
Monitoring MaxRS in Spatial Data Streams

Daichi Amagata
Department of Multimedia Engineering Graduate
School of Information Science and Technology

Osaka University
amagata.daichi@ist.osaka-u.ac.jp

Takahiro Hara
Department of Multimedia Engineering Graduate
School of Information Science and Technology

Osaka University
hara@ist.osaka-u.ac.jp

ABSTRACT
Due to the increase of GPS enabled devices and a lot of location-
based services, spatial objects are continuously generated. This pa-
per addresses a problem of monitoring MaxRS (Maximizing Range
Sum) in spatial data streams. Given a set of weighted spatial (2-
dimensional) objects, this problem is to monitor a location of a
given user-specified sized rectangle where the sum of the weights
of the objects covered by the rectangle is maximized. Many real life
applications obtain a benefit from monitoring MaxRS, e.g., traffic
analysis and event detection in urban sensing, but this problem has
not yet been addressed so far. Although some algorithms for static
objects have been proposed, executing such an algorithm whenever
new objects are generated is computationally expensive. These mo-
tivate us to develop an efficient algorithm that can monitor MaxRS
efficiently. In this paper, we first design a basic algorithm that is
based on an index framework and incrementally updates the result.
We then enhance the algorithm and show that the enhanced algo-
rithm can deal with error-guaranteed approximation and monitor-
ing top-k MaxRS. Our experimental results confirm the efficiency
of our approach.

1. INTRODUCTION
Due to the increase of GPS enabled devices such as smartphones

and tablet machines, a lot of location-based services are used in
many real life applications. From this fact, spatio-temporal databases
have been receiving significant attention recently. Supporting spa-
tial queries is therefore becoming more important, and many stud-
ies developed techniques for efficient spatial query processing [13,
15]. These studies can be classified into spatial objects retrieval
problems [3, 24] and location finding problems [10, 32, 33]. For ex-
ample, kNN query processing, which retrieves the k nearest neigh-
bor objects w.r.t. a given query point, is the representative of the
spatial objects retrieval problems. In the location finding problems,
on the other hand, some queries have been proposed, for exam-
ple, optimal location queries [10, 33], bichromatic reverse nearest
neighbor queries [14, 35], and MaxRS (Maximizing Range Sum)
queries [6, 8, 9, 25]. This paper focuses on a kind of MaxRS prob-
lem.

c⃝2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

Figure 1: An example of a MaxRS query

Motivation. Given a set of weighted spatial (2-dimensional) ob-
jects and a user-specified sized rectangle, a MaxRS query finds a
location of the rectangle where the sum of the weights of the ob-
jects covered by the rectangle is maximized.

EXAMPLE 1.1. Figure 1 shows an example of a MaxRS query.
In Figure 1, the rectangle with dashed line, the black points, and
the rectangles with solid line show a general monitoring space,
spatial objects with weight 1, and user-specified sized rectangles,
respectively. The MaxRS query identifies the location of the shaded
rectangle as one of the optimal results because it covers the largest
number of objects, i.e., the sum of the weights of objects covered by
the rectangle is the maximum.

This query is useful because it can automatically find an impor-
tant place without specifying any query points [8, 9]. In this pa-
per, we address a novel problem of monitoring MaxRS in spatial
data streams. In other words, we address a problem of continu-
ous MaxRS query processing over sliding-window. Since a large
amount of spatio-temporal objects are continuously generated [2,
5], e.g., in the context of location-based service usages, one-time
finding an important location does not make sense but continuously
monitoring an important location is required. A continuous MaxRS
query can achieve this and has the following real life applications.

EXAMPLE 1.2. Consider urban sensing. A system, e.g., base-
station, continuously collects spatio-temporal objects, e.g., gener-
ated by devices with GPS, in an urban city. Such objects can be
represented as < x, y, w > where x, y, and w are latitude, lon-
gitude, and weight, respectively. If w is communication traffic, a
continuous MaxRS query can monitor an area where traffic is con-
centrated. In this case, the system can notify the users holding
mobile devices in the area of warning about communication delay.

Example 1.2 shows that continuous MaxRS queries can help to ana-
lyze communication errors and also support decision making, e.g.,
where to place Wi-Fi access points. We next consider location-

Series ISSN: 2367-2005 317 10.5441/002/edbt.2016.30

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.30

based games in which continuous MaxRS queries are useful for
decision making.

EXAMPLE 1.3. In BotFighters, players try not to be attacked by
other players [4], and in Ingress, players try to occupy places.
Let w in Example 1.2 represent the strength or level of a given
player, and players keep checking the area monitored by a contin-
uous MaxRS query. This can detect an event, e.g., a competition by
many and/or high-level players, and support to plan a strategy.

Other examples include mobile sensor networks [27] that a base-
station continuously collects sensor readings. By employing con-
tinuous MaxRS queries, the base-station may be able to detect sen-
sor failures and over-concentration of mobile sensor nodes.

Technical challenge and overview. Some techniques for exact
MaxRS query processing on static objects have been developed in
the past. [12, 18] proposed in-memory algorithms while [8, 9] pro-
posed an external-memory algorithm. The computation (I/O) com-
plexity of the in-memory (external-memory) algorithm is shown to
be optimal. These algorithms however focus on one-time computa-
tion, so they are not efficient for continuous MaxRS queries. This
is because computing the result from scratch whenever new ob-
jects are generated is obviously computationally expensive, mean-
ing that an approach which can incrementally update the result is
required.

In this paper, we first propose a basic algorithm that exploits a
graph in grid index, namely G2. G2 integrates graph and grid struc-
tures, thus its storage cost isO(|V |+ |E|), where V corresponds to
a set of objects on a given sliding-window and E is a set of edges.
(The details are described in Section 4). One of the properties of
G2 is that no overhead incurs when objects expire. We then en-
hance both the basic algorithm and G2, and propose aggregate G2,
aG2, and a branch-and-bound algorithm that exploits aG2. This
algorithm eliminates unnecessary update computation as much as
possible and accelerates the query processing efficiency.

Interestingly, the branch-and-bound algorithm can deal with error-
guaranteed approximation. Let w∗ and ϵ respectively be the maxi-
mum range sum and a user-tolerance error rate. Also, let w be the
weight of the area monitored by the algorithm, and we can guaran-
tee that w ≥ (1 − ϵ)w∗. We show that the relationship between
query processing efficiency and ϵ is trade-off but the practical er-
ror rate is much less than ϵ. In addition to the approximation, we
consider a problem of monitoring top-k MaxRS. For example, Ex-
amples 1.2 and 1.3 may require not only a single area but k (e.g., 5)
areas with the largest range sum. This requirement is satisfied by a
simple modification of the branch-and-bound algorithm.

Contributions and organization. We summarize our contribu-
tions as follows.

• We address a novel problem of continuous MaxRS query
processing in spatial data streams (Section 2). To the best of
our knowledge, we are the first to investigate this problem.

• We design a basic algorithm for a continuous MaxRS query
(Section 4). This algorithm incrementally updates the result
by exploiting an efficient index framework.

• We enhance the basic algorithm and propose a more efficient
index and branch-and-bound algorithm (Section 5). This al-
gorithm prunes unnecessary computation and accelerates the
computation efficiency.

• We show that the branch-and-bound algorithm can deal with
error-guaranteed approximation and efficient continuous top-
k MaxRS query processing (Section 6).

• We conduct extensive experiments using both synthetic and
real datasets that confirm the efficiency of our approach (Sec-
tion 7).

In addition to the above contents, we review some related literatures
in Section 3, and Section 8 concludes this paper.

2. PRELIMINARY
We are given a set of spatial stream objects in a general mon-

itoring space, as shown in Figure 1. A spatial object oi is repre-
sented by oi =< x, y, w > where i is its identifier, < x, y >
shows the location that oi is generated, and w is a non-negative
value (weight), i.e., oi.w ∈ R+. We assume a spatial stream en-
vironment, thus consider a sliding-window model [1] because it
is usual that many applications are interested only in recent ob-
jects. Count- and time-based sliding-window models are widely
accepted. The count-based sliding-window considers the most re-
cent n objects, and in this model, m new objects generations lead
to the expirations of the m oldest objects. The time-based sliding-
window, on the other hand, considers the objects generated within
the last T time-units. Selection of a suitable sliding-window model
depends on applications, and our algorithms can deal with both the
models. So, without loss of generality, we assume the count-based
sliding-window in this paper. Let O be the set of the most recent n
objects, and O residents in-memory because real-time continuous
query processing generally requires main memory computation [4,
17].

Let P be an infinite set of points in the general monitoring space.
Given a user-specified sized rectangle r, the weight of a point p ∈
P , p.w, is defined by

p.w =
∑

oi.w,

where oi ∈ O is covered by r centered at p. We are now ready to
formally define the monitoring MaxRS problem.

