worst. Similarly, in Figure 2b, cores
of the same socket (intra-socket communication) usually commu-
nicate faster than cores residing on different sockets (inter-socket
communication). This is because intra-socket communication can
be achieved via the shared caches, while inter-socket communica-
tion has to go through the front-side bus and the off-chip memory
controller (Figure 2a) or the inter-socket link controller (Figure 2b).
Take-away To improve the performance of graph-based big-data
applications, we should not only minimize the number of edges
across different partitions (edge-cut), but also the number of edge-
cuts among partitions having higher network communication costs
(hop-cut). This is the major difference between architecture-agnostic
solutions (that only minimize edge-cut) and architecture-aware ones
(that try to minimize both edge-cut and hop-cut).

2.2 Intra-Node Shared Resource Contention
As mentioned above, MPI intra-node communication is imple-

mented via shared memory, which can either be user-space or kernel-
based [16, 5]. Current MPI implementations often use the former
for small messages and the latter for large messages. The user-
space approach requires two memory copies. The sender first needs
to load the send buffer into its cache and then write the data to the
shared buffer (which may require loading the shared buffer block
into the sender’s cache first). Then, the receiver reads the data from
the shared memory (which may demand loading the shared mem-
ory block and receiving buffer into the receiver’s cache first). For
kernel-based approaches, the receiver first loads the send buffer di-
rectly to its cache with the help of the OS kernel. Then, the receiver
writes the data to the receiving buffer (which may require loading
the receiving buffer into its cache first). Clearly, kernel-based ap-
proaches reduce the number of memory copies to be one, mitigating
the traffic on the memory subsystem. However, it demands a trap
to the kernel on both the sender and receiver, making it inefficient
for small messages. As can be seen, intra-node communication
generates lots of memory traffic and cache pollution, which may
saturate the memory subsystem if we put too much communica-
tion within each compute node. This issue is further amplified by
the increasing contentiousness of the shared resources in modern
multicore systems. Table 1 summarizes the resources that different
cores may have to compete for when they are communicating with
each other for the architectures presented in Figures 2a and 2b. The

Table 1: Intra-Node Shared Resource Contention
Cores/Resources Sharing Contention

Core Groups Socket LLC LLC FSB/QPI(HT) Memory Controller
G1 X X X X X

UMA G2 X X X
Fig. 2a G3 X

NUMA G1 X X X X
Fig. 2b G2 X

summary is based on whether the cores are on the same socket and
whether they share the last level cache (LLC).
Take-away Focusing solely on placing neighboring vertices as close
as possible is not sufficient to achieve superior performance. In
fact, putting too much communication within each compute node
may even hurt the performance due to the traffic congestion on
memory subsystems. Counter-intuitively, offloading a certain amount
of intra-node communication across compute nodes may some-
times achieve better performance. This is because inter-node com-
munication is often implemented using Remote Direct Memory
Access (RDMA) and rendezvous protocols [40], which allow a
compute node to read data from the memory of another compute
node without involving the processor, cache, or operating system
of either node, thus alleviating the traffic on memory subsystems
and cache pollution. Additionally, it is reported in [3] that modern
RDMA-enabled networks can deliver comparable network band-
width as that of memory channels. This requires us to examine the
impact of multi-core architecture on graph partitionings more care-
fully, especially for small HPC clusters, since the network may no
longer be the bottleneck.

3. PROBLEM STATEMENT
Let G = (V,E) be a graph, where V is the vertex set and E is

the edges set, and P be a partitioning of G with n partitions, where

P = {Pi : ∪ni=1Pi = V and Pi ∩ Pj = φ for any i 6= j} (1)

and let M be the current assignment of partitions to servers, where
Pi is assigned to server M [i]. The server can be either a hardware
thread, a core, a socket, or a machine.
Architecture-aware graph partition refinement aims to improve
the mapping of the application communication pattern to the un-
derlying hardware topology by modifying the current partitioning
of the graph, such that the communication cost of the target appli-
cation, given the specific hardware topology, is minimized. The
modification usually involves migrating vertices from one partition
to another partition. Hence, in addition to the communication cost,
the refinement should also minimize the data migration cost among
partitions. Also, to ensure balanced load distribution in terms of the
computation requirement, the refinement should keep the skewness
of the partitioning as small as possible.

367

h

i
j a

d

b
c

f

g
e

P1(N1)P3(N3)

P2(N2)

Figure 3: Old Decomposition

h

i
j

a
d

b

c

f

g
eP2(N2)

P3(N3)
P1(N1)

Figure 4: Better Decomposition

h

i
j

a d

b
c

f

g
eP2(N2)

P3(N3) P1(N1)

Figure 5: Best Decomposition

N1 N2 N3

N1 1 6
N2 1 1
N3 6 1

Figure 6: Relative Network
Communication Costs

We define the communication cost of a partitioning P as:

comm(G,P) = α ∗
∑

e=(u,v)∈E
and u∈Pi and v∈Pj and i6=j

w(e) ∗ c(Pi, Pj) (2)

where α specifies the relative importance between communication
and migration cost, which is usually set to be the number of su-
persteps carried out between two consecutive refinement/reparti-
tioning steps, w(e) is the edge weight, indicating the amount of
data communicated along the edge per superstep, and c(Pi, Pj)
can be either the relative network communication cost, the degree
of shared resource contentiousness between Pi and Pj or a hybrid
of both. Existing architecture-agnostic graph (re)partitioners usu-
ally assume c(Pi, Pj) = 1.

The migration cost of the refinement is defined as:

mig(G,P, P ′) =
∑
v∈V

and v∈Pi and v∈P ′
j and i6=j

vs(v) ∗ c(Pi, P ′j) (3)

where vs(v) is the vertex size, reflecting the amount of application
data represented by v, and P ′ denotes the partitioning after being
refined/repartitioned.

The skewness of a partitioning, P , is defined as:

skewness(G,P) =
max{w(P1), w(P2), · · · , w(Pn)}∑n

i=1 w(Pi)

n

(4)

wherew(Pi) =
∑
v∈Pi

w(v) withw(v) denoting the vertex weight
(i.e., the computation requirement of the vertex).

Self Architecture-Awareness In fact, the refinement algorithm it-
self should be architecture-aware (during its execution), since the
refinement may also result in a lot of communication.

4. OUR PRIOR WORK: ARAGON
ARAGON is a serial, architecture-aware graph partition refine-

ment algorithm proposed by us in [48]. It is a variant of the Fiduccia-
Mattheyses (FM) algorithm [12]. It tries to reduce the application
communication cost by modifying the current decomposition ac-
cording to the nonuniform network communication costs of the un-
derlying hardware topology. Each time it takes as input two par-
titions of the n-way decomposition and the relative network com-
munication costs among partitions. For each input partition pair,
it attempts to improve the mapping of the application communi-
cation pattern to the underlying hardware topology by iteratively
moving vertices between them. During each iteration, it tries to
find a single vertex such that moving it from its current partition
to the alternative partition would lead to a maximal gain, where the
gain is defined as the reduction in the communication and migration
cost. Upon each movement of a vertex, v, it also updates the gain
of v’s neighbors of the partition pair. This process is repeated until
all vertices are moved once or the decomposition cannot be fur-
ther improved after a certain number of vertex movements. Since

ARAGON can only refine one partition pair at a time, it is repeatedly
applied to all partition pairs sequentially.

