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ABSTRACT
Reformulation-based query answering is a query processing
technique aiming at answering queries under constraints. It
consists of reformulating the query based on the constraints,
so that evaluating the reformulated query directly against
the data (i.e., without considering any more the constraints)
produces the correct answer set.

In this paper, we consider optimizing reformulation-based
query answering in the setting of ontology-based data access,
where SPARQL conjunctive queries are posed against RDF
facts on which constraints expressed by an RDF Schema
hold. The literature provides query reformulation algorithms
for many fragments of RDF. However, reformulated queries
may be complex, thus may not be efficiently processed by a
query engine; well established query engines even fail pro-
cessing them in some cases.

Our contribution is (i) to generalize prior query reformu-
lation languages, leading to investigating a space of refor-
mulated queries we call JUCQs (joins of unions of conjunctive
queries), instead of a single reformulation; and (ii) an ef-
fective and efficient cost-based algorithm for selecting from
this space, the reformulated query with the lowest estimated
cost. Our experiments show that our technique enables
reformulation-based query answering where the state-of-the-
art approaches are simply unfeasible, while it may decrease
its cost by orders of magnitude in other cases.

1. INTRODUCTION
The Resource Description Framework (RDF) [1] is a graph-

based data model promoted by the W3C as the standard for
Semantic Web applications. As such, it comes with an on-
tology language, RDF Schema (RDFS), that can be used to
enhance the description of RDF graphs, i.e., RDF datasets.
The W3C standard for querying RDF graphs is the SPARQL
Protocol and RDF Query Language (SPARQL) [2].

Answering SPARQL queries requires to handle the im-
plicit information modeled in RDF graphs, through the es-
sential RDF reasoning mechanism called RDF entailment.
Query answers are defined based on both the explicit and
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the implicit content of an RDF graph. Thus, ignoring im-
plicit information leads to incomplete answers [2].

Two main methods exist for answering SPARQL queries
against RDF graphs, both of which consists of a reason-
ing step, either on the graphs or on queries, followed by a
query evaluation step. A popular reasoning method is graph
saturation (a.k.a. closure). This consists of pre-computing
and adding to an RDF graph all its implicit information,
to make it explicit. Answering queries through saturation,
then, amounts to evaluating the queries on the saturated
graph. While saturation leads to efficient query processing,
it requires time to be computed, space to be stored, and
must be recomputed upon updates. The alternative reason-
ing step is query reformulation. This consists in turning a
query into a reformulated query, which, evaluated against
a non-saturated RDF graph, yields the exact answers to
the original query. Since reformulation takes place at query
time, it is intrinsically robust to updates; the query refor-
mulation process in itself is also typically very fast, since
it only operates on the query, not on the data. However,
reformulated queries are often syntactically more complex
than the original ones, thus their evaluation may be costly
or even unfeasible.

Saturation-based query answering has been well studied
by now; efficient saturation algorithms have been proposed,
including incremental ones [3, 4, 5, 6]. Most RDF data
management systems use saturation-based query answering,
either by providing such a reasoning service on RDF graphs,
like 3store, OWLIM, Sesame, etc., or by simply assuming
that RDF graphs have been saturated prior to loading. Most
systems built on top of relational data management systems
(RDBMSs, in short) or RDBMS-style engines [7, 8, 9] fall in
this category.

Reformulation-based query answering has also been the
topic of many works [6, 10, 11, 12, 13], including ours [4,
14, 15]. Existing techniques apply to the Description Log-
ics (DL) [16] fragment of RDF, the conjunctive subset of
SPARQL subset and extensions thereof [10, 11, 14, 15, 17,
18, 19], including the “database fragment” of RDF we in-
troduced in [4], the most expressive RDF fragment to date.
Only a few RDF data management systems, such as Alle-
groGraph, Stardog or Virtuoso, use reformulation, in some
cases incomplete. The main reason is that state-of-the-art
techniques produce reformulated queries whose evaluation is
inefficient. A query is typically reformulated into an equiv-
alent large union of conjunctive queries (UCQ), maximally
contained in the original query w.r.t. the RDF Schema con-
straints [4, 6, 10, 11, 12, 14, 15, 17, 18], or in languages for
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which no well established off-the-shelf query engine exists,
such as nested SPARQL [19]. The technique of [13], when
translated to the RDF setting, reformulates a conjunctive
query into a so-called semi-conjunctive query (SCQ), which
is a join of unions of atomic queries. While in many cases
this performs better than the UCQ reformulations used in
prior work, we show that the reformulation of [13] is only
another point in a space, in which we automatically identify
the most efficient alternative. Finally, a mix of saturation-
and reformulation-based query answering has been investi-
gated in [11]. Only RDF Schema contraints are saturated
(thus need maintenance), which allows to avoid generating
as part of the reformulation, empty-answer subqueries. This
may reduce its syntactic size, but (depending on the abil-
ity of the underlying engine to detect empty-answers queries
early on) the resulting reformulated query may still be hard
to evaluate.

This work focuses on optimizing reformulation-based query
answering in RDF.

We consider the setting in which conjunctive queries (CQ),
once reformulated into unions of conjunctive queries (UCQ)
or semi-conjunctive queries (SCQ), are handled for evalua-
tion to a query evaluation engine, which can be an RDBMS,
a dedicated RDF storage and query processing engine, or
more generally any system capable of evaluating selections,
projections, joins and unions. As our experiments show, the
evaluation of reformulated queries may be very challenging
even for well-established relational or native RDF proces-
sors, which may handle them inefficiently or simply fail to
handle them, even on moderate-size datasets.

The approach we take is the following. Given a SPARQL
conjunctive query q and a query reformulation algorithm A
which turns a CQ into a UCQ, we explore a novel, large space
of alternative reformulations of q that we term JUCQ (for
joins of unions and conjunctive queries, and pick the JUCQ

reformulation with the lowest estimated cost. Each JUCQ

reformulation is obtained based on a carefully chosen set of
invocations of the algorithm A, guided by our cost model.

Contributions. The contributions we bring to the prob-
lem of efficiently answering SPARQL queries, through refor-
mulation, can be outlined as follows (see Figure 1):

1. We generalize the query reformulation approach, by
considering a large space of alternative (equivalent)
JUCQ reformulations. This space corresponds to the
yellow-background box in Figure 1; it includes and
significantly generalizes the prior works based on UCQ

or SCQ reformulation. We characterize the size of our
space of alternatives, and show that it is oftentimes
too large to be completely explored.

2. We define a cost model for estimating the evaluation
performance of our reformulated queries through a re-
lational engine; other functions can be used instead,
and we show that an RDBMSs’ internal cost model
can easily be used, too.

3. We devise a novel algorithm which selects one alter-
native reformulated query, namely qbest in Figure 1,
which (i) computes the same result as the UCQ re-
formulated query qref , and (ii) reduces significantly
the query evaluation cost (or simply makes it possible
when evaluating the plain reformulation fails!)

4. We implemented this algorithm and deployed it on top
of three well-established RDBMSs, which we show dif-

fer significantly in their ability to handle UCQ and SCQ

reformulations proposed in the previous work. Our ex-
periments confirm that our algorithm makes the most
out of each of these engines by leveraging their strengths
and avoiding their weaknesses thanks to the usage of
our cost model, which we calibrate separately for each
system. This makes reformulation feasible when UCQ

and/or SCQ fail, and brings performance improvements
of several orders of magnitude w.r.t. UCQ.