DEFINITION 1 (MONITORING MAXRS PROBLEM). Given a set of
objects on a sliding-window O, an infinite set of points in the gen-
eral monitoring space, and a user-specified sized rectangle r, the
goal of the monitoring MaxRS problem is to continuously monitor
a location p∗ ∈ P that satisfies.

p∗ = argmax
p∈P

p.w.

It is infeasible to find and monitor p∗ from such infinite points,
but as the literatures [8, 9, 25] introduce, MaxRS problems can
be solved by transformation to an alternative problem. Given a
user-specified sized rectangle r, let ri be the weighted rectangle
of the same size of r centered at < oi.x, oi.y > (oi ∈ O and
ri.w = oi.w). Consider oi, oj ∈ O, and if ri overlaps with rj , it
is not difficult to see that the weight of the overlapped space s is
s.w = ri.w + rj .w. We formally define this space weight.

DEFINITION 2 (SPACE WEIGHT [8]). Given O, we have a set of
rectangles each of which is centered at the location of the corre-
sponding object. The weight of a space s is the sum of the weights
of the rectangles covering s.

Then the alternative problem is to find s with the maximum weight
denoted by s∗. Interestingly but not surprisingly, p∗ exists in s∗,
that is, any points in s∗ can be p∗.

EXAMPLE 2.1. Figure 2 shows the alternative problem of Figure
1. The center of each rectangle is at the corresponding object. Note
that the size of each rectangle is the user-specified size. Recall that
the weight of each object is 1, and the shaded overlapped space has

318

Figure 2: An example of the alternative problem of Figure 1

the maximum weight. We know that the weights of other overlapped
spaces are less than 4. The center of the shaded rectangle in Figure
1 exists in the shaded space.

Therefore, monitoring s∗ is equivalent to monitoring p∗. We here
define continuous MaxRS queries that solve the monitoring MaxRS
problem.

DEFINITION 3 (CONTINUOUS MAXRS QUERY). Given a set of
objects on a sliding-window O and a user-specified sized rectan-
gle r, each weighted object is converted to a weighted rectangle
centered at the location of the object. A continuous MaxRS query
monitors s∗ that satisfies

s∗ = argmax
s∈S

s.w, (1)

where S is the set of overlapped spaces.

We also consider a problem of monitoring top-k MaxRS to sup-
port the applications that require not only a single space but also
k spaces with the maximum weight. The definition of monitoring
top-k MaxRS problem is given by extending Definition 1, thus we
formally define continuous top-k MaxRS queries below.

DEFINITION 4 (CONTINUOUS TOP-K MAXRS QUERY). Given a
set of objects on a sliding-window O and a user-specified sized
rectangle r, each weighted object is converted to a weighted rect-
angle centered at the location of the object. A continuous top-k
MaxRS query monitors the set S∗ that satisfies |S∗| = k and
∀s ∈ S∗ and ∃s′ ∈ S\S∗, s.w ≥ s′.w where S is the set of
overlapped spaces, and ties are arbitrarily broken.

Since applications that execute continuous queries basically re-
quire real-time monitoring [3, 4, 17], algorithms that process such
queries have to update query results efficiently. Our objective of
this paper is therefore to minimize computation time to update s∗,
which is incurred by generations and expirations of objects. Table
1 summarizes the symbols frequently used in this paper.

3. RELATED WORK
As introduced in Section 1, many spatial queries have been de-

veloped. This section reviews related works of the monitoring
MaxRS problem. In particular, we introduce spatial preference
queries and facility location queries in which MaxRS queries are
categorized. We then review the existing studies of MaxRS query
processing.

Before introducing the above queries, we should make it clear
that MaxRS queries are different from range aggregation queries.
The goal of range aggregation queries is to return the aggregate
result (e.g., values and points) from (i) the set of points in a given
rectangle with fixed location [19, 21, 23] or (ii) the set of values in a
given interval [26]. On the other hand, the goal of MaxRS queries is

Table 1: Overview of symbols
Symbol Description

oi The weighted spatial object with identifier i
m The number of objects generated at the same time
s∗ The space with the maximum weight
ri The weighted rectangle centered at the location of oi

ri.E The set of edges held by ri
N(ri) The set of neighboring vertices (rectangles) of ri
si The space with the maximum weight covered by ri
ci,j The cell with identifier (i, j)
Gi,j The graph maintained by ci,j
Vi,j The set of vertices (rectangles) of Gi,j

ci,j .w The upper-bound weight of ci,j

to find a location from an infinite set of points. In the same sense,
continuous spatial queries [15, 16, 17] that monitor not locations
but objects are different from our problem.

Spatial preference queries. Spatial preference query processing
problem is one of location selection problems. Given a 2-dimensional
point p and a distance constraint d, a top-k spatial preference query
[22, 29] determines the score of p by the sum of the weights of the
feature objects existing within d from p. [28] studies a problem of
finding top-t most influential sites. The influential score of a given
site is defined as the sum of weights of its reverse nearest neighbor
objects. In the above queries, the scores of the target points are
defined by a kind of range sum function. However, the locations
of the target points are already known, which is different from our
problem.

Facility location queries. The objective of this problem is to find
an optimal location w.r.t. a given condition. It is often the case that
a set of customers (or clients) with weights and a set of facilities
are given [11]. Then a facility location query retrieves a facility
that maximizes the total weight of its reverse (k) nearest neighbor
customers [35]. [10] proposed optimal location queries, and the
extension version of the optimal location queries, min-dist optimal
location queries, has been studied in [20, 32]. Such optimal loca-
tion queries have also been studied in road networks [7].

The monitoring MaxRS problem is also one of the facility lo-
cation problems. We are interested in continuously monitoring a
location that maximizes the total weight of objects covered by a
user-specified sized rectangle. As introduced in Section 1, this
is useful in monitoring applications in spatial data streams. The
main deference between MaxRS and the above queries is their cat-
egories: monotonic (e.g., MaxRS queries) and bichromatic (e.g.,
optimal location queries).

MaxRS queries. To the best of our knowledge, the existing works
of MaxRS problems and the variants are [6, 8, 9, 12, 18, 25]. An
external-memory algorithm for exact MaxRS queries has been pro-
posed in [8, 9], while [25] proposed a randomized sampling algo-
rithm that bounds the error with high probability. That is, given a
tolerance error ϵ, the approximate algorithm returns a space with
the weight w that satisfies w ≥ (1− ϵ)w∗ with probability 1− 1

n
.

(w∗ is the weight of the optimal result and n is the number of ob-
jects.) Rotating MaxRS queries have been proposed in [6]. This
literature assumes that a given rectangle is rotatable, but we do not
assume this case and assume the usual case, as well as [8, 9, 12, 18,
25].

We now focus on the in-memory algorithms [12, 18] because
we also consider an in-memory algorithm for continuous MaxRS
queries. It is notable that the algorithm in [18] solves a max-

319

A B C D E F G

H I J K L

𝑟1

𝑟2

𝑟3
𝑟4

𝑟5
𝑟6

Figure 3: An example of processing a plane-sweep algorithm

enclosing rectangle problem, to which the MaxRS problem can be
converted, based on well-known plane-sweep strategy, and actually
the external-memory and the approximate algorithms [8, 25] also
employ this strategy. (The algorithm proposed in [12] also em-
ploys the same strategy and the computation cost is the same as
[18].) The plane-sweep algorithm [18] employs a horizontal line,
and given a set of rectangles, this line is swept from bottom to top of
the rectangles while counting the weights of intersecting intervals
on the sweeping line. Figure 3 shows an instance when sweeping
the dashed line. Let the weight of each rectangle in Figure 3 be 1,
and we can see that the weights of intervals AB, BC, and CD are 1,
2, and 3, respectively. In the plane-sweep algorithm, when a sweep-
ing line reaches the bottom edge of a rectangle, a newly generated
interval is inserted into a binary-tree, while when reaching the top
of the rectangle, the expired interval is deleted from the binary-tree.
During these procedures, the counts of intervals are also updated.
This algorithm returns the interval with the maximum weight, and
the complexity of this algorithm is O(n logn) [18], where n is the
number of objects (rectangles). This is because the algorithm ex-
ecutes 2n binary-tree updates (n insertions and n deletions) that
takeO(logn) time. (This algorithm also can return a set of k inter-
vals with the maximum weight without sacrificing its computation
efficiency.)

The above algorithm is shown to be an optimal solution for the
MaxRS problem on static objects. However, it is inefficient to com-
pute s∗ from scratch by this algorithm even in the case where the
number of newly generated objects is not large, which is shown by
our experimental results. From the next section, we describe our
solutions that efficiently update and monitor the result over stream
data.

4. BASIC SOLUTION
The generations and the expirations of objects lead to additions

and eliminations of overlapped spaces. This suggests that S in
Equation (1) is dynamic, in other words, the ranking of range sum
is dynamic, thereby efficient s∗ monitoring is not trivial. In spite
of this nature, our index framework enables to design a simple but
efficient algorithm.

