
Query Workload-based RDF Graph Fragmentation and
Allocation

Peng Peng1, Lei Zou1,3∗, Lei Chen2, Dongyan Zhao1,3

1Peking University, China;
2 Hong Kong University of Science and Technology, China;

3 Key Laboratory of Computational Linguistics (PKU), Ministry of Education, China
{ pku09pp,zoulei,zhaodongyan}@pku.edu.cn, leichen@cse.ust.hk

ABSTRACT
As the volume of the RDF data becomes increasingly large, it is
essential for us to design a distributed database system to manage
it. For distributed RDF data design, it is quite common to partition
the RDF data into some parts, called fragments, which are then dis-
tributed. Thus, the distribution design consists of two steps: frag-
mentation and allocation. In this paper, we propose a method to
explore the intrinsic similarities among the structures of queries in
a workload for fragmentation and allocation, which aims to reduce
the number of crossing matches and the communication cost during
SPARQL query processing. Specifically, we mine and select some
frequent access patterns to reflect the characteristics of the work-
load. Based on the selected frequent access patterns, we propose
two fragmentation strategies, vertical and horizontal fragmentation
strategies, to divide RDF graphs while meeting different kinds of
query processing objectives. Vertical fragmentation is for better
throughput and horizontal fragmentation is for better performance.
After fragmentation, we discuss how to allocate these fragments to
various sites. Finally, we discuss how to process a query based on
the results of fragmentation and allocation. Extensive experiments
confirm the superior performance of our proposed solutions.

1. INTRODUCTION
As a standard model for publishing and exchanging data on the

Web, Resource Description Framework (RDF) has been widely
used in various applications to expose, share, and connect pieces
of data on the Web. In RDF, data is represented as triples of the
form 〈subject, property, object〉. An RDF dataset can be naturally
seen as a graph, where subjects and objects are vertices connected
by named relationships (i.e., properties). SPARQL is a structured
query language proposed by W3C to access RDF repository. As
we know, answering a SPARQL query Q is equivalent to finding
subgraph matches of query graph Q over an RDF graph G [31].
Figures 1 and 2 show an RDF graph and a set of SPARQL query
graphs used as the running example in this paper.

As RDF repositories increase in size, evaluating SPARQL queries

∗corresponding author: zoulei@pku.edu.cn

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

is beyond the capacity of a single machine. For example, DBpedia,
a project aiming to extract structured content from Wikipedia, con-
sists of 2.46 billion RDF triples [4]; according to the W3C, the
numbers of triples in some commercial RDF datasets have been
more than 1 trillion [6]. The large-scale of RDF data volume in-
creases the demand of designing the high performance distributed
RDF database system.

In distributed database design, the first issue is “data fragmenta-
tion and allocation” [18]. We need to divide an RDF graph into sev-
eral parts, called fragments, and then distribute them among sites.
One important issue during data fragmentation and allocation in
a distributed system is how to reduce the communication cost be-
tween different fragments during distributed query evaluation (as-
suming different fragments are resident at different sites). To min-
imize the communication cost, many existing graph fragmentation
strategies maximize the global goal (such as min-cut [12]). How-
ever, evaluating a SPARQL query is a subgraph (homomorphism)
match problem. The subgraph match computation often does not
involve all vertices in graph G, and the communication cost of sub-
graph match computation depends on not only the RDF graph but
also the query graph. In other words, subgraph match computa-
tion exhibits strong locality. There is no direct relation between
minimizing the communication cost (in subgraph match computa-
tion) and maximizing the global goal. Hence, we propose a local
pattern-based fragmentation strategy in this paper, which can re-
duce the communication cost of subgraph match computation.

The intuition behind the local pattern-based fragmentation is as
follows: if a query “satisfies” a local pattern and all its matches are
in a single fragment, then the query can be evaluated on the single
fragment and no communication cost is needed to answering the
query. The key issue in local pattern-based fragmentation is how
to define the “local patterns”. Different from the existing methods,
we consider the query workload-driven “local pattern” definition.

1.1 Why Query Workload Matters ?
The workload-driven distributed data fragmentation has been well

studied in relational databases [18]. However, few RDF data frag-
mentation proposals consider the query workload except for [8, 6].
We will review these related papers in Section 9. Here, we discuss
why the query workloads is important for RDF data fragmentation.

We study one real SPAQRL query workload, the DBpedia query
workload, which records 8,151,238 SPARQL queries issued in 14
days of 20121. For this workload, if we set the minimum support
threshold as 0.1% of the total number of queries, we mine 163 fre-
quent subgraph patterns. The most surprising is that 97% query
graphs are isomorphic to one of the 163 frequent subgraph pat-

1http://aksw.org/Projects/DBPSB.html

Series ISSN: 2367-2005 377 10.5441/002/edbt.2016.35

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.35

Boethius

Pavia

placeOfDeath

Religion

mainInterest

Italy
country

Friedrich_Nietzsche

Ethics
mainInterest

Weimar placeOfDeath

Max_Horkheimer

influencedBy Social_theory

Nuremberg

placeOfDeath
Germany

country

mainInterest

99401–99441

postalCode

27100

postalCode

"Max Horkheimer"name

name

"Boethius"

name

Aristotle

Chalcis

Ethics
mainInterest

Greececountry

341 00

postalCode

influencedBy

Plato

influencedBy
influencedBy "Aristotle"

name

Karl_Marx
influencedBy

Template:Planetmath
wikiPageUsesTemplate

Template:Persondata

wikiPageUsesTemplate

Wappen
Weimar.svg

wappen

90000-90491
postalCode

100218964

viaf

Chalkida .JPG

imageSkyline

country

Counter-Enlightenment

mainInterest

"Friedrich Nietzsche"

placeOfDeath

Figure 1: Example RDF Graph

Figure 2: Example SPARQL Query Graphs

terns. Thus, if we use these frequent subgraph patterns as the basic
fragmentation units, 97% SPARQL queries do not lead to commu-
nication cost, since their matches are resident at one fragment.

1.2 Our Solution
According to the above motivation, we propose a workload-driven

data fragmentation for distributed RDF graph systems. Specifi-
cally, we first mine frequent subgraph patterns, named frequent ac-
cess patterns, in the query workload. We treat these frequent access
patterns as the implicit schemas for the underlying RDF data. Then,
we propose two fragmentation strategies based on these implicit
schemas. We study the following technical issues in this paper.

Frequent Access Pattern Selection. Given a frequent access pat-
tern, we build a fragment by collecting all its matches in the RDF
graph. In this way, we can reduce the communication cost (i.e.,
improve query performance) if a SPARQL query satisfies the fre-
quent access pattern. However, if we simply select all frequent
access patterns as the implicit schemas, it may lead to expensive
space cost due to the data replication, since different frequent ac-
cess patterns may involve share the same edges. In other words, we
have a tradeoff between performance gain and space cost during se-
lecting frequent access patterns. We formalize the frequent access
pattern selection problem (Section 4.1) and prove that it is a NP-
hard problem (Theorem 1). Thus, we propose a heuristic algorithm
which can guarantee the data integrity and the approximation ratio
(Theorem 2). This algorithm also achieves the good performance
(See experiments in Section 8).

Vertical and Horizontal Fragmentation. Based on the selected
frequent access patterns (i.e., implicit schemas), we design two

fragmentation strategies, i.e, vertical and horizontal fragmentation.
These two fragmentation strategies are adaptive to different query
processing objectives. The objective of vertical fragmentation strat-
egy is to improve the query throughout, and requires that all struc-
tures involved by one frequent access pattern should be placed to
the same fragment. Instead, the horizontal fragmentation strategy
distributes the structures involved by one frequent access pattern
among different fragments to maximize the parallelism of query
evaluation, namely, reducing the query response time for a single
query. To perform the horizontal fragmentation over RDF graphs,
we extend the concept of “minterm predicate” in [18] to “structural
minterm predicate” (see Section 5.2), which consider the structures
of both RDF graphs and workloads. Different applications have
different requirements, so we provide customizable options that can
be used for different RDF graphs and SPARQL query workloads.

Query Decomposition. As we know, the query decomposition
always depends on the fragmentation. In traditional vertical and
horizontal fragmentation in RDBMS and XML, the query decom-
position is unique, since there is no overlap between different frag-
ments. As mentioned before, there are some data replications in
our fragmentation strategies for RDF graphs. Thus, we may have
multiple decomposition results for a query. A cost model driven
selection is proposed in this paper.

The contributions of this paper can be summarized as follows:

• We analyze the characteristics of the real SPARQL query
workload and use the intrinsic similarities of queries in the
workload to mine and select some frequent access patterns
for distributed RDF data design. Although we prove that the
problem of frequent access pattern selection is NP-hard, we
propose a heuristic method to achieve the good performance.

• Based on the above scheme, we propose two fragmentation
strategies, vertical and horizontal fragmentation, to divide
the RDF graph into many fragments and a cost-aware allo-
cation algorithm to distribute fragments among sites. The
two fragmentation strategies provide customizable options
that are adaptive to different applications.

• We propose a cost-aware query optimization method to de-
compose a SPARQL query and generate a distributed exe-
cution plan. With the decomposition results and execution
plan, we can efficiently evaluate the SPARQL query.

• We do experiments over both real and synthetic RDF datasets
and SPARQL query workloads to verify our methods.

2. PRELIMINARIES
In this section, we review the terminologies used in this paper

and formally define the problem to be addressed.

2.1 RDF and SPARQL
RDF data can be represented as a graph according to the follow-

ing definition.