5. Finally, we compare our reformulation-based query an-
swering technique against saturation-based query an-
swering, both through an RDBMS and the native RDF
platform Virtuoso. These experiments confirm the
robustness and performance of our technique, show-
ing in particular that in some cases its performance
approaches that of saturation-based query answering.

In the sequel, Section 2 introduces RDF, SPARQL con-
junctive queries, query reformulation and the performance
issues raised by the evaluation of reformulated queries. Sec-
tion 3 characterizes our solution search space and formal-
izes our problem statement. In Section 4, we present our
cost model and solution search space exploration technique,
which we evaluate through experiments in Section 5. We
discuss related work in Section 6, then we conclude.

2. PRELIMINARIES
In Section 2.1 we introduce RDF graphs, modeling RDF

datasets. Section 2.2 presents the SPARQL conjunctive
queries, a.k.a. Basic Graph Pattern queries. In Section 2.3,
we recall the query reformulation algorithm from [4] used in
the present work, chosen because the RDF fragment it ap-
plies to is the largest known to date. However, as previously
explained, our optimization technique can use any CQ to UCQ

reformulation algorithm among those applicable to RDF.

2.1 RDF Graphs
An RDF graph (or graph, in short) is a set of triples of

the form s p o. A triple states that its subject s has the
property p, and the value of that property is the object o.
We consider only well-formed triples, as per the RDF speci-
fication [1], using uniform resource identifiers (URIs), typed
or un-typed literals (constants) and blank nodes (unknown
URIs or literals).

Blank nodes are essential features of RDF allowing to
support unknown URI/literal tokens. These are conceptu-
ally similar to the variables used in incomplete relational
databases based on V-tables [20, 21], as shown in [4].

Notations. We use s, p, o and :b in triples as placeholders.
Literals are shown as strings between quotes, e.g., “string”.
Finally, the set of values – URIs (U), blank nodes (B), and
literals (L) – of an RDF graph G is denoted Val(G).

Figure 2 (top) shows how to use triples to describe re-
sources, that is, to express class (unary relation) and prop-
erty (binary relation) assertions. The RDF standard [1] pro-
vides a set of built-in classes and properties, as part of the
rdf: and rdfs: pre-defined namespaces. We use these names-
paces exactly for these classes and properties, e.g., rdf:type
specifies the class(es) to which a resource belongs.

Example 1 (RDF graph). The RDF graph G below
comprises information about a book, identified by doi1: its
author (a blank node :b1 related to the author name, which
is a literal), title and date of publication.
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Figure 1: Outline of our approach for efficiently evaluating reformulated SPARQL conjunctive queries.

Assertion Triple Relational notation

Class s rdf:type o o(s)
Property s p o p(s, o)

Constraint Triple OWA interpretation

Subclass s rdfs:subClassOf o s ⊆ o

Subproperty s rdfs:subPropertyOf o s ⊆ o

Domain typing s rdfs:domain o Πdomain(s) ⊆ o

Range typing s rdfs:range o Πrange(s) ⊆ o

Figure 2: RDF (top) & RDFS (bottom) statements.

G =

{doi1 rdf:type Book,
doi1 writtenBy :b1,
doi1 hasTitle “Game of Thrones”,
:b1 hasName “George R. R. Martin”,

doi1 publishedIn “1996”}

RDF Schema. A valuable feature of RDF is RDF Schema
(RDFS) that allows enhancing the descriptions in RDF graphs.
RDFS triples declare semantic constraints between the classes
and the properties used in those graphs.

Figure 2 (bottom) shows the allowed constraints and how
to express them; domain and range denote respectively the
first and second attribute of every property. The RDFS
constraints (Figure 2) are interpreted under the open-world
assumption (OWA) [20]. For instance, given two relations
R1, R2, the OWA interpretation of the constraint R1 ⊆
R2 is: any tuple t in the relation R1 is considered as be-
ing also in the relation R2 (the inclusion constraint prop-
agates t to R2). More specifically, when working with the
RDF data model, if the triples hasFriend rdfs:domain Person
and Anne hasFriend Marie hold in the graph, then so does
the triple Anne rdf:type Person. The latter is due to the
rdfs:domain constraint in Figure 2.

RDF entailment. Implicit triples are an important RDF
feature, considered part of the RDF graph even though they
are not explicitly present in it, e.g., Anne rdf:type Person
above. W3C names RDF entailment the mechanism through
which, based on a set of explicit triples and some entail-
ment rules, implicit RDF triples are derived. We denote
by `iRDF immediate entailment, i.e., the process of deriving
new triples through a single application of an entailment
rule. More generally, a triple s p o is entailed by a graph G,
denoted G `RDF s p o, if and only if there is a sequence of
applications of immediate entailment rules that leads from
G to s p o (where at each step of the entailment sequence,
the triples previously entailed are also taken into account).

Example 2 (RDFS). Assume that the RDF graph G

in Example 1 is extended with the following constraints.
• books are publications:

Book rdfs:subClassOf Publication
• writing something means being an author:

writtenBy rdfs:subPropertyOf hasAuthor

doi1

Book

Publication

“Game of Thrones”

:b1

“George R. R. Martin”

“1996”

Person

writtenBy

hasAuthor

publishedIn

rdfs:subClassOf

rdfs:domain

rdfs:range

rdfs:subPropertyOf

hasTitle

writtenBy

hasName

rdf:type

rdf:type

hasAuthor rdf:type

rdfs:domain

rdfs:range

Figure 3: Sample RDF graph.

• books are written by people:
writtenBy rdfs:domain Book
writtenBy rdfs:range Person

The resulting graph is depicted in Figure 3. Its implicit
triples are those represented by dashed-line edges.

Saturation. The immediate entailment rules allow defin-
ing the finite saturation (a.k.a. closure) of an RDF graph
G, which is the RDF graph G∞ defined as the fixed-point
obtained by repeatedly applying `iRDF rules on G.

The saturation of an RDF graph is unique (up to blank
node renaming), and does not contain implicit triples (they
have all been made explicit by saturation). An obvious con-
nection holds between the triples entailed by a graph G and
its saturation: G `RDF s p o if and only if s p o ∈ G∞.

RDF entailment is part of the RDF standard itself; in
particular, the answers to a query posed on G must take into
account all triples in G∞, since the semantics of an RDF
graph is its saturation [2].

2.2 BGP Queries
We consider the well-known subset of SPARQL consisting

of (unions of) basic graph pattern (BGP) queries, modeling
the SPARQL conjunctive queries. Subject of several recent
works [4, 22, 23, 24], BGP queries are the most widely used
subset of SPARQL queries in real-world applications [24].
A BGP is a set of triple patterns, or triples/atoms in short.
Each triple has a subject, property and object, some of which
can be variables.

Notations. In the following we use the conjunctive query
notation q(x̄):- t1, . . . , tα, where {t1, . . . , tα} is a BGP; the
query head variables x̄ are called distinguished variables,
and are a subset of the variables occurring in t1, . . . , tα; for
boolean queries x̄ is empty. The head of q is q(x̄), and the
body of q is t1, . . . , tα. We use x, y, z, etc. to denote vari-
ables in queries. We denote by VarBl(q) the set of variables
and blank nodes occurring in the query q.

