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ABSTRACT
Since most graphs evolve over time, it is useful to be able
to query their history. We consider historical reachability
queries that ask for the existence of a path in some time in-
terval in the past, either in the whole duration of the interval
(conjunctive queries), or in at least one time instant in the
interval (disjunctive queries). We study both alternatives of
storing the full transitive closure of the evolving graph and
of performing an online traversal. Then, we propose an ap-
propriate reachability index, termed TimeReach index, that
exploits the fact that most real-world graphs contain large
strongly connected components. Finally, we present an ex-
perimental evaluation of all approaches, for different graph
sizes, historical query types and time granularities.

Categories and Subject Descriptors
H.2 [Database Management]: Systems query processing

General Terms
Algorithms, Measurement, Performance

Keywords
Evolving Graphs, Historical Queries, Reachability

1. INTRODUCTION
In recent years, increasing amounts of graph structured

data are being made available from a variety of sources, such
as social, citation, computer and hyperlink networks. Al-
most all such real-world networks evolve over time, as nodes
and edges are added or deleted. Analysis of their evolution
finds a large spectrum of applications, ranging from social
network marketing, to virus propagation and digital foren-
sics.

In this paper, we assume that we are given an evolving set
of graph snapshots corresponding to the state of the graph at
different time instants. We address the problem of efficiently
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answering queries that involve such snapshots. In particular,
we focus on a basic query type, namely reachability queries,
that ask whether a node u was reachable from another node
v during specific time intervals in the past. We call such
queries historical reachability queries.

Although, there has been considerable interest in process-
ing graph data, through a variety of graph queries including
reachability, distance and pattern-based ones, querying the
graph history is much less studied. The only other two ap-
proaches to building indexes for processing historical graph
queries that we are aware of consider historical shortest-
path queries [9, 2]. Specifically, the authors of [9] propose a
method based on ordering nodes or edges pertinent to short-
est path computation, while the dynamic index construction
proposed in [2] does not support node or edge deletions.

All other work on historical queries focuses mainly on ef-
ficiently storing and retrieving the graph snapshots required
for processing each query [14, 13, 21, 17]. In particular, in
[14], a combination of graph deltas and selected material-
ized snapshots are explored, while in [13], the focus is on
storing, sharing and processing deltas. In [21], temporally
close snapshots are clustered, one representative per cluster
is selected and used for an initial evaluation of the query.
Finally, in [17], the placement and replication of snapshots
in a distributed setting is studied. Instead, in this paper,
we address the problem of building indexes for answering
historical reachability queries.

Reachability queries on static graphs have been exten-
sively studied. Research in this area follows two general di-
rections through efficiently storing the transitive closure and
speeding-up online traversal. With regards to transitive clo-
sure, various approaches have been proposed including the
chain method [10, 5], methods exploring spanning trees, bit-
vector compression [26] and interval [1, 28, 12], and hop [7,
22, 6] labeling. In the case of online traversal, often interval
labeling [4, 25, 30] is used to prune the search space. There
has also been some work on incrementally maintaining the
reachability indexes in case of evolving graphs [1, 3, 23, 31],
however, reachability still considers a single snapshot, i.e.,
the current version of the graph.

In this paper, we explore a compact representation of
graph snapshots, called version graph, where each node and
edge is annotated with the set of time intervals during which
the corresponding node and edge existed in the evolving
graph. We call such sets lifespans and seek for their mini-
mum representation through using non-overlapping and non-
continuous intervals. We also introduce a set of basic oper-
ations for efficiently manipulating lifespans of paths.
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For processing historical reachability queries, we start by
revisiting the basic transitive closure and online traversal ap-
proaches. For the transitive closure, we compute a minimum
representation of reachability information for each pair of
nodes. For the online traversal, we propose a novel interval-
based traversal of the version graph along with a number
of pruning steps. Furthermore, to avoid the cost and space
overheads associated with precomputing the transitive clo-
sure and improving the processing cost of the online traver-
sal, we propose a new approach, termed TimeReach.

TimeReach exploits the fact that most graphs consist of
strongly connected components (SCCs) [20, 15]. Thus, in-
stead of maintaining reachability information for pairs of
nodes, we maintain posting lists with information about node
membership in SCCs. We minimize the size of posting lists
through an appropriate assignment of identifiers to SCCs.
We show that the problem of the optimal assignment of
identifiers to SCCs is equivalent to the maximum bipartite
matching problem among SCCs in consequent graph snap-
shots. Along with postings, we maintain a condensed version
graph which corresponds to the version graph of the SCCs
evolution. To improve the performance of answering his-
torical queries, we also introduce an interval-2hop approach
based on pruned landmark labeling [2, 29] on the condensed
version graph.

We have extensively evaluated our approach with three
real social network datasets. Our experimental results show
that TimeReach is space efficient, in particular for graphs
consisting of large SCCs as is the case of social networks.
Its incremental construction is fast; indexing a new snapshot
graph takes just a few seconds. Finally, processing historical
queries using TimeReach is orders of magnitude faster than
the online traversal of the version graph.

The rest of this paper is structured as follows. In Section
2, we present related work, while in Section 3, we formally
define historical reachability queries. In Section 4, we in-
troduce the version graph and operations on lifespans and
present the two baseline approaches, namely, the transitive
closure and online traversal. In Section 5, we introduce the
TimeReach Index approach, while in Section 6, we present
experimental results. Section 7 concludes the paper.

2. RELATED WORK
Although, graph data management has been the focus of

much current research, work in processing historical queries
is rather limited. The main focus of research on evolving
graphs has been on efficiently storing and retrieving graph
snapshots. In this paper, our focus in on indexing for pro-
cessing queries. To this end, we assume a compact repre-
sentation of the sequence of graph snapshots in the form
of a version graph. Alternatively, one can store just some
subset of the graph snapshots in the sequence along with
appropriate deltas, such that, any other snapshot can be
reconstructed by applying the deltas on the selected snap-
shots [14, 13]. Various optimizations for reducing the storage
and snapshot re-construction overheads have been proposed,
such as a hierarchical index of deltas and a memory pool for
the overlapping storage of snapshots [13]. Clustering tem-
porally close snapshots and computing a representative for
each cluster was also proposed [21], Deltas from representa-
tives are stored for each cluster to achieve high compression.
In the G* graph database, snapshots are efficiently stored by
taking advantage of commonalities among them [16]. Dif-

ferent versions of each node are stored only once regardless
of the number of snapshots it belongs to, and indexed by a
compact in-memory index. For load balance and availability
snapshot data are replicated among a number of workers.

Historical query processing in these approaches requires as
a first and costly step reconstructing the relevant snapshots.
Then, queries are processed through an online traversal on
each of them. Query performance is addressed by trying to
minimize the number of snapshots that need to be recon-
structed by minimizing the number of deltas applied [14,
13], avoiding the reconstruction of all snapshots [21], or by
parallel query execution and proper snapshot placement and
distribution [17]. In this work, we address a different prob-
lem, that of indexing for historical reachability queries.