4.1 G2: Graph in Grid Index
We first present our index framework Graph in Grid index (or

G2). Recall that our objective is to achieve real-time monitoring of
MaxRS in a stream environment, meaning that unnecessary com-
putations have to be avoided. A dynamic graph, where a vertex is
a rectangle and an edge shows the overlap between given two ver-
tices, realizes this. If the weight of each vertex (rectangle) is 1, we
can see that s∗ is a part of the vertex with the largest number of
edges. To monitor s∗ with using the dynamic graph, the basic op-
eration that we have to do is just to check the updated parts of the
dynamic graph. This is because only the updated parts may affect
s∗. Motivated by this observation, we develop G2.

As described, the first idea is to maintain n rectangles on a sliding-
window by a graph. Vertices of the graph are the rectangles, and if
two rectangles overlap each other, there is an edge between them.

𝑟1

𝑟2

𝑟3
𝑟4

𝑟6

𝑟5

Figure 4: The graph constructed from the rectangles in Figure
3

Table 2: Edge and neighbor sets of the vertices of the graph in
Figure 4

Vertex ri Edge ri.E Neighbor set N(ri)

r1 (r1, r2), (r1, r3) {r2, r3}
r2 (r2, r3) {r3}
r3 (r3, r4) {r4}
r4 (r4, r5) {r5}
r5 (r5, r6) {r6}
r6 ∅ ∅

We define our graph and provide a concrete example below.

DEFINITION 5 (GRAPH G). G = (V,E) is a dynamic graph. V
is a set of rectangles of a given size on a sliding-window, and E is
a set of direct edges. Given two vertices ri, rj ∈ V overlapping
each other, where ri was generated earlier than rj , there is a direct
edge between them, (ri, rj), and this edge is held by the vertex
(rectangle) that was generated earlier than the other, i.e., ri. (Ties
are broken by identifiers.)

EXAMPLE 4.1. We construct a graph G from the set of rectangles
in Figure 3, and Figure 4 shows G. Assume that the rectangles are
generated in order of identifiers. Since r2 overlaps with r1, there
is (r1, r2) that represents a direct edge from r1 to r2. r1 maintains
the edges (r1, r2) and (r1, r3).

When context is clear, we use vertices and rectangles interchange-
ably since they are the same, as Definition 5 describes. We de-
note ri.E the set of edges held by the vertex ri ∈ V . The set
of neighbors of a vertex ri ∈ V is also denoted by N(ri) =
{∀rj | ∃(ri, rj) ∈ ri.E}. Table 2 shows an example that uses Fig-
ure 4 in terms of r.E and N(r). Then we obtain the spaces on ri
covered by the rectangles in N(ri). ri maintains si, the space with
the maximum weight among the spaces. That is, si is definitely the
subspace on ri, which provides the following property.

PROPERTY 1. Given ri, rj ∈ V , we have that si ̸= sj .

The proof is straightforward since ∄ri ∈ N(rj) if ∃rj ∈ N(ri).
How to obtain si is explained later, but it is not difficult to see the
following property.

PROPERTY 2. Let SG be the set of si maintained by ri on a sliding-
window, we have that

s∗ = argmax
si∈SG

si.w. (2)

Furthermore, even if some vertices (rectangles) expire, other ver-
tices need no maintenances, because the corresponding edges are
held by older vertices.

PROPERTY 3. Given ri ∈ V , and when the older vertices than ri
expire, si does not change.

We next have to consider the case where m new rectangles (ob-
jects) are generated. Due to the graph structure, we need to check
whether the m rectangles overlap with the existing rectangles. It is
obvious that simple computation takes O(mn) time. To alleviate
this, we employ a grid structure like the one shown in Figure 5,

320

𝑐0,0 𝑐1,0 𝑐2,0 𝑐3,0

𝑐0,1

𝑐0,2

𝑐0,3

𝑐1,1

𝑐1,2

𝑐1,3

𝑐2,1

𝑐3,1𝑐2,2

𝑐3,2

𝑐2,3 𝑐3,3

Figure 5: An example of G2

which is the second idea. When dataset updates frequently occur,
grid structure is more suitable than complex structures like R-tree
and Quad-tree [4]. Each cell in the gird is assigned an identifier and
its size is fixed, as shown in Figure 5. Note that each cell ci,j main-
tains the graph constructed by the mapped rectangles, denoted by
Gi,j = (Vi,j , Ei,j). Therefore, Definition 5 is rewritten as follows.

DEFINITION 6 (GRAPH Gi,j). Gi,j = (Vi,j , Ei,j) is a dynamic
graph maintained by ci,j of a grid. Vi,j is a set of given sized
rectangles that are mapped to ci,j and on a sliding-window, and
Ei,j is a set of direct edges. The condition of direct edges follows
Definition 5.

For example, Figure 5 illustrates an example of a G2 and G3,0.
When m new rectangles are generated, we map them to the cells
with which they overlap. (So, a new rectangle may be mapped to
multiple cells.) We then update the graphs in the cells where new
objects are mapped.

Complexities. The time complexity of the rectangle mapping is
O(m). Let c′ and m′ respectively be the number of cells where
new objects are mapped and the average number of new objects
mapped to the cells. Also, let n′ be the average number of vertices
in the cells where new objects are mapped, and the time complexity
of the graph update is O(c′m′n′). In practice, we have that n′ ≪
n. We next consider storage cost. Let V be the set of all vertices
in the grid, then we know that |V | =

∑
|Vi,j |. Similarly, |E| =∑

|Ei,j |, where E is the set of all edges in the grid. Recall that
each vertex ri maintains si and its storage cost is O(|V |). We can
therefore conclude that the storage cost of G2 is O(|V |+ |E|).

4.2 Monitoring Algorithm with G2
We design an online monitoring algorithm using G2, and Algo-

rithm 1 illustrates the high level algorithm.

Algorithm description. Consider an instance when m new rectan-
gles are generated and the m oldest rectangles expire. As described
in Section 4.1, we first update G2 (lines 1–3). Lines 4–6 are de-
signed based on the following idea. Given the set S of the spaces
each of which (i.e., si) is maintained by ri ∈ V , we know that si
has to be correct due to Equation (2). In addition, if a new edge is
inserted to ri.E, si may change because N(ri) varies. We there-
fore need to compute si if ri.E is updated. The plane-sweep al-
gorithm is an optimal solution to find the space with the maximum
weight covered by the given rectangles [12]. Hence, we employ the
plane-sweep algorithm to compute si (line 6). Note that the input
of this plane-sweep algorithm is only N(ri) ∪ {ri}. To summa-
rize, for ∀ri ∈ V , where ri.E has new edges and V is the vertex
set maintained by a given cell c of G2, Algorithm 1 executes the
plane-sweep algorithm locally, denoted by Local-Plane-Sweep(·)
(lines 4–6). After that, we can correctly monitor s∗.

Algorithm 1: Monitoring algorithm using G2
1 Mapping(R) // R is the set of new rectangles
2 C′ ← the set of the cells where new objects are mapped
3 G2-Update(C′) // rectangle overlap computation
4 for ∀c ∈ C′ do
5 for ∀ri ∈ c.V where r has new edges do
6 si ← Local-Plane-Sweep(N(ri) ∪ {ri})

7 s∗ ← argmaxsi∈Ssi.w

8 return s∗

Recall that given a set of rectangles, the plane-sweep algorithm
sweeps a horizontal line from the bottom to the top among the rect-
angles. To obtain si, however, we only need to sweep the hori-
zontal line from the bottom to the top of ri. Local-Plane-Sweep(·)
in Algorithm 1 (line 6) is optimized to do so. Although the time
complexity does not vary, the practical execution time is reduced.

The following simple example highlights the efficiency of our
incremental approach.

EXAMPLE 4.2. Assume that the graph in Figure 4 is the graph
maintained by one of the cells in Figure 5. Assume further that
m = 1 and r6 is the new rectangle mapped to the cell. Algo-
rithm 1 checks the vertices overlapping with r6, and in this case,
(r5, r6) is inserted to r5.E. Algorithm 1 next executes Local-Plane-
Sweep({r5, r6}) and obtains s5. If s5.w > s∗.w, s∗ is replaced
by s5.

Time complexity. As discussed before, lines 1–3 take O(c′m′n′)
time. Let v be the number of vertices to which new edges are in-
serted. Also, let e be the average number of edges of the above
vertices, then lines 4–6 take O(ve log e) time since Local-Plane-
Sweep(·) for a vertex takes O(e log e) time. Therefore, when m
new objects are generated, Algorithm 1 takesO(c′m′n′+ve log e)
time.

5. ENHANCED SOLUTION
Algorithm 1 can identify where to update and compute si main-

tained by ri efficiently since N(ri) is easily obtained by the graph
representation. In fact, however, the most time consuming opera-
tion in Algorithm 1 is Local-Plane-Sweep(·) (line 6). Algorithm
1 executes Local-Plane-Sweep(·) whenever ri.E is updated, thus
it is intuitively seen that the approach degrades the performance in
the case where the number of r.E updates is large. We observe the
following usual cases that motivate to enhance G2.