Query evaluation. Given a query q and an RDF graph
G, the evaluation of q against G is:

q(G) = {x̄µ | µ : VarBl(q)→ Val(G) is a total assignment
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such that tµ1 ∈ G, tµ2 ∈ G, . . . , tµα ∈ G}

where we denote by tµ the result of replacing every occur-
rence of a variable or blank node e ∈ VarBl(q) in the triple
t, by the value µ(e) ∈ Val(G).

Note that evaluation treats the blank nodes in a query
exactly as it treats non-distinguished variables [25]. Thus,
in the sequel, without loss of generality, we consider queries
where all blank nodes have been replaced by (new) distinct
non-distinguished variables.

Query answering. The evaluation of q against G uses only
G’s explicit triples, thus may lead to an incomplete answer
set. The (complete) answer set of q against G is obtained by
the evaluation of q against G∞, denoted by q(G∞).

Example 3 (Query answering). The following query
asks for the names of authors of books somehow connected
to the literal 1996:

q(x3):- x1 hasAuthor x2, x2 hasName x3, x1 x4 “1996”

Its answer against the graph in Figure 3 is q(G∞) =
{〈“George R. R. Martin”〉}. The answer results from G `RDF

doi1 hasAuthor :b1 and the assignment µ = {x1 ← doi1,
x2 ← :b1, x3 ← “George R. R. Martin”, x4 ← publishedIn}.
Observe that evaluating q directly against G leads to the empty
answer, which is obviously incomplete.

2.3 Query answering against RDF databases
The database (DB) fragment of RDF [4] is, to the best

of our knowledge, the most expressive RDF fragment for
which both saturation- and reformulation-based RDF query
answering has been defined and practically experimented.
The fragment is thus named due to the fact that query an-
swering against any graph from this fragment, called an RDF
database, can be easily implemented on top of any RDBMS.
This DB fragment is defined by:
• Restricting RDF entailment to the RDF Schema con-

straints only (Figure 2), a.k.a. RDFS entailment. Con-
sequently, the DB fragment focuses only on the ap-
plication domain knowledge, a.k.a. ontological knowl-
edge, and not on the RDF meta-model knowledge which
mainly begets high-level typing of subject, property
and object values found in triples with abstract RDF
built-in classes, e.g., rdf:Resource, rdfs:Class, etc.
• Not restricting RDF graphs in any way. In other words,

any triple allowed by the RDF specification is also al-
lowed in the DB fragment.

Saturation-based query answering amounts to precomput-
ing the saturation of a database db using its RDFS con-
straints in a forward-chaining fashion, so that the evalua-
tion of every incoming query q against the saturation yields
the correct answer set [4]: q(db∞) = q(Saturate(db)). This
technique follows directly from the definitions in Section 2.1
and Section 2.2, and the W3C’s RDF and SPARQL recom-
mendations.

Reformulation-based query answering, in contrast, leaves
the database db untouched and reformulates every incoming
query q using the RDFS constraints in a backward-chaining
fashion, Reformulate(q, db) = qref , so that the relational
evaluation of this reformulation against the (non-saturated)
database yields the correct answer set [4]: q(db∞) = qref(db).
The Reformulate algorithm, introduced in [23] and ex-
tended in [4], exhaustively applies a set of 13 reformulation
rules. Starting from the incoming BGP query q to answer

Triple #answers #reformulations #answers after
reformulation

(t1) 18, 999, 082 188 33, 328, 108
(t2) 0 4 3, 223
(t3) 396 3 683

Table 1: Characteristics of the sample query q1.

against db, the algorithm produces a union of BGP queries
retrieving the correct answer set from the database, even if
the latter is not saturated.

Example 4 (Query reformulation). The reformula-
tion of q(x, y):- x rdf:type y w.r.t. the database db (obtained
from the RDF graph G depicted in Figure 3), asking for all
resources and the classes to which they belong, is:

(0) q(x, y):- x rdf:type y ∪
(1) q(x,Book):- x rdf:type Book ∪
(2) q(x,Book):- x writtenBy z ∪
(3) q(x,Book):- x hasAuthor z ∪
(4) q(x,Publication):- x rdf:type Publication ∪
(5) q(x,Publication):- x rdf:type Book ∪
(6) q(x,Publication):- x writtenBy z ∪
(7) q(x,Publication):- x hasAuthor z ∪
(8) q(x,Person):- x rdf:type Person ∪
(9) q(x,Person):- z writtenBy x ∪
(10) q(x,Person):- z hasAuthor x
The terms (1), (4) and (8) result from (0) by instanti-

ating the variable y with classes from db, namely {Book,
Publication,Person}. Item (5) results from (4) by using the
subclass constraint between books and publications. (2), (6)
and (9) result from their direct predecessors in the list, and
are due to the domain and range constraints. Finally, (3),
(7) and (10) result from their direct predecessors and the
sub-property constraint present in the database.

Evaluating this reformulation against db returns the same
answer as q(G∞), i.e., the answer set of q.

3. OPTIMIZED REFORMULATION
We first introduce, by examples, the performance issues

raised by the evaluation of state-of-the-art reformulated
queries. We then introduce our novel reformulation search
space and formalize our optimization problem.

Motivating Example 1. Consider the three triples query
q1 shown below:

q1(x, y) :- x rdf:type y, (t1)
x ub:degreeFrom “http : //www.Univ532.edu”, (t2)
x ub:memberOf “http : //www.Dept1.Univ7.edu” (t3)

Table 1 gives some intuition on the difficulty of answering
q1 over an 108 triples LUBM [26] benchmark dataset:

The state-of-the-art CQ to UCQ reformulation-based query
answering needs to evaluate a reformulated query q′1, which
is a union of 2, 256 conjunctive queries, each of which con-
sists of three triples (one for the reformulation of each triple
in the original q1). This query appears in Table 2, where
all the triples t1, t2, t3 are reformulated together by a CQ to
UCQ reformulation algorithm denoted (.)ref . Observe that
in q′1, many sub-expressions are repeated; for instance, the
join over the single triples resulting from the reformulation
of triples (t2) and (t3) will appear for each of the 188 refor-
mulations of triple (t1). Evaluating q′1 on the 100 million
triples LUBM dataset takes more than 6 seconds, in the
same experimental setting.
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Joins of UCQs #reformulations exec.time (ms)

q′1 (t1, t2, t3)ref 2, 256 6, 387

q′′1 (t1)ref 1 (t2)ref 1 (t3)ref 195 1, 074, 026

(t1, t2)ref 1 (t3)ref 755 1, 968

(t1)ref 1 (t2, t3)ref 200 846, 710

q′′′1 (t1, t3)ref 1 (t2)ref 568 554

(t1, t2)ref 1 (t1, t3)ref 1, 316 2, 734

(t1, t2)ref 1 (t2, t3)ref 764 2, 289

(t1, t3)ref 1 (t2, t3)ref 576 588

Table 2: Sample reformulations of q1.

Triple #answers #reformulations #answers after
reformulation

(t1) 18, 999, 082 188 33, 328, 108
(t2) 18, 999, 082 188 33, 328, 108
(t3) 476 1 476
(t4) 509 1 509
(t5) 7, 299, 701 3 7, 803, 096
(t6) 7, 299, 701 3 7, 803, 096

Table 3: Characteristics of the sample query q2.