DEFINITION 1. (RDF Graph) An RDF graph is denoted as G =
{V(G), E(G), L}, where (1) V(G) is a set of vertices that correspond
to all subjects and objects in RDF data; (2) E(G) ⊆ V(G)×V(G) is
a set of directed edges that correspond to all triples in RDF data;
and (3) L is a set of edge labels. For each edge e ∈ E(G), its edge
label is its corresponding property.

Similarly, a SPARQL query can also be represented as a query
graph Q. For simplicity, we ignore FILTER statements in SPARQL
syntax in this paper.

378

DEFINITION 2. (SPARQL Query) A SPARQL query is denoted
as Q = {V(Q), E(Q), L′}, where (1) V(Q) ⊆ V(G) ∪ VVar is a set
of vertices, where V(G) denotes vertices in RDF graph G and VVar

is a set of variables; (2) E(Q) ⊆ V(Q) × V(Q) is a set of edges in
Q; and (3) L′ is also a set of edge labels, and each edge e in E(Q)
either has an edge label in L (i.e., property) or the edge label is a
variable.

In this paper, we assume that Q is a connected graph; otherwise,
all connected components of Q are considered separately. Given
a SPARQL query Q over RDF graph G, a SPARQL match is a
subgraph of G that is homomorphic to Q [31]. Thus, answering a
SPARQL query is equivalent to finding all subgraph matches of Q
over RDF graph G. The set of all matches for Q over G is denoted
as ~Q�G

In this work, we study a query workload-driven fragmentation.
A query workload Q = {Q1,Q2, ...,Qq} is a set of queries that users
input in a given period.

2.2 Fragmentation & Allocation
In this paper, we study an efficient distributed SPARQL query

engine. There are many issues related to distributed database sys-
tem design, but, the focus of this work is “data fragmentation and
allocation” for RDF repository. We formalize two important prob-
lems as follows.

DEFINITION 3. (Fragmentation) Given an RDF graph G, a
fragmentation F of G is a set of graphs F = {F1, ..., Fn} such that:
(1) each Fi is a subgraph of G and called as a fragment of RDF
graph G; (2) E(F1) ∪ ... ∪ E(Fn) = E(G); and (3) V(F1) ∪ ... ∪
V(Fn) = V(G), where E(Fi) and V(Fi) denote the edges and ver-
tices in Fi (i = 1, .., n).

In our work, we allow the overlaps between different fragments.
Given a fragmentation F , the next issue is how to distribute these
fragments among different sites (i.e., computing nodes). This is
called allocation.

DEFINITION 4. (Allocation) Given a fragmentationF = {F1, ...,
Fn} over an RDF graph G and a set of sites S = {S 1, S 2, ..., S m}

(usually m < n), an allocation A = {A1, ..., Am} of fragments in F
to S is a partitioning of F such that (1) A j ⊆ F , where 1 ≤ j ≤ m;
(2) A j1 ∩ A j2 = ∅, where 1 ≤ j1 , j2 ≤ m; (3) A1 ∪ ... ∪ Am = F ;
and (4) All fragments in A j are stored at site S j, where 1 ≤ j ≤ m.

Given an RDF graph G, a query workload Q and a distributed
system consisting of sites S, the goal of this paper is to first de-
compose G into a fragmentation F and then finding the allocation
A of F to S.

3. OVERVIEW
This paper studies a SPARQL query workload-driven data frag-

mentation and allocation problem. Some observations on the real
query workload tell us that some RDF properties have few ac-
cess frequencies. For example, few users input queries contain the
properties like imageS kyline and wikiPageUsesTemplate in Fig-
ure 1. As well, the classical distributed database design suggests a
“80/20” rule, meaning the active “20%” of query patterns account
for “80%” of the total query input [24]. Therefore, we divide the
whole RDF repository into two parts: “hot graph” and “cold graph”
as follows.

DEFINITION 5. (Infrequent and Frequent Property) Given a
query workload Q = {Q1, ...Qn}, if a property p occurs in less than
θ queries in Q, where θ is an user specified parameter, p is an
infrequent property; otherwise, p is a frequent property.

…
…

…
…

…
…

F
rag

m
en

ts in
 H

o
t G

rap
h

Workload

offline

Vertical Fragmentation /

Horizontal Fragmentation

Data Dictionary

Frequent

Access Pattern

Graph

online
Query Query Decomposition

……

Execution Plan

Matches

Server Clients

C
o
ld

 G
rap

h

Site Site Site Site

Figure 3: System Architecture

DEFINITION 6. (Hot and Cold Graphs) Given an edge e =
−−→uiu j ∈ E(G) with property p, if property p is a frequent property, e
is a hot edge; otherwise, e is a cold edge.

Given an RDF graph G, it is divided into two parts: hot graph H
and cold graph C, where H consists of all hot edges and C consists
of all cold edges.

The goal of this work is how to partition “hot graph” to achieve
performance improvement. We regard the cold graph as a “black
block”. The cold graph does not overlap to the hot graph, since the
cold graph contains different edges with different kinds of proper-
ties from the hot graph. Any existing approach can be utilized for
the cold graph. We only consider the cold graph in the SPARQL
query processing (Section 7), since some queries may involve “in-
frequent” properties. Moreover, both the cold graph and the hot
graph may be disconnected.

Figure 3 illustrates our system architecture. In the offline phase,
we mine the frequent access patterns (see Section 4) in the work-
load. Each frequent access pattern can correspond to one or more
fragments. Generating a fragment from all matches of a frequent
access pattern make many queries be answered efficiently without
cross-fragments joins, while it may also replicate some hot edges
and increase the space cost. Thus, we should select an appropriate
subset of frequent access patterns to balance the efficiency and the
space cost. Since we find out that selecting an appropriate set of
patterns is a NP-hard problem (Section 4.1), we propose a heuristic
pattern selection solution while guaranteeing both the data integrity
and the approximation ratio. Based on these selected frequent ac-
cess patterns, we study two different data fragmentation strategies,
i.e., vertical and horizontal fragmentation (Section 5). The vertical
fragmentation is to improve the query throughput, and the hori-
zontal fragmentation is to reduce a single query’s response time.
Fragments are distributed among different sites. Meanwhile, we
maintain the metadata in a data dictionary.

In the online phase, we study how to decompose a query into
several subqueries on different fragments and generate an efficient
execution plan. A cost model for guiding decomposition is pro-
posed (Section 7.2). Finally, we execute the plan and return the
matches of the query.

4. FREQUENT ACCESS PATTERNS
As mentioned before, we believe that a query often contains

some patterns in the previously issued queries, so we mine some
patterns with high access frequencies and use these patterns as the
fragmentation units. Then, if a query Q can be decomposed to
some subgraphs isomorphic to the frequent access patterns, Q can
be answered while avoiding some joins across multiple fragments.

Before we mine frequent access patterns, we first normalize the
query graphs in the workload to avoid overfitting. For each SPARQL
query, we remove all constants (strings and URIs) at subjects and

379

?x

?x1

country

?c

postalCode

p1: p2:

?x

?n

name

?y placeOfDeath

?x1

p3:

?x ?nname

influencedBy

?x2

mainInterest
?x1

country

Figure 4: Example Frequent Access Patterns

objects and replace them with variables. The FILTER expressions
are also removed. By doing this, we extract a general representa-
tion of a SPARQL query from the workload. Figure 4 shows the
generalized query graphs of query graphs in Figure 2. We assume
that the generalized query in Figure 4 graphs are also frequent ac-
cess patterns.

To mine patterns with high access frequencies, we need to first
count the number of queries in the workload where a pattern p is
a subgraph. We define the frequent access pattern usage value to
record the access frequencies of the frequent access patterns.

DEFINITION 7. (Frequent Access Pattern Usage Value) Given
a SPARQL query Q and a frequent access pattern p, we associate
a frequent access pattern usage value, denoted as use(Q, p), and
defined as follows:

use(Q, p) =
{

1 i f pattern p is a subgraph o f Q

0 otherwise

Then, given a workload Q = {Q1,Q2, ...,Qq} and a pattern p, we
define the access frequency, acc(p), as the number of queries in Q
where a pattern p is a subgraph.

acc(p) =
q∑

k=1

use(Qk, p)

A pattern p is frequent access pattern if its access frequency is no
less than a threshold, minS up.

The frequent access patterns can be easily generated by exist-
ing frequent graph mining algorithms [17]. Given a workload of
SPARQL queries Q = {Q1,Q2, ..., Qq} in a given period, we denote
the set of frequent access patterns that we find as P = {p1, p2, ..., px}.
In practice, the size of P is often limited. For example, if we set
minS up as 0.1% of the total access frequency, there are only 163
frequent access patterns for DBPedia.

4.1 Frequent Access Pattern Selection
Obviously, it is not necessary to generate fragments from all fre-

quent access patterns due to high space cost. For two similar fre-
quent access patterns p and p′, if they are contained by similar
queries of the workload, then selecting both p and p′ for building
fragments will not be able to provide more information than select-
ing one of p and p′. Hence, it is often sufficient to only select a
subset of all frequent access patterns to generate fragments.

To select a subset of all frequent access patterns, there are two
factors that we should consider.

1. (Hitting the Whole Workload) We should select frequent ac-
cess patterns to hit the query workload as much as possible.
This is because that when we select a frequent access pattern
to generate a fragment, all queries isomorphic to this pattern
can be answered directly, which improve the efficiency.

2. (Satisfying the Storage Constraint) The total storage of the
system in real applications is limited, so selecting too many
frequent access patterns is not desirable.

The above two factors contradict each other. Hitting the whole
workload requires to select as many frequent access patterns as pos-
sible, while the storage constraint requires to select not too many
frequent access patterns. There should be a tradeoff between the
two factors.