1. The ri.E update increases si.w but it is less than s∗.w.

2. The ri.E update does not increase si.w.

To consider a more concrete situation, we give Example 5.1, and
Table 3 shows the weights of each vertex ri and si of the graph in
Figure 4.

Table 3: Weights of vertex ri and si of the graph in Figure 4

Vertex ri ri.w si.w

r1 10 55
r2 30 45
r3 15 40
r4 25 45
r5 20 25
r6 5 5

321

𝐺3,0

𝑐3,0. 𝑤 = 4

𝑅3,0

4

3

1

2

1

2

2

2

2

(a) An instance when the rectangle over-
lap computation has been executed.

𝐺3,0

𝑅3,0

4

3

1

2

1

2

2

2

2

𝑐3,0. 𝑤 = 7

(b) An instance when new rectangles are
mapped to c3,0.

𝐺3,0

𝑅3,0

4

3

2

3

3

32

3

2

1

1 1

𝑐3,0. 𝑤 = 4

(c) An instance when the rectangle over-
lap computation between V3,0 and R3,0

in Figure 6(b) has been executed.

Figure 6: An example of G3,0 (followed by Figure 5) and R3,0 of c3,0 in an aG2 and its dynamic update where the weight of each
vertex is 1.

EXAMPLE 5.1. Assume the same situation as Example 4.2 and
s∗ = s1. Before (r5, r6) is inserted to r5.E, s5.w = 20, and
after the insertion, we obtain s5.w = 25. However, it is obvious
that the edge (r5, r6) insertion to r5.E does not affect s∗, which
corresponds to the case 1. In addition, even if r6 overlaps with
r2 and does not overlap with r3, s2 keeps the same and does not
become s∗. This corresponds to the case 2.

The observation in Example 5.1 suggests that we may not have to
compute si even when ri.E is updated. Therefore, by enhancing
G2, we aim at eliminating such unnecessary computation and im-
proving query processing efficiency. The enhanced solution achieves
this by an upper-bounding technique.

5.1 Aggregate G2
It has been shown in the past that data structures considering

aggregate results work well for query processing which deal with
aggregate functions such as sum and count [30]. The monitoring
MaxRS problem considers sum function, then we know that G2
can be extended to deal with aggregate values like aR-tree [19].

We propose aG2 (aggregate G2), which is essentially G2. The
main difference between G2 and aG2 is that aG2 employs upper-
bound weights. Given a graph in an aG2, each vertex ri of the
graph maintains si.w, which is the upper-bound weight of si. How
to compute si.w depends on algorithms, so we briefly introduce our
approach to compute si.w here (the detail is described in Section
5.2). Given the graph Gi,j = (Vi,j , Ei,j) maintained by a cell ci,j
in an aG2, we have a vertex ri′ ∈ Vi,j and si′ . Consider rectangles
rj′ where (ri′ , rj′) is newly inserted to ri′ .E, si′ .w is computed
by the following Equation.

si′ .w = si′ .w +
∑

rj′ .w (3)

Not only the vertices but also the cells in aG2 maintain upper-bound
weights. Before we introduce the upper-bound weight maintained
by ci,j , we have to note that in aG2, ci,j maintains

• Gi,j : the graph defined by Definition 6, and

• Ri,j : a set of rectangles that have been mapped to ci,j but
have not yet been checked whether they overlap with vertices
in Vi,j or not (denoted by rectangle overlap computation).

The new rectangles mapped to ci,j are initially maintained in Ri,j .
When we execute the rectangle overlap computation, the rectan-
gles in Ri,j are moved to Vi,j . Now we introduce how to compute

ci,j .w, i.e., the upper-bound weight maintained by ci,j . Basically,
ci,j .w is set as follows.

ci,j .w = max
si′ ∈Si,j

si′ .w, (4)

where Si,j is the set of si′ maintained by ri′ ∈ Vi,j . Given a set of
new rectangles r′ that are mapped to ci,j , ci,j .w is updated by the
following equation.

ci,j .w ← ci,j .w +
∑

r′.w (5)

We give a simple example of how to dynamically update upper-
bound weights below.

EXAMPLE 5.2. Figure 6 shows an example of G3,0 and R3,0 where
c3,0 follows Figure 5. We first assume the situation of Figure 6(a),
and note that the value shown next to each vertex is the upper-
bound weight. Then we see that c3,0.w = 4, which is the maximum
value among the upper-bound weights of V3,0. Next we assume that
three new rectangles are mapped to c3,0, which are maintained in
R3,0, as shown in Figure 6(b). From Equation (5), c3,0.w is up-
dated to 7. We finally assume Figure 6(c), where the three rectan-
gles in R3,0 have been checked whether they overlap with the ver-
tices (rectangles) in V3,0 or not. Note that the upper-bound weight
maintained by each vertex is updated and c3,0.w is also updated to
4 as the result of the rectangle overlap computation.

From Equations (3)–(5), we have the following property.

PROPERTY 4. ci,j .w ≥ si′ .w ≥ si′ .w for ∀ri′ ∈ Vi,j .

Because of generations and expirations of rectangles, those upper-
bound weights may vary dynamically, but our branch-and-bound
algorithm (introduced later) dynamically updates the upper-bound
weights so that Property 4 is kept. At the same time, this property
provides the correctness of our branch-and-bound algorithm.

As well as G2, we discuss about the storage cost of an aG2 below.

PROPERTY 5. An aG2 has the same storage cost as a G2, i.e.,
O(|V | + |E|) where V and E are respectively the sets of all the
vertices and the edges in the (a)G2.

PROOF. To prove Property 5, we have to discuss about the storage
costs of vertices, edges, and upper-bound weights. Let ni,j and
n′
i,j be the size of Vi,j in G2 and aG2, respectively. Because Vi,j ∩

Ri,j = ∅ in aG2, we have that ni,j = n′
i,j + |Ri,j |, thereby |V | =∑

(n′
i,j + |Ri,j |). The number of edges in aG2 may be less than

that of G2 but it takes O(E) cost. Let V ′ be the set of Vi,j of

322

aG2, and |V | > |V ′| =
∑

n′
i,j . The storage cost of upper-bound

weights maintained by vertices isO(|V ′|). Let C be the set of cells
of an aG2, and the storage cost of upper-bound weights maintained
by the cells is O(|C|). We know that |C| ≪ |V ′| in practice.
Therefore we can complete the proof. □

5.2 Branch-and-Bound Algorithm
As described in Section 5.1, each cell and vertex in an aG2 main-

tain the upper-bound weights. This enables us to process a con-
tinuous MaxRS query while pruning unnecessary computations.
Specifically, we can obtain two pruning rules, which can reduce
the number of executions of Local-Plane-Sweep(·). Assume an
instance when m new rectangles are generated, the upper-bound
weight of each cell is obtained by Equation (5). Given s∗, we first
obtain the following pruning rule.

PRUNING RULE 1. Given a cell ci,j in the aG2, and if ci,j .w <
s∗.w, all the vertices in Vi,j do not have s∗. Therefore we do not
need to compute the exact si′ of ri′ ∈ Vi,j .

The above case efficiently prunes the computation of the exact si′ .
However, we are likely to hold the case where ci,j .w ≥ s∗.w,
since ci,j .w is the maximum value among the set of the upper-
bounds maintained by vertices in Gi,j or more (See Equation(5)).
In this case, we focus on each vertex in Vi,j , and then apply the
next pruning rule.

PRUNING RULE 2. Given a cell ci,j in the aG2, and we assume
that ci,j .w ≥ s∗.w. Given a vertex ri′ ∈ Vi,j , if si′ .w < s∗.w, ri′
does not have s∗, thus we do not need to compute the exact si′ .

From the above pruning rules, we can focus only on cells and ver-
tices with non-zero probability to have s∗. Note that the above
pruning rules assume that s∗ is given, although s∗ might expire. If
s∗ expires, we first obtain a temporal s∗, and the temporal s∗ is
retrieved from the cell c that satisfies

c = argmax
ci,j ∈C

ci,j .w, (6)

where C is the set of cells in the aG2. To keep the efficiency of the
pruning rules, the weight maintained by the temporal s∗ should be
large as much as possible. It is intuitive that a cell with large upper-
bound weight probably has the space with large weight, thereby
we employ this heuristic. From the above discussion, we design
a branch-and-bound algorithm, which efficiently updates s∗ and is
illustrated in Algorithm 2.