Alternatively, one could consider the equivalent query q′′1 =
(t1)ref ./ (t2)ref ./ (t3)ref , which joins the CQ to UCQ re-
formulation of each query’s triple. In other terms, q′′1 first
reformulates each triple (into, respectively, a union of 188,
4, and 3 queries), and then joins these unions. This query
corresponds to the simple semi-conjunctive queries (SCQ) al-
ternative proposed in [13]. While this avoids the repeated
work, its performance is much worse: it takes about 1074
seconds to evaluate.

Let us now consider the following equivalent query q′′′1 =
(t1, t3)ref ./ (t2)ref where t1, t2, t3 are the triples of the
query q1. Evaluating q′′′1 in the same experimental setting
takes 554 ms, more than 10 times faster than the initial
reformulation. The performance improvement of q′′′1 over q′′1
is due to the intelligent grouping of the triples t1 and t3 to-
gether. Such grouping of triples reduce the cardinality of the
respective reformulated queries. Thus, (t1, t3)ref has 2, 045
answers and 564 reformulations. Table 2 shows the number
of reformulations and execution time for all the eight possi-
ble combinations of triples.

Motivating Example 2. Consider now the six triples
query q2 shown below:
q2(x, u, y, v, z) :-

x rdf:type u, (t1)
y rdf:type v, (t2)
x ub:mastersDegreeFrom “http : //www.Univ532.edu”, (t3)
y ub:doctoralDegreeFrom “http : //www.Univ532.edu”, (t4)
x ub:memberOf z (t5)
y ub:memberOf z (t6)

Statistics on the query triples, when evaluated over a 100
million triples LUBM dataset, appear in Table 3. The CQ to
UCQ reformulation of q2, on the other hand, leads to a query
q′2 corresponding to a union of 318, 096 six triples queries.
Due to its complexity, q′2 could not be evaluated in the
same experimental setting1.

1Concretely, a stack depth limit exceeded error was thrown
by the DBMS. Further, other queries presented I/O excep-
tions thrown by the DBMS, in connection with a failed at-
tempt to materialize an intermediary result. While it may
be possible to tune some parameters to make the evalua-
tion of such queries possible, the same error was raised by
many large-reformulation queries, a signal that their pecu-
liar shape is problematic.

Now consider the query q′′2 = (t1)ref ./ (t2)ref ./ (t3)ref ./
(t4)ref ./ (t5)ref ./ (t6)ref , where t1, . . . , t6 are the triples
of q2; again, this corresponds to the SCQ reformulation pro-
posed in [13]. q′′2 is equivalent to qref2 , and in the same
experimental setting, it is evaluated in 229 seconds. This
is due to the large results of the (syntactically smal) sub-
queries (t1)ref , . . . , (t6)ref (especially the first two, each with
33, 328, 108 results), which required some time to join.

Finally, consider the query q′′′2 = (t1, t3)ref ./ (t3, t5)ref ./
(t2, t4)ref ./ (t4, t6)ref , also equivalent to q′2. Evaluating q′′′2
takes 524 ms, more than 430 times faster than one-triple
reformulation. As in the previous example, q′′′2 gains over
q′′2 by first, reducing repeated work, and second, intelligently
grouping triples so that the query corresponding to each triple
group can be efficiently evaluated and returns a result of
manageable size. In particular, the biggest-size triples (t1)
and (t2) had been grouped with (t3) and (t4) respectively, re-
sulting in smaller intermediate results of 2, 296 and 2, 475
rows respectively, and improving the perfomance. Grouping
triples (t3) and (t4) with the (t5) and (t6) respectively, yields
analogous performance improvements.

As the above examples illustrate, generalizing the state-
of-the-art query reformulation language of UCQs [4, 6, 10,
11, 12, 14, 15, 17, 18] or of SCQs [13], to that of joins of
UCQs, offers a great potential for improving the performance
of reformulated queries. We introduce:

Definition 3.1 (JUCQ). A Join of Unions of Conjunc-
tive Queries (JUCQ) is defined as follows:
• any conjunctive query (CQ) is a JUCQ;
• any union of CQs (UCQ) is a JUCQ;
• any join of UCQs is JUCQ.

In this work, we address the challenge of finding the best-
performing JUCQ reformulation of a BGP query against an
RDF database, among those that can be derived from a
query cover. We define these notions as follows:

Definition 3.2 (JUCQ reformulation). A JUCQ refor-
mulation qJUCQ of a BGP query q w.r.t. a database db1 is a
JUCQ such that qJUCQ(db2) = q(db∞2 ), for any RDF database
db2 having the same schema as db1.

Recall that two RDF databases have the same schema iff
their saturations have the same RDFS statements.

BGP query covering is a technique we introduce for ex-
ploring a space of JUCQ reformulations of a given query. The
idea is to cover a query q with (possibly overlapping) sub-
queries, so as to produce a JUCQ reformulation of q by joining
the (state-of-the-art) CQ to UCQ reformulations of these sub-
queries, obtained through any reformulation algorithm in
the literature (e.g., [4]). Formally:

Definition 3.3 (BGP query cover). A cover of a
BGP query q(x̄):- t1, . . . , tn is a set C = {f1, . . . , fm} of
non-empty subsets of q’s triples, called fragments, such that⋃m
i=1 fi = {t1, . . . , tn}, no fragment is included into another,

i.e., fi 6⊆ fj for 1 ≤ i, j ≤ m and i 6= j, and: if C consists of
more than 1 fragment, then any fragment joins at least with
another, i.e., they share a variable.

For example, a cover of our query q1 is {{t1, t2}, {t2, t3}}.

Definition 3.4 (Cover queries of a BGP query).
Let q(x̄):- t1, . . . , tn be a BGP query and C = {f1, . . . , fm}
one of its covers. A cover query q|fi,1≤i≤m of q w.r.t. C
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is the subquery whose body consists of the triples in fi and
whose head variables are the distinguished variables x̄ of q
appearing in the triples of fi, plus the variables appearing
in a triple of fi that are shared with some triple of another
fragment fj,1≤j≤m,j 6=i, i.e., on which the two fragments join.

For example, the cover {{t1}, {t2, t3}} of our query q1
leads to the cover queries q|f1(x, y):- x rdf:type y, and
q|f2(x):- x ub:degreeFrom “http : //www.Univ532.edu”,
x ub:memberOf “http : //www.Dept1.Univ7.edu”.

Query evaluation through an RDBMS is typically much
more efficient when all the atoms of the query are connected
through joins (in which case, properly optimized queries of-
tentimes run in linear time in the size of the data), than
when the query comprises a cartesian product (which leads
to unavoidable quadratic or higher complexity in the size of
the data). Therefore, in this work, we only consider frag-
ments which do not feature a cartesian product.

The theorem below states that evaluating a query q as
the join of the cover queries resulting from one of its covers,
yields the answer set of q:

Theorem 3.1 (Cover-based reformulation). Let
q(x̄):- t1, . . . , tn be a BGP query and C = {f1, . . . , fm} be
any of its covers,

qJUCQ(x̄):- qUCQ|f1 1 · · · 1 qUCQ|fm

is a JUCQ reformulation of q w.r.t. any database db, where
every qUCQ|fi is a UCQ reformulation of the cover query q|fi , for
1 ≤ i ≤ m.