In the following, we propose a cost model to combine these two
factors for selecting a subset of all frequent access patterns.

4.1.1 Hitting the Whole Workload
If a fragment is generated from the graph induced by matches

of a frequent access pattern, then evaluating all queries containing
the pattern can be speeded up by using this fragment. The more
queries a frequent access pattern hits, the more gains we obtain
during query processing. Therefore, the benefit of selecting a fre-
quent access pattern to generate its corresponding fragment should
be defined based on the number of queries that the frequent access
pattern hits.

In addition, if two similar frequent access patterns are contained
by the same set of queries in the workload, it is probably wise to
include only one of them. Generally speaking, among similar fre-
quent access patterns contained by the same number of queries, it is
often sufficient to materialize only the largest frequent access pat-
tern. That is to say, if p′, a subgraph of p, is contained by the same
set of queries as p, p is more beneficial than p′ to be selected as
building fragments. This is because that if we select the larger pat-
tern, a query is more probable to be decomposed to fewer number
of subqueries during query processing. Fewer subqueries can avoid
some distributed joins, which can improve the efficiency of query
processing.

The above observation implies that larger frequent access pat-
terns are more beneficial to be selected as building fragments. This
above criterion on the selection of frequent access patterns is for-
mally defined as size-increasing benefit.

DEFINITION 8. (Size-increasing Benefit) Given a frequent ac-
cess pattern p, the benefit of selecting p for hitting the query Q,
Bene f it(p,Q), is denoted as follows.

Bene f it(p,Q) = |E(p)| × use(Q, p)

Furthermore, a query in the workload may contain multiple se-
lected frequent access patterns. This means that the query can
be decomposed into multiple sets of subqueries if we evaluate the
query. Each set of subqueries can map to an execution plan. Since
only one execution plan is finally selected to evaluate the query, a
query in the workload should only be limited to contribute to the
benefits of some particular frequent access patterns once. Based
on this observation, we limit a query to only contribute the largest
frequent access pattern that the query contains.

DEFINITION 9. (Benefit of a Frequent Access Pattern Set) Given
a set of frequent access patterns P′ ⊆ P, the benefit of selection of
P′ over the workload Q is the sum of the maximum benefit of its
frequent access patterns over Q.

Bene f it(P′,Q) =
∑
Q∈Q

max
p∈P′
{Bene f it(p,Q)}

4.1.2 Satisfying the Storage Constraint
Furthermore, the total storage of the system in real applications

is limited, so selecting too many frequent access patterns is not
desirable. The selection of frequent access patterns should meet
some constraints. When the size of all fragments is larger than
the storage constraint, we cannot further select any more frequent

380

access patterns. We normalize the storage capacity of the system to
a value S C. Then, we have the constraint as:∑

p∈P′
|E(~p�G)| ≤ S C

Here, we assume that S C is larger than the number of edges in
the hot graph, so each hot edge can have at least one copy. This
assumption guarantees the completeness of the RDF graph.

4.1.3 Combining the Two Factors
Then, our optimization objective is to maximize the benefit sub-

ject to the storage constraint. We can prove that this benefit function
(Definition 9) is submodular as follows, so this problem is NP-hard.

THEOREM 1. Finding a set of frequent access patterns with the
largest benefit while subject to the storage constraint is NP-hard.

PROOF. Here, we prove that the benefit function Bene f it(P′,Q) =∑
Q∈Qmaxp∈P′ {|E(p)| × use(Q, p)} is submodular. In other words,

for every P1 ⊆ P2 and a frequent access pattern p < P2, we need to
prove that 4Bene f it(p|P1) ≥ 4Bene f it(p|P2).

For pattern p, we assume that Q′ is the set of queries containing
p in the workload. There are three kinds of queries in Q′: the set Q1

of queries not containing any patterns in P2, the set Q2 of queries
containing patterns in (P2 − P1), and the set Q3 of queries only
containing patterns in P1.

Since any query in Q1 and Q3 does not concern patterns in (P2 −

P1), Bene f it({p}∪P1,Q1∪Q3) = Bene f it({p}∪P2,Q1∪Q3). Hence,
the marginal gains of p for P1 and P2 over Q1 and Q3 are the same.

For Q2, 4Bene f it(p|P1) > 4Bene f it(p|P2), if there exist at least one
query Q∗ meeting all the two following conditions: 1) the largest
pattern contained by Q∗ over P2 is in (P2 − P1) and has larger size
than p; 2) the largest pattern contained by Q∗ over P1 has smaller
size than p. The above two conditions mean that p can only in-
crease the benefit of P1 over Q2 but not the benefit of P2 over Q2.
Otherwise, for Q2, 4Bene f it(p|P1) = 4Bene f it(p|P2).

In conclusion, 4Bene f it(p|P1) ≥ 4Bene f it(p|P2) and the function
Bene f it(P′,Q) is submodular. Since the problem of maximizing
submodular functions is NP-hard [3], the problem is NP-hard.

4.1.4 Our Solution
As proved in Theorem 1, frequent access pattern selection is NP-

complete problem. We propose a greedy algorithm as outlined in
Algorithm 1. Note that, to guarantee data integrity of distributed
RDF data fragmentation, each hot edge should be contained in at
least one fragment. Hence, we initialize a pattern of one edge for
each frequent property and compute out its corresponding fragment
(Line 3-6).

After we select all patterns with one edge, we enumerate all fea-
sible frequent access pattern sets containing one pattern of more
than one edge. Let P1 be a feasible set of cardinality one that
has the largest benefit (Line 7). Then, we iteratively select one
of the remaining frequent access patterns p′ to maximize the value
of Bene f it({p′}∪P′ ,Q)−Bene f it(P′ ,Q)

|E(~p′�G)| until we meet the storage constraint or
cannot find a frequent access pattern to increase the benefit (Line 8-
14). Let P2 be the solution obtained in the iterative phase. Finally,
the algorithm outputs P′∪P1 if Bene f it(P′∪P1,Q) ≥ Bene f it(P′∪
P2,Q) and P′ ∪ P2 otherwise (Line 15-17).

THEOREM 2. Algorithm 1 obtains a set of frequent access pat-
terns of benefit at least min{ 1

(maxp∈P |E(p)|) ,
1
2 (1 − 1

e)} times the value
of an optimal solution.

PROOF. There are two parts in Algorithm 1: initialization and
greedy selection of frequent access patterns.

Algorithm 1: Frequent Access Pattern Selection Algorithm
Input: A set of frequent access patterns P = {p1, p2, ..., px}

Output: A set P′ ⊆ P to generate fragments
1 P′ ← ∅;
2 TotalS ize← 0;
3 for each p ∈ P and p has only one edge do
4 P′ ← P′ ∪ {p};
5 P← P − {p};
6 TotalS ize← TotalS ize + |E(~p�G)|;
7 P1 ← argmax{ Bene f it({pi},Q)

|E(~pi�G)| : pi ∈ P, |E(~pi�G)| + TotalS ize ≤
S C ∧ |E(pi)| > 1};

8 P2 ← ∅;
9 TotalS ize′ ← 0;

10 while TotalS ize′ ≤ S C − TotalS ize do
11 Find the frequent access pattern p′ ∈ P − P′ with the largest

additional value of Bene f it({p′}∪P′ ,Q)−Bene f it(P′ ,Q)
|E(~p′�G)| ;

12 P2 ← P2 ∪ {p′};
13 P← P − {p′};
14 TotalS ize′ ← TotalS ize′ + |E(~p′�G)|;
15 if Bene f it(P′ ∪ P1,Q) ≥ Bene f it(P′ ∪ P2,Q) then
16 Return P′ ∪ P1;
17 Return P′ ∪ P2;

For initialization (Line 3-6 in Algorithm 1), all selected patterns
only contain one edge, so |E(p)| = 1. Therefore, the benefit of pat-
terns only having one edge of a frequent property is

∑
Q∈Qmaxp∈P′ {1×

use(Q, p)}. Since the hot edges hit almost all queries in the work-
load,

∑
Q∈Qmaxp∈P′ {1×use(Q, p)} is approximately equal to the size

of the workload, |Q|. On the other hand, in the worst case, the op-
timal solution is that all queries in the workload contain the largest
frequent access pattern. Then, the benefit of the optimal solution
is

∑
Q∈Q{|E(pmax)| × use(Q, p)}, where pmax is the frequent pattern

with the largest size. Hence, the benefit of the selected patterns in
the initial phase is at least 1

(maxp∈P |E(p)|) of the optimal benefit.
For the phase of greedily selecting frequent access patterns (Line

7-14 in Algorithm 1), since the problem of selecting the optimal set
of frequent access patterns is a problem of maximizing a submod-
ular set function subject to a knapsack constraint as discussed in
Theorem 1, we directly apply the greedy algorithm in [11] to iter-
atively select frequent access patterns. [11] proves that the worst-
case performance guarantee of the greedy algorithm is 1

2 (1− 1
e), so

the benefit of the selected patterns in this phase is at least 1
2 (1 − 1

e)
of the optimal benefit.

In summary, the final performance guarantee of our algorithm is
min{ 1

(maxp∈P |E(p)|) ,
1
2 (1 − 1

e)}.

5. FRAGMENTATION
In this section, we present two fragmentation strategies: vertical

and horizontal.