Algorithm description. Consider an instance when m new rectan-
gles are generated and the m oldest rectangles expire. We first map
the newly generated rectangles to the corresponding cells ci,j while
updating the upper-bound weight ci,j .w and Ri,j (lines 1–5). Next,
we update (or find a temporal) s∗ to enhance the pruning efficiency
(line 6–10). Let c is the cell holding s∗ (if s∗ expires, we retrieve
c that satisfies Equation (6)), we execute OverlapComputation(c)
(line 9), which is illustrated in Algorithm 3. OverlapComputation(c)
updates the graph in c and c.w. More specifically, we check whether
rectangles in R of the cell c overlap with the rectangles (vertices)
in V , and if overlap, new edges are inserted while updating the
upper-bound weights maintained by the vertices and c (lines 3–8
in Algorithm 3). After that, ExactWeightComputation(s∗, c) is ex-
ecuted (line 10 in Algorithm 2), which is illustrated in Algorithm
4. In ExactWeightComputation(s∗, c), we apply Pruning rule 2 to
each vertex ri. If si.w > s∗.w, we execute Local-Plane-Sweep(·)
for ri, and update s∗ if necessary (lines 6–10 in Algorithm 4). Also,
c.w is kept so that it satisfies Equation (4). From the above proce-
dures, we obtain the updated (or temporal) s∗, and then a branch-

Algorithm 2: Branch-and-bound algorithm using aG2
1 Rnew ← the set of newly generated rectangles
2 for ∀r ∈ Rnew do
3 if r is mapped to ci,j then
4 ci,j .w ← ci,j .w + r.w
5 Ri,j ← Ri,j ∪ {r}

6 c← {ci,j | s∗ is in ci,j}
7 if s∗ expired (c = ∅) then
8 c← argmax

ci,j∈C
ci,j .w // C is the set of cells in aG2

9 OverlapComputation(c)
10 s∗ ← ExactWeightComputation(s∗, c)
11 for ∀ci,j ∈ C\{c} do
12 if ci,j .w > s∗.w then
13 OverlapComputation(ci,j)

14 if ci,j .w > s∗.w then
15 s∗ ← ExactWeightComputation(s∗, ci,j)

16 return s∗

Algorithm 3: OverlapComputation(ci,j)
Input: ci,j // a cell in aG2

1 ci,j .w ← 0
2 for ∀r′ ∈ Ri,j do
3 for ∀r ∈ Vi,j do
4 if r′ overlaps with r then
5 r.E ← r.E ∪ {(r, r′)}
6 s.w ← s.w + r′.w

7 if ci,j .w < s.w then
8 ci,j .w ← s.w

9 if ci,j .w < r′.w then
10 ci,j .w ← r′.w

11 s′.w ← r′.w
12 Vi,j ← Vi,j ∪ {r′}
13 Ri,j ← Ri,j\{r′}

and-bound approach is employed (lines 11–15 in Algorithm 2) to
guarantee the correct s∗.

Given a cell ci,j , we first apply Pruning rule 1, and if ci,j .w >
s∗.w, we update (i.e., decrease) ci,j .w by OverlapComputation(ci,j)
(lines 12–13). Again we apply Pruning rule 1 to ci,j , and if ci,j .w >
s∗.w again, ExactWeightComputation(s∗, ci,j), which we explained
above, is executed. In the case where we compute the exact si′
maintained by ri′ ∈ Vi,j , in ExactWeightComputation(s∗, ci,j),
and si′ .w > s∗.w, s∗ is updated (line 10 in Algorithm 4). These
operations are executed for ∀ci,j ∈ C\{c}, and after that, we can
keep monitoring the correct s∗.

Time complexity. OverlapComputation(ci,j) takesO(|Vi,j ||Ri,j |).
Let C′ be the set of the cells that OverlapComputation(·) is ex-
ecuted, and the amortized time to compute the rectangle overlap-
ping is O(|C′||Vi,j ||Ri,j |). Let v′ be the number of the vertices
that Local-Plane-Sweep(·) is executed. Also let e′ be the aver-
age number of edges of the above vertices, and the total cost of
ExactWeightComputation(·, ·) is O(v′e′ log e′). When m new ob-
jects are generated, Algorithm 2 takesO(|C′||Vi,j ||Ri,j |+v′e′ log e′)
(amortized) time. Recall the time complexity of Algorithm 1, and
note that |C′||Vi,j ||Ri,j | ≤ c′m′n′ and v′e′ log e′ < ve log e.

Correctness. The correctness of Algorithm 2 is proven by Prop-
erty 4. In Algorithms 2–4, we define the condition that we cannot
prune OverlapComputation(·) and ExactWeightComputation(·, ·)
as “>” instead of “≥,” e.g., line 12 of Algorithm 2. This is because

323

Algorithm 4: ExactWeightComputation(s∗, ci,j)
Input: s∗, ci,j // ci,j is a cell in aG2

1 ci,j .w ← 0
2 for ∀ri′ ∈ Vi,j do
3 ρ← 0
4 if s∗ ̸= ∅ then
5 ρ← s∗.w

6 if si′ .w > ρ then
7 si′ ← Local-Plane-Sweep(N(ri′ ∪ {ri′}))
8 si′ .w ← si′ .w
9 if si′ .w > s∗.w then

10 s∗ ← si′

11 if ci,j .w < si′ .w then
12 ci,j .w ← si′ .w

13 return s∗

we monitor one of the spaces with the maximum weight, thus if
s∗.w = ci,j .w for example, we keep monitoring s∗, and this does
not sacrifice the correctness. If applications require all spaces with
the maximum weight like the AllMaxRS problem [9], we just need
to define the condition as “≥.”

5.3 Discussion
To demonstrate the efficiency and practicality of Algorithm 2,

we review the following conceivable approaches that can tight the
upper-bound weights maintained by rectangles more than Algo-
rithm 2.

1. An approach that all rectangles ri maintain all the overlapped
spaces on ri.

2. An additional approach of Algorithm 2 that computes the
maximum space weight among the common spaces on ri and
rj when (rj , ri) is inserted to ri.E.

3. An additional approach of Algorithm 2 that tries to decrease
si.w when si.w > s∗.w.

We show that these approaches do not guarantee the reduction of
time complexity, rather, the worst-case time complexity becomes
worse than Algorithm 2.

Approach 1. Given a rectangle ri, we assume that Si is the set
of the overlapped spaces on ri. Since ri maintains all the over-
lapped spaces on ri, we can compute the tightest si.w. How-
ever, given m′ new rectangles overlapping with ri, we need at least
O(m′ log |Si|) time in practice1 to compute the tightest si.w. Be-
cause |Si| ≥ |ri.E|, we may have thatO(m′ log |Si|) is larger than
the time cost of the plane-sweep algorithm, i.e.,O(|ri.E| log |ri.E|).
To bound the worst time complexity, we execute Local-Plane-Sweep(·),
if O(m′ log |Si|) > O(|ri.E| log |ri.E|) (if we can estimate this
situation). Then the worst-case time complexity is the same as Al-
gorithm 1, thus is worse than Algorithm 2. Note that this approach
is impractical because we cannot bound the number of spaces main-
tained by rectangles.

Approach 2. Recall that an optimal way to compute the maximum
space weight is the plane-sweep algorithm, thereby this approach is
equivalent to the exact si computation. That is, this approach does
not make sense.

Approach 3. Given a vertex ri in an aG2, and when si.w > s∗.w,
this approach tries to decrease si.w. This approach is illustrated
1In the case where Si is indexed by an R-tree or a Quad-tree.

Algorithm 5: UpperboundUpdate(ri)
Input: ri // a vertex of a given cell.

1 R(ri)← the set of vertices that are included in N(ri) but have not
been executed Plane-Sweep(·)

2 τ ← si.w
3 for ∀r ∈ R(ri) do
4 if r overlaps with si then
5 τ ← τ + r.w
6 if τ > s∗.w then
7 si.w ← τ
8 break

9 else
10 ρ← r.w + ri.w
11 for r′ ∈ N(ri)\{r} do
12 if r overlaps with r′ then
13 ρ← ρ+ r′.w

14 if τ < ρ then
15 τ ← min(τ + r.w, ρ)
16 if τ > s∗.w then
17 si.w ← τ
18 break

by Algorithm 5, which may be executed after line 6 of Algorithm
4. Assume an instance when si is computed, and let R(ri) be the
set of vertices that are included in N(ri) after the instance. In
other words, si has been computed based on N(ri)\R(ri). In
a nut shell, this approach computes si.w by checking whether a
given r ∈ R(ri) overlaps with si (line 4) or the rectangle r′ ∈
N(r)\{r} (line 12). Due to the latter case, this approach does not
necessarily add r.w to si.w, which may result in less si.w than
the original Algorithm 4. This approach however needs an extra
O(|R(ri)||N(ri)|) time for each ri where si.w > s∗.w. Recall
that Local-Plane-Sweep(N(ri)∪{ri}) takesO(|N(ri)| log |N(ri)|)
time, and we may have thatO(|R(ri)||N(ri)|) > O(|N(ri)| log |N(ri)|).
It would be better to execute Algorithm 5 only in the case where
|R(ri)||N(ri)| < 2|N(ri)| log |N(ri)| (since the plane-sweep al-
gorithm needs 2n logn operations). We can therefore see that this
approach does not work well if |R(ri)| is large. Also, this ap-
proach increases the worst-case time complexity, which means no
guarantee to reduce the time complexity of Algorithm 2. Our ex-
perimental results also show that this approach does not guarantee
the acceleration of query processing.