An upper bound on the size of the cover-based reformu-
lation space for a given query of n triples is given by the
number of minimal covers of a set S of n elements [27],
i.e., a set of non-empty subsets of S whose union is S, and
whose union of all these subsets but one is not S. This
bound grows rapidly as the number n of triples in a query’s
body increases, e.g., 1 for n = 1, 49 for n = 4, 462 for n = 5,
6424 for n = 6 (http://oeis.org/A046165). In practice,
however, we require each fragment to share a variable with
another (if any), so that cover queries, hence cover-based
reformulations do not feature cartesian products. Therefore,
the number of cover-based reformulations is smaller than the
number of minimal covers.

In order to select the best performing cover-based refor-
mulation within the above space, we assume given a cost
function c which, for a JUCQ q, returns the cost c(q(db)) of
evaluating it through an RDBMS storing the database db.
Function c may reflect any (combination of) query evalua-
tion costs, such as I/O, CPU etc. As customary, we rely on
a cost estimation function cε, which statically provides an
approximate value of c. For simplicity, in the sequel we will
use c to denote the estimated cost.

The problem we study can now be stated as follows:

Definition 3.5 (Optimization problem). Let db be
an RDF database and q be a BGP query against it. The
optimization problem we consider is to find a JUCQ refor-
mulation qJUCQ of q w.r.t. db, among the cover-based refor-
mulations of q with lowest (estimated) cost.

Optimized queries vs. optimized plans. As stated
above and illustrated in Figure 1, we seek the best query
that is an optimized reformulation of q against db; we do
not seek to optimize its plan, instead, we take advantage

of existing query evaluation engines for optimizing and ex-
ecuting it. Alternatively, one could have placed this study
within an evaluation engine and investigate optimized plans.
We comment more the two alternatives in Section 6.

4. EFFICIENT QUERY ANSWERING
We present now the ingredients for setting up our cost-

based query answering technique. We introduce, in Sec-
tion 4.1, our cost model for JUCQ reformulation evaluation
through an RDBMS. We then provide, in Section 4.2, an
exhaustive algorithm that traverses the search space of re-
formulated queries, looking for a cover-based reformulation
with lower cost. Finally, in Section 4.3, we introduce a
greedy, anytime algorithm that outputs a best query cover
of the input BGP query, found so far. This one is then used
to evaluate the query as stated by Theorem 3.1.

4.1 Cost model
In this section we detail the cost of evaluating a JUCQ

(reformulation) sent to an RDBMS. Such a query is a join
of UCQs subqueries of the form: qJUCQ(x̄):- qUCQ1 ./ · · · ./ qUCQm .

The evaluation cost of qJUCQ is

c(qJUCQ) = cdb +
∑

qUCQi ∈q
JUCQ

(ceval(q
UCQ
i ) + cjoin(qUCQi,1≤i≤m) +

cmat(q
UCQ
i,1≤i≤m,i6=k)) + cunique(q

JUCQ) (1)
reflecting:

(i) the fixed overhead of connecting to the RDBMS cdb;
(ii) the cost to evaluate each of its UCQ sub-queries qUCQi ;

(iii) the cost of eliminating duplicate rows from each of its
UCQ sub-query results;

(iv) the cost to join these sub-query results;
(v) the materialization costs: the SQL query correspond-

ing to a JUCQ may have many sub-queries. At exe-
cution time, some of these subqueries will have their
results materialized (i.e., stored in memory or on disk)
while at most one sub-query will be executed in pipeline
mode. We assume without loss of generality, that
the largest-result sub-query, denoted qUCQk , is the one
pipelined (this assumption has been validated by our
experiments so far); and

(vi) the cost of eliminating duplicate rows from the result.
In the above, duplicates are eliminated because existing

reformulation algorithms (and accordingly, our work) oper-
ate under set semantics.

Notations. For a given query q over a database db, we
denote by |q|t the estimated number of tuples in q’s answer
set. Recall that q|{ti} stands for the restriction of q to its
i-th triple. Using the notations above, the number of tuples
in the answer set of q|{ti} is denoted |q|{ti}|t.

Duplicate elimination costs are estimated using well-known
textbook formulas [28]; more details appear in [29].

UCQ evaluation costs are estimated by summing up the
estimated costs of the CQs:

ceval(q
UCQ
i ) = cunique(q

UCQ
i ) +

∑
qCQ∈qUCQi

ceval(q
CQ)

The cost of evaluating one conjunctive query ceval(q
CQ),

where qCQ(x̄):- t1, . . . , tn, through the RDBMS is made of
the scan cost for retrieving the tuples for each of its triples,
and the cost of joining these tuples:

ceval(q
CQ) = cscan(qCQ) + cjoin(qCQ)
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We estimate the scan cost of qCQ to:

cscan(qCQ) = ct ×
∑
ti∈qCQ

|qCQ|{ti}|t

where ct is the fixed cost of retrieving one tuple.
The join cost of qCQ represents the respective CPU and

I/O effort; assuming efficient join algorithms such as hash-
or merge-based etc. are available [28], this cost is linear in
the total size of its inputs:

cjoin(qCQ) = cj ×
∑
ti∈qCQ

|qCQ|{ti}|t

Therefore, we have:

ceval(q
UCQ
i ) = (ct + cj)×

∑
qCQ∈qUCQi

∑
ti∈qCQ

|qCQ|{ti}|t (2)

UCQ join cost. As before, we consider the join cost to be
linear in the total size of its inputs:

cjoin(qUCQi,1≤i≤m) = cj ×
∑
qUCQi

∑
qCQ∈qUCQi

∑
ti∈qCQ

|qCQ|{ti}|t (3)

UCQ materialization cost. Finally, we consider the mate-
rialization cost associated to a query q is cm × |q|t for some
constant cm:

cmat(q
UCQ
i,1≤i≤m,i 6=k) = cm ×

∑
qUCQi ,i 6=k

∑
qCQ∈qUCQi

∑
ti∈qCQ

|qCQ|{ti}|t (4)

where qUCQk is the largest-result sub-query, and the one which
is picked for pipelining (and thus not materialized).

Injecting the equations 2, 3 and 4 into the global cost for-
mula 1 leads to the estimated cost of a given JUCQ. This for-
mula relies on estimated cardinalities of various subqueries
of the JUCQ, as well as on the system-dependent constants
cdb, cscan, cjoin and cmat, which we determine by running a
set of simple calibration queries on the RDBMS being used.
The details are straightforward and we omit them here.

4.2 Exhaustive query cover algorithm (ECov)
As a yardstick for the quality of the query covers we find,

we developed an exhaustive query cover finding algorithm,
called ECov, that traverses the search space of reformulated
queries and outputs a query cover leading to a cover-based
reformulation with lowest cost.