5.1 Vertical Fragmentation
For vertical fragmentation, we put matches homomorphic to the

same frequent access pattern into the same fragment. Because a
query graph often only contains a few frequent access patterns and
matches of one frequent access pattern are put together, other ir-
relevant fragments can be filtered out during query evaluation and
only sites stored relevant fragments need to be accessed to find
matches. Filtering out irrelevant fragments can improve the query
performance. Furthermore, sites not storing relevant fragments can
be used to evaluate other queries in parallel, which improves the
total throughput of the system. In summary, the vertical fragmen-
tation strategy utilizes the locality of SPARQL queries to improve

381

both query response time and throughput. Experimental results in
Section 8 also confirm the above argument.

Given a frequent access pattern p, it can then be transformed
into a SPARQL query, resulting in a vertical fragment of the RDF
graph. We use the results ~p�G of a selection operation based on
p to generate a vertical fragment. All vertical fragments generated
from our selected frequent access patterns construct a vertical frag-
mentation. Given a set of frequent access patterns P, we formally
define its corresponding vertical fragmentation over an RDF graph
G as follows.

DEFINITION 10. (Vertical Fragmentation) Given an RDF graph
G and a frequent access pattern p, a vertical fragment F generated
from p is defined as F = {V(F), E(F), L′′}, where (1) V(F) ⊆ V(G)
is the set of vertices occurring in ~p�G; (2) E(F) ⊆ E(G) is the set
of edges occurring in ~p�G; and (3) L′′ ⊆ L is the set of edge labels
occurring in ~p�G.

Then, given a set of frequent access patterns P = {p1, p2, ..., px},
the corresponding vertical fragmentation is F = {Fi|0 ≤ i ≤ x and
Fi is the vertical fragment generated from pi.}

EXAMPLE 1. Given the frequent access pattern p3 in Figure 4,
Figure 5 shows the corresponding vertical fragment.

Boethius

Religion

mainInterest

Friedrich_Nietzsche

Ethics

mainInterest

Max_Horkheimer

influencedBy

Social_theory

mainInterest

"Max Horkheimer"

name

name

"Boethius"

name

Aristotle

Ethics

mainInterest

influencedBy

Plato

influencedBy

influencedBy

"Aristotle"

name

Karl_Marx

influencedBy

Counter-Enlightenment

mainInterest

"Friedrich Nietzsche"

Figure 5: Example Vertical Fragment

5.2 Horizontal Fragmentation
For horizontal fragmentation, we put matches of one frequent ac-

cess pattern into the different fragments and distribute them among
different sites. Then, a query may involve many fragments and
each fragment has a few matches. The size of a fragment is often
much smaller than the size of the whole data, so finding matches of
a query over a fragment explores smaller search space than finding
matches over the whole data. If the fragments involved by a query
are allocated to different sites, then each site finds a few matches
over some fragments with the smaller size than the whole data. This
strategy is to utilize the parallelism of clusters of sites to reduce the
query response time. The above argument is also confirmed by the
experimental results in Section 8.

In this section, we extend the concepts of simple predicate and
minterm predicate originally developed for relational systems [18]
to divide the RDF graph horizontally.

5.2.1 Structural Minterm Predicate
First, we define the structural simple predicate. Each structural

simple predicate corresponds to a frequent access pattern with a
single (in)equality. Given a frequent access pattern p with variables
set {var1, var2, ..., varn}, a structural simple predicate sp defined on
D has the following form.

sp : p(vari) θ Value

where θ ∈ {=,,} and Value is a constant constraint for vari chosen
from a query containing p in Q.

EXAMPLE 2. Let us consider the query graph Q3 in Figure
2 and its corresponding frequent access pattern p3 in Figure 4.
We can generate four structural simple predicates: (1). sp1 :
p3(?x1) = Aristotle; (2). sp2 : p3(?x1) , Aristotle; (3). sp3 :
p3(?x2) = Ethics; (4). sp4 : p3(?x2) , Ethics.

Then, we define the structural minterm predicate as the conjunc-
tion of structural simple predicates of the same frequent access pat-
tern. We can obtain all structural minterm predicates by enumerat-
ing all possible combinations of structural simple predicates. Given
a set of structural simple predicates S P = {sp1, sp2, ..., , spy} for
frequent access pattern p, the set of structural minterm predicates
M = {mp1,mp2, ...,mpz} for p is defined as follows.

M = {mpi|
∧

spk∈S P

sp∗k, 1 ≤ k ≤ y}

where sp∗k = spk or sp∗k = ¬spk. So each structural simple predi-
cate can occur in a structural minterm predicate either in its natural
form or its negated form.

Similar to the frequent access pattern, we can also define the
structural minterm predicate usage value and access frequency to
record the access frequency of a structural minterm predicate. We
can prune the minterm predicates with small access frequencies.

DEFINITION 11. (Structural Minterm Predicate Usage Value)
Given a SPARQL query Q and a structural minterm predicate mp,
we associate a structural minterm predicate usage value, denoted
as use(Q,mp), and defined as follows:

use(Q,mp) =
{

1 i f predicate mp is a subgraph o f Q

0 otherwise

Then, given a set of SPARQL queries Q = {Q1,Q2, ...,Qq}, we
define the access frequency of a structural minterm predicate mp as
follows.

acc(mp) =
k=q∑
k=1

use(Qk,mp)

In practice, there may exist many minterm predicates. It is too
expensive to enumerate all minterm predicates. Therefore, we prune
some minterm predicates with too small access frequencies.

Given a structural minterm predicate mp, it can then be trans-
formed into SPARQL queries, resulting in a horizontal fragment
of the RDF graph. We use the results ~mp�G of a selection opera-
tion based on mp to generate a horizontal fragment. All horizontal
fragments generated from the structural minterm predicates that we
obtain construct a horizontal fragmentation. Given a set of minterm
predicates M, we formally define its corresponding horizontal frag-
mentation over an RDF graph G as follows.

DEFINITION 12. (Horizontal Fragmentation) Given an RDF
graph G and a structural minterm predicate mp, a horizontal frag-
ment F generated from mp is defined as F = {V(F), E(F), L′′},
where (1) V(F) ⊆ V(G) is the set of vertices occurring in ~mp�G;
(2) E(F) ⊆ E(G) is the set of edges occurring in ~mp�G; and (3)
L′′ ⊆ L is the set of edge labels occurring in ~mp�G.

Then, given a set of structural minterm predicates M = {mp1,mp2,
...,mpy}, the corresponding horizontal fragmentation isF = {Fi|0 ≤
i ≤ y and Fi is the vertical horizontal generated from mpi.}

EXAMPLE 3. Given the structural simple predicates in Exam-
ple 2, we can get all structural minterm predicates from frequent
access pattern p3 as follows: (1). mp1 : p3(?x0) = Aristotle ∧
p3(?x1) = Ethics; (2) mp2 : p3(?x0) = Aristotle ∧ p3(?x1) ,

382

F2

F1
Boethius

Religion

mainInterest

"Boethius"

name

Aristotle

influencedBy

Aristotle

Ethics

mainInterest

Plato

influencedBy

"Aristotle"

name

F4

Social_theory

mainInterest

"Hannah Arendt"
name

F3
Friedrich_Nietzsche

Ethics

mainInterest

"Friedrich Nietzsche"

name

Aristotle

influencedBy

Friedrich_Nietzsche

influencedBy

Counter-Enlightenment

mainInterest

"Hannah Arendt"
name

Friedrich_Nietzsche

influencedBy

Social_theory

mainInterest

"Hannah Arendt"
name

Karl_Marx

influencedBy

Counter-Enlightenment

mainInterest

"Hannah Arendt"
name

Karl_Marx

influencedBy

Max_Horkheimer

Max_Horkheimer

Max_Horkheimer

Max_Horkheimer

(a) Example Horizontal Frag-
ment Generated from mp1

F2

F1
Boethius

Religion

mainInterest

"Boethius"

name

Aristotle

influencedBy

Aristotle

Ethics

mainInterest

Plato

influencedBy

"Aristotle"

name

F4

Social_theory

mainInterest

"Hannah Arendt"
name

F3
Friedrich_Nietzsche

Ethics

mainInterest

"Friedrich Nietzsche"

name

Aristotle

influencedBy

Friedrich_Nietzsche

influencedBy

Counter-Enlightenment

mainInterest

"Hannah Arendt"
name

Friedrich_Nietzsche

influencedBy

Social_theory

mainInterest

"Hannah Arendt"
name

Karl_Marx

influencedBy

Counter-Enlightenment

mainInterest

"Hannah Arendt"
name

Karl_Marx

influencedBy

Max_Horkheimer

Max_Horkheimer

Max_Horkheimer

Max_Horkheimer

(b) Example Horizontal Frag-
ment Generated from mp2

F2

F1

Boethius

Religion

mainInterest

"Boethius"

name

Aristotle

influencedBy

Aristotle

Ethics

mainInterest

Plato

influencedBy

"Aristotle"

name

F3 Friedrich_Nietzsche

Ethics

mainInterest

"Friedrich Nietzsche"

name

Aristotle

influencedBy

Social_theory

mainInterest

"Max Horkheimer"

name

Friedrich_Nietzsche

influencedBy

Counter-Enlightenment

mainInterest

"Max Horkheimer"

name

Friedrich_Nietzsche

influencedBy

Social_theory

mainInterest

"Max Horkheimer"

name

Karl_Marx

influencedBy

Karl_Marx

Max_Horkheimer

Max_Horkheimer

Max_Horkheimer

Social_theory

mainInterest

"Max Horkheimer"

name

Friedrich_Nietzsche

influencedBy

Max_Horkheimer

Karl_Marx

influencedBy

Counter-Enlightenment

mainInterest

(c) Example Horizontal Frag-
ment Generated from mp3

F2

F1

Boethius

Religion

mainInterest

"Boethius"

name

Aristotle

influencedBy

Aristotle

Ethics

mainInterest

Plato

influencedBy

"Aristotle"

name

F3 Friedrich_Nietzsche

Ethics

mainInterest

"Friedrich Nietzsche"

name

Aristotle

influencedBy

Social_theory

mainInterest

"Max Horkheimer"

name

Friedrich_Nietzsche

influencedBy

Counter-Enlightenment

mainInterest

"Max Horkheimer"

name

Friedrich_Nietzsche

influencedBy

Social_theory

mainInterest

"Max Horkheimer"

name

Karl_Marx

influencedBy

Karl_Marx

Max_Horkheimer

Max_Horkheimer

Max_Horkheimer

Social_theory

mainInterest

"Max Horkheimer"

name

Friedrich_Nietzsche

influencedBy

Max_Horkheimer

Karl_Marx

influencedBy

Counter-Enlightenment

mainInterest

(d) Example Horizontal Fragment Gen-
erated from mp4

Figure 6: Example Horizontal Fragments

Ethics; (3). mp3 : p3(?x0) , Aristotle ∧ p3(?x1) = Ethics; (4).
mp4 : p3(?x0) , Aristotle ∧ p3(?x1) , Ethics.