The gain of moving vertex v from its current partition, Pi, to its
refinement partner, Pj , is defined as:

gi,j(v) = gi,jstd(v) + gi,jtopo(v) + gi,jmig(v) (5)

Here, gi,jstd(v) considers the impact of the movement on the com-
munication between Pi and Pj , defined as:

gi,jstd(v) = α ∗ (dext(v, Pj)− dext(v, Pi)) ∗ c(Pi, Pj) (6)

where dext(v, Pi) denotes the amount of data v communicates with
vertices of partition Pi, formally defined as

dext(v, Pi) =
∑

e=(v,u)∈E
and v∈Pi and u∈Pj and i6=j

w(e) (7)

The second term of Equation 5, gi,jtopo(v), considers the impact of
the movement on the communication between v and its neighbors
in other partitions in addition to Pi and Pj . We define it as:

gi,jtopo(v) = α∗
n∑
k=1

and k 6=i and k 6=j

dext(v, Pk)∗(c(Pi, Pk)−c(Pj , Pk))

(8)
The third term of Equation 5, gi,jmig(v), considers the impact of the
movement on migration cost, which is defined as:

gi,jmig(v) = vs(v) ∗ (c(Pi, Pk)− c(Pj , Pk)) (9)

where Pk is the owner of v in the original decomposition. The
current owner of v, Pi, may be different from its original owner,
Pk, due to the refinement.
Example In the decomposition shown in Figure 3, we have a graph
with unit weights and sizes and is initially distributed across 3 ma-
chines: N1, N2, and N3. The relative network communication
costs among partitions are shown in Figure 6. Clearly, the number
of edges among partitions goes from 4 in Figure 3, to 3 in Fig-
ure 4. In fact, if we assume uniform network communication costs
among partitions, Figure 4 would be the optimal decomposition of
the graph. However, if we consider the case where all network
costs are not equal (as in Figure 6), then the decomposition in Fig-
ure 4 can be further improved by moving vertex a to P2 (Figure 5).
Even though moving vertex a from P1 to P2 increases the com-
munication cost between P1 and P2 by 1, it actually reduces the
communication cost between a and j by 5, since the relative net-
work communication cost between P1 and P3 is 6, while that of P2

and P3 is 1. For the same reason, moving a to P2 also decreases
the migration cost of a by 5, since vertex a was originally in P3.

5. PARAGON
Motivation Clearly, one naive implementation of ARAGON could
be as follows: server M [i] is responsible for the refinement of Pi
with all its partners Pi+1, Pi+2, · · · , Pn, and server M [i + 1] can

368

not start its refinement for Pi+1 until server M [i] finishes its re-
finement. One major issue of this approach is that it requires the
entire graph to be sent across network n−1

2
times. An advantage of

this approach is that each server only needs to hold two partitions
in memory at a time (one for its local partition and the other one
for the refinement partner). In our prior work [48], ARAGON goes
for another extreme, where all servers send their local partitions to
a single server that is responsible for the refinement of all partition
pairs. By doing this, ARAGON only needs to send the entire graph
over network once, significantly reducing the communication traf-
fic. One drawback of this approach is that it requires the server to
store the entire graph in memory. Another issue is that the server
can easily become a performance and scalability bottleneck.

Overview Based on the observation above, PARAGON takes a mid-
dle point of the two extremes, where it allows multiple servers to
do the refinement in parallel, each of which is responsible for the
refinement of a group of partitions. In this way, we can enjoy the
benefits of both extremes without worrying about their drawbacks.
Algorithm 1 describes the main idea of PARAGON. During refine-
ment, each server runs an instance of the algorithm with its local
partition Pl and the relative network communication cost matrix c
as its input. The algorithm first selects a server as master node (Line
1), and then computes everything needed by the master node to
make the parallization decision (Line 2). The master node decides
how to split partitions into groups such that each group can be re-
fined independently on different servers and the selection of group
servers (Line 4–6). The group servers take responsibility of the re-
finement of each group. Once the decision has been made, each
server will send their vertices to the corresponding group servers
(Line 7). Upon receiving all the vertices from their group members,
group servers will start to do the refinement of each group indepen-
dently (Line 8–13). After finishing the refinement of its group,
group servers will notify their group members about the new loca-
tions of their vertices (Line 15). Then, each server will physically
migrate vertices to their new owners accordingly (Line 16).

Partition Grouping To assign a partition to a group, we con-
sider three factors: (1) to minimize the refinement time, each group
should have roughly equal number of partitions; (2) members of
each group should be carefully selected, since the gain of refining
each partition pair may vary a lot. Thus, to maximize the effective-
ness of refinement, we should group together partitions leading to
high refinement gain; and (3) we should minimize the cross-group
refinement interference, because the gain of refining one partition
pair heavily relies on the amount of data they communicate with
other partitions. This is different from the standard FM algorithms,
which solely compute the gain of migrating each vertex based on
the data it communicates with vertices of the partition pair. For
example, in the decomposition of Figure 4, the communication be-
tween vertex a and j contributes most to the gain of moving a from
P1 to P2 for PARAGON. However, for standard FM algorithms, the
gain of migrating a toP2 will be -1, since a has two neighbors inP1

and 1 in P2. Unfortunately, there is no clear way to do the group-
ing, since we could not use the state-of-the-art graph partitioners
(i.e., METIS) to compute a high-quality initial decomposition, due
to their poor scalability. As a result, the input decomposition to
PARAGON will probably have edge-cuts across all partitions. For-
tunately, we find that random grouping along with the shuffle re-
finement (the remedy technique presented below) works quite well.

Shuffle Refinement To mitigate the impact of cross-group refine-
ment interference and increase the gain of the refinement, we per-
form an additional round of refinement once all the group servers
finish the refinement of their own groups. We call this shuffle refine-

Algorithm 1: PARAGON

Data: Pl, c
Result: new locations of vertices of Pl

1 masterNodeSelection(c)
2 partitionStat(Pl, ps)
3 if server M [l] is master node then
4 pg = partitionGrouping()
5 gs = optGroupServerSelection(pg, ps, c)
6 partitionGroupServerBcast(gs);

7 sendPartitionToGroupServers(Pl, gs)
8 if server M [l] is a group server then
9 pg = recvPartitionsFromMyGroupMembers(gs)

10 foreach Pi ∈ pg do
11 foreach Pj ∈ pg do
12 if i 6= j then
13 AragonRefinement(Pi, Pj , c)

14 shuffleRefinement(pg)
15 vertexLocationUpdate(pg)

16 physicalDataMigraton(Pl)

ment. In this round, each group server first exchanges the changes
it made to the decompositions such that each group server has the
up-to-date load information of each partition and the up-to-date lo-
cations of the neighbors of each vertex. Then, each group server
swaps some of its partitions randomly with other group servers.
Subsequently, each group server starts another round of refinement
with the new grouping.

The reason why shuffle refinement is a remedy to the above is-
sue is because it increases the number of partition pairs refined by
PARAGON and thus the solution space that PARAGON explores. For
example, for a graph with 4 partitions and 2 groups, PARAGON
originally only refines 2 out of the 6 partition pairs. However, if the
group servers swap one of their partitions, PARAGON will refine 4
partition pairs instead of 2. In fact, we can repeat this shuffle refine-
ment multiple times to further expand the solution space PARAGON
explores, thus further alleviating the impact of cross-group refine-
ment interference and increasing the gain we can obtain.