Given a BGP query q and a database db, ECov enumerates
all the possible query covers, estimates the cost of the cor-
responding cover-based reformulations, and returns a query
cover with the lowest estimated cost. We use this cover as
“golden standard”, i.e., the best solutions based on our cost
estimation function,

4.3 Greedy query cover algorithm (GCov)
We now present our optimized query cover finding algo-

rithm (GCov). Intuitively, GCov attempts to identify query
covers such that the estimated evaluation cost of each cover
fragment (once reformulated), together with the estimated
cost of joining the results of these reformulated fragments, is
minimized. Performance benefits in this context are attained
from two sources: (i) avoiding the explosion in the size of
the reformulated queries that results when many triples,
each having many reformulations, are in the same fragment,
and (ii) avoiding reformulated fragments with very large re-
sults, since materialising and joining them is costly. The
key intuition for reaching these goals is to include highly
selective, few-reformulations triples in several cover frag-
ments. Observe that this is different from (and orthogonal

Algorithm 1: Greedy query cover algorithm (GCov)

Input : BGP query q(x̄:- t1, . . . , tn), database db

Output: Cover Cbest for the BGP query q
1 C0 ← {{t1}, {t2}, . . . , {tn}};
2 T ← {t1, t2, . . . , tn};
3 Cbest ← C0; moves← ∅; analysed← ∅;
4 foreach f ∈ C0, t ∈ T s.t. t 6∈ f ∧ connected(f, {t})
∧ C0.add(f, t) 6∈ analysed do

5 analysed← analysed ∪ C0.add(f, t);
6 if C0.add(f, t) est. cost ≤ Cbest est. cost then
7 moves← moves ∪ (C0, f, t);

8 while moves 6= ∅ do
9 (C, f, t)← moves.head();

10 C′ ← C.add(f, t);
11 if C′ est. cost ≤ Cbest est. cost then
12 Cbest ← C′;
13 foreach f ∈ C′, t ∈ T s.t. t 6∈ f ∧

connected(f, {t}) ∧ C′.add(f, t) 6∈ analysed do
14 analysed← analysed ∪ C′.add(f, t);
15 if C′.add(f, t) estimated cost < Cbest

estimated cost then
16 moves← moves ∪ (C′, f, t);

17 return Cbest;

to) join ordering, which the underlying query evaluation en-
gine (RDBMS in this study) applies independently to each
reformulated subquery.

GCov (Algorithm 1) starts with a simple cover C0 con-
sisting of one triple fragments, and explores possible moves
starting from this state. A move consists of adding to one
fragment, an extra triple connected to it by at least one
join variable, such that the estimated cost associated to
the cover-based reformulation thus obtained is smaller than
that before the addition. A move may reduce the cost in
two ways: (i) by making a fragment more selective, and/or
(ii) by leading to the removal of some fragments from the
cover. For instance, let {{t1, t2}, {t1, t3}, {t3, t4}} be a cover
of a four-triples query. The move which adds t4 to the first
fragment, also renders {t3, t4} redundant. Thus, the cover
resulting from the move is: {{t1, t2, t4}, {t1, t3}}.

Possible moves based on the initial cover C0 are developed
and added to the list moves, sorted in the increasing order
of the estimated cost their bring. Next (line 8), GCov starts
exploring possible moves. It picks the most promising one
from the sorted moves list and applies it, leading to a new
query cover C′. If its estimated cost is smaller than the best
(least) cost encountered so far, the best solution is updated
to reflect this C′ (line 12), and possible moves based on C′

are developed and added to the sorted moves list.
GCov explores query covers in breadth-first and greedy

fashion, adding to the moves list the possible moves starting
from the current best cover, and selecting the next move
with smallest cost. In practice, one could easily change the
stop condition, for instance to return the best found cover
as soon as its cost has diminished by a certain ratio, or after
a time-out period has elapsed etc.

5. EXPERIMENTAL EVALUATION
We now present an experimental assessment of our ap-
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LUBM q Q01 Q02 Q03 Q04 Q05 Q06 Q07 Q08 Q09 Q10 Q11 Q12 Q13 Q14 Q15

|qref | 136 136 34 564 2 188 156 12 8, 496 13 1 1 2 376 3, 384
|q(db)| (1M) 123 123 41 26, 048 982 5, 537 0 269 0 47, 268 1, 530 88 4, 041 20, 205 0
|q(db)| (100M) 123 123 41 2, 432, 964 92, 026 523, 319 0 269 0 4, 409, 039 142, 337 7, 773 376, 792 1, 883, 960 0

LUBM q Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28

|qref | 2 1 940 2, 444 4 1 1 752 52 156 2, 256 156 318, 096
|q(db)| (1M) 5, 364 5, 388 47, 348 60, 342 228, 086 60, 342 16, 134 100 12 19 5 1 0
|q(db)| (100M) 501, 063 503, 395 4, 425, 553 5, 632, 454 2, 128, 9440 5, 632, 454 1, 510, 695 11, 820 1, 508 1, 463 5 1 495

DBLP q Q01 Q02 Q03 Q04 Q05 Q06 Q07 Q08 Q09 Q10

|qref | 684 292 1, 387 1, 387 4 19 19 1, 721 361 1, 923, 349
|q(db)| 4, 898 16, 424 5, 259, 462 60, 900 19, 576 9, 562 9, 562 203, 462 20 80

Table 4: Characteristics of the queries used in our study.

proach. Section 5.1 describes the experimental settings. Sec-
tion 5.2 studies the effectiveness and efficiency of our opti-
mized reformulation-based query answering technique. Sec-
tion 5.3 widens our comparison to saturation-based query
answering, then we conclude. For space reasons, more ex-
periment descriptions are relegated to [29].

5.1 Settings
Software. We implemented our reformulation-based query
answering framework in Java 7, on top of three well-known
RDBMSs, namely: PostgreSQL v9.3.2, System A (last
available free edition version), and System B (last available
free edition version). For each RDBMS, we instantiated
the cost formulas introduced in Section 4.1 with the proper
coefficients, learned by running our calibration queries on
that system.

Hardware. All the RDMBSs run on 8-core Intel Xeon
(E5506) 2.13 GHz machines with 16GB RAM, using Man-
driva Linux release 2010.0 (Official).

Data. We conducted experiments using DBLP (8 million
triples) [30] and LUBM [26] with 1 and 100 millions triples.

In our experiments, RDFS constraints are kept in mem-
ory, while RDF facts are stored in a Triples(s, p, o) table,
indexed by all permutations of the s, p, o columns, leading a
total of 6 indexes. Our indexing choice is inspired by [8, 9],
to give the RDBMS efficient query evaluation opportunities.
Further, as in [4, 8, 9, 23], for efficiency, the Triples(s, p, o)
table’s data are dictionary-encoded, using a unique integer
for each distinct value (URIs and literals). The dictionary
is stored as a separate table, indexed both by the code and
by the encoded value.

Queries. We used 28 and 10 BGP queries for our evalu-
ation on LUBM and DBLP data sets, respectively. The
queries can be found in [29], while their main characteristics
(number of union terms in their UCQ reformulation, denoted
|qref |, as well as the number of results when evaluated on
our data sets) are shown in Table 4.

Some queries are modified versions of LUBM benchmark
queries, in order to remove redundant triples2. We de-
signed the others so that (i) they have an intuitive meaning,
(ii) they exhibit a variety of result cardinalities, (iii) they
exhibit a variety of reformulations, some of which are syntac-
tically complex, to allow a study of the performance issues
involved and (iv) none of their triples is redundant.

2A query triple is redundant when it can be inferred from
the others based on the RDFS constraints. For instance,
when looking for x such that x is a person and x has a
social security number, if we know that only people have
such numbers, the triple “x is a person” is redundant.

All measured times are averaged over 3 (warm) execu-
tions. Moreover, queries whose evaluation requires more
than 2 hours were interrupted; we point them out when com-
menting on the experiments’ results.

5.2 Optimized reformulation
In this section, we compare our reformulation-based query

answering technique with those from the literature based on
UCQs and SCQs.

Effectiveness: is an optimizer needed? The first ques-
tion we ask is whether exploring the space of JUCQ alterna-
tives is actually needed, or could one just rely on a simple
(fixed) query cover?