From the above discussion, we see that more storage and non-
reasonable computational costs are required to tight the upper-bound
weights. The upper-bounding cost of Algorithm 2 is reasonable and
the worst-case time complexity is better than the above approaches.

6. APPLICATION TO RELATED PROBLEMS
In this section, we address two problems of approximate moni-

toring MaxRS and monitoring top-k MaxRS. We solve these prob-
lems efficiently by employing the branch-and-bound algorithm us-
ing aG2 with simple extensions.

6.1 Approximate Monitoring MaxRS
To improve query processing efficiency, some applications re-

quire not the exact but approximate results [25]. In this case, it is
important to bound the error rate, thus, given a user-tolerance error
ϵ (0 ≤ ϵ < 1), the objective of this problem is to continuously
monitor a space s with the weight s.w that satisfies

s.w ≥ (1− ϵ)s∗.w.

324

Algorithm 2 can deal with this problem by respectively replacing
Pruning rules 1 and 2 with Pruning rules 3 and 4, which are shown
below.

PRUNING RULE 3. Given a cell ci,j in the aG2 and the space s
monitored by our approximate algorithm, if (1 − ϵ)ci,j .w < s.w,
we do not compute the exact si′ of ri′ ∈ Vi,j .

PRUNING RULE 4. Given a cell ci,j in the aG2 and the space
s monitored by our approximate algorithm, if (1 − ϵ)ci,j .w ≥
s.w, we cannot prune OverlapComputation(ci,j) by Pruning rule
3. Given a vertex ri′ ∈ Vi,j , if (1 − ϵ)si′ .w < s.w, we do not
compute the exact si′ .

We demonstrate that our approximate algorithm (which is the
approximate version of Algorithm 2) guarantees the error bound.

THEOREM 1. Our approximate algorithm always guarantees that
s.w ≥ (1− ϵ)s∗.w.

To prove Theorem 2, we need to introduce the following lemmas.

LEMMA 1. Assume that we are monitoring s that satisfies s.w ≥
(1 − ϵ)s∗.w before applying Pruning rule 3 to a cell ci,j . It is
guaranteed that Pruning rule 3 does not lose that s.w ≥ (1 −
ϵ)s∗.w.

PROOF. If ci,j .w < s∗.w and (1 − ϵ)ci,j .w < s.w, it is trivial
that (1− ϵ)s∗.w ≤ s.w due to the assumption. On the other hand,
if ci,j .w ≥ s∗.w, we have that (1 − ϵ)ci,j .w ≥ (1 − ϵ)s∗.w.
Therefore if s.w > (1− ϵ)ci,j .w, s.w > (1− ϵ)s∗.w. □
LEMMA 2. Assume that we are monitoring s that satisfies s.w ≥
(1 − ϵ)s∗.w before applying Pruning rule 4 to a vertex ri′ . It is
guaranteed that Pruning rule 4 does not lose that s.w ≥ (1 −
ϵ)s∗.w.

PROOF. Essentially the same as the proof of Lemma 1. □
Now, we are ready to prove Theorem 1.

PROOF. As long as we are monitoring s that satisfies s.w ≥ (1 −
ϵ)s∗.w, Pruning rules 3 and 4 do not lose the bound, which can be
seen from Lemmas 1 and 2. We here assume that we are monitor-
ing s that satisfies s.w < (1 − ϵ)s∗.w. Let c∗ be the cell hold-
ing s∗, and we have that s∗.w ≤ s∗.w ≤ c∗.w. Therefore, in
this case, we definitely cannot prune OverlapComputation(c∗) and
ExactWeightComputation(s∗, c∗) by Pruning rules 3 and 4, and s
is replaced by s∗. This means that s cannot be the result, thus we
conclude that Theorem 2 is true from the contradiction. □

6.2 Monitoring Top-k MaxRS
If the requirement is to monitor not only a single space but multi-

ple spaces with the largest weight, a continuous top-k MaxRS query
is a promising solution. This query achieves the requirement while
controlling the result size as Definition 4 describes.

We know that Pruning rules 1 and 2 are based on a threshold,
and the threshold is s∗.w, i.e., the (temporal) top-1 weight. It is
intuitively known that the threshold is set as the kth largest weight
in continuous top-k MaxRS queries.

Algorithm 6 illustrates the high level algorithm. Although the
algorithm for continuous top-k MaxRS queries is essentially the
same as Algorithm 2, the main modification is to deal with the set
S∗ of the k spaces with the maximum weight. We do not show
OverlapComputation(C′) and ExactWeightComputation(S∗, C′) be-
cause they are also essentially the same as Algorithms 3 and 4, re-
spectively.

7. EXPERIMENTS

Algorithm 6: Branch-and-bound algorithm using aG2 for con-
tinuous top-k MaxRS queries

1 Execute lines 1–5 in Algorithm 2
2 C′ ← {∀ci,j | ∃s ∈ S∗ is in ci,j}
3 if C′ = ∅ (all spaces in S∗ expire) then
4 C′ ← argmax

ci,j∈C
ci,j .w // C is the set of cells in aG2

5 OverlapComputation(C′)
6 S∗ ← ExactWeightComputation(S∗, C′)
7 for ∀ci,j ∈ C\C′ do
8 Execute lines 12–15 in Algorithm 2

9 return S∗

Table 4: Configuration of parameters

Parameter Values
Window-size, n [×1000] 100, 250, 500, 750, 1000

Generation rate, m 50, 100, 200, 500, 1000
Side length of a rectangle, l 100, 500, 1000, 1500, 2000

Error rate, ϵ 0, 0.1, 0.2, 0.3, 0.4, 0.5
k 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50

This section provides our experimental results on the perfor-
mances of our algorithms. Recall that this is the first work of mon-
itoring MaxRS problem, so there is no existing algorithm that can
deal with this problem. Therefore, to show the efficiency of the
incremental approach of our algorithms, we use an algorithm with
non-incremental approach as comparison. That is, we evaluated
naive plane-sweep [12, 18], the algorithm using G2 (Section 4),
and the branch-and-bound algorithms using aG2 (Sections 5 and
6). For easy recognition, our algorithms are represented by G2 and
aG2. Recall that naive plane-sweep is an optimal in-memory algo-
rithm for computing s∗ from scratch, and the algorithm proposed in
[8, 9] also uses naive plane-sweep in the case where all objects fit
in the main memory. All algorithms were implemented in C++, and
all experiments were conducted on a PC with 3.4GHz Intel Core i7
processor and 32GB RAM.

7.1 Setting
Datasets. We used a synthetic dataset and three real datasets. In
the synthetic dataset, we generated objects under uniform distribu-
tion. The cardinality of this synthetic dataset is 10,000,000, and the
range of each coordinate is [0, 1000000]. The three real datasets are
T-Drive [31], Geolife [34], and Roma2, which are the sets of con-
tinuously generated GPS data. The objects in the real datasets exist
over a very wide range, thus we selected the objects existing around
respective main areas. The cardinalities of T-Drive, Geolife, and
Roma are 5,037,794, 3,662,876, and 8,368,858, respectively. The
objects in the datasets are sorted in order of generation time, and
we normalized the range of each coordinate to [0, 1000000]. In
the above four datasets, the weight of a given object is a real-value
randomly chosen from [0, 1000].

Parameters. Table 4 summarizes the parameters used in the ex-
periments and bold values are default values. Note that a given
rectangle is a square in the experiments, thus the size of a rectangle
is l × l, i.e., 1000× 1000 by default.

Evaluation. In Section 7.2, we investigate the impact of Algorithm
5. In Section 7.3, to investigate the performances of the algorithms
w.r.t. monitoring MaxRS, we varied three parameters, n, m, and l,

2http://crawdad.org/index.html

325

100 200 300 400 500 600 700 800 9001000
10

−1

10
0

10
1

10
2

10
3

10
4

Window size [K] (Synthetic)

C
o

m
p

u
ta

ti
o

n
 t

im
e

 [
m

s
e

c
]

naive plane−sweep G2 aG2

(a) Synthetic

100 200 300 400 500 600 700 800 9001000
10

−1

10
0

10
1

10
2

10
3

10
4

Window size [K] (T−Drive)

C
o

m
p

u
ta

ti
o

n
 t

im
e

 [
m

s
e

c
]

naive plane−sweep G2 aG2

(b) T-Drive

100 200 300 400 500 600 700 800 9001000
10

1

10
2

10
3

10
4

Window size [K] (Geolife)

C
o

m
p

u
ta

ti
o

n
 t

im
e

 [
m

s
e

c
]

naive plane−sweep G2 aG2

(c) Geolife

100 200 300 400 500 600 700 800 9001000
10

0

10
1

10
2

10
3

10
4

10
5

Window size [K] (Roma)

C
o

m
p

u
ta

ti
o

n
 t

im
e

 [
m

s
e

c
]

naive plane−sweep G2 aG2

(d) Roma
Figure 7: Impact of n

0 200 400 600 800 1000
10

−1

10
0

10
1

10
2

10
3

Generation rate (Synthetic)