The idea of shuffle refinement is very straightforward, but it is
not easy to efficiently implement, especially the propagation of the
changes that each group server made. One easy way to achieve
this is to use a distributed data directory, like the one provided by
Zoltan [1]. In this scheme, each group server only needs to make
an update to the data directory first, and then all the group servers
can pull the up-to-date locations for the neighbors of their vertices.
We found that this approach is very inefficient for really big graphs
in terms of both memory footprint and execution time. It requires
around O(|V |+|E|) data communication.

Another way to achieve this is to maintain an array at each group
server, forming a mapping from vertex global identifiers1 to their
locations. In this way, the exchange can easily be achieved via a
single (MPI) reduce operation, requiring onlyO(|V |) data commu-
nication. This approach is much more efficient than the distributed
data directory approach in terms of execution time, but it is not
memory scalable for large graphs.

In our implementation, we adopt a variant of the second ap-
proach. That is, we first chunk the entire global vertex identifier
space into multiple smaller equal sized regions. Each region con-
tains vertices within a contiguous range. By default, the region size

1In distributed graph computation, each vertex has a unique
global identifier across all partitions and a unique local identifier
within each partition.

369

equals k = min{226, |V |}, where V is the vertex set of the entire
graph. Correspondingly, the exchange is split into multiple rounds.
Each round only exchanges the locations of vertices of one region.
With this scheme, we only need to maintain a smaller array at each
group sever and thus the amount of data communication remains
unchanged. Although this scheme requires scanning the edge lists
of each partition multiple times, it is much more efficient than the
distributed data directory approach.

Degree of Refinement Parallelism Theoretically, the number of
groups we can have can be any integer between 1 and n

2
, where

n is the number of partitions of the graph. Clearly, if the number
of groups equals 1, PARAGON degrades to ARAGON, in which all
servers will send their local partitions to a single group server for
sequential refinement. The reason why there is an upper bound is
because each group needs to have at least 2 partitions for the re-
finement to proceed. Typically, the higher the number is, the faster
the refinement will finish. However, there is a tradeoff between the
degree of parallelism and the quality of the resulting decomposi-
tion we can have. This is because the higher the number is, the
fewer partitions each group will have and thus the fewer partition
pairs will be refined. Given a graph with n partitions andm groups,
PARAGON only refines n(n−m)

2m
partition pairs, while ARAGON re-

fines all n(n−1)
2

partition pairs. In other words, ARAGON will even-
tually select an optimal migration destination among all partitions
for each vertex, whereas PARAGON only considers a subset of the
partitions for each vertex. This also explains the reason why the re-
sulting decompositions computed by PARAGON are usually poorer
than those of ARAGON. Fortunately, the shuffle refinement tech-
nique we proposed helps to address the issue.

Group Server Selection Once the master node finishes the group-
ing process, it will select an optimal server for each group, such
that the cost of sending partitions of the group to the group server
is minimized. For example, in case of Figure 4, where we assume
that P1, P2, and P3 are of one group, we should select server M [2]
as the group server intuitively since c(P1, P2) = c(P2, P3) = 1
while c(P1, P3) = 6. To achieve this, we define the cost of select-
ing server M [s] as the group server for group g as:∑

Pi∈g

ps[i] ∗ c(Pi, Ps) ∗ (1 +
σ(s)

drp
) (10)

Here, ps[i] denotes the number of edges associated with vertices
of Pi, which is a good approximation for the amount of data each
server needs to send to their group servers. σ(s) is the number of
group servers that have been designated on the compute node that
server M [s] belongs to. It should be noticed that server M [s] can
be a hardware thread, a core, a socket, or a machine. drp is the
degree of refinement parallelism (number of group servers). The
last term (1 + σ(s)

drp
) is the penalty that is added to avoid the con-

centration of multiple group servers into a single compute node,
reducing the chance of memory exhaustion. Once all group servers
are selected, the master node will broadcast the group servers of all
groups to all slave nodes. Then, each server will send its vertices
(as well as their edge lists) to their corresponding group servers,
after which the group servers will start to refine partitions of their
own groups independently.

Reducing Communication Volume Clearly, PARAGON with the
shuffle refinement disabled requires the entire graph to be sent over
the network once, and PARAGON with the shuffle refinement en-
abled demands more data communication. For really big graphs,
the communication volume may get very high. Thus, we follow
the same approach proposed in [35] to reduce the communication

volume. Specifically, instead of sending the entire partition to their
group servers, each server only needs to send vertices that can be
reached by a breadth-first search from boundary vertices of each
partition within k-hop traversal. Boundary vertices are vertices that
have neighbors in other partitions. The rationale behind this is that
if a vertex is very far from the boundary vertex, the chance that it
get moved by PARAGON to another partition to improve the decom-
position is very small. Surprisingly, we find that PARAGON is not
sensitive to k in terms of the partitioning quality, and that a larger
k does not always lead to partitionings of higher quality. However,
it may increase the refinement time greatly. Thus, in our imple-
mentation, we set k = 0 by default. In other words, we only send
boundary vertices of each partition to the group servers.

In fact, [35] has presented a solution to parallellize the standard
FM algorithms [12]. However, it may require a graph with n parti-
tions to be sent over the network n− 1 times in case the initial de-
composition has edge-cuts across all partition pairs. Furthermore,
the presence of communication heterogeneity complicates things
greatly. First, ARAGON has to be applied to all partition pairs,
whereas standard FM algorithms, which assume uniform network
communication costs, only need to refine partition pairs that have
edge-cuts between them. Second, during each refinement iteration
of a single partition pair, standard FM algorithms only need to con-
sider migrating vertices of both partitions that have neighbors in the
alternative partition. On the other hand, PARAGON has to consider
migrating all boundary vertices.

Master Node Selection As presented so far, each server (slave
node) needs to send some auxiliary data (i.e., the number of ver-
tices/neighbors) of their local partitions to the master node for the
parallelization decision, and the master needs to broadcast the deci-
sion it made to all slave nodes. To reduce the communication cost
between the master node and the slave nodes, we also select the
master node in an intelligent way using the following heuristic:

min
m∈[1,n]

n∑
i=1 and i6=m

c(Pi, Pm) (11)

The heuristic tries to find a server M [m] that will result in minimal
network communication cost as the master node. For example, in
case of Figure 4, we should select server M [2] as the master node.
Clearly, the selection of master node can be made locally by each
server without synchronizing with each other.

Physical Data Migration To support efficient distributed com-
putation, we also provide a basic migration service for graph work-
loads. Considering that physical data migration is highly application-
dependent, the migration service only takes responsibility for the
redistribution of the graph data itself. It is the users who are re-
sponsible for the migration of any application data associated with
each vertex. That is, the users should save the application context
before using our migration service and restore the context after-
wards. For example, in breadth first search, each vertex is usually
associated with a value indicating its current distance to the source
vertex. Users need to keep track of the distance value of each vertex
while migrating. For complicated workloads, users can exploit the
migration service provided by Zoltan [1] to simplify the migration.