Historical shortest path distance queries were addressed
in [9]. The authors propose a method based on ordering
nodes or edges pertinent to shortest path computation. Fi-
nally, the recent work of [2] also proposes a dynamic in-
dexing scheme for historical distance queries. However, the
authors consider only insertions. This assumption simpli-
fies the problem, since two nodes that are reachable remain
reachable. The authors propose a dynamic 2hop index con-
struction that is not applicable in the case of node or edge
deletions.

Reachability queries on static graphs have been thoroughly
investigated along two general directions: transitive closure
compression and improving online search.

Transitive Closure Compression. Related research aims at
compressing the transitive closure by storing for each node
only a subset of the nodes it can reach. The first idea is to
decompose the graph in k node-disjoint chains and for each
node store only the first node it can reach in each chain [10,
5]. Another line of research extracts a spanning tree of the
graph, and uses it to compress the transitive closure. Each
node of the tree is labeled with an interval of integers such
that if node u is an ancestor of v, the interval of u contains
that of v. Reachability through tree edges can be easily
determined by a label containment check. To incorporate
reachability through non-tree edges each node inherits the
intervals of its successors in the graph [1], or a partial tran-
sitive closure of non-tree edges is constructed [28]. Building
upon the idea of interval labeling, a tree whose vertices are
pair-wise disjoint paths extracted from the original graph is
used in [12]. Another approach in compressing the transitive
closure is 2-hop labeling [7, 22, 6]. Each node stores two sets
of intermediate nodes: a set Lout of nodes it can reach and
a set Lin of nodes that can reach it. Node u can reach node
v only if Lout(u) ∩ Lin(v) 6= ∅.
Speeding-up Online Traversal. These methods use interval
labeling to aid online traversal by pruning the search space.
In [4] and [25], a tree cover of the graph is constructed and
then, for the queries that can not be answered by the tree
labeling, an online search on the non-tree edges is performed
using the labeling to guide the search. In [30], multiple inter-
vals are used for the labeling. If the label containment check
does not produce a negative answer, the graph is traversed
online using the intervals for pruning the search.

Some of the works discuss the incremental maintenance
of the index in the case of evolving graphs [1, 3, 23, 31].
However, the updated index contains reachability informa-
tion only about the current version of the graph and cannot
be used for answering historical queries.
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The presented approaches are orthogonal to our approach
in that they can be adapted so that they can be used to
speed-up or avoid the online traversal of the condensed graph.
We have demonstrated this by adapting, one of them, namely
2hop labeling.

3. PROBLEM DEFINITION
Most real world graphs evolve over time as new nodes or

edges are added, or existing nodes or edges are deleted. We
assume that time is discrete and use successive integers to
denote successive time instants. There are two intuitive in-
terpretations of time instants. One interpretation is that of
actual time, for example time instant t may correspond to
say October 20, 2014, 5:00am PDT. Another view is oper-
ational. In this case, time is advanced each time a graph
operation, update or delete, occurs. Both interpretations of
time instants are consistent with our representation.

Let G = (V,E) be a directed graph where V is the set
of nodes and E the set of edges. We use Gt = (Vt, Et) to
denote the graph snapshot at time instant t, that is, the set
of nodes and edges that exist at time instant t.

Definition 1 (evolving graph). An evolving graph
G[ti,tj ] in time interval [ti, tj ] is a sequence {Gti , Gti+1, . . . ,
Gtj} of graph snapshots.

An example is shown in Figure 1(a) which depicts an evo-
lving graph G[t0,t3] consisting of four graph snapshots {Gt0 ,
Gt1 , Gt2 , Gt3}. For brevity, we denote time instant ti + 1
as ti+1 and use ti and i interchangeably, when the meaning
is clear from context.

We use the term time granularity to refer to how often a
new time instant and the corresponding graph snapshot are
created. In the case of actual time, granularity may range
for example from milliseconds to years, whereas, in the case
of operational time, granularity may be at the level of one
or more operations. A fine-grained time granularity necessi-
tates maintaining a large amount of historical information,
but supports precise historical queries.

Given a static directed graph G = (V,E) and two nodes
u, v ∈ V , a reachability query asks whether there exists a
path from u to v in G. For evolving graphs, we introduce
the following two types of historical reachability queries.

Definition 2 (historical reachability query). Let
G[ti,tj ] = {Gti , Gti+1, . . . Gtj}, be an evolving graph, IQ =
[tk, tl] ⊆ [ti, tj ] a time interval and v, u a pair of nodes:

(i) a conjunctive historical reachability query u
IQ∧
; v re-

turns true, if there exists a path from u to v in all graph
snapshots Gtm , tk ≤ tm ≤ tl of G[ti,tj ].

(ii) a disjunctive historical reachability query u
IQ∨
; v re-

turns true, if there exists a path from u to v in at least
one graph snapshot Gtm , tk ≤ tm ≤ tl, of G[ti,tj ].

Our goal is to derive methods for answering reachability
queries efficiently. A straightforward solution would be to
build a different index for each of the graph snapshots and
then pose a reachability query at each one of them. However,
this solution imposes large space overheads. In addition, it
requires extra processing for combining the results of each
query. Instead, we propose building indexes for intervals.

4. VERSION GRAPH
In this section, we present the version graph, a natural

concrete representation of an evolving graph. First, let us
define the notion of lifespan. For a node u (or, edge e),
its lifespan denotes the set of time intervals during which u
(resp. e) existed in an evolving graph. More formally, given
an evolving graph GI = {Gti , Gti+1, . . . , Gtj}, the lifespan,
L(u), (resp. L(e)) of a node u (resp. edge e) is a set of
intervals such that an interval [ti, tj ] ⊆ I belongs to L(u),
(resp. L(e)), if and only if, for all ti ≤ tm ≤ tj , u ∈ Vtm

(resp. e ∈ Etm).
We model lifespans as sets of time intervals to capture the

general case of graph evolution, where nodes and edges may
be deleted and then re-inserted at subsequent snapshots. Set
of time intervals are also known as temporal elements [11].
If we do not allow deleted nodes or edges to be re-inserted,
then lifespans are just intervals. Furthermore, if there are
no deletions, all lifespans are intervals of the form [ti, tcurr],
where ti is the time instant the node or edge first appeared
and tcurr is the time instant of the current snapshot. There-
fore, in this case, lifespans can be represented simply by the
time instant ti. In the following, we use I to denote time
intervals and I to denote sets of time intervals. To repre-
sent an evolving graph GI , we use a version graph V GI . A
version graph is a labeled directed graph that captures the
evolution of the graph in a concise manner.

Definition 3 (version graph). Given an evolving graph
GI = {Gti , Gti+1, . . . , Gtj}, its version graph is an edge and
node labeled, directed graph V GI = (VI , EI , Lu, Le) where:
VI =

⋃
tm ∈ I Vtm , EI =

⋃
tm ∈ I Etm , Lu : VI → I assigns

to each node u in VI its lifespan Lu(u) and Le : EI → I
assigns to each edge e in EI its lifespan Le(e).