C
o

m
p

u
ta

ti
o

n
 t

im
e

 [
m

s
e

c
]

naive plane−sweep G2 aG2

(a) Synthetic

0 200 400 600 800 1000
10

0

10
1

10
2

10
3

Generation rate (T−Drive)

C
o

m
p

u
ta

ti
o

n
 t

im
e

 [
m

s
e

c
]

naive plane−sweep G2 aG2

(b) T-Drive

0 200 400 600 800 1000
10

1

10
2

10
3

10
4

Generation rate (Geolife)

C
o

m
p

u
ta

ti
o

n
 t

im
e

 [
m

s
e

c
]

naive plane−sweep G2 aG2

(c) Geolife

0 200 400 600 800 1000
10

1

10
2

10
3

10
4

Generation rate (Roma)

C
o

m
p

u
ta

ti
o

n
 t

im
e

 [
m

s
e

c
]

naive plane−sweep G2 aG2

(d) Roma
Figure 8: Impact of m

Table 5: Computation time [msec]
Algorithm Synthetic T-Drive Geolife Roma

Algo. 2 0.799 6.547 152.644 55.196
Algo. 5 with cond. 0.796 5.952 202.127 49.245

Algo. 5 0.812 6.229 217.541 54.837

and measured the average computation time to update s∗. We also
measured the practical error rate and computation time of aG2 by
varying ϵ to investigate the performance of our approximate algo-
rithm in Section 7.4. Let s be the space monitored by our approxi-
mate algorithm, and the practical error is defined by 1−s.w/s∗.w.
Finally, we measured the average computation time to update S∗

by varying k in Section 7.5.

7.2 Impact of Algorithm 5
We first study the impact of Algorithm 5 in our default setting.

Table 5 shows the result. In Table 5, “Algo. 5 with cond.” is
denoted by Algorithm 2 with Algorithm 5 in the case where the
upper-bounding cost is less than the plane-sweep algorithm. We
can see that Algorithm 5 provides a trivial impact for all the four
datasets and does not outperform Algorithm 2. We observed that
|R(ri)| in Algorithm 5 is large in Geolife, thus Algorithm 5 pro-
vides a negative impact. Therefore we do not employ Algorithm 5
since it is not scalable .

7.3 Results on monitoring MaxRS
Impact of n. We study the impact of the number of objects on
a sliding-window, and Figure 7 shows the results. All the algo-
rithms need longer computation time as n increases. In terms of
naive plane-sweep, this is intuitive since its cost is O(n logn).
It is also intuitive that the increase of the number of overlapped
spaces due to the increase of n is likely to lose the chances which
avoid OverlapComputation(·) and ExactWeightComputation(·, ·),

thus our algorithms also need longer computation time. However,
we can see that our algorithms are more efficient than naive plane-
sweep in the four datasets, as expected. Naive plane-sweep is not
scalable, which is shown in the case of large n. Moreover, aG2
scales better than G2 (the computation time is shown in log-scale).
aG2 updates the result more than 2 times faster than G2 in the four
datasets.

Impact of m. Next, we study the impact of the generation rate,
i.e., the number of objects generated at the same time. Although
the practical average generation rates of the three real datasets are
less than 50 objects (per second), we employ larger generation rates
to investigate the scalability of our algorithms. Figure 8 shows the
results. Because naive plane-sweep computes s∗ from scratch, it
is not affected by m basically. The computation time of our algo-
rithms increases as m increases. When m is large, the upper-bound
weights maintained by cells and vertices are likely to become large,
which results in the same observation as large n. Note that even a
case of large m, e.g., m = 1000, we can observe that aG2 still
updates the result faster than naive plane-sweep.

Impact of l. User-specified rectangle size also has impacts on
the performances of continuous MaxRS query processing, because
large rectangles tend to overlap with others. Figure 9 shows the re-
sults. We can see that aG2 keeps outperforming naive plane-sweep,
but the tendencies are different between the datasets. In the uniform
distribution, i.e., Figure 9(a), G2 and aG2 are not much affected by
l, but in the real datasets, the computation time of our algorithms
(and naive plane-sweep) increase as l increases. We observed that
the distributions of the real datasets are skewed. Therefore many
rectangles overlap with each other, then G2 and aG2 are likely to
encounter the case that Local-Plane-Sweep(·) is not avoided.

7.4 Results on monitoring Approximate MaxRS
We evaluated our approximate branch-and-bound algorithm us-

326

0 500 1000 1500 2000
10

−1

10
0

10
1

10
2

10
3

10
4

Side length of rectangle (Synthetic)

C
o

m
p

u
ta

ti
o

n
 t

im
e

 [
m

s
e

c
]

naive plane−sweep G2 aG2

(a) Synthetic

0 500 1000 1500 2000
10

0

10
1

10
2

10
3

10
4

Side length of rectangle (T−Drive)

C
o

m
p

u
ta

ti
o

n
 t

im
e

 [
m

s
e

c
]

naive plane−sweep G2 aG2

(b) T-Drive

0 500 1000 1500 2000
10

0

10
1

10
2

10
3

10
4

Side length of rectangle (Geolife)

C
o

m
p

u
ta

ti
o

n
 t

im
e

 [
m

s
e

c
]

naive plane−sweep G2 aG2

(c) Geolife

0 500 1000 1500 2000
10

0

10
1

10
2

10
3

10
4

Side length of rectangle (Roma)

C
o

m
p

u
ta

ti
o

n
 t

im
e

 [
m

s
e

c
]

naive plane−sweep G2 aG2

(d) Roma
Figure 9: Impact of l

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Epsilon (Synthetic)

C
o
m

p
u
ta

ti
o
n
 t
im

e
 [
m

s
e
c
]

aG2

(a) Comp. time (Synthetic)

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

6

7

Epsilon (T−Drive)

C
o
m

p
u
ta

ti
o
n
 t
im

e
 [
m

s
e
c
]

aG2

(b) Comp. time (T-Drive)

0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

120

140

160

Epsilon (Geolife)

C
o
m

p
u
ta

ti
o
n
 t
im

e
 [
m

s
e
c
]

aG2

(c) Comp. time (Geolife)

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

50

60

Epsilon (Roma)

C
o
m

p
u
ta

ti
o
n
 t
im

e
 [
m

s
e
c
]

aG2

(d) Comp. time (Roma)

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Epsilon (Synthetic)

E
rr

o
r

ra
te

aG2

(e) Error rate (Synthetic)

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Epsilon (T−Drive)

E
rr

o
r

ra
te

aG2

(f) Error rate (T-Drive)

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Epsilon (Geolife)

E
rr

o
r

ra
te

aG2

(g) Error rate (Geolife)

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Epsilon (Roma)

E
rr

o
r

ra
te

aG2

(h) Error rate (Roma)
Figure 10: Impact of ϵ

ing aG2 by varying ϵ. Although an approximate algorithm for one-
time computation of MaxRS queries has been proposed in [25],
this algorithm cannot be used for comparison due to three reasons.
First, this algorithm is based on randomized sampling, thus the an-
swers returned by this algorithm and our algorithm are different.
Second, the answer returned by this algorithm varies every time,
which is not suitable as monitoring algorithm. Last, repeating such
one-time computation is shown to be inefficient in Section 7.3. We
therefore focus on our algorithm, and the experimental results are
shown in Figure 10.

From Figures 10(a)–10(d), although its impact is different be-
tween the datasets, we can see that the computation time decreases
as ϵ increases. This result satisfies the requirement that needs faster
computation with an approximate answer. In the synthetic dataset,
it seems that the computation time does not decrease so much (Fig-
ure 10(a)), but even when ϵ = 0, the computation time is about
0.8 [msec], which is fast enough. From Figures 10(e)–10(h), we
can see that as ϵ increases, the practical error also increases but
is less than ϵ. The results show that the relationship between the
query processing efficiency and the quality of the result is trade-
off, but an interesting observation is that the practical error rates in
the cases of the real datasets are very small.

7.5 Results on monitoring Top-k MaxRS
To evaluate our branch-and-bound algorithm for continuous top-

k MaxRS queries, we conducted an experiment by varying k. We
compare our algorithm with naive plane-sweep. Although naive
plane-sweep is for one-time computation, this algorithm can deal
with top-k MaxRS queries without sacrificing the computation cost.
We do not evaluate G2 since its performance is not better than aG2.

Figure 11 shows the results. Again, naive plane-sweep is not
affected by k since it scans all rectangles on a sliding-window. As
k increases, the computation time of aG2 increases, but we can see
that the increase of the computation time of aG2 is slight for all
the four datasets. These results confirm that the pruning rules keep
efficient and avoid unnecessary computation.