6. CONTENTION AWARENESS
So far, we have presented how we parallelize ARAGON. In this

section, we will cover how we make PARAGON aware of the issue
of shared resource contention in multicore systems. We know that,
guided by a given network communication cost matrix, PARAGON
is able to gather neighboring vertices as close as possible, and that

370

the contention is caused by the fact that we put too much commu-
nication within the compute nodes. Hence, to avoid serious intra-
node shared resource contention, we can simply penalize intra-node
network communication costs by a score. The score is computed
based on the degree of contentiousness between the communica-
tion peers. By doing this, the amount of intra-node communication
will decrease accordingly. In our implementation, we refine the
intra-node communication costs as follows:

c(Pi, Pj) = c(Pi, Pj) + λ ∗ (s1 + s2) (12)

where Pi and Pj are two partitions collocated in a single compute
node; λ is a value between 0 and 1, denoting the degree of con-
tention; and s1 denotes the maximal inter-node network commu-
nication cost, while s2 equals 0 if Pi and Pj reside on different
sockets and equals the maximal inter-socket network communica-
tion cost otherwise. Clearly, if λ = 0, PARAGON will only consider
the communication heterogeneity, and λ = 1 means that intra-node
shared resource contention is the biggest performance bottleneck,
which should be prioritized over the communication heterogeneity.
It should be noticed that PARAGON with any λ ∈ (0, 1] considers
both the contention and the communication heterogeneity. Consid-
ering the impact of both resource contention and communication
heterogeneity is highly application- and hardware-dependent, users
will need to do simple profiling of the target applications on the ac-
tual computing environment to determine the ideal λ for them.

7. EVALUATION
In this section, we first evaluate the sensitivity of PARAGON to

varying input decompositions computed by different initial parti-
tioners and the impact of its two important parameters: the degree
of parallelism and the number of shuffle refinement times (Sec-
tion 7.1). We then validate the effectiveness of PARAGON using two
real-world graph workloads: Breadth-First Search (BFS) [4] and
Single-Source Shortest Path (SSSP) [20], which we implemented
using MPI (Section 7.2). Finally, we demonstrate the scalability of
PARAGON via a billion-edge graph (Section 7.3).

Datasets Table 2 describes the datasets used. By default, the
graphs were (re)partitioned with vertex weights (i.e., computational
requirement) set to be their vertex degree, with vertex sizes (i.e.,
amount of the data of the vertex) set to be their vertex degree, and
with edge weights (i.e., amount of data communicated) set to 1.
The degree of each vertex is often a good approximation of the
computational requirement and the migration cost of each vertex,
while a uniform edge weight of 1 is a close estimation of the com-
munication pattern of many graph algorithms, like BFS and SSSP.
Given the fact that communication cost is usually more impor-
tant than migration cost, all the experiments were performed with
α = 10 (Eq. 2). Unless explicitly specified, all the graphs were
initially partitioned by DG (deterministic greedy heuristic), a state-
of-the-art streaming graph partitioner [39], across cores of the com-
pute node used (one partition per core). The partitionings were then
improved by PARAGON. During the (re)partitioning, we allowed
up to 2% load imbalance among partitions. For fairness, DG/LDG
were extended to support vertex- and edge-weighted graphs.

Platforms We evaluated PARAGON on two clusters: PittMPIClus-
ter [32] and Gordon supercomputer [28]. PittMPICluster had a flat
network topology, with all 32 compute nodes connected to a single
switch via 56GB/s FDR Infiniband. On the other hand, the Gordon
network topology was a 4x4x4 3D torus of switches connected via
8GB/s QDR Infiniband with 16 compute nodes attached to each
switch. Table 3 depicts the compute node configuration of both
clusters. The results presented were the means of 5 runs, except the

Table 2: Datasets used in our experiments
Dataset |V | |E| Description

wave [38] 156,317 2,118,662 2D/3D FEM
auto [38] 448,695 6,629,222 3D FEM

333SP [10] 3,712,815 22,217,266 2D FE Triangular Meshes
CA-CondMat [2] 108,300 373,756 Collaboration Network

DBLP [18] 317,080 1,049,866 Collaboration Network
Email-Eron [2] 36,692 183,831 Communication Network

as-skitter [2] 1,696,415 22,190,596 Internet Topology
Amazon [2] 334,863 925,872 Product Network

USA-roadNet [9] 23,947,347 58,333,344 Road Network
PA-roadNet [2] 1,090,919 6,167,592 Road Network
YouTube [18] 3,223,589 24,447,548 Social Network

com-LiveJournal [2] 4,036,537 69,362,378 Social Network
Friendster [2] 124,836,180 3,612,134,270 Social Network

Table 3: Cluster Compute Node Configuration
Node Configuration PittMPICluster

(Intel Haswell Processor)
Gordon

(Intel Sandy Bridge Processor)
Sockets 2 2
Cores 20 16

Clock Speed 2.6 GHz 2.6 GHz
L3 Cache 25 MB 20 MB

Memory Capacity 128 GB 64 GB
Memory Bandwidth 65 GB/s 85 GB/s

execution of SSSP on Gordon (Section 7.2) and the scalability test
(Section 7.3).
Network Communication Cost Modelling The relative network
communication costs among partitions (cores) were approximated
using a variant of the osu_latency benchmark [29]. To ensure the
correctness of the cost matrix, each MPI rank (process) was bound
to a core using the mechanism provided by MVAPICH2 1.9 [25] on
Gordon and OpenMPI 1.8.6 [27] on PittMPICluster. MVAPICH2
and OpenMPI were two different MPI implementations available
on the clusters.

7.1 MicroBenchmarks

7.1.1 Varying Degree of Parallelism
Configuration In this experiment, we examined the impact of the
degree of parallelism in terms of both the refinement time (i.e.,
the time that the refinement took) and the refinement quality (i.e.,
the communication cost of the resulting decomposition). Towards
this, we first partitioned the com-lj dataset into 40 partitions using
DG across 2 compute nodes of PittMPICluster, and then applied
PARAGON to the decompositions with varying degree of refinement
parallelism but with shuffle refinement disabled.
Results (Figures 7a & 7b) Figure 7a plots the runtime of PARAGON
on the com-lj dataset for various degrees of parallelism. As ex-
pected, the higher the degree of parallelism, the faster the refine-
ment would finish, and PARAGON significantly reduced the refine-
ment time of ARAGON (PARAGON with degree of parallelism of 1).
However, the speedup was achieved at the cost of higher communi-
cation cost of the resulting decompositions (Figure 7b). The com-
munication costs presented were normalized to that of the initial
decomposition computed by DG. However, in the end, PARAGON
still resulted in lower communication cost in all cases when com-
pared to the initial decompositions.

7.1.2 Impact of Shuffle Refinement
Configuration In our second experiment, we were interested to see
whether the shuffle refinement technique could address the issue we
identified in the previous experiment. Towards this, we repeated the
same experiment but with a fixed degree of refinement parallelism
(8) and varying number of shuffle refinement times (from 8 to 15).