An example is shown in Figure 1(b) which depicts the
version graph for the evolving graph in Figure 1(a).

4.1 Lifespan Operations
Let us define a number of operations on lifespans, i.e., set

of intervals. For two sets I and I′ of time intervals, we say
that I covers I′, denoted I w I′, if for each time instant t
in an interval I ′ of I′, there is an interval I in I such that t
belongs to I. We also use I w I for an interval I and I w t
for a time instant t. We say that two sets I and I′ of time
intervals are equivalent, I ≈ I′, if I w I′ and I′ w I.

We would like to maintain the smallest among equivalent
sets of intervals. We call such sets minimum sets. Let us
first define some simple properties for time intervals. Two
time intervals I = [ti, tj ] and I ′ = [t′i, t

′
j ] are called disjoint,

when I ∩ I ′ = ∅ and overlapping otherwise. They are called
continuous when t′i = tj + 1 and non-continuous otherwise.
It is easy to see that the following proposition holds.

Proposition 1.

(i) A set of intervals is minimum, if and only if, it consists
of disjoint and non-continuous intervals.

(ii) For each set of time intervals, there is a unique equiv-
alent minimum interval set.

We next define two useful operations on interval sets,
namely, join and merge. Given two sets of intervals, join
returns the time instants common to both, while merge re-
turns the time instants present in at least one of them.
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                                                       (a)                                                                                         (b)                                                                                      (c) 

Figure 1: Example of (a) an evolving graph, (b) the corresponding version graph, (c) SCC evolution

Definition 4 (Join and Merge of Interval Sets).
Let I = {I1, . . . Ik} and I′ = {I ′1, . . . I ′l} be two sets of
time intervals.

(i) Join I ⊗ I′ of I and I′ is the minimum set equivalent
to {I1 ∩ I ′1, . . . I1 ∩ I ′l , . . . , Ik ∩ I ′1, . . . Ik ∩ I ′l}.

(ii) Merge I ⊕ I′ of I and I′ is the minimum set equiva-
lent to I ∪ I′.

Note that if I and I′ are minimum, then the set {I1 ∩ I ′1,
. . . I1 ∩ I ′l . . . , Ik ∩ I ′1 } is a minimum set, whereas the set
{I1 ∪ I ′1, . . . I1 ∪ I ′l , . . . , Ik ∪ I ′1 . . . Ik ∪ I ′l} may not be
minimum.

The lifespan L(p) of a path p includes the time intervals
during which all its edges coexist. Clearly, for a path p = e1
. . . em, it holds that L(p) = Le(e1) ⊗ . . . ⊗ Le(em), where
Le(ei), 1 ≤ i ≤ m, is the lifespan of ei. For example, for
path p = ((u4, u3), (u3, u7), (u7, u6)) in Figure 1(b), L(p)
= {[2,3]} ⊗ {[1,3]} ⊗ {[0,1], [3, 3]} = {[3,3]}, while for path
p′= ((u1, u3), (u3,u7), (u7,u4)), L(p′) = {[0,1]} ⊗ {[1,3]} ⊗
{[0,0], [2,3]} = ∅.

We can now define the lifespan, L(u, v), of the reachabil-
ity between two nodes u and v. Let P (u, v) = {p1, . . . pl}
be the set of all paths from u to v. L(u, v) depends on the
lifespans of all possible paths in V GI from u to v, in partic-
ular, L(u, v) = L(p1) ⊕ . . . ⊕ L(pl). For example, for nodes
u4 and u6 in Figure 1(b), P (u4, u6) = {p1, p2, p3, p4, p5, p6}
where p1 = u4u3u6, p2 = u4u3u7u6, p3 = u4u1u3u6, p4 =
u4u1u3u7u6, p5 = u4u1u2u3u6, p6 = u4u1u2u3u7u6 (note,
that for notational brevity, paths were denoted by the par-
ticipating nodes instead of edges). Then, L(u4, u6) = {[2, 3]}
⊕ {[3, 3]} ⊕ {[0, 1]} ⊕ {[1, 1]} ⊕ {[1, 1]} ⊕ {[1, 1]} = {[0, 3]}.

Clearly, historical reachability queries can be represented
in terms of lifespans. Specifically, given a version graph
V GI , a time interval IQ = [tk, tl] ⊆ [ti, tj ] and two nodes v,
u,

(i) a conjunctive historical reachability query u
IQ∧
; v re-

turns true, if and only if, {IQ} ⊗ L(u, v) w IQ.

(ii) a disjunctive historical reachability query u
IQ∨
; v re-

turns true, if and only if, {IQ} ⊗ L(u, v) 6= ∅.

To represent lifespans, we use bit arrays. Assume without
loss of generality, that the maximum time instant, that is,

the number of graph snapshots, is T . Then, a lifespan, i.e.,
set of intervals, I is represented by a bit array B of size T ,
such that B[i] = 1 if I w i, and 0, otherwise. For exam-
ple, take I = {[2, 4], [9, 10], [13, curr]} and T = 16. The bit
array representation of I is 00111000011001111. This leads
to an efficient implementation of both join ⊗ and merge
⊕. In particular, let I and I′ be two set of intervals and
B and B′ be their bit arrays. Then, I ⊗ I′ is computed
as B logical-AND B′ and I ⊕ I′ as B logical-OR B′. An
alternative representation would be to use ordered lists of
intervals. Lifespan operations would then be performed us-
ing variations of merge sort resulting in O(T ) complexity.
Lists impose in general large computational overheads in
computing reachability.

4.2 Baseline Approaches
There are two baseline approaches to answering reachabil-

ity queries on static graphs, namely pre-computation of the
graph transitive closure and online traversal of the graph.
In this section, we revisit these baseline approaches for his-
torical reachability queries on a version graph.

4.2.1 Historical Transitive Closure
Instead of maintaining a different transitive closure for

each graph snapshot of the evolving graph GI , we maintain
a single transitive closure, CLI for the version graph V GI .
The transitive closure includes for each pair of nodes u, v,
their reachability lifespan, L(u, v). To construct the transi-
tive closure, we use a variation of the Floyd-Warshall algo-
rithm that takes into account lifespans, shown in Algorithm
1. If there is a path pu,w from node u to node w and a path
pw,v from node w to node v then there exists a path pu,v =
(pu,w, pw,v) from u to v with L(pu,v) = L(pu,w) ⊗ L(pw,v)
and L(pu,v) is merged with the L(u, v) computed so far.

The time complexity for Algorithm 1 is O(|VI |3T ) in the
worst case and requires storage in the order of |VI |2. For

answering a reachability query u
IQ∨
; v or u

IQ∧
; v, initially

the entry L(u, v) in CLI is located and then joined with the
query interval IQ, thus requiring constant time complexity.