8. CONCLUSION
In this paper, we addressed a novel problem of monitoring MaxRS

and its variants, i.e., monitoring approximate MaxRS and top-k
MaxRS. In the environments where spatio-temporal objects are gen-
erated frequently, monitoring and analysis of objects are often re-
quired, and a continuous MaxRS query is useful to support such
requirements. Unfortunately, the existing solutions [8, 25] focus
on static objects, thus are not efficient in our problem. Motivated

327

0 5 10 15 20 25 30 35 40 45 50
10

−1

10
0

10
1

10
2

10
3

10
4

k (Synthetic)

C
o

m
p

u
ta

ti
o

n
 t

im
e

 [
m

s
e

c
]

naive plane−sweep aG2

(a) Synthetic

0 5 10 15 20 25 30 35 40 45 50
10

0

10
1

10
2

10
3

10
4

k (T−Drive)

C
o

m
p

u
ta

ti
o

n
 t

im
e

 [
m

s
e

c
]

naive plane−sweep aG2

(b) T-Drive

0 5 10 15 20 25 30 35 40 45 50
10

2

10
3

10
4

k (Geolife)

C
o

m
p

u
ta

ti
o

n
 t

im
e

 [
m

s
e

c
]

naive plane−sweep aG2

(c) Geolife

0 5 10 15 20 25 30 35 40 45 50
10

1

10
2

10
3

10
4

k (Roma)

C
o

m
p

u
ta

ti
o

n
 t

im
e

 [
m

s
e

c
]

naive plane−sweep aG2

(d) Roma
Figure 11: Impact of k

by this, we proposed the first algorithm that can incrementally up-
date the exact result. This algorithm incorporates our index frame-
work G2 (Graph in Grid index) which supports efficient query pro-
cessing. We extended G2 and proposed aG2 (aggregate G2) and
a branch-and-bound algorithm using aG2. The branch-and-bound
algorithm accelerates the query processing efficiency. Moreover,
we showed that the branch-and-bound algorithm can deal with the
monitoring approximate MaxRS and the top-k MaxRS problems
with simple modifications. To demonstrate the efficiency of our al-
gorithms, we conducted experiments using synthetic and real datasets.
The results show that the branch-and-bound algorithm using aG2 is
superior to the one-time computation approach and the algorithm
using G2.

As shown (but not theoretically) in Section 5.3, we need extra
computation and storage costs to tight the upper-bound weights
more. Hence, it is interesting to theoretically explore (or clarify
the impossibility of) an approach that can tight the upper-bound the
most without sacrificing the computational cost and storage cost. It
is also interesting to develop an efficient algorithm that can deal
with multiple continuous MaxRS queries at the same time. These
are the works that need to be considered in the future.

Acknowledgment. This research is partially supported by the Grant-
in-Aid for Scientific Research (A)(26240013) of MEXT, Japan,
and JST, Strategic International Collaborative Research Program,
SICORP.

9. REFERENCES
[1] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues

in data stream systems. In PODS, pages 1–16, 2002.
[2] J. Bao, M. F. Mokbe, and C.-Y. Chow. Geofeed: A location aware news feed

system. In ICDE, pages 54–65, 2012.
[3] M. A. Cheema, L. Brankovic, X. Lin, W. Zhang, and W. Wang. Continuous

monitoring of distance-based range queries. IEEE TKDE, 23(8):1182–1199,
2011.

[4] M. A. Cheema, W. Zhang, X. Lin, Y. Zhang, and X. Li. Continuous reverse k
nearest neighbors queries in euclidean space and in spatial networks. The VLDB
Journal, 21(1):69–95, 2012.

[5] L. Chen, G. Cong, X. Cao, and K.-L. Tan. Temporal spatial-keyword top-k
publish/subscribe. In ICDE, pages 255–266, 2015.

[6] Z. Chen, Y. Liu, R. C.-W. Wong, J. Xiong, X. Cheng, and P. Chen. Rotating
maxrs queries. Information Sciences, Elsevier, 305:110–129, 2015.

[7] Z. Chen, Y. Liu, R. C.-W. Wong, J. Xiong, G. Mai, and C. Long. Efficient
algorithms for optimal location queries in road networks. In SIGMOD, pages
123–134, 2014.

[8] D.-W. Choi, C.-W. Chung, and Y. Tao. A scalable algorithm for maximizing
range sum in spatial databases. PVLDB, 5(11):1088–1099, 2012.

[9] D.-W. Choi, C.-W. Chung, and Y. Tao. Maximizing range sum in external
memory. ACM TODS, 39(3):21, 2014.

[10] Y. Du, D. Zhang, and T. Xia. The optimal-location query. In SSTD, pages
163–180. 2005.

[11] J. Huang, Z. Wen, J. Qi, R. Zhang, J. Chen, and Z. He. Top-k most influential
locations selection. In CIKM, pages 2377–2380, 2011.

[12] H. Imai and T. Asano. Finding the connected components and a maximum

clique of an intersection graph of rectangles in the plane. Journal of algorithms,
Elsevier, 4(4):310–323, 1983.

[13] C. Li, Y. Gu, J. Qi, G. Yu, R. Zhang, and W. Yi. Processing moving knn queries
using influential neighbor sets. PVLDB, 8(2):113–124, 2014.

[14] Y. Liu, R. C.-W. Wong, K. Wang, Z. Li, C. Chen, and Z. Chen. A new approach
for maximizing bichromatic reverse nearest neighbor search. Knowledge and
Information Systems, Springer, 36(1):23–58, 2013.

[15] K. Mouratidis, S. Bakiras, and D. Papadias. Continuous monitoring of spatial
queries in wireless broadcast environments. IEEE TMC, 8(10):1297–1311,
2009.

[16] K. Mouratidis and D. Papadias. Continuous nearest neighbor queries over
sliding windows. IEEE TKDE, 19(6):789–803, 2007.

[17] K. Mouratidis, D. Papadias, and M. Hadjieleftheriou. Conceptual partitioning:
an efficient method for continuous nearest neighbor monitoring. In SIGMOD,
pages 634–645, 2005.

[18] S. C. Nandy and B. B. Bhattacharya. A unified algorithm for finding maximum
and minimum object enclosing rectangles and cuboids. Computers &
Mathematics with Applications, Elsevier, 29(8):45–61, 1995.

[19] D. Papadias, P. Kalnis, J. Zhang, and Y. Tao. Efficient olap operations in spatial
data warehouses. In SSTD, pages 443–459. 2001.

[20] J. Qi, R. Zhang, L. Kulik, D. Lin, and Y. Xue. The min-dist location selection
query. In ICDE, pages 366–377, 2012.

[21] S. Rahul and Y. Tao. On top-k range reporting in 2d space. In PODS, pages
265–275, 2015.

[22] J. B. Rocha-Junior, A. Vlachou, C. Doulkeridis, and K. Nørvåg. Efficient
processing of top-k spatial preference queries. PVLDB, 4(2):93–104, 2010.

[23] C. Sheng and Y. Tao. New results on two-dimensional orthogonal range
aggregation in external memory. In PODS, pages 129–139, 2011.

[24] Y. Sun, J. Qi, Y. Zheng, and R. Zhang. K-nearest neighbor temporal aggregate
queries. In EDBT, pages 493–504, 2015.

[25] Y. Tao, X. Hu, D.-W. Choi, and C.-W. Chung. Approximate maxrs in spatial
databases. PVLDB, 6(13):1546–1557, 2013.

[26] Y. Tao, C. Sheng, C.-W. Chung, and J.-R. Lee. Range aggregation with set
selection. IEEE TKDE, 26(5):1240–1252, 2014.

[27] S.-H. Wu, K.-T. Chuang, C.-M. Chen, and M.-S. Chen. Diknn: an
itinerary-based knn query processing algorithm for mobile sensor networks. In
ICDE, pages 456–465, 2007.

[28] T. Xia, D. Zhang, E. Kanoulas, and Y. Du. On computing top-t most influential
spatial sites. In VLDB, pages 946–957, 2005.

[29] M. L. Yiu, X. Dai, N. Mamoulis, and M. Vaitis. Top-k spatial preference
queries. In ICDE, pages 1076–1085, 2007.

[30] M. L. Yiu and N. Mamoulis. Multi-dimensional top-k dominating queries. The
VLDB Journal, 18(3):695–718, 2009.

[31] J. Yuan, Y. Zheng, X. Xie, and G. Sun. Driving with knowledge from the
physical world. In SIGKDD, pages 316–324, 2011.

[32] D. Zhang, Y. Du, T. Xia, and Y. Tao. Progressive computation of the min-dist
optimal-location query. In VLDB, pages 643–654. t, 2006.

[33] J. Zhang, W.-S. Ku, M.-T. Sun, X. Qin, and H. Lu. Multi-criteria optimal
location query with overlapping voronoi diagrams. In EDBT, pages 391–402,
2014.

[34] Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma. Mining interesting locations and
travel sequences from gps trajectories. In WWW, pages 791–800, 2009.

[35] Z. Zhou, W. Wu, X. Li, M. L. Lee, and W. Hsu. Maxfirst for maxbrknn. In
ICDE, pages 828–839, 2011.

328

	Monitoring MaxRS in Spatial Data StreamsDaichi Amagata, Takahiro Hara