371

 0

 5

 10

 15

 20

 25

 30

 35

1 2 4 6 8 10 12 14 16 18 20R
e
f
i
n
e
m
e
n
t

T
i
m
e
(
s
)

Degree of Refinement Parallelism

(a) Refinement time

 0.0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1.0

1 2 4 6 8 10 12 14 16 18 20

N
o
r
m
a
l
i
z
e
d

C
o
m
m

C
o
s
t

Degree of Refinement Parallelism

(b) Normalized communication cost of the resulting decompositions
Figure 7: Refinement time and communication costs of the com-lj decompositions after being refined with varying degree of refinement
parallelism on two 20-core compute nodes. The communication costs presented were normalized to that of the initial decomposition.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 2 4 6 8 10 12

N
or

m
al

iz
ed

 C
om

m
 C

os
t

Refinement Time (s)

0 1 2 3 4 5 6 7 8 9 10111213 1415

Figure 8: Y-axis corresponds to the communication costs of the
com-lj decompositions after being refined with varying number of
shuffle refinement times on two 20-core compute nodes when they
were normalized to that of the decompositions refined by ARAGON;
X-axis denotes the corresponding refinement time; the labels on
each data point were the number of refinement times.

Results (Figure 8) Figure 8 shows the corresponding refinement
time and the normalized communication costs of resulting decom-
positions with the decompositions computed by ARAGON as the
baseline. As shown, PARAGON (with shuffle refinement enabled)
not only produced decompositions of lower communication costs
than ARAGON (when the number of shuffle refinement times was
greater than 11), but also completed the refinement faster (ARAGON
took around 33s to finish the refinement vs 8.12s by PARAGON with
11 shuffle refinement times).

7.1.3 Impact of Initial Partitioners
Configuration This experiment examined the refinement overhead
and the quality of the resulting decompositions, when PARAGON
was provided with decompositions computed by four different par-
titioners: (a) HP, the default graph partitioner of many parallel
graph computing engines; (b) DG and LDG, two state-of-the-art
streaming graph partitioning heuristics [39]; and (c) METIS, a state-
of-the-art multi-level graph partitioner [23]. The graphs were ini-
tially partitioned across the same two machines used in our prior
experiments but with both the degree of refinement parallelism and
the number of shuffle refinement times set to 8.
Quality of the Initial Decompositions (Figure 9) Figure 9 de-
notes the communication cost of the initial decompositions com-
puted by HP, DG, LDG, and METIS for a variety of graphs. As
anticipated, METIS performed the best and HP the worst. How-
ever, METIS is a heavyweight serial graph partitioner, making it in-
feasible for large-scale distributed graph computation either as an
initial partitioner or as an online repartitioner (repartitioning from

 0

 20

 40

 60

 80

 100

 120

 140

wave
auto

333SP

roadNet−PA

USA−road−d

CA−CondMat

com−dblp

com−amazon

Email−Enron

YouTube

as−skitter

com−lj
C
o
m
m

C
o
s
t

(
1
0
^
7
)

HP
DG
LDG
METIS

Figure 9: Communication cost of the initial decompositions com-
puted by HP, DG, LDG, and METIS across cores of two 20-core
compute nodes for a variety of graphs.

scratch). It was reported in prior work [42] that METIS took up
to 8.5 hours to partition a graph with 1.46 billion edges. Unex-
pectedly, DG outperformed LDG, the best streaming partitioning
heuristic among the ones presented in [39]. This was probably be-
cause the order in which the vertices were presented to the parti-
tioner favored DG over LDG (the results of DG and LDG rely on
the order in which vertices are presented). This was also the reason
why we picked DG as the default initial partitioner for PARAGON.

Quality of the Resulting Decompositions (Figures 10a & 10b)
Figures 10a and 10b show the corresponding communication cost
of the resulting decompositions and the improvement achieved by
PARAGON in terms of the communication cost when compared to
the initial decompositions. As shown, the better the initial decom-
position was, the better the resulting decomposition would be. In
comparison with the initial decompositions computed by HP, DG,
and LDG, PARAGON reduced the communication cost of the de-
compositions by up to 58% (43% on average), 29% (17% on aver-
age), and 53% (36% on average), respectively. Although PARAGON
did not improve significantly the decompositions computed by METIS
for easily partitioned FEM and road networks (left 7 datasets), it
achieved an improvement of up to 4.5% for complex networks (right
5 datasets). Given the size of the dataset, the improvement was still
non-negligible. Fortunately, we found that PARAGON with DG
as its initial partitioner can achieve even better performance than
METIS on real-world workloads (Section 7.2).

Refinement Overhead (Figures 11a & 11b) We also noticed
that the quality of the initial decomposition impacted the refine-
ment overhead greatly. Figures 11a and 11b plot the migration
cost (Eq. 3) and the refinement time. Clearly, the poorer the initial
decomposition was, the higher the migration cost and the longer
the refinement time would be. Finally, for decompositions, which
PARAGON failed to make much improvement, PARAGON only led
to a very small amount of overhead.

372

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

wave
auto

333SP

roadNet−PA

USA−road−d

CA−CondMat

com−dblp

com−amazon

Email−Enron

YouTube

as−skitter

com−lj

C
o
m
m

C
o
s
t

(
1
0
^
7
)

PARAGON+HP
PARAGON+DG
PARAGON+LDG
PARAGON+METIS

(a) Communication cost of the decompositions after being refined.

 0%

 20%

 40%

 60%

 80%

 100%

wave
auto

333SP

roadNet−PA

USA−road−d

CA−CondMat

com−dblp

com−amazon

Email−Enron

YouTube

as−skitter

com−lj

I
m
p
r
o
v
e
m
e
n
t

PARAGON+HP
PARAGON+DG
PARAGON+LDG
PARAGON+METIS

(b) Improvement achieved by PARAGON against the initial decomposition.
Figure 10: PARAGON’s sensitivity to varying initial decompositions in terms of the communication cost for a variety of graphs, which were
initially partitioned by HP, DG, LDG, and METIS across cores of two 20-core compute nodes.

 0

 1

 2

 3

 4

 5

 6

 7

wave
auto

333SP

roadNet−PA

USA−road−d

CA−CondMat

com−dblp

com−amazon

Email−Enron

YouTube

as−skitter

com−ljM
i
g
r
a
t
i
o
n

C
o
s
t

(
1
0
^
7
)

PARAGON+HP
PARAGON+DG
PARAGON+LDG
PARAGON+METIS

(a) Migration Cost

 0

 5

 10

 15

 20

 25

 30

 35

wave
auto

333SP

roadNet−PA

USA−road−d

CA−CondMat

com−dblp

com−amazon

Email−Enron

YouTube

as−skitter

com−lj

R
e
f
i
n
e
m
e
n
t

T
i
m
e
(
s
)

PARAGON+HP
PARAGON+DG
PARAGON+LDG
PARAGON+METIS

(b) Refinement Time
Figure 11: Overhead of the refinement on varying decompositions that were initially partitioned by HP, DG, LDG, and METIS across cores
of two 20-core compute nodes.

7.2 Real-World Applications (BFS & SSSP)
Configuration This experiment evaluated PARAGON using BFS
and SSSP on the YouTube, as-skitter, and com-lj datasets. Initially,
the graphs were partitioned across cores of three compute nodes of
two clusters using DG. Then, the decomposition was improved by
PARAGON with the degree of refinement parallelism and the num-
ber of shuffle refinement times both set to 8. During the execution
of BFS/SSSP, we grouped multiple (8 for YouTube and as-skitter
dataset and 16 for com-lj dataset) messages sent by each MPI rank
to the same destination into a single one.