4.2.2 Online Traversal of the Version Graph
A straightforward approach to process a reachability query

for an interval IQ would be to perform an online traver-
sal on all graph snapshots Gt, t ∈ IQ. When using the
version graph representation, this corresponds to traversing
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Algorithm 1 TransitiveClosure(V GI)

Input: Version graph V GI

Output: The transitive closure CLI

1: for all u, v ∈ VI × VI do
2: if (u, v) ∈ EI then
3: CLI(u, v) = Le((u, v))
4: else
5: CLI(u, v) = ∅
6: end if
7: end for
8: for w = 1 to |VI | do
9: for all u, v ∈ VI × VI do

10: CLI(u, v) = CLI(u, v) ⊕ (CLI(u,w) ⊗ CLI(w, v))
11: end for
12: end for

only edges e such that Le(e) w t, once for each t ∈ IQ. We
call this approach, instant based traversal.

To avoid multiple traversals, i.e., one for each snapshot
in IQ, we consider an interval based traversal of the version
graph. The BFS-based interval traversal for disjunctive his-
torical queries is shown in Algorithm 2 and for conjunctive
historical queries in Algorithm 3.

In particular, for conjunctive queries, since a node v may
be reachable from u through different paths at different
graph snapshots, we maintain an interval set R with the
part of L(u, v) ⊗ IQ covered so far (line 9, Algorithm 3).
The traversal ends when R covers the whole query time in-
terval IQ (line 10, Algorithm 3).

To speed-up traversal, we perform a number of pruning
tests. The traversal stops when we reach a node whose lifes-
pan is outside the query interval. In addition, the traversal
stops at a neighbor w of a node n when {IQ} ⊗ Le(n,w) 6=
∅ since a node v cannot be reachable through an edge which
is not alive in at least one t inside the query interval (line 6,
Algorithms 2 and 3).

Still an edge may be traversed multiple times, if it partici-
pates in multiple paths from source to target. To reduce the
number of such traversals, we provide additional pruning by
recording for each node w, an interval set IN (w) with the
parts of the query interval for which it has already been tra-
versed. If the query reaches w again looking for interval I ′

⊆ IQ and IN (w) w I ′, the traversal is pruned (line 11 of
Algorithm 2, line 15 of Algorithm 3).

For example, consider the version graph in Figure 1(b) and

query u1
[0,3]∧
; u5. Paths p1 = u1u3u6u5, p2 = u1u3u7u6u5,

p3 = u1u2u3u6u5, p4 = u1u2u3u7u6u5, p5 = u1u4u3u6u5 and
p6 = u1u4u3u7u6u5 with L(p1) = {[0, 1]}, L(p2) = {[1, 1]},
L(p3) = {[1, 1]}, L(p4) = {[1, 1]}, L(p5) = {[2, 3]} and L(p6)
= {[3, 3]} need to be traversed to conclude correctly that the
result of the query is true. Hence, some edges, e.g., (u3, u6),
(u6, u5) need to be traversed multiple times for different
time intervals I ′i ⊆ IQ. However, when the query reaches u3

again through path p3, it is pruned and it does not traverse
the edge (u3, u6) since IN (u3) is equal to {[0,1]} which
covers the current query interval I ′ = {[1,1]}.

Since in the worst case for both instant and interval based
traversal each edge may be traversed |IQ| times, the com-
plexity for both traversals is O((|VI | + |EI |)|IQ|). However,
in practice interval based traversal outperforms the instant
based one since each edge traversal covers large parts of the

Algorithm 2 Disjunctive-BFS(V GI , u, v, {IQ})
Input: Version graph V GI , nodes u, v, interval IQ ⊆ I
Output: True if v is reachable from u in any time instant

in IQ and false otherwise

1: create a queue N , create a queue INT
2: enqueue u onto N , enqueue IQ onto INT
3: while N 6= ∅ do
4: n← N.dequeue()
5: i← INT.dequeue()
6: for all w s.t. (n, w) in V GI and {IQ} ⊗ Le((n,w))

6= ∅ do
7: if w == v then
8: Return(true)
9: end if

10: I′ = {IQ} ⊗ Le(u,w)
11: if IN (w) 6w I′ then
12: IN (w) = IN (w) ⊕ I′
13: enqueue w onto N
14: enqueue I′ onto INT
15: end if
16: end for
17: end while
18: Return(false)

query interval instead of a single time instant. Furthermore,
pruning guarantees that an edge will not be traversed twice
for the same interval.

5. THE TIMEREACH INDEX
Our approach exploits the fact that many real-world so-

cial graphs are characterized by large strongly connected
components (SCC) [20, 15]. Thus, instead of maintaining
reachability information for pairs of nodes, we maintain in-
formation about the SCCs that each node belongs to. If two
nodes belong to the same component, then they are reach-
able. However, as the graph evolves over time, its strongly
connected components change as well. An example is shown
in Figure 1(c) that depicts the SCCs of the graph in Figure
1(b) as they evolve over time.

Given an evolving graph GI = {Gti , Gti+1, . . . , Gtj}, we
invoke at each graph snapshot Gtk ∈ GI an algorithm, e.g.,
Tarjan’s algorithm [24], to identify the corresponding set of
SCCs. A unique id is assigned to each SCC at each snapshot.

For each node u, we maintain a list P (u) that contains
(C, t) pairs specifying the strongly connected component C
to which node u belongs at time instant t. P (u) is called
posting list and each pair in the list a posting. The storage
complexity is Ω(|VI ||I|), since each node participates in at
most one SCC at each time instant. If we use Tarjan’s algo-
rithm [24], the time complexity for constructing the lists is
O((|VI |+ |EI |)|I|), since each run of the Tarjan’s algorithm
has an O(|VI |+ |EI |) complexity.

For presentation clarity, we assume that single nodes form
singleton SCCs whose ids are the ids of the corresponding
nodes. However, for space efficiency, we do not maintain
postings in this case.

We perform an additional optimization. Many nodes have
strong connections, i.e. they remain in the same components
even in the face of component splits and joins. We exploit
this fact to reduce the storage space required for the postings
by observing that the posting lists of these nodes consist of
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Algorithm 3 Conjunctive-BFS(V GI , u, v, {IQ})
Input: Version graph V GI , nodes u, v, interval IQ ⊆ I
Output: True if v is reachable from u in all time instants

in IQ and false otherwise

1: create a queue N , create a queue INT
2: enqueue u onto N , enqueue IQ onto INT
3: while N 6= ∅ do
4: n← N.dequeue()
5: i← INT.dequeue()
6: for all w s.t. (n, w) in V GI and {IQ} ⊗ Le((n,w))

6= ∅ do
7: I′ = {IQ} ⊗ Le(n,w)
8: if w == v then
9: R = R ⊕ I′

10: if R w IQ then
11: Return(true)
12: end if
13: continue
14: end if
15: if IN (w) 6w I′ then
16: IN (w) = IN (w) ⊕ I′
17: enqueue w onto N
18: enqueue I′ onto INT
19: end if
20: end for
21: end while
22: Return(false)

the same elements. We avoid redundancy by storing such
lists only once and replacing the posting lists of the rele-
vant nodes with pointers to the common list. We call this
approach posting sharing.