The UCQ reformulation used in many prior works is a par-
ticular case of the JUCQ reformulations we introduced in this
work; it corresponds to a cover of a single fragment made
of all the query triples (recall q′1 in Motivating Example
1, Section 3). From a database perspective, it corresponds
to pushing the joins below a single (potentially large) union.
At the other extreme, the SCQ reformulation proposed in [13]
is a particular case of JUCQ reformulation obtained from a
cover where each query triple is alone in a fragment (re-
call q′′1 in the same example). The SCQ reformulation can
thus be thought of as pushing all unions below a the joins.
Both the UCQ and SCQ reformulations correspond to a cover
where each triple appears in exactly one fragment, whereas
our JUCQs do not have this constraint; further, the UCQ and
SCQ reformulations do not take into account quantitative in-
formation about the data and query.

We compared the performance of query answering through:
(i) UCQ reformulation; (ii) SCQ reformulation; (iii) the JUCQ

recommended by the exhaustive ECov algorithm; (iv) the
JUCQ recommended by our greedy GCov algorithm.

Figure 4 shows the evaluation times for LUBM queries on
the 100M dataset, on the three RDBMSs we tested; observe
the logarithmic time axis. Missing bars correspond to execu-
tions which timed out or were infeasible. Figure 4 shows
that neither UCQ nor SCQ reformulation are reliable options.
Indeed, UCQ is the slowest for many queries on System Aand
Postgres, sometimes by more than an order of magnitude,
and it fails for Q9, Q15, Q18(forLUBM100M), Q19 and Q28

on System A, to which we add Q6, Q14 and Q16 on Post-
gres (for LUBM 100M). SCQ is very inefficient on System
B, and also on Postgres for Q1, Q2, Q3, Q8 etc.; it is almost
always the worst choice for System B. In contrast, the GCov-
chosen JUCQ always completes and is the fastest overall in all
but Q24, Q25 and Q27 on Postgres. Figure 4 also shows
that the GCov JUCQ performs as well as the ECov one, thus
the greedy is making smart choices. In Figure 4, the GCov
JUCQ is up to 4 orders of magnitude faster than the SCQ re-
formulation and two orders of magnitude faster than UCQ (on
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Figure 4: LUBM 100M query answering through UCQ, SCQ, ECov and GCov JUCQ reformulations, against System A, Postgres and
System B.

Figure 5: DBLP query answering through UCQ, SCQ, ECov and GCov JUCQ reformulation, against System A.

LUBM 1M, it wins by 3 orders of magnitude w.r.t. UCQ [29]).
We end by noting that the Q16 cover chosen by ECov for
Postgres has failed to execute due to insufficient memory in
our runtime environment; we believe this could be avoided
by further tuning the server execution parameters etc.

Figure 5 further highlights that no fixed reformulation
technique is always the best, not even if one fixes the system
and the dataset. In this figure, SCQ performs very well for
Q6 and Q7, and very poorly for Q8 and Q9; on the latter,
UCQ times out. In contrast, JUCQ performance is robust, the
best in all cases but Q6 and Q7, and for those it is not very
far from the optimum. These experiments highlight the
interest of the JUCQ reformulation space, and the usefulness
of our cost model in guiding ECov and GCov search.

GCov performance We now turn to considering the num-
ber of covers: overall (as explored by the exhaustive ECov),
and the subset traversed by our greedy GCov; these are de-
picted in Figure 6 also in logarithmic scale. While the search
space can be very large (e.g., for LUBM Q2, Q9 or Q12),
GCov only explores a small subset thereof. The same figure
also shows the running time of GCov, ECov, and the time
to build the UCQ and SCQ reformulations respectively (again,
observe the logarithmic time axis). The time is spent to:

obtain the statistics necessary for estimating the number of
results of various fragments; reformulate each fragment, esti-
mate its cost, and all other steps shown in Algorithm 1. We
see that GCov’s running time may be one order of magni-
tude less than the one of ECov; building the (cost-ignorant)
UCQ and SCQ is faster, but we have seen that their evalua-
tion may be very inefficient. Our algorithms last longest for
queries with a huge UCQ reformulation (such as LUBM Q28,
recall Section 5.1) and/or on queries with many joins be-
tween triples, such as LUBM Q12: such queries enable many
possibilities to add an triple to a fragment, leading to a new
cover (recall from Definition 3.3 that a fragment in a cover
is not allowed to contain a cartesian product).
Alternative: using the RDBMS cost estimation The
second question we study is the quality of our cost estima-
tion, that is crucial in guiding GCov decisions. The golden
standard one can compare against is the RDBMS’s internal
cost estimation function: this is because any cover we chose
is evaluated by sending it (as a SQL statement) to the sys-
tem which optimizes it according to its internal cost model.
Thus, the cost function used by GCov should be as close as
possible to the RDBMS one.

For this comparison, whenever we needed to estimate the

273



Figure 6: Number of query covers explored by the algorithms (top) and algorithm running times (bottom) for the LUBM queries.

Figure 7: Cost model comparison.

cost of a cover, we sent to Postgres an explain statement for
the corresponding cover-based reformulation, and extracted
from its result Postgres’ cost estimation3

Figure 7 shows the evaluation time of the JUCQ reformula-
tions chosen by ECov and GCov, based on one hand on our
cost function, and on the other hand on the Postgres one.
Most of the time, the results are similar, demonstrating that
our cost model is indeed close to the one of Postgres. In a
few cases (LUBM Q12 and Q16), using Postgres’ cost model
helped avoid bad ECov decisions; however, for the LUBM
queries Q9, Q15, Q18, Q19, Q26 and Q28, the ECov JUCQ

chosen based on Postgres’ cost estimation was unfeasible.
Figure 7 demonstrates that our cost model (Section 4.1)

has lead our algorithm to evaluation choices very similar to
the ones that Postgres made, validating its accuracy.

5.3 Comparison with saturation
As explained in the Introduction, graph saturation and

query reformulation are the two main techniques for an-
swering queries under constraints. Saturation-based query
answering can be very efficient, once the data is saturated;
however, if the RDF graph is updated, the cost of maintain-
ing the saturation may be very high [4]. In contrast, query
reformulation is performed directly at query time, and so it
naturally adapts to the current state of the database. The
performance trade-off between saturation- and reformulation-
based query answering depends on the schema, on the nature

3Doing this for every examined cover slowed down our search
significantly, thus we do not recommend actually running
GCov out of a RDBMS based on the RDBMS’s internal
cost model.

of updates, and on the data statistics [4].
In this section, we show how our optimized JUCQ

reformulation-based query answering technique impacts the
performance comparison with saturation-based query an-
swering. Figure 8 compares on the LUBM 1M dataset:
(i) UCQ reformulation; (ii) saturation-based query answering
based on Postgres; (iii) saturation-based query answering
based on Virtuoso v6.1.6 (open-source, multithreaded edi-
tion); and (iv) our GCov-chosen JUCQ. As expected, UCQ

reformulation performs much worse than saturation-based
query answering, and worse than the GCov JUCQ by up to
three orders of magnitude. On some queries, such as Q15

or Q23−Q28, saturation keeps its advantage even compared
to our optimized JUCQ reformulation. However, on queries
such as Q3 −Q14 and Q16 −Q22, the JUCQ reformulation is
close to (competitive with) saturation-based query answer-
ing, which is remarkable given that reformulation reasons at
query time, and considering the performance gap observed
between the two in previous works, e.g., [4].