Resource Contention Modeling To capture the impact of resource
contention, we carried out a profiling experiment for BFS and SSSP
with the 3 datasets on both clusters by increasing λ gradually from
0 to 1. Interestingly, we found that intra-node shared resource con-
tention was more critical to the performance on PittMPICluster,
while inter-node communication was the bottleneck on Gordon.
This was probably caused by the differences in network topolo-
gies (flat vs hierarchical), core count per node (20 vs 16), mem-
ory bandwidth (65GB vs 85GB), and network bandwidth (56GB vs
8GB) between the two clusters, and that BFS/SSSP had to compete
with other jobs running on Gordon for the network resource, while
there was no contention on the network communication links on
PittMPICluster. Hence, we fixed λ to be 1 on PittMPICluster and 0
on Gordon for the experiment.

Job Execution Time (Tables 4 & 5) Tables 4 and 5 show the
overall execution time of BFS and SSSP with 15 randomly selected
source vertices on the three datasets and the overhead of PARAGON.
The execution time of a distributed graph computation is defined as:
JET =

∑n
i=1 SET (i), where n is the number of supersteps the

job has, while SET (i) denotes the execution time of the ith super-

step and is defined as the ith superstep execution time of the slowest
MPI rank. In the table, DG and METIS mean that BFS/SSSP was
performed on the datasets without any repartitioning/refinement,
PARMETIS is a state-of-the-art multi-level graph repartitioner [30],
UNIPARAGON was a variant of PARAGON that assumes homoge-
neous and contention-free computing environment, and the num-
bers within the parentheses were the overhead of repartitioning/re-
fining the decomposition computed by DG.

As expected, PARAGON beat DG, PARMETIS, and UNIPARAGON
in all cases. Compared to DG, PARAGON reduced the execution
time of BFS and SSSP on Gordon by up to 60% and 62%, respec-
tively, and up to 83% and 78% on PittMPICluster, respectively. If
we time the improvements by the number of MPI ranks (48 for
Gordon and 64 for PittMPICluster), the improvements were more
remarkable. Yet, the overhead PARAGON exerted (the sum refine-
ment time and physical data migration time) was very small in com-
parison to the improvement it achieved and the job execution time.
By comparing the results of UNIPARAGON with DG, we can con-
clude that PARAGON not only improved the mapping of the appli-
cation communication pattern to the underlying hardware, but also
the quality of the initial decomposition (edge-cut). Also, if we com-
pare the execution time of BFS/SSSP on both clusters, we would
find that the speedup PARAGON achieved by increasing the number
of cores from 48 to 60 was much higher than that of DG. What we
did not expect was that PARAGON with DG as its initial partitioner
outperformed the gold standard, METIS, in 4 out the 6 cases and
was comparable to METIS in other cases.

Communication Volume Breakdown (Figures 12 & 13) To fur-
ther confirm our observations, we also collected the total amount of
data remotely exchanged per superstep by BFS and SSSP among
cores of the same socket (intra-socket communication volume),

373

Table 4: BFS Job Execution Time (s)
Algorithm/Dataset YouTube as-skitter com-lj

PittMPICluster
DG 30 59 218

METIS 8.50 67 27
PARMETIS 29 (21.00) 59 (9.65) 185 (4.71)

UNIPARAGON 25 (2.70) 27 (2.26) 159 (7.54)
PARAGON 8 (4.00) 10 (3.31) 40 (10.00)

Gordon
DG 322 577 4319

UNIPARAGON 264 (2.70) 350 (2.07) 3310 (6.98)
PARAGON 220 (3.83) 228 (2.96) 2586 (9.08)

Table 5: SSSP Job Execution Time (s)
Algorithm/Dataset YouTube as-skitter com-lj

PittMPICluster
DG 2136 1823 5196

METIS 545 822 955
PARMETIS 1842 (19.00) 582 (9.28) 3268 (4.50)

UNIPARAGON 1805 (2.45) 1031 (2.07) 3136 (6.98)
PARAGON 468 (3.88) 472 (3.14) 1549 (9.71)

Gordon
DG 3436 7092 10732

UNIPARAGON 3402 (2.76) 3355 (2.13) 7831 (9.75)
PARAGON 2838 (3.89) 2731 (2.97) 6841 (29.00)

 0

 500

 1,000

 1,500

 2,000

 2,500

DG METIS

PARMETIS

uniPARAGON

PARAGON

DG METIS

PARMETIS

uniPARAGON

PARAGON

DG METIS

PARMETIS

uniPARAGON

PARAGON

C
o
m
m

V
o
l
u
m
e
(
M
B
)

YouTube as−skitter com−lj

Inter−Node
Inter−Socket
Intra−Socket

Figure 12: The breakdown of the accumulated communication volume
across all supersteps for BFS on PittMPICluster.

 0

 500

 1,000

 1,500

 2,000

 2,500

DG uniPARAGON

PARAGON

DG uniPARAGON

PARAGON

DG uniPARAGON

PARAGON

C
o
m
m

V
o
l
u
m
e
(
M
B
)

YouTube as−skitter com−lj

Inter−Node
Inter−Socket
Intra−Socket

Figure 13: The breakdown of the accumulated communication volume
across all supersteps for BFS on Gordon.

among cores of the same compute node but belonging to differ-
ent sockets (inter-socket communication volume), and among cores
of different compute nodes (inter-node communication volume).
Since we observed similar patterns for BFS and SSSP in all the
cases, we only present the breakdown of the accumulated commu-
nication volume across all supersteps for BFS here.

As shown in Figures 12 (for PittMPICluster) and 13 (for Gor-
don), PARAGON and UNIPARAGON have much lower remote com-
munication volume than DG in all cases, and PARAGON has the
lowest inter-node communication volume and highest intra-node
(inter-socket & intra-socket) communication volume on Gordon
(vice versa on PittMPICluster), which was expected given our choice
for λ. It is worth mentioning that on PittMPICluster, intra-node
data communication was the bottleneck. Another interesting thing
was that in spite of its higher total communication volume when
compared to METIS, PARMETIS, and UNIPARAGON, PARAGON
still outperformed them in most cases due to the reduced commu-
nication on critical components.

Graph Dynamism (Figure 14) To further validate the effective-
ness of PARAGON in the presence of graph dynamism, we split the
YouTube dataset (a collection of YouTube users and their friend-
ship connections over a period of 225 days) into 5 snapshots with
an interval of 45 days. Thus, snapshot Si denotes the collection
of YouTube users and their friendship connections appearing dur-
ing the first 45 ∗ i days. We then ran BFS on snapshot S1 across
three 20-core machines and injected vertices newly appeared in
each snapshot to the system using DG whenever BFS finished its
computation for every 15 randomly selected vertices. The injec-
tion also triggered the execution of PARAGON, UNIPARAGON, and
PARMETIS on the decomposition.

Figure 14 plots the BFS execution time for 15 randomly selected
source vertices on each snapshot. As shown, both architecture-
awareness and the capability to cope with graph dynamism were
critical to achieve superior performance. This is especially true as
the graph changes a lot from its original version: at snapshot S5,
PARAGON performed 90% better than DG, 85% better than METIS,
73% better than PARMETIS, and 89% better than UNIPARAGON.