An example is shown in Figure 2(a), where, for instance,
the first posting list indicates that nodes with ids 1 up to 50
belong to the strongly connected component with id C1 at
time t0, C6 at t1 and C9 at t2.

In addition, for each graph snapshot Gtk , we construct a
SCC graph snapshot GStk

= (VStk
, EStk

) such that there is
a node U in VStk

for each SCC in Gtk , and there is an edge

(U , V ) in EStk
, if and only if, there is an edge (u, v) in Gtk

from a node u that belongs to the SCC that corresponds to
U to a node v that belongs to the SCC that corresponds to
V . For a time interval I = [ti, tj ], this results in an evolving
SCC graph GSI = {GSti

, GSti+1 , . . . , GStj
}. We construct

the SCC graphs incrementally, as the SCCs are created. The
size of each SCC graph depends on the size of the original
snapshot graph and in the worst case is equal to it.

We call this approach simple TimeReach (TR). To answer

a reachability query u
IQ∧
; v, (or, u

IQ∨
; v), we check for each

t ∈ IQ whether u and v belong to the same component. If
this is not the case, we traverse the corresponding GSt .

Next, we present a more space efficient method of exploit-
ing strongly connected components for historical queries.

5.1 Condensed TimeReach
While in the TR approach, we maintain information per

time instant, we would like to aggregate such information
to express SCC participations during time intervals. In this
case, a posting (C, I ′), I ′ ⊆ I, belongs to P (u), if u partic-
ipates in the SCC with id C at all time instants in I ′. Our

goal is to minimize the total number of such postings.

Problem 1 (Optimal SCC-id assignment). Given a
time interval I and a set of SCCs for each t ∈ I, find an as-
signment of ids to SCCs that results in the minimum number
of postings.

A new posting is created, each time a node participates
in a different SCC. Thus, SCC ids should be re-assigned so
that the number of such new postings is minimized. We use
a weighted graph to formalize the optimal assignment of ids
to SCCs.

In particular, we model SCC evolution over a time interval
I using a weighted graph GC(VC , EC , W) where each node
U ∈ VC corresponds to a SCC that existed at some time
instant t ∈ I, and an edge e = (U, V ) ∈ EC , if and only
if, SCC U existed at time tk, SCC V existed at time tk + 1
and there is at least one node that belongs to both U and
V . W assigns to each edge e = (U, V ) a weight W(e) that
corresponds to the number of nodes that belong to both U
and V .

An example of a weighted graph is shown in Figure 2(b)
that depicts the evolution of the graph whose posting lists
are shown in Figure 2(a). For instance, component C7 cre-
ated at time instant t1 consists of 100 nodes from component
C4 and 150 nodes from C5.

Let GC[tk,tk+1]
(VC[tk,tk+1]

, EC[tk,tk+1]
,W) be the subgraph

of GC( VC , EC , w), that consists of the nodes U ∈ VC[tk,tk+1]

that correspond to the SCCs that exist at time interval
[tk, tk + 1]. GC[tk,tk+1]

represents one step in the SCC evo-

lution. Note that, from the definition of GC , GC[tk,tk+1]
is

a bipartite graph.
We make the following observation. At time instant tk +

1, a new posting is created exactly for those nodes that
participated in a different SCC at tk + 1 than at tk. The
number of these new postings is equal to the sum of weights
from node U to V in GC[tk,tk+1]

where U has a different id

than V . Thus, to minimize the number of new postings, we
have to maximize the weight of the edges between pairs of
nodes that have the same id. This corresponds to finding a
maximum bipartite matching of GC[tk,tk+1]

.

Theorem 1. The optimal SCC-id assignment problem can
be reduced to the problem of finding the maximum weight bi-
partite matching (MWM) Mk of each GC[tk,tk+1]

.

Proof. As shown above, solving the MWM for each bi-
partite graph GC[tk,tk+1]

minimizes the number of new post-

ings created at tk + 1. We shall show that this step-wise
assignment is optimal overall in GC . For the purposes of
contradiction, assume that the optimal assignment is a set
N of edges, N ⊂ EC and that N is different from the set
of edges attained through the maximum bipartite match-
ings, that is,

∑
e∈N

w(e) >
∑
k

∑
e∈Mk

w(e). Hence, for some

m, for Nm = N ∩ EC[tm,tm+1]
it holds that

∑
e∈Nm

w(e) >∑
e∈Mm

w(e), which means that Mm is not a MWM, which is

a contradiction.

Figure 2(c) shows the weighted graph after the assignment
of new ids through bipartite matching, while Figure 2(d)
shows the new posting lists.
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Nodes Posting List

1-50 (C1,t0),(C6,t1),(C9,t2)

51-80 (C2,t0),(C6,t1),(C9,t2)

81-100 (C3,t0),(C6,t1),(C9,t2)

101-200 (C4,t0),(C7,t1),(C9,t2)

201-230 (C5,t0),(C7,t1),(C9,t2)

231-350 (C5,t0),(C7,t1),(C10,t2)

351-450 (C5,t0),(C8,t1),(C10,t2)

(a)                                                                                        (b)
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Nodes Posting List

1-50 (C1,[t0,t1]),(C4,[t2,t2])

51-80 (C2,[t0,t0]),(C1,[t1,t1]),(C4,[t2,t2])

81-100 (C3,[t0,t0]),(C1,[t1,t1]),(C4,[t2,t2])

101-200 (C4,[t0,t2])

201-300 (C5,[t0,t0]),(C4,[t1,t2])

231-350 (C5,[t0,t0]),(C4,[t1,t1]),(C5,[t2,t2])

351-450 (C5,[t0,t2])

(c)                                                      (d)
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Figure 2: (a) Shared posting lists, (b) weighted graph modeling the evolution of SCCs, (c) weighted graph after the bipartite
matching, and (d) the compressed shared posting lists

The maximum weight bipartite matching problem is well-
studied (e.g., see [8] for a survey). The most widely used
algorithm for solving this problem on a graph G(V,E) is
the Hungarian algorithm whose running time ranges from
O(|V |3) to O(|E||V |+ |V |2loglog|V |) depending on the im-
plementation. Another category of algorithms depends on
the edge weights and the fastest one runs in O(|E|

√
|V |logW )

time, where W is the maximum edge weight. In addition,
a number of fast approximation algorithms have been pro-
posed. The simplest such algorithm is the greedy algorithm
that sorts the edges by weight and repeatedly picks the edge
with the largest weight. This algorithm can be implemented
with O(|E|) time complexity and produces a 1/2 worst case
approximation.