Figure 6 shows all horizontal fragments generated from the above
structural minterm predicates.

6. ALLOCATION
After fragmenting the RDF graph, the next step is to allocate all

fragments on several sites. In real applications, some frequent ac-
cess patterns or structural minterm predicates are usually accessed
together, so their corresponding fragments should be placed in one
site to further avoid the cross-fragments joins. There is a need
for some measures evaluating precisely the notion of “together-
ness”. This measure is the affinity of fragments, which indicates
how closely related the fragments are.

We define fragment affinity metric to measure the togetherness
between two frequent access patterns or structural minterm predi-
cates as follows:

DEFINITION 13. (Fragment Affinity Metric) The fragment affin-
ity metric between two fragments F and F′ with respect to the
workload Q = {Q1,Q2, ..., Qq} is defined as follows

• a f f (F, F′) =
∑q

k=1 use(Qk, p) × use(Qk, p′), if F and F′ are
vertical fragments generated from frequent access patterns p
and p′;

• a f f (F, F′) =
∑q

k=1 use(Qk,mp) × use(Qk,mp′), if F and F′

are horizontal fragments generated from structural minterm
predicates mp and mp′;

Based on the fragment affinity metric, we can show how closely
related the fragments are. If the affinity metric of two fragments
is large, it means that these two fragments are often involved by
the same query. Some fragments are so related that they should
be placed together to reduce the number of cross-sites joins. Here,
we group all fragments into some clusters. The result of clustering
corresponds to an allocationA, and each cluster corresponds to an
element of A, which means that all fragments in the cluster are
placed into the same site.

There are many clustering algorithms to cluster all fragments and
we need to select one of them. In this paper, we extend a graph
clustering algorithm, PNN [5], to cluster all fragments into an allo-
cation A = {A1, A2, ..., Am}. All fragments of the same cluster are
put into one site.

First, we build the allocation graph as follows.

DEFINITION 14. (Allocation Graph) Given a fragmentationF =
{F1, F2, ..., Fn}, the corresponding allocation graph AG = {V(AG),
E(AG), fW } is defined as follows:

• V(AG) is a set of vertices that map to all fragments;

• E(AG) is a set of undirected edges that vv′ ∈ E(VG) if and
only if the fragment affinity metric between the correspond-
ing fragments of v and v′ is larger than 0;

• fW is a weight function fW : E(AG) → N+. If v and v′

correspond to fragments F and F′, fW (vv′) = a f f (F, F′).

Then, the allocation problem is equivalent to cluster all frag-
ments in m clusters, and all fragments in a cluster are connected
in AG. We define the density of a cluster Ai in AG to rate the qual-
ity of Ai as follows.

δ(Ai) =

∑
vi∈Ai∧v j∈Ai∧viv j∈E(AG)

fW (viv j)(
|Ai|

2

)
where

∑
vi∈Ai∧v j∈Ai∧viv j∈E(AG)

fW (viv j) is the sum of weights of all edges

in Ai and
(
|Ai|

2

)
is the maximum possible number of edges.

The objective of our allocation algorithm is to search for m sub-
graphs of AG that have the highest densities. Unfortunately, this
problem is NP-complete [20], so we propose a heuristic solution as
Algorithm 2. Algorithm 2 is a variant of PNN and picks the locally
optimal choice of merging two vertices in AG at each step. Because
our objective function can guarantee the locally optimal choice is
also the optimal choice for the overall solution, Algorithm 2 can
find out the optimal clustering result of AG.

Generally speaking, we initialize a cluster for each fragment.
Then, we repeatedly picks the two clusters (singletons or larger)
that have the highest weight value to be merged. The weight be-
tween two clusters are the density value of merging them. Such
merging is iterated until the size of the allocation graph has been
reduced to m.

Algorithm 2: Allocation Algorithm
Input: The allocation graph AG and the preset threshold θ
Output: An allocationA = {A1, A2, ..., Am}

1 for each vertex vi in V(VG) do
2 Ai ← {vi};
3 Find the edge emax with the highest weight in E(AG);
4 Initialize AG′ that is the same to AG;
5 while |V(AG′)| , m do
6 Generating AG′ from AG by merging emax = AiA j to Ai j;
7 for each Ak adjacent to Ai j in E(AG′) do

8 fW (AkAi j)←

∑
vi∈Ak∧(v j∈Ai∨v j∈A j)∧viv j∈E(AG)

fW (viv j) |A′k |2

9 Find the edge emax with the highest weight in E(AG′);

7. DISTRIBUTED QUERY PROCESSING
In this section, we discuss how to process a SPARQL query. For

query processing, the metadata is necessary and we introduce how
to maintain the metadata in a data dictionary in Section 7.1. Then,
we discuss how to decompose a query into some subqueries in Sec-
tion 7.2. Last, we discuss how to produce a distributed execution
plan and execute all subqueries based on the plan in Section 7.3.

383

Aristotle

?x ?nname

influencedBy

Religion

mainInterest

?c

?t

viaf

placeOfDeath

Aristotle

?x ?nname

influencedBy

Religion

mainInterest

?x

?c

placeOfDeath

?x

?t
viaf

q1

q2

q3Q4

?x

?c

placeOfDeath

?x

?t
viaf

q1

q2

?x

Religion

mainInterest

?x ?nname

Aristotle

?x

influencedBy

q3

q4

q5

(a) A New Input Query Q4

Aristotle

?x ?nname

influencedBy

Religion

mainInterest

?c

?t

viaf

placeOfDeath

Aristotle

?x ?nname

influencedBy

Religion

mainInterest

?x

?c

placeOfDeath

?x

?t
viaf

q21

q22

q23Q4

?x

?c

placeOfDeath

?x

?t
viaf

q11

q12

?x

Religion

mainInterest

?x ?nname

Aristotle

?x

influencedBy

q13

q14

q15

(b) Valid DecompositionD1

Aristotle

?x ?nname

influencedBy

Religion

mainInterest

?c

?t

viaf

placeOfDeath

Aristotle

?x ?nname

influencedBy

Religion

mainInterest

?x

?c

placeOfDeath

?x

?t
viaf

q21

q22

q23Q4

?x

?c

placeOfDeath

?x

?t
viaf

q11

q12

?x

Religion

mainInterest

?x ?nname

Aristotle

?x

influencedBy

q13

q14

q15

(c) Valid DecompositionD2

Figure 7: A New Input Query and Its Example Valid Decompositions

7.1 Data Dictionary
After fragmentation and allocation, the results of fragmentation

and allocation need to be stored and maintained by the system.
This information is necessary during distributed query processing.
This information is stored in a data dictionary. The data dictio-
nary stores a global statistics file generated at fragmentation and
allocation time. It contains the following information: fragment
definitions, their sizes, site mappings, access frequencies and so
on.

Since each fragment corresponds to a frequent access pattern or a
structural minterm predicate, the data dictionary uses the frequent
access pattern with/without constraints as the representative of a
fragment. Each frequent access pattern with/without constraints
corresponds to a fragment and is associated with all statistics of
the fragment. The data dictionary need to fast retrieve all frequent
access patterns with/without constraints to determine the relevant
frequent access pattern for a query.

We build a hash table to achieve the above objective. We first
use the DFS coding [26] to translates frequent access patterns into
sequences. With the DFS code of a frequent access pattern, we can
map any frequent access pattern to an integer by hashing its canon-
ical label. Then, we use the hash table to locate frequent access
patterns and retrieve the statistics of their corresponding fragments

7.2 Query Decomposition
When users input a query Q, the system first uses the data dic-

tionary to determine which fragments are involved in the query and
decomposes the query into some subqueries on fragments.

Given a query Q, a decomposition of Q is a set of subqueries
D = {q1, q2, ..., qt} such that (1) each qi is a subgraph of Q and qi

maps to a frequent access pattern or structural minterm predicate;
(2) V(q1)∪...∪V(qt) = V(Q); and (3) E(q1)∪...∪E(qt) = E(Q)∧∀i ,
j, E(qi) ∩ E(q j) = ∅.

Since we partition the RDF graph based on the frequent access
patterns, we also decompose the query based on the frequent access
patterns. In other words, we decompose the query into subqueries
that are homomorphic to frequent access patterns. If a query in-
volves infrequent properties that cannot be decomposed into sub-
queries homomorphic to any frequent access patterns, then each
connected subgraph of the query that only contains infrequent prop-
erties corresponds to a subquery. We define the valid decomposi-
tion as follows.