7.3 Billion-Edge Graph Scaling
Configuration In this experiment, we investigated the scalabil-
ity of PARAGON as the graph scale increased. Towards this, we
generated three additional datasets by sampling the edge list of the
friendster dataset (3.6 billion edges). We denote the datasets gen-
erated as friendster-p, where p was the probability that each edge
was kept while sampling. Hence, friendster-p would have around
3.6∗p billion edges. Interestingly, the number of vertices remained
almost unchanged in spite of the sampling. We ran the experiment
on three compute nodes of PittMPICluster with the degree of re-
finement parallelism, the number of shuffle refinement times, and
the message grouping size set to 10, 10, and 256, respectively.
Results (Figures 15 & 16) Figures 15 and 16 present the execu-
tion time of BFS with 15 randomly selected source vertices and
the overhead of PARAGON at different graph scales. As shown,
PARAGON not only led to lower job execution times, but also to
lower speed in which the job execution time increased as the graph
size increased. It should be noticed that PARAGON reduced the
execution time of all machines (3*20 cores) not just one. Also,
the refinement time increased at a much slower rate (from 140s, to
236s, to 312s, and to 410s) than that of the graph size. The rea-
son why we did not present the results of METIS or PARMETIS
here was because they failed to (re)partition the graphs (even for
the first dataset, of 0.9 billion edges).

8. RELATED WORK
Graph partitioning and repartitioning are receiving more and more

attention in recent years due to the proliferation of large graph
datasets. In this section, we categorize existing approaches of graph
(re)partitioners into three types: (a) heavyweight, (b) lightweight,
and (c) streaming, which are presented next.
Heavyweight Graph (Re)Partitioning Graph partitioning and repar-
titioning has been studied for decades (e.g., METIS [23], PARMETIS [30],
Scotch [36], Chaco [7], and Zoltan [1]). These graph (re)partitioners
are well-known for their capability of producing high-quality graph
decompositions. However, they usually require full knowledge of
the entire graph for (re)partitioning, making them scale poorly against

374

 0
 20
 40
 60
 80
 100
 120
 140
 160
 180
 200

S1 S2 S3 S4 S5

B
F
S

J
E
T
(
s
)

Snapshots

DG
METIS
PARMETIS
uniPARAGON
PARAGON

Figure 14: BFS JET with Graph Dynamism

200
2500

5000

7500

10000

12500

15000

0 0.9 1.8 2.7 3.6

B
F
S
 J
E
T
(s

)

Approximate # of edges (billions)

DG
PARAGON

Figure 15: BFS JET vs Graph Size

0

100

200

300

400

500

0 0.9 1.8 2.7 3.6R
e
fin

e
m

e
n
t

T
im

e
(s

)

Approximate # of edges (billions)

PARAGON

Figure 16: Refinement Time vs Graph Size

large graphs even if performed in parallel. Furthermore, they are
all architecture-agnostic. Although [24], a METIS variant, consid-
ers the communication heterogeneity, it is a sequential static graph
partitioner, which is inapplicable for massive graphs or dynamic
graphs. Several recent works [48, 8] have been proposed to cope
with the heterogeneity and dynamism. However, they are also too
heavyweight for massive graphs because of the high communica-
tion volume they generate. As a consequence, they are not ap-
propriate for online graph repartitioning in large-scale distributed
graph computation. Furthermore, they disregard the issue of re-
source contention in multicore systems.

Lightweight Graph Repartitioning As a result of the shortcom-
ings of heavyweight graph (re)partitioners, many lightweight graph
repartitioners [37, 43, 26, 17, 45] have been proposed. They ef-
ficiently adapt the partitioning to changes by incrementally mi-
grating vertices among partitions based on some heuristics (rather
than repartitioning the entire graph). Nevertheless, they are not
architecture-aware. Also, many of them assume uniform vertex
weights and sizes, and some [43, 26] even assume uniform edge
weights, which may not always be true.

In fact, work [17] is a Pregel-like graph computing engine, which
migrates vertices based on runtime characteristics of the workload
(i.e., # of message sent/received by each vertex and response time)
instead of the graph structure (i.e., the distribution of vertex neigh-
bors, edge weights, and vertex sizes). Paper [45] also presents
a repartitioning system that migrates vertices on-the-fly based on
some runtime statistics (i.e., the average compute and communica-
tion time of each superstep and the probability of a vertex becoming
active in the next superstep).

Recently, a novel distributed graph partitioner, Sheep [22], has
been proposed for large graphs. It is similar in spirit to METIS.
That is, they both first reduce the original graph to a smaller tree or
a sequence of smaller graphs, then do a partition of the tree or the
smallest graph, and finally map the partitioning back to the origi-
nal graph. In terms of partitioning time, Sheep outperforms both
METIS and streaming partitioners. For partitioning quality, Sheep
is competitive with METIS for a small number of partitions and is
competitive with streaming graph partitioners for larger numbers
of partitions. However, Sheep is unable to deal with both weighted
and dynamic graphs, and it is architecture-agnostic.

Streaming Graph Partitioning Recently, a new family of graph
partitioning heuristics, streaming graph partitioning [39, 11, 42],
has been proposed for online graph partitioning. They are able to
produce partitionings comparable to the heavyweight graph par-
titioner, METIS, within a relative short time. However, they are
architecture-agnostic. Although [46] has presented a streaming
graph partitioner with awareness of both compute and communi-
cation heterogeneity, it may lead to suboptimal performance in the
presence of graph dynamism.

Vertex-Cut Graph Partitioning Several vertex-cut graph parti-
tioners [44, 31, 13] were also proposed to improve the performance
of distributed graph computation. Vertex-cut solutions partition

the graph by assigning edges of the graph across partitions in-
stead of vertices. It has been shown that vertex-cut solutions re-
duce the communications with respect to edge-cut ones, especially
on power-law graphs. However, it also has to deal with the issue
of communication heterogeneity and the issue of shared-resource
contention, since vertices appearing in multiple partitions need to
communicate with each other during the computation. Neverthe-
less, its discussion is beyond the scope of this paper.

Overview of Related Work Table 6 visually classifies the state-
of-the-art graph (re)partitioners according to algorithm and graph
properties. In terms of algorithm properties, we characterize each
approach as to whether it (a) runs in parallel and (b) is architecture-
aware (i.e., CPU heterogeneity, network cost non-uniformity, and
resource contention). In terms of graph properties, we charac-
terize each approach as to whether it can handle graphs with (a)
dynamism, (b) weighted vertices (i.e., nonuniform computation),
(c) weighted edges (i.e., nonuniform data communication), and (d)
vertex sizes (i.e., nonuniform data sizes on each vertex).

9. CONCLUSIONS
In this paper, we presented PARAGON, a parallel architecture-

aware graph partition refinement algorithm that bridges the mis-
match between the application communication pattern and the un-
derlying hardware topology. PARAGON achieves this by modify-
ing a given decomposition according to the nonuniform network
communication costs and consideration of the contentiousness of
the underlying hardware. To further reduce its overhead, we made
PARAGON itself architecture-aware. Compared to the state-of-the-
art, PARAGON improved the quality of graph decompositions by
up to 53%, achieved up to 5.9x speedups on real workloads, and
successfully scaled up to a 3.6 billion-edge graph.

10. ACKNOWLEDGMENTS
We would like to thank Jack Lange, Albert DeFusco, Kim Wong,

Mark Silvis, and the anonymous reviewers for their valuable help
on the paper. This work was funded in part by NSF awards CBET-
1250171 and OIA-1028162.