The incremental algorithm for constructing the SCC post-
ings is presented in Algorithm 4. It takes as input the cur-
rent snapshot and the postings computed up to the previous
snapshot, and constructs the current postings. It starts by
computing the SCCs using Tarjan’s algorithm with com-
plexity O(|Vt|+ |Et|) (line 2). Then, it constructs the graph
GC[t,t+1]

with complexity O(|EC[t−1,t]
|) (line 5). Next, the

MWM is computed and new ids are assigned to the new
SCCs (lines 6 - 9). The complexity of this step depends
on which algorithm is used for computing the MWM. We
use the greedy algorithm with complexity O(|ES[t−1,t]

|). Fi-

nally, the SCC postings are created/updated for each node
of the current snapshot, creating a new entry only for nodes
that participate in a different SCC (with a different id) than
the one in time instant t− 1 (lines 11 - 22). The complexity
of these steps is O(|Vt|) since each operation in the loop has
constant time complexity. Thus, in total the running time
of the algorithm is O(|Vt|+ |Et|).

As in the simple TR approach, we also construct the evo-
lving SCC graph, which in this case has a much smaller num-
ber of nodes due to the reduction of the number of strongly
connected components achieved by the bipartite matching.

Finally, we construct the version graph V GSI = (VSI ,
ESI , Lu, Le) of the evolving SCC graph that we call con-
densed version graph. We construct the condensed version
graph incrementally as follows. For each snapshot Gti ∈ GI ,
for each edge (u, v) ∈ Eti we look up the postings P (u),
P (v) for entries (U, I ′), (V, I ′′) s.t. ti ∈ I ′ and ti ∈ I ′′. If U
6= V and edge (U, V ) 6∈ ESI , the edge is added with lifespan
{[ti, ti]}, otherwise the lifespan of the edge is extended to in-
clude ti. We call the above approach condensed TimeReach
(TRC).

5.2 Query Processing
Query processing of a (disjunctive or conjunctive) reach-

ability query u
IQ
; v is performed in two steps. In the

first step, the appropriate postings of nodes u and v are

1           2          3          4           5          6           7          8          9          10        11         12 13        14        15

C6

C6

C5

C4

C4
P(u)

P(υ)

ΙQ1 ΙQ2 ΙQ3

Figure 3: Example of splitting query u
[1,15]∧
; v

retrieved. If the two nodes belong to the same strongly con-
nected component during the whole query interval for con-
junctive queries or once for disjunctive queries, the answer is
true. Otherwise, let I′Q be the set of intervals during which
nodes u and v belong to different components. The query
is re-written as a set of reachability sub-queries of the form

Uk

IQi
; Vm, where u belongs to SCC Uk and v belongs to

SCC Vm for some common time interval IQi , I′Q w IQi , the
set IQ =

⋃
i

IQi consists of disjoint intervals, and IQ ≈ I′Q.

The results of the sub-queries are combined to produce the
answer for the query through an AND (OR) for conjunctive
(disjunctive) queries.

For example, consider the query u
[1,15]∧
; v in Figure 3,

where the posting lists for u and v are respectively, P (u) =
(C6 [4, 7], C5 [8, 11], C4 [11, curr] and P (v) = (C6 [1, 8], C4

[11, 15]). The query is split in three sub-queries: u
IQ1∧
; C6,

u
IQ2∧
; C6, v

IQ3∧
; C5.

In the worst case, the two nodes belong to a different SCCs
at each time instant in IQ, thus we need to traverse the con-
densed version graph for each t with a cost of O(|IQ|(|VSI |+
|ESI |)) Two factors that influence performance are the num-
ber of postings for each node and the size of the condensed
version graph. The smaller the number of postings, the fewer
sub-queries are required in the second step. The smaller the
condensed version graph, the faster the traversals. Hence,
the optimal assignment of SCC ids is crucial to query pro-
cessing performance, since it keeps the posting lists short
and the size of the condensed version graph small.

5.3 Interval 2Hop
Reachability on version graphs can be made more efficient

by maintaining additional information. In this paper, we
use an approach based on pruned landmark 2hop labeling
[2, 29]. The idea is that for each node u of a given graph, we
maintain two labels Lin(u) and Lout(u) which include nodes
that can reach u and can be reached by u respectively. The
labels are computed such that a node u reaches v, if an only
if, Lin(v) ∩ Lout(u) 6= ∅. Instead of traversing the graph, a
reachability query can now be answered by using the labels.

For historical reachability queries, we also keep along with
each node w in Lin(v) the reachability lifespan L(w, v) and
along with each node w in Lout(u) the reachability lifespan
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Algorithm 4 ConstructSccPostings(Gt, Pt−1, GS[t−2,t−1]
)

Input: Snapshot Gt, SCC postings Pt−1

Output: SCC postings Pt

1: SSCCt = ∅, M = ∅
2: Run Tarjan’s algorithm on Gt

3: SSCCt is the set of the detected SCCs where each
SCCi ∈ SSCCt is assigned a unique id Ci

4: if t > 0 then
5: Construct GS[t−1,t]

from SSCCt and GS[t−2,t−1]

6: Compute maximum weight matching M
7: for all edges e = (U, V ) ∈M do
8: Cv = Cu

9: end for
10: end if
11: for all nodes u ∈ Vt do
12: find SCCi ∈ SSCCt s.t. u ∈ SCCi

13: if Pt−1(u) 6= ∅ then
14: if Pt−1(u)[end].C 6= Ci then
15: Pt−1(u)[end].I = [ts, t− 1]
16: Pt−1(u).add(Ci, [t, curr])
17: end if
18: else
19: Pt−1(u).add(Ci, [t, curr])
20: end if
21: end for
22: Pt = Pt−1

L(u,w). In the presence of 2hop labels, to answer a query

u
IQ∧
; v (u

IQ∨
; v), we compute the set Lin(v)∩Lout(u) and

then for each w in Lin(v) ∩ Lout, we join the lifespan of w
in Lin(v) with the lifespan of w in Lout(u). To answer the
query the joined lifespans L (w) of nodes w in Lin(v)∩Lout

are joined with the query interval L to see whether they
cover IQ (or, have at least a time instant in common).

We compute the labels for the nodes of the condensed
version graph, incrementally. For an interval I = [ti, tj ],
we compute the labels for the SCC graph snapshots at each
time t in I, starting from ti. For each time tk, tk > ti, we
merge the labels computed for a node C at time tk, with the
labels computed for C at the previous time tk − 1. For the
construction of Lin and Lout for each SCC graph snapshot at
time instant tk, we process the nodes of the graph by using
the INOUT strategy that starts a BFS traversal from the
nodes with the largest (indegree(u)+1)× (outdegree(u)+1)
[29]. An example of the final 2hop labels of each SCC node
in a version graph is given in Figure 4.

6. EXPERIMENTAL EVALUATION
To evaluate our approach, we used three real datasets:

Facebook (FB) [27], Flickr (FL) [19] and YouTube (YT) [18].
The characteristics of each dataset are shown in Table 3.
For example, FB consists of 871 daily snapshots of the New
Orleans Facebook friendship graph, which correspond to 125
weekly or 29 monthly snapshots. We report the number of
nodes, edges, and SCCs (singleton SCCs are not included)
and the size of the largest SCC at the first and last snapshot.