DEFINITION 15. (Valid Decomposition) Given a SPARQL query
Q, a valid decomposition D = {q1, q2, ..., qt} of Q should meet the
following constraint: if qi (1 ≤ i ≤ t) is not homomorphic to any
frequent access patterns, all edges in qi should be cold edges.

There exist at least one valid decompositions. A possible decom-
position is the decomposition of all subqueries of a single edge.

Because we select all frequent access patterns of one edge, the de-
composition of all subqueries of a single edge is valid. Besides the
valid decomposition, there may also exist some other valid decom-
positions. Hence, we propose a cost-model driven selection and
the best valid decomposition is the valid decomposition with the
smallest cost.

Here, we assume that the cost of a decomposition is the cost of
joining all matches of the subqueries in D and each pair of sub-
queries’ matches can join together. The assumption is the worst
case, so that we can quantify the worst-case performance. Then,
we define the cost of a decomposition as follows.

cost(D) =
∏
qi∈D

card(qi)

where card(qi) is the number of matches for qi, which can be esti-
mated by looking up the data dictionary.

EXAMPLE 4. Assume that an user inputs a new query Q4 as
shown in Figure 7(a). Given frequent access patterns in Figure
4, there can be two valid decompositions D1 and D2 as shown in
Figures 7(b) and 7(c). For vertical fragmentation, q23 in D2 is
evaluated on the vertical fragment of p3 (Figure 5); for horizontal
fragmentation, q23 is evaluated on the horizontal fragment of mp2

(Figure 6(b)).
Whether in vertical or in horizontal fragmentation, it is obvious

thatD2 has fewer subqueries thanD1 and card(q23) < card(q13)×
card(q14) × card(q15). Hence, cost(D2) is smaller than cost(D1),
andD2 is more of a priority as the final decomposition.

Based on the above definitions, we propose the query decom-
position algorithm as Algorithm 3. Because the SPARQL query
graphs in real applications usually contain 10 or fewer edges, we
can use a brute-force implementation to enumerate all possible de-
compositions and find the decomposition with the smallest cost.

Algorithm 3: Query Decomposition Algorithm
Input: A query Q
Output: A valid decompositionD = {q1, q2, ..., qt} of query Q

1 MinCost ← +∞;
2 InitializeD as the decomposition of all subqueries of a single edge;
3 for each possible valid decompositionD′ = {q1, ..., qt} do
4 CurrentCost ← 1;
5 for each query qi inD′ do
6 Estimate the number of results for qi as card(qi) based on the

data dictionary;
7 CurrentCost ← CurrentCost × card(qi)
8 if MinCost > CurrentCost then
9 D ← D′;

10 MinCost ← CurrentCost;
11 ReturnD;

384

7.3 Query Optimization and Execution
After decomposing the query, the next step is to find an execution

plan for the query which is close to optimal. In this section, we dis-
cuss the major optimization issue of finding execution plan, which
deals with the join ordering of subqueries. We extend the algorithm
of System-R [2] to find the optimal execution plan for distributed
SPARQL queries. The algorithm is described in Algorithm 4.

Generally speaking, Algorithm 4 is a variant of System-R style
dynamic programming algorithm. It firstly generates the best exe-
cution plan of n − 1 subqueries, and then join the matches of n − 1
subqueries with the matches of n-th subquery. The cost of an execu-
tion plan can also be estimated based on the number of subqueries’
results, which is stored in the data dictionary.

Finally, each subquery is executed in the corresponding sites in
parallel. The optimization of each subquery uses the existing meth-
ods in centralized RDF database systems. After the matches of all
subqueries are generated, we join them together according to the
optimal execution plan.

Algorithm 4: Query Optimization Algorithm
Input: A decompositionD = {q1, q2, ..., qt} of query Q
Output: An execution plan (...((qi1 Z qi2) Z qi3) Z ... Z qit)

1 for each two subqueries (qi) and (q j) where 1 ≤ i , j ≤ t do
2 Initialize an execution plan qi Z q j and estimate its cost;
3 Store all execution plans and their costs in a table T2;
4 for i = 3 to t do
5 for each execution plan pl j in Ti−1 do
6 for each subquery qk that is not contained by pl j do
7 Build execution plan pl j Z qk and estimate its cost;
8 Store this execution plan and its costs in a table Ti;
9 for each two plans pl j and plk in Ti do

10 if pl j and plk map to the same set of subqueries then
11 Eliminate one of pl j and plk that has the larger cost;
12 Return the execution plan with the minimum cost;

8. EXPERIMENTAL EVALUATION
We conducted extensive experiments to test the effectiveness of

our proposed techniques on a real dataset, DBPedia, and a synthetic
dataset, WatDiv. In this section, we report the setting of test data
and various performance results.

8.1 Setting
DBPedia. DBPedia2 is an RDF dataset extracted from Wikipedia.

The DBPedia contains 163, 977, 110 triples. We use the DBpe-
dia SPARQL query-log as the workload. This workload contains
queries posed to the official DBpedia SPARQL endpoint in 14 days
of 2012. After removing some queries that cannot be handled, there
are 8, 151, 238 queries in the workload.

WatDiv. WatDiv [1] is a benchmark that enable diversified stress
testing of RDF data management systems. In WatDiv, instances of
the same type can have the different sets of attributes. For testing
our methods, we generate five datasets varying sizes from 50 mil-
lion to 250 million triples. By default, we use the RDF dataset with
100 million triples. In addition, WatDiv can generate a workload
by instantiating some templates with actual RDF terms from the
dataset. WatDiv provides 20 templates to generate test queries. We
use these benchmark templates to generate a workload with 2000
test queries.

We conduct all experiments on a cluster of 10 machines running
Linux, each of which has one CPU with four cores of 3.06GHz.
Each site has 16GB memory and 150GB disk storage. We select
one of these sites as a control site. At each site, we install gStore
2http://km.aifb.kit.edu/projects/btc-2012/dbpedia/

[31] to find matches. We use MPICH-3.0.4 running on C++ to join
the results generated by subqueries.

For fair performance comparison, we use gStore and MPICH-
3.0.4 to re-implement two recent distributed RDF fragmentation
strategies. The first one is SHAPE [14], which defines a vertex
and its neighbors as a triple group and assigns the triple groups
according to the value of its center vertices. There are many dif-
ferent kinds of triple groups in [14] and we use the subject-object-
based triple groups in this paper. The second one is WARP [8].
WARP first uses METIS [12] to divide the RDF graph into frag-
ments. Then, it replicates all matches of a query pattern that cross
two fragments in one fragment. We use all frequent access patterns
to extend the fragments in WARP.

8.2 Parameter Setting
Our frequent access patterns selection method uses a parameter:

minS up. In this subsection, we discuss how to set up minS up to
optimize query processing. Note that, since the numbers of query
templates and queries per query template in WatDiv are specified
by users, the parameters can also be determined beforehand. Thus,
we only discuss how to set the parameters for DBPedia.

Given a workload Q, we set the support threshold, minS up, to
find patterns whose access frequencies are larger than minS up. It
is clear that the smaller minS up is, the larger number of frequent
access patterns there are. More frequent access patterns mean that
a query in the workload may have a higher possibility to contain
some frequent access patterns.

0.1% 0.5% 1%

50

100

150

200

minS up

N
um

be
ro

fF
A

Ps

(a) minS up

50 100 150 2000%

20%

40%

60%

80%

100%

Number of FAPs

C
ov

er
ag

e

(b) Workload Hitting Ratio

Figure 8: Effect of Frequent Access Patterns
Figure 8(a) shows the impact of minS up. As minS up increases,

the number of frequent access patterns (FAPs) decreases. Hence,
when we set minS up as 0.1% of the total number of queries in
the workload, there are 163 frequent access patterns for DBPedia.
When minS up is 1% of the total number of queries, the number
of frequent access patterns is reduced to 44 for DBPedia. Further-
more, fewer frequent access patterns means that fewer queries in
the workload are hit, as shown in Figure 8(b).

Even if we set minS up as 0.1% of the total number of queries,
the number of frequent access patterns is not large. Hence, in the
following, we set minS up as 0.1% of the total number of queries
for DBPedia by default.

8.3 Throughput
In this experiment, we test the throughput of different fragmen-

tation strategies. We sample 1% of all queries in the workload and
measure the throughput in queries per minute. Figure 9 shows the
number of queries answered in one minute of different fragmenta-
tion strategies.

For SHAPE and WARP, each query concerns all fragments, so
queries are still processed sequentially. Since WARP is more bal-
anced than SHAPE, the throughput of WARP is a little better than
SHAPE. WARP can handle about 32 and 82 queries in one minute

385

SHAPE WARP VF HF

25

30

35

40

45

Q
ue

ri
es

Pe
rM

in
ut

e

(a) DBPedia
SHAPE WARP VF HF

0

100

200

300

400

500

Q
ue

ri
es

Pe
rM

in
ut

e
(b) WatDiv

Figure 9: Throughput Comparison

for DBPedia and WatDiv, while SHAPE can handle 24 and 75
queries.

For the vertical fragmentation strategy (VF), since a query of-
ten only contains a few frequent access patterns, it only involves
a few fragments. Two queries involving different fragments can
be evaluated in parallel. Hence, about 46 queries and 533 queries
can be answered in one minute for DBPedia and WatDiv, respec-
tively. For the horizontal fragmentation strategy (HF), each fre-
quent access pattern specified by the query may map to many struc-
tural minterm predicates and the corresponding fragments of these
structural minterm predicates may be allocated to different sites.
Hence, the throughput of the horizontal fragmentation strategy is a
little worse than the vertical fragmentation strategy, and 38 and 385
queries can be answered in one minute for DBPedia and WatDiv.