11. REFERENCES
[1] http://www.cs.sandia.gov/zoltan/.
[2] http://snap.stanford.edu/data.
[3] C. Binnig, U. Çetintemel, A. Crotty, A. Galakatos, T. Kraska,

E. Zamanian, and S. B. Zdonik. The End of Slow Networks: It’s
Time for a Redesign. CoRR, 2015.

[4] A. Buluç and K. Madduri. Parallel Breadth-First Search on
Distributed Memory Systems. CoRR, abs/1104.4518, 2011.

[5] D. Buntinas, B. Goglin, D. Goodell, G. Mercier, and S. Moreaud.
Cache-efficient, intranode, large-message MPI communication with
MPICH2-Nemesis. In ICPP, 2009.

[6] U. V. Catalyurek, E. G. Boman, K. D. Devine, D. Bozdağ, R. T.
Heaphy, and L. A. Riesen. A repartitioning hypergraph model for
dynamic load balancing. J Parallel Distr Com, 2009.

[7] http://www.sandia.gov/~bahendr/chaco.html.

375

Table 6: State-of-the-art Graph (Re)Partitioners

Name/Reference
Algorithm Properties Graph Properties

Parallel Architecture-Aware Dynamism Weighted Vertex SizeCPU Network Contention Vertex Edge
Graph Partitioners

METIS [23] X X
ICA3PP’08 [24] X X X X

Chaco [7] X X
DG/LDG [39]/Fennel [42] Yes/No

arXiv’13 [11] X
TKDE’15 [46] X X Yes/No X X
SoCC’12 [8] X X X
Sheep [22] X

Graph Repartitioners
PARMETIS [30] X X X X X

Zoltan [1] X X X X X
Scotch [36] X X X X

CatchW [37] X X X X
xdgp [43] X X X

Hermes [26] X X X
Mizan [17] X X X X
LogGP [45] X X X X

ARAGON [48] X X X X X

PARAGON X X X X X X X

[8] R. Chen, M. Yang, X. Weng, B. Choi, B. He, and X. Li. Improving
large graph processing on partitioned graphs in the cloud. In SoCC,
2012.

[9] http://www.dis.uniroma1.it/challenge9.
[10] http://www.cc.gatech.edu/dimacs10/.
[11] L. M. Erwan, L. Yizhong, and T. Gilles. (Re) partitioning for

stream-enabled computation. arXiv:1310.8211, 2013.
[12] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for

improving network partitions. In DAC, 1982.
[13] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin.

PowerGraph: Distributed Graph-Parallel Computation on Natural
Graphs. In OSDI, 2012.

[14] B. Hendrickson and T. G. Kolda. Graph partitioning models for
parallel computing. Parallel computing, 2000.

[15] R. Hood, H. Jin, P. Mehrotra, J. Chang, J. Djomehri, S. Gavali,
D. Jespersen, K. Taylor, and R. Biswas. Performance impact of
resource contention in multicore systems. In IPDPS, 2010.

[16] H.-W. Jin, S. Sur, L. Chai, and D. K. Panda. Limic: Support for
high-performance mpi intra-node communication on linux cluster. In
ICPP, 2005.

[17] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams, and
P. Kalnis. Mizan: a system for dynamic load balancing in large-scale
graph processing. In EuroSys, 2013.

[18] http://konect.uni-koblenz.de/networks/.
[19] Y. Low, J. E. Gonzalez, A. Kyrola, D. Bickson, C. E. Guestrin, and

J. Hellerstein. Graphlab: A new framework for parallel machine
learning. arXiv:1408.2041, 2014.

[20] Y. Lu, J. Cheng, D. Yan, and H. Wu. Large-scale distributed graph
computing systems: An experimental evaluation. VLDB, 2014.

[21] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: a system for large-scale graph
processing. In SIGMOD, 2010.

[22] D. Margo and M. Seltzer. A Scalable Distributed Graph Partitioner.
VLDB, 2015.

[23] http://glaros.dtc.umn.edu/gkhome/metis/metis/
overview.

[24] I. Moulitsas and G. Karypis. Architecture aware partitioning
algorithms. In ICA3PP, 2008.

[25] http://mvapich.cse.ohio-state.edu/.
[26] D. Nicoara, S. Kamali, K. Daudjee, and L. Chen. Hermes: Dynamic

partitioning for distributed social network graph databases. In EDBT,
2015.

[27] http://www.open-mpi.org/.
[28] https://portal.xsede.org/sdsc-gordon.

[29] http://mvapich.cse.ohio-state.edu/benchmarks/.
[30] http://glaros.dtc.umn.edu/gkhome/metis/

parmetis/overview.
[31] F. Petroni, L. Querzoni, K. Daudjee, S. Kamali, and G. Iacoboni.

HDRF: Stream-Based Partitioning for Power-Law Graphs. 2015.
[32] http://core.sam.pitt.edu/MPIcluster.
[33] K. Schloegel, G. Karypis, and V. Kumar. A unified algorithm for

load-balancing adaptive scientific simulations. In SC, 2000.
[34] K. Schloegel, G. Karypis, and V. Kumar. Graph partitioning for high

performance scientific simulations. AHPCRC, 2000.
[35] C. Schulz. Scalable parallel refinement of graph partitions. PhD

thesis, Karlsruhe Institute of Technology, May 2009.
[36] http://www.labri.u-bordeaux.fr/perso/pelegrin/

scotch/.
[37] Z. Shang and J. X. Yu. Catch the wind: Graph workload balancing on

cloud. In ICDE, 2013.
[38] http:

//staffweb.cms.gre.ac.uk/~wc06/partition/.
[39] I. Stanton and G. Kliot. Streaming graph partitioning for large

distributed graphs. In SIGKDD, 2012.
[40] S. Sur, H.-W. Jin, L. Chai, and D. K. Panda. RDMA read based

rendezvous protocol for MPI over InfiniBand: design alternatives and
benefits. In PPoPP, 2006.

[41] L. Tang, J. Mars, N. Vachharajani, R. Hundt, and M. L. Soffa. The
impact of memory subsystem resource sharing on datacenter
applications. In ISCA, 2011.

[42] C. Tsourakakis, C. Gkantsidis, B. Radunovic, and M. Vojnovic.
Fennel: Streaming graph partitioning for massive scale graphs. In
WSDM, 2014.

[43] L. Vaquero, F. Cuadrado, D. Logothetis, and C. Martella. xdgp: A
dynamic graph processing system with adaptive partitioning. CoRR,
2013.

[44] C. Xie, L. Yan, W.-J. Li, and Z. Zhang. Distributed Power-law Graph
Computing: Theoretical and Empirical Analysis. In NIPS. 2014.

[45] N. Xu, L. Chen, and B. Cui. LogGP: a log-based dynamic graph
partitioning method. VLDB, 2014.

[46] N. Xu, B. Cui, L.-n. Chen, Z. Huang, and Y. Shao. Heterogeneous
Environment Aware Streaming Graph Partitioning. TKDE, 2015.

[47] C. Zhang, X. Yuan, and A. Srinivasan. Processor affinity and MPI
performance on SMP-CMP clusters. In IPDPSW, 2010.

[48] A. Zheng, A. Labrinidis, and P. K. Chrysanthis. Architecture-Aware
Graph Repartitioning for Data-Intensive Scientific Computing. In
BigGraphs, 2014.

376

	PARAGON: Parallel Architecture-Aware Graph Partition Refinement AlgorithmAngen Zheng, Alexandros Labrinidis, Patrick Pisciuneri, Panos Chrysanthis, Peyman Givi