All three datasets are treated as directed. Also, all datasets
are insert-only, i.e. they do not contain information about
node/edge deletions. Therefore, we synthetically generate
random edge deletes. The input parameters and their de-

C3

C1

C5

C2 C4

Lout: {C2,[0,3]}, {C3,[0,1]}, {C4,[0,3]}

Lin:{}

Lin: {C1,[0,3], C3,[0,1]} Lin: {C1,[0,3], C5,[0,3]}

Lout: {C2,[0,1]}

Lin: {C1,[1,2], C2,[1,2]}

[0,3][1,3]

[0,1]

Lout: {C3,[2,3]}

[1,2]

Lout:{C5,[1,2]}

Lout:{C4,[0,3]}

[0,1]

Lin: {C1,[0,3], C4,[2,3]}

[2,3]

[0,3]

Figure 4: An example of interval 2hop labels

fault values are shown in Table 1.
We evaluate the size and the construction time of the

Version Graph (VG), the Transitive Closure (TC), the sim-
ple TimeReach (TR), the condensed TimeReach (TRC) and
the condensed TimeReach with 2hop labels (TRCH). We
also evaluate the online processing of historical reachabil-
ity queries using an instant-based (INS) or interval-based
(INT) traversal of the version graph and using the various
TimeReach indexes. Table 2 summarizes the various ap-
proaches.

We ran our experiments on a system with a quad-core
Intel Core i7-3820 3.6 Ghz processor and 64 GB memory.
We only used one core for all experiments.

Table 1: Input parameters

Query

# of Snapshot interval % of

nodes granularity (in days) deletes

FB
Default 61,096 day 7 10

Range 117 - 61,096 day, week, month 7 - 35 0 - 30

YT
Default 1,138,499 day 7 10

Range 1,004,777 - 1,138,499 day, week, month 7 - 35 0 - 30

FL
Default 2,302,925 day 7 10

Range 1,487,058 - 2,302,925 day, week, month 7 - 35 0 - 30

6.1 Index Size
In the first set of experiments, we evaluate the various ap-

proaches in terms of their storage requirements. The size of
the TR and TRC include the storage required for maintain-
ing the posting lists and the SCC graphs, while the size of
the TRCH includes in addition the storage required for the
2hop labels.

Table 2: Overview of difference approaches

VG Version Graph

TC Transitive Closure

TR (Simple) TimeReach

TRC Condensed TimeReach

TRCH Condensed TimeReach with 2hop labels

INS Instant-based traversal of the version graph

INT Interval-based traversal of the version graph
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Table 3: Dataset properties

Snapshot Granularity # nodes # edges # SCC Max SCC (# nodes)

first last first last first last first last

FB

(daily) 871 117 61,096 128 1,139,081 10 374 3 51,286

(weekly) 125 1,429 61,096 2,365 1,139,081 138 374 18 51,286

(monthly) 29 4,239 61,096 12,224 1,139,081 279 374 96 51,286

YT

(daily) 37 1,004,777 1,138,499 4,379,283 4,452,646 9,807 11,360 457,932 509,332

(weekly) 6 1,025,536 1,138,499 4,379,283 4,452,646 9,807 11,360 465,668 509,332

(monthly) 2 1,116,602 1,138,499 4,446,042 4,452,646 10,664 11,360 485,273 509,332

FL

(daily) 134 1,487,058 2,302,925 17,022,083 33,140,018 42,163 58,636 1,004,426 1,605,184

(weekly) 20 1,507,700 2,302,925 17,393,321 33,140,018 42,163 58,636 1,010,498 1,605,184

(monthly) 5 1,585,173 2,302,925 18,987,847 33,140,018 42,459 58,636 1,081,499 1,605,184

Graph Size (scalability). Figure 6 reports the size for
varying number of nodes. As shown, TRC is much smaller
than TR in all cases. For FB and FL, the largest SCC
covers 83% and 70% of the graph respectively, while for YT,
it covers just 45% (see Table 3). Thus, the TRC size for the
FB dataset is 89% smaller, while for the YT and FL datasets,
we achieve 40% and 57% of compression respectively. The
larger the SCCs, the higher the compression achieved.

Since the size of the transitive closure (TC) grows rapidly,
we compute TC for a smaller subset of the FB dataset vary-
ing the number of nodes from 1,000 to 6,000. As shown in
Table 4, even for this small graph, the size of TC reaches
106 MB.
Percentage of Deletes. For each dataset, we vary the per-
centage of edge deletes from 0% to 30% of edge insertions.
Table 5 presents the results for the FB dataset. We observe
that the size of TR and TRC decreases; this can be explained
by the fact that deletions affect the isolated nodes that be-
come disconnected from the components and thus there are
less edges between components and isolated nodes. The size
of VG remains constant, since the size of the lifespan labels
remains the same. Finally, the size of TRCH increases, be-
cause in case of deletes, additional nodes need to be included
in the 2hop labels for ensuring the reachability test.

Table 4: Comparison with transitive closure

# nodes Size (MB) Constr. Time (sec)

TR TRC TC TR TRC TC

1,000 0.013 0.012 2.91 0.01 4.76 167.49

2,000 0.026 0.009 11.56 0.23 5.02 1,457

3,000 0.039 0.012 26.27 0.35 5.89 5,788

4,000 0.052 0.018 47.12 0.41 6.33 16,580

5,000 0.063 0.026 73.97 0.59 6.79 39,112

6,000 0.074 0.032 106.82 0.72 7.13 81,123

Snapshot Granularity. Table 6 reports the storage re-
quired for maintaining daily, weekly and monthly snapshots
of the three datasets. All sizes increase with the number of
snapshots. For example, for FL, the increase of the num-
ber of snapshots by a factor of 30 (from 5 monthly to 134
daily) causes an increase of the size of TR by a factor of
3.44. The size of TR and TRC decreases with the snap-
shot granularity (number of snapshots) since less snapshots
mean less postings and smaller SCC graphs. The size of VG

Table 5: Size per % of deletes (Facebook)

% of deletes Size (MB)

VG TR TRC TRCH

0 11 0.5 0.21 1,493

10 11 0.58 0.22 1,528

20 11 0.45 0.19 1,612

30 11 0.47 0.18 1,664
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Figure 5: Compression ratio achieved by posting sharing

does not decrease significantly, because it requires memory
to keep lifespan labels for all nodes and edges of the graph.
Posting Sharing. Finally, let us take a closer look at the
posting sharing optimization by evaluating the reduction in
the size of postings for various granularities as depicted in
Figure 5. In general, we achieve compression ratios for the
posting around 70% for FB, around 90% for FL and over
95% for YT. The compression ratio decreases with snapshot
granularity due to the increase of the posting combinations.
This is more evident for the FB dataset where the number
of snapshots is higher.