8.4 Response Time
In this experiment, we test the query performance of different

fragmentation strategies. We also sample 1% of all queries in the
workload and compute the average query response time of a query.
Figure 10 shows the performance results.

SHAPE and WARP partition the RDF graph into some subgraphs,
and distributes these subgraphs among different sites. The query
should be processed in many sites in parallel. Hence, SHAPE is
less balanced and sometime need cross-fragment joins, so SHAPE
needs about 2.5 and 0.79 seconds to answer a query for DBPedia
and WatDiv, while WARP takes 1.8 and 0.72 seconds.

For the vertical fragmentation strategy, only relevant fragments
are searched for matches and the search space is reduced. There-
fore, a query can be answered in about 0.8 seconds for DBPedia and
0.3 seconds for WatDiv. For the horizontal fragmentation strategy,
we can filter out all irrelevant fragments mapping to the structural
minterm predicates not specified by the query, which can further re-
duce the search space. Hence, a query can be answered with about
0.6 seconds for DBPedia and 0.15 seconds for WatDiv.

SHAPE WARP VF HF

1.5

2

2.5

3

A
ve

ra
ge

Ti
m

e
Pe

rQ
ue

ry
(s

)

(a) DBPedia
SHAPE WARP VF HF

0

0.2

0.4

0.6

0.8

A
ve

ra
ge

Ti
m

e
Pe

rQ
ue

ry
(s

)

(b) WatDiv

Figure 10: Performance Comparison

8.5 Scalability Test
In this experiment, we investigate the impact of dataset size on

our fragmentation strategies. We generate five WatDiv datasets
varying the from 50 million to 250 million triples to test our strate-

gies. Figure 11 shows the results. Generally speaking, as the size of
RDF datasets gets larger, the average response times of one query
increase and the numbers of queries answered in one minute de-
crease accordingly. However, the rates of increase and decrease are
slow, and we can say that the query performance and throughput
are scalable with RDF graph size on the datasets.

50M 100M 150M 200M 250M

0.2

0.4

0.6

Size of Datasets

A
ve

ra
ge

Ti
m

e
Pe

rQ
ue

ry
(s

) VF
HF

(a) Performance

50M 100M 150M 200M 250M

200

400

600

800

1,000

Size of Datasets

Q
ue

ri
es

Pe
rM

in
ut

e

VF
HF

(b) Throughput

Figure 11: Varying Size of Datasets

8.6 Redundancy
Table 1 shows the redundancy ratio of the number of edges in

all generated fragments to the total number of edges in the original
RDF graph for each fragmentation strategy. For SHAPE, if a frag-
ment contains a vertex with high degree, all adjacent edges of the
high degree vertex are introduced. Most of these introduced edges
are redundant, and cause the redundancy ratios of SHAPE nearly 3
for DBPedia and 1.74 for WatDiv. WARP divides the RDF graph
while minimizing the edge cut, so the number of edges crossing
two fragments for WARP is smaller than the number for SHAPE.
Therefore, the redundancy ratio of WARP is smaller. Note that,
WatDiv is much denser than DBPedia, so the minimum cut-set for
WatDiv contains a higher proportion of edges. Hence, the redun-
dancy ratio of WatDiv is 1.54, but the ratio of DBPedia is only 1.01.

DBPedia WatDiv

SHAPE 2.99 1.74
WARP 1.01 1.54

VF 1.38 1.04
HF 1.42 1.06

Table 1: Redundancy (Ratio to original dataset)
Our fragmentation strategies find and materialize some frequent

access patterns (or structural minterm predicates). As discussed
in Section 8.2, the number of frequent access patterns is limited.
Hence, the redundancy ratios of our fragmentation strategies are
limited. Note that, the horizontal strategy has a little larger redun-
dancy ratio than the vertical fragmentation strategy. This is because
that different structural minterm predicates derived from the same
frequent access patterns share some common triple patterns. These
common triple patterns may cause more redundant edges.

8.7 Offline Performance
Table 2 shows the data partitioning and loading time of the datasets

for different fragmentation strategies. Although SHAPE has an al-
most perfect uniform distribution, its redundancy ratio is too large
and each fragment contains too many redundant edges. Hence,
loading fragments in SHAPE also takes much time. WARP uses
METIS [12]. Since DBPedia is sparse (i.e. |(E(G)|/|V(G)| ≈ 1),
METIS can guarantee that there are a few redundant edges and all
fragments have a nearly uniform distribution. Then, WARP has less
loading time than SHAPE. However, for WatDiv, the data graph
is dense (i.e. |(E(G)|/|V(G)| � 1), so the fragmentation result of

386

S 1 S 2 S 3 S 4 S 5 S 6 S 7 L1 L2 L3 L4 L5 F1 F2 F3 F4 F5 C1 C2 C3

0

1

2

3

Queries

Q
ue

ry
R

es
po

ns
e

Ti
m

e
(s

)

SHAPE
WARP
VF
HF

Figure 12: Query Performance of Benchmark Queries

METIS is unbalanced. Then, WARP takes more loading time than
SHAPE to load the largest fragments.

Since nearly half of all edges for DBPedia are infrequent edges,
loading the cold graph of DBPedia is the bottleneck in our fragmen-
tation strategies. However, in WatDiv, there are not so many infre-
quent edges. Then, the loading time of our fragmentation strategies
for WatDiv is more acceptable. Note that, because the structural
minterm predicates are derived from the frequent access patterns,
the cold graphs for the vertical and horizontal fragmentation strate-
gies are the same. Thus, the loading times for the vertical and hor-
izontal fragmentation strategies are the same.

DBPedia WatDiv

Strategies Partitioning Loading Total Partitioning Loading Total
SHAPE 41 30 71 20 19 49
WARP 43 28 71 33 46 79

VF 50 97 147 31 28 59
HF 58 97 139 34 28 62

Table 2: Partitioning and Loading Time (in min)

8.8 Experiments for Benchmark Queries
In this experiment, we compare our methods with other fragmen-

tation strategies on benchmark queries provided by WatDiv. There
are 20 benchmark queries in WatDiv, and these queries can be clas-
sified into 4 structural categories: linear (L), star (S), snowflake (F)
and complex (C). Figure 12 shows the performance of different ap-
proaches. Generally speaking, we find out that our methods outper-
forms other two methods in most cases. This is because that each
benchmark query can be decomposed into some frequent access
patterns or structural minterm predicates. Hence, our fragmenta-
tion strategies can filter out many irrelevant fragments. In contrast,
SHAPE and WARP always concern all fragments, and SHAPE fur-
ther needs some cross-fragment joins for complex queries.

Let us look deeper into Figure 12 and analyze each individual
fragmentation strategy. SHAPE has to involve all fragments for any
queries, so its performance is always worse than our fragmentation
strategies. In particular, for star queries (S 1 to S 7), the difference
between the query response times of SHAPE and our fragmentation
strategies is not very large, because the subject-object-based triple
groups that we use can guarantee that there is no intermediate re-
sult and all star queries can be answered at each fragment locally.
However, for other shapes of queries, SHAPE has to decompose
the queries and do cross-fragment joins to merge the intermediate
results. Then, the performance of SHAPE decreases greatly. Es-
pecially for the unselective queries (L1, F1, F2, F3, F4, F5, C1 and
C2), the performance of SHAPE is an order of magnitude worse
than our fragmentation strategies.

Since WARP also use patterns to replicate triples for avoiding
cross-fragment joins in complex queries, WARP has better perfor-
mance that SHAPE in most case. However, WARP still always
concerns all fragments in all sites for any kind of queries. The

search space of WARP for a query is higher than our fragmenta-
tion strategies. Thus, our fragmentation strategies always result
in better performance. Especially for the query of very complex
structure (C2), our fragmentation strategies can filter out many ir-
relevant fragments, which can result in much smaller search space
than WARP. Hence, for C2, our strategies is twice as fast as WARP.

Since all benchmark queries are generated from instantiating bench-
mark templates with actual RDF terms, these benchmark queries al-
ways correspond to a limited number of minterm predicates.Hence,
the horizontal fragmentation is always faster than the vertical frag-
mentation.

9. RELATED WORK
For both the general graph and the RDF graph, as the graph size

grows beyond the capability of a single machine, many works [6,
8, 9, 10, 29, 14, 15, 7, 23, 12, 30, 22, 25] have been proposed about
graph fragmentation and allocation. We can divide all these meth-
ods into two categories: global goal-oriented graph fragmentation
methods and local pattern-based graph fragmentation methods.

Global Goal-Oriented Graph Fragmentation. For this kind of
methods [12, 9, 30, 22, 16], they divide G into several fragments
while maximizing some goal function. They first transform a large
graph into a small graph; then, apply some graph partitioning al-
gorithms on the small graph; finally, the partitions on the small
graph are projected back to the original graph. These methods of-
ten apply some existing methods (such as KL [13]) directly on the
transformed graph in the second step. If we track the transforming
step, the partitions on the small graph can be easily projected back
to the original graphs in the third step. Hence, the largest difference
among different graph coarsening-based methods is how to coarsen
the original graph into a small graph.