5.4 Experiment conclusion
Our experiments lead to the following conclusions.

(1). Confirming the intuition given by our example in Sec-
tion 3, the space of JUCQ reformulation comprises alterna-
tive reformulations of a given BGP query w.r.t. the RDFS
constraints, whose evaluation is (i) feasible when UCQ refor-
mulation fails, and (ii) up to 4 orders of magnitude more
efficient than a fixed reformulation strategy, such as UCQ

or SCQ. (2). While ECov is slow for large-reformulation
queries, GCov identifies covers leading to efficient reformu-
lations quite fast, confirming the feasibility of our optimized
reformulation technique at query time. (3). The cost model
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Figure 8: Query answering through Virtuoso and Postgres (via saturation, respectively, optimized reformulation).

on which our search is based performs globally well; in par-
ticular, when calibrated for Postgres, we have shown it leads
to chosing covers very close to the ones obtained when rely-
ing on Postgres’ internal cost model. (4). While saturation-
based query answering has reasons to be much more efficient
than reformulation techniques (if one is willing to disregard
the initial cost of saturating the database, as well as any cost
related to saturation maintenance!), our efficient reformula-
tion technique is in many cases competitive with saturation-
based query answering, both through a relational server and
through the native-RDF Virtuoso server. This confirms the
important performance improvement brought by our work
to reformulation-based query answering in RDF; recall that
any CQ to UCQ reformulation algorithm could be used with
our cost-based GCov optimization technique.

6. RELATED WORK
The context of our work is the problem of answering con-

junctive queries against RDF facts, in the presence of RDFS
constraints. As mentioned in the introduction, solutions
from the literature rely on RDF graph saturation, on query
reformulation, or by mixing both [11]; our work focused on
making query answering based on reformulation performant.
Below, we position our work w.r.t. these two techniques.

Saturation-based query answering. When using graph
saturation, all the implicit triples are computed and explic-
itly added to the database; query answering then reduces
to query evaluation on the saturated database. Well-known
SPARQL compliant RDF platforms such as 3store [31],
Jena [32], OWLIM [33], Sesame [34], Oracle Semantic Graph
[35] support saturation-based query answering, based on (a
subset of) RDF entailment rules.

RDF platforms originating in the data management com-
munity, such as Hexastore [9] or RDF-3X [8], ignore entailed
triples and only provide query evaluation on top of the RDF
graph, which is assumed to be already saturated.

The drawbacks of saturation w.r.t. updates have been
pointed out in [3], which proposes a truth maintenance tech-
nique implemented in Sesame. It relies on the storage and
management of the justifications of entailed triples (which
triples beget them). This technique incurs a high overhead
of handling justifications when their number and size grow.
Therefore, [36] proposes to compute only the relevant justi-
fications w.r.t. an update, at maintenance time. This tech-
nique is implemented in OWLIM, however [33] points out
that updates upon RDFS constraint deletions can lead to
poor performance. More efficient saturation maintenance
techniques are provided in [4, 6] based on the number of
times triples are entailed.

Reformulation-based query answering. When us-
ing query reformulation, a given BGP query is reformulated

based on the RDFS constraints into a target language, such
that evaluating the reformulated query through an appro-
priate engine yields the query answer.
UCQ reformulation [4, 6, 10, 11, 12, 14, 15, 17, 18] applies

to various fragments of RDF, ranging from the Description
Logics (DL) one up to the Database one, the largest for
which this technique have been considered so far. UCQ refor-
mulation corresponds in this work to a JUCQ reformulation
obtained from a single fragment query cover. SCQ reformula-
tion [13] was defined for the DL fragment of RDF. In our set-
ting, it corresponds to a JUCQ reformulation obtained from a
query cover in which each triple is alone in a fragment. Our
experiments have shown that the evaluation performance for
both UCQ or SCQ reformulation can be very poor.

Among popular RDF data management systems, the only
ones supporting reformulation-based query answering are
Stardog, Virtuoso (which supports only the rdfs:subClassOf
and rdfs:subPropertyOf RDFS rules) and AllegroGraph [37]
which supports the four RDFS rules but whose reasoning im-
plementation is incomplete4. Virtuoso is based on SCQ refor-
mulation, while Stardog uses UCQ reformulation; we found no
information about AllegroGraph’s query reformulation lan-
guage. Nested SPARQL is the target reformulation language
in [19]; in contrast, we focus on translating into a commonly
supported language such as JUCQs which in turn can be ef-
ficiently evaluated by an SQL engine. In [11], the schema is
maintained saturated and reformulation is applied at run-
time. Our approach could apply in that setting, to improve
their reformulation performance.

Datalog has also been used as a target reformulation lan-
guage. For instance, Presto [12, 38] reformulates queries
in a DL-Lite setting into non-recursive Datalog programs.
These DL-Lite formalisms are strictly more expressive from
a semantic constraint viewpoint than the RDFS constraints
we consider. Thus, their method could be easily transferred
(restricted) to the DL fragment of RDF which, as previ-
ously mentioned, is a subset of the database fragment of
RDF that we consider. However, these works did not con-
sider cost-driven performance optimization based on data
statistics and a query evaluation cost model as in our work.

From a database optimization perspective, the performance
advantage we gain by adding selective triples next to very
large ones within query covers’ fragments is akin to the semi-
join reducers technique, well-known from the distributed
database context [39]. It has been shown e.g., in [40] that
semi-join reducers can also be beneficial in a centralized con-
text by reducing the overall join effort. In this work, we use a
technique reminiscent of semi-joins in order to pick the best
query-level formulation of a reformulated query, to make its

4As stated at http://franz.com/agraph/support/
documentation/v4/reasoner-tutorial.html#fnr0-2014-09-16

275



evaluation possible and efficient; this contrasts with the tra-
ditional usage of semi-joins at the level of algebraic plans.
On one hand, working at the plan level enables one to intel-
ligently combine traditional joins and semi-joins to obtain
the best performance. On the other hand, producing (as we
do) an output at the query (syntax) level (recall Figure 1)
enables us to take advantage of any existing system, and of
its optimizer which will figure out the best way to evaluate
such queries, a task at which many systems are good once
the query has a ”reasonable” shape and size. Further, ex-
pressing optimized reformulations as queries allows us not to
(re-)explore the search space of join orders etc. together with
the (already large) space of possible reformulated queries.

7. CONCLUSION
Our work is placed in the setting of query answering against

RDF graphs in the presence of RDF Schema constraints.
In particular, we focus on improving the performance of
reformulation-based RDF query answering.

We have identified a space of alternative JUCQ reformu-
lations, whose evaluation (based on a standard, semantics-
unaware query processor) may be (i) feasible even when the
prominent UCQ reformulation is not, and (ii) more efficient
by up to three orders of magnitude. Further, we have pre-
sented a cost model for such JUCQ alternatives, and proposed
an anytime greedy cost-based algorithm capable of identify-
ing such efficient alternatives. Our technique may be used
with any CQ-to-UCQ query reformulation algorithm (recall
Figure 1) and thus we consider it a big step forward toward
making reformulation-based query answering efficient. This
is particularly useful in contexts when the data and/or con-
straints are updated, and saturation-based techniques incur
high maintenance costs as illustrated e.g., in [4]; in contrast,
applying at query time, reformulation-based query answer-
ing is naturally robust to updates, and (through cost-based
techniques such as the one described in our work) close to
saturation-based performance but without its drawbacks.
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