6.2 Construction Time
In this set of experiments, we evaluate the time to con-

struct the various indexes.
As seen in Figure 7, TRC is slower than TR, because

of the additional time required for performing the bipartite
matching. TRCH is even slower, since it also needs to con-
struct the 2hop labels. We use the greedy algorithm for the
bipartite matching and the INOUT strategy for computing
the interval-2hop labels.

Constructing the TC for the whole graphs is prohibitive,
since even for only 6, 000 nodes, it takes over 22 hours, while
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Table 6: Size (MB) per snapshot granularity

Facebook YouTube Flickr

Days Weeks Months Days Weeks Months Days Weeks Months

VG 11 6 5 7.87 7.34 6.94 45.52 39.85 38.15

TR 0.58 0.47 0.42 44.28 21.28 14.98 141 73 41

TRC 0.22 0.08 0.07 3.21 1.92 1.46 2.89 2.27 1.88

TRCH 1,528 1,041 845 5,865 4,936 4,062 7,951 6,684 5,719

the TR construction takes just 0.72 seconds (Table 4).
Comparison of Different Bipartite Matching Algo-
rithms. We also constructed the TRC using the Hungarian
algorithm. For all datasets, the size of the resulting TRC is
almost equal to the size of the TRC resulting from using the
greedy algorithm (the difference is in the order of KB), thus
confirming our expectation that greedy achieves a very close
approximation of the optimal solution for social graphs. The
Hungarian algorithm is much slower than greedy requiring
an additional 1.5 hour for large datasets such as FL.
Comparison with 2hop for insert only. We adopted
the pruned labeling algorithm proposed in [2] for distance
queries to create an indexing scheme for historical reacha-
bility queries. Pruned labeling incrementally updates the
index for each newly inserted edge, whereas in our approach
we compute 2hop labels per snapshot. The pruned labeling
algorithm does not support deletions, thus, we compare the
two algorithms on the Facebook dataset without deletions.
The pruned algorithm was found to be 5.4 times faster but
it produced labels that were 12 times larger that the ones
computed with our approach.

6.3 Query Processing
Let us now focus on query processing. In each experiment,

we ran 500 historical reachability queries where the source
and target nodes are chosen uniformly at random with the
restriction that both nodes are present in the graph at the
beginning and the end of the query interval. Queries involv-
ing nodes not present either at the beginning or the end of
the query interval can be pruned fast by checking the lifes-
pans of the nodes.
Online Traversal of the Version Graph. Let us first
compare between an instant-based (INS) and an interval-
based (INT) online traversal of the version graph for dif-
ferent time intervals (Figures 8 and 9). A general remark
that holds independently of the method used to evaluate
queries is that false conjunctive queries are faster than true
conjunctive queries, since processing stops as soon as a time
instant is found at which the two nodes are not reachable.
Analogously, true disjunctive queries are faster than false
disjunctive queries, since processing stops as soon as a time
instant is found at which the two nodes are reachable.

Interval-based traversal is faster that instant-based traver-
sal for almost all datasets and query types, since it can find
the answer faster by searching for longer intervals. The only
exception is FB and false conjunctive queries, where INS is
slightly better. This happens because with INS, the search
stops as soon as the first false answer is produced in any
traversal. Hence, if this answer is found in the first few
time instants of the query interval negative answers can be
produced quickly for the smaller graph (i.e, the FB graph).
Online Traversal versus TimeReach. Let us now com-

pare interval-based online traversal with query processing
using the TR, TRC and TRCH approaches. The results for
conjunctive queries are shown in Figure 10 and for disjunc-
tive queries in Figure 11.

We see that all approaches are not significantly affected by
the increase of the query interval due to fast posting lookups
and short distances in the SCC graph for the TR and TRC,
and the efficient implementation of edge lifespans for the
version graph. We see that the TRC approach does not
only produce a smaller structure than TR but it also attains
faster query response for almost all datasets. TR is slower
because for answering a query it needs to traverse the SCC
graph per time instant when the query nodes do not belong
to the same component. TRCH attains the fastest time
when compared with all other approaches. The performance
of TRCH is expected, since only two simple steps are needed:
first to obtain the intersection Lin(v) ∩ Lout(u), and after
that to check the lifespans L of the nodes in the intersection.

7. CONCLUSIONS
Most real-life graphs evolve over time. In this paper, we

address the problem of efficiently answering historical reach-
ability queries over such graphs. Such queries ask whether
a node u was reachable from another node v during a time
interval in the past. We have proposed an approach termed
TimeReach that exploits the fact that most graphs consist of
strongly connected components (SCCs). TimeReach main-
tains information about SCC membership for each node,
and a graph which represents the links between the strongly
connected components. We also maintain a condensed ver-
sion graph which corresponds to the version graph of the
SCCs evolution. Our extensive experiments with three real
social network datasets show that TimeReach is storage-
efficient and can be constructed incrementally with a small
overhead. Historical queries are processed efficiently even
when involving large time intervals.

There are many possible directions for future work. One
such direction is exploiting TimeReach towards answering
other types of historical queries, such as shortest path ones.
Another direction concerns the distribution of TimeReach.
Distribution may either be based on time or exploit the SCC
evolution by placing together nodes that belong to the same
SCCs.

8. ACKNOWLEDGMENTS
This research has been co-financed by the European Union

(European Social Fund - ESF) and Greek national funds
through the Operational Program ”Education and Lifelong
Learning” of the National Strategic Reference Framework
(NSRF) - Research Funding Program: Thales. Investing in
knowledge society through the European Social Fund.

130



 

0.01

0.10

1.00

10.00

100.00

1,000.00

10,000.00

1 0 , 0 0 0 2 0 , 0 0 0 3 0 , 0 0 0 4 0 , 0 0 0 5 0 , 0 0 0 6 0 , 0 0 0

Si
ze

(M
B

)

# of nodes

VG TR TRC TRCH

 

1

10

100

1,000

10,000

1 , 0 0 4 1 , 0 2 9 1 , 0 5 4 1 , 0 7 9 1 , 1 0 4 1 , 1 2 9

Si
ze

(M
B

)

# of nodes in thousands

VG TR TRC TRCH

 

1

10

100

1,000

10,000

1 , 4 8 7 1 , 6 8 7 1 , 8 8 7 2 , 0 8 7 2 , 2 8 7

Si
ze

(M
B

)

# of nodes in thousands

VG TR TRC TRCH

Figure 6: Size (log scale) for varying number of nodes in FB (left), YT (middle) and FL (right)
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Figure 7: Construction time (log scale) for varying number of nodes in FB (left), YT (middle) and FL (right)
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Figure 8: Query time (log scale) INS and INT for conjunctive queries in FB (left), YT (middle) and FL (right)
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Figure 9: Query time (log scale) INS and INT for disjunctive queries in FB (left), YT (middle) and FL (right)
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Figure 10: Query time (log scale) for conjunctive queries in FB (left), YT (middle) and FL (right)
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