In particular, METIS [12] uses the maximal matching to coarsen
the graph. A matching of a graph is a set of edges that no two edges
share an endpoint. A maximal matching of a graph is a matching to
which no more edges can be added and remain a matching. Graph-
Partition [9] directly uses METIS in the RDF graph. WARP [8]
uses some frequent structures in workload to further extend the re-
sults of GraphPartition. EAGRE [30] coarsens the RDF graph by
using the entity concept in RDF data. It considers an entity to be a
subject and its complete description. By grouping the entities of the
same class, an RDF graph can be compressed as a compressed RDF
entity graph. MLP [22] designs a method to coarsen the graph by
label propagation. Vertices with the same label after the label prop-
agation are coarsened to a vertex in the coarsened graph. Sheep
[16] transform the graph into a elimination tree via a distributed
map-reduce operation, and then partition this tree while reducing
communication volume. Tomaszuk et. al. [21] briefly survey how
to apply existing graph fragmentaion solutions from the theory of
graphs to RDF graphs.

Global goal-oriented graph fragmentation methods assume that
if there are few edges crossing different fragments, the communi-

387

cation cost is little. If an application involves nearly all vertices in
the graph, few cross-fragments edges indeed result in little commu-
nication. A typical application suitable for graph coarsening-based
methods is PageRank.

In some applications, one static fragmentation cannot fit all. Hence,
Sedge [28] maintains many fragmentations with different crossing
edges, while Shang et. al. [19] move some vertices of one frag-
ment to another fragment during graph computing according to the
workload. Yan et. al. [27] propose a indexing scheme based on
fragmentation to help query engine fast locate the instances.

Local Pattern-based Graph Fragmentation. For this kind of
methods [10, 29, 14, 15, 7, 23, 25] , they first find certain patterns
as the fragmentation units to cover the whole graph; then, they dis-
tribute these patterns into sites. The local pattern-based methods
mainly differ in their definitions of the fragmentation unit.

HadoopRDF [10] groups triples with the same property together
and each group corresponds to a fragmentation unit. Then, they
store all fragmentation units over HDFS. Yang et. al.[29] define
some special query patterns, and subgraphs of a pattern are con-
sidered as a fragmentation unit. Lee et. al. [14, 15] define the
fragmentation unit as a vertex and its neighbors, which they call
a triple group. The triple groups are distributed based on some
heuristic rules. For each vertex, SketchCluster [23] identifies the
set of labeled vertices reachable within its one-hop neighborhood
as its features and employs the KModes algorithm to group related
vertices based on the features. Partout [6] extends the concepts of
minterm predicates in relational database systems, and uses the re-
sults of minterm predicates as the fragmentation units. TriAD [7]
uses METIS [12] to divide the RDF graph into many partitions.
Then, each result partition is considered as a unit and distributed
among different sites based on a hash function. PathPartitioning
[25] uses paths in RDF graphs as fragmentation units.

Local pattern-based graph fragmentation methods assume that
some real applications only concerns a part of the whole graph. If
an application only concerns the vertices of some certain patterns,
these methods only access the relevant fragments and reduce the
communication cost across fragments. A typical example applica-
tion is subgraph homomorphism checking.

10. CONCLUSION
In this paper, we discuss how to manage the large RDF graph

in a distributed environment. First, we mine and select some fre-
quent access patterns to partition the RDF graph into many smaller
fragments. Then, we propose an allocation algorithm to distribute
all fragments over different sites. Last, we discuss how process the
query based on the results of fragmentation and allocation. Exten-
sive experiments verify our approaches.

Acknowledgement. This was supported by 863 project under Grant No.
2015AA015402, NSFC under Grant No. 61532010, 61370055, 61272344
and 61303073. Lei Chen’s work is supported in part by the Hong Kong
RGC Project N HKUST637/13, National Grand Fundamental Research 973
Program of China under Grant 2014CB340303 , NSFC Grant No. 61328202,
NSFC Guang Dong Grant No. U1301253, Microsoft Research Asia Gift
Grant and Google Faculty Award 2013

11. REFERENCES
[1] G. Aluç, O. Hartig, M. T. Özsu, and K. Daudjee. Diversified stress

testing of RDF data management systems. In ISWC, pages 197–212,
2014.

[2] M. M. Astrahan, H. W. Blasgen, D. D. Chamberlin, K. P. Eswaran,
J. N. Gray, P. P. Griffiths, W. F. King, R. A. Lorie, J. W. Mehl, G. R.
Putzolu, I. L. Traiger, B. W. Wade, and V. Watson. System R:
Relational Approach to Database Management. ACM Transactions
on Database Systems, 1:97–137, 1976.

[3] L. Bordeaux, Y. Hamadi, and P. Kohli. Tractability: Practical
Approaches to Hard Problems. Cambridge University Press, 2014.

[4] DBpedia. http://dbpedia.org/about.
[5] P. Fränti, O. Virmajoki, and V. Hautamäki. Fast PNN-based

Clustering Using K-nearest Neighbor Graph. In ICDM, pages
525–528, 2003.

[6] L. Galarraga, K. Hose, and R. Schenkel. Partout: A Distributed
Engine for Efficient RDF Processing. In WWW (Companion Volume),
pages 267–268, 2014.

[7] S. Gurajada, S. Seufert, I. Miliaraki, and M. Theobald. TriAD: A
Distributed Shared-nothing RDF Engine Based on Asynchronous
Message Passing. In SIGMOD Conference, pages 289–300, 2014.

[8] K. Hose and R. Schenkel. WARP: Workload-aware Replication and
Partitioning for RDF. In ICDE Workshops, pages 1–6, 2013.

[9] J. Huang, D. J. Abadi, and K. Ren. Scalable SPARQL Querying of
Large RDF Graphs. PVLDB, 4(11):1123–1134, 2011.

[10] M. F. Husain, J. P. McGlothlin, M. M. Masud, L. R. Khan, and B. M.
Thuraisingham. Heuristics-Based Query Processing for Large RDF
Graphs Using Cloud Computing. IEEE Trans. Knowl. Data Eng.,
23(9):1312–1327, 2011.

[11] R. K. Iyer and J. A. Bilmes. Submodular Optimization with
Submodular Cover and Submodular Knapsack Constraints. CoRR,
abs/1311.2106, 2013.

[12] G. Karypis and V. Kumar. Analysis of Multilevel Graph Partitioning.
In SC, 1995.

[13] B. Kernighan and S. Lin. An Efficient Heuristic Procedure for
Partitioning Graphs. The Bell Systems Technical Journal, 49(2),
1970.

[14] K. Lee and L. Liu. Scaling Queries over Big RDF Graphs with
Semantic Hash Partitioning. PVLDB, 6(14):1894–1905, 2013.

[15] K. Lee, L. Liu, Y. Tang, Q. Zhang, and Y. Zhou. Efficient and
customizable data partitioning framework for distributed big RDF
data processing in the cloud. In IEEE CLOUD, pages 327–334, 2013.

[16] D. W. Margo and M. I. Seltzer. A Scalable Distributed Graph
Partitioner. PVLDB, 8(12):1478–1489, 2015.

[17] S. Nijssen and J. N. Kok. The Gaston Tool for Frequent Subgraph
Mining. Electr. Notes Theor. Comput. Sci., 127(1):77–87, 2005.

[18] M. T. Özsu and P. Valduriez. Principles of Distributed Database
Systems, Third Edition. Springer, 2011.

[19] Z. Shang and J. X. Yu. Catch the Wind: Graph Workload Balancing
on Cloud. In ICDE, pages 553–564, 2013.

[20] J. Síma and S. E. Schaeffer. On the NP-Completeness of Some Graph
Cluster Measures. CoRR, abs/cs/0506100, 2005.

[21] D. Tomaszuk, L. Skonieczny, and D. Wood. RDF Graph Partitions: A
Brief Survey. In BDAS, pages 256–264, 2015.

[22] L. Wang, Y. Xiao, B. Shao, and H. Wang. How to Partition a
Billion-node Graph. In ICDE, pages 568–579, 2014.

[23] Y. Wang, S. Parthasarathy, and P. Sadayappan. Stratification Driven
Placement of Complex Data: A Framework for Distributed Data
Analytics. In ICDE, pages 709–720, 2013.

[24] G. Wiederhold. Database Design, Second Edition. McGraw-Hill,
1983.

[25] B. Wu, Y. Zhou, P. Yuan, L. Liu, and H. Jin. Scalable SPARQL
Querying using Path Partitioning. In ICDE, pages 795–806, 2015.

[26] X. Yan, P. S. Yu, and J. Han. Graph Indexing: A Frequent
Structure-based Approach. In SIGMOD Conference, pages 335–346,
2004.

[27] Y. Yan, C. Wang, A. Zhou, W. Qian, L. Ma, and Y. Pan. Efficient
Indices Using Graph Partitioning in RDF Triple Stores. In ICDE,
pages 1263–1266, 2009.

[28] S. Yang, X. Yan, B. Zong, and A. Khan. Towards Effective Partition
Management for Large Graphs. In SIGMOD Conference, pages
517–528, 2012.

[29] T. Yang, J. Chen, X. Wang, Y. Chen, and X. Du. Efficient SPARQL
Query Evaluation via Automatic Data Partitioning. In DASFAA (2),
pages 244–258, 2013.

[30] X. Zhang, L. Chen, Y. Tong, and M. Wang. EAGRE: Towards
Scalable I/O Efficient SPARQL Query Evaluation on the Cloud. In
ICDE, pages 565–576, 2013.

[31] L. Zou, M. T. Özsu, L. Chen, X. Shen, R. Huang, and D. Zhao.
gStore: A Graph-based SPARQL Query Engine. VLDB J.,
23(4):565–590, 2014.

388

	Query Workload-based RDF Graph Fragmentation and AllocationPeng Peng, Lei Zou, Lei Chen, Dongyan Zhao

