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ABSTRACT
We consider the problem of processing similarity queries
over a set of top-k rankings where the query ranking and
the similarity threshold are provided at query time. Spear-
man’s Footrule distance is used to compute the similarity
between rankings, considering how well rankings agree on
the positions (ranks) of ranked items (i.e., the L1 distance).
This setup allows the application of metric index structures
such as M- or BK-trees and, alternatively, enables the use
of traditional inverted indices for retrieving rankings that
overlap (in items) with the query. Although both techniques
are reasonable, they come with individual drawbacks for our
specific problem. In this paper, we propose a hybrid index-
ing strategy, which blends inverted indices and metric space
indexing, resulting in a structure that resembles both in-
dexing methods with tunable emphasis on one or the other.
To find the sweet spot, we propose an assumption-lean but
highly accurate (empirically validated) cost model through
theoretical analysis. We further present optimizations to the
inverted index component, for early termination and mini-
mizing bookkeeping. The performance of the proposed al-
gorithms, hybrid variants, and competitors is studied in a
comprehensive evaluation using real-world benchmark data
consisting of Web-search–result rankings and entity rankings
based on Wikipedia.

1. INTRODUCTION
One common way to counter the information deluge is

the formation of concise rankings that allow users and algo-
rithms to e↵ectively and e�ciently inspect the best perform-
ing items within a certain category. Ranking schemes are
used to impose an order between items—such as Google’s
PageRank or more traditional OLAP-style aggregation and
ranking functions used in databases for business intelligence
and other forms of insight-seeking analyses. Besides tangible
facts and objective ranking schemes, rankings are often also
crowd-sourced through mining user polls on the Web, in por-
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tals such as IMDB (for movie ratings) or rankopedia.com, or
specifically created by users in form of favorite lists on per-
sonal websites or used in dating portals for matchmaking. A
core characteristic of such rankings is that they are rather
tiny in length, compared to the global domain of items that
could be ranked—consider the top-10 movies of all time com-
pared to the total number of produced movies or the top-10
Web search results for Britney Spears compared to more
than 100 million documents about her in Google’s index.
Access to rankings can serve ad-hoc information demands
or give access to deeper analytical insights. Consider for in-
stance the task of query suggestion in web search engines
that is based on finding historic queries by their result lists
with respect to the currently issued query, or dating portals
that let users create favorite lists that are used to search for
similarly minded mates.

As a generic access substrate for such services, we consider
querying sets of top-k rankings by means of distance func-
tions. That is, retrieving all rankings that have a distance
to the query less than or equal to a user-provided threshold.
We specifically focus on Spearman’s Footrule that is the
L1 distance metric between two rankings. Fagin et al. [18]
show that there is a metric Spearman’s Footrule adaptation
for top-k rankings, whose ranked items do not necessarily
match or overlap at all. Dealing with metrics immediately
suggests employing metric data structures like M-trees [14]
for indexing and similarity search. On the other hand, simi-
lar rankings, for reasonable query thresholds, should in fact
overlap in some (or all) of the items they rank. Searching
overlapping sets for ad-hoc queries [22, 30] or joins [25] is
a well studied research topic. Inverted indices or signature
trees are used to indexing tuples based on their set-valued
attributes [22]. Such indices are very e�cient to answer con-
tained-in, equal-to, or overlaps-with queries, but do not ex-
ploit the distances between the indexed rankings as metric
index structures do. In this work, we study a hybrid in-
dex structure that smoothly blends an inverted index with
metric space indexing. With an assumption-lean but highly
accurate theoretic cost model, we further show that the esti-
mated sweet spot reaches runtime performances almost iden-
tical to the manually tuned one.

1.1 Problem Statement and Setup
As input we are provided with a set T of rankings ⌧i (Ta-

ble 1). Each ranking has a domain D⌧i of items it contains.
We consider fixed-length rankings of size k, i.e., |D⌧i | = k,
but investigate the impact of various choices of k on the
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T
ranking id ranking content

⌧1 [2, 5, 4, 3]
⌧2 [1, 4, 5, 9]
⌧3 [0, 8, 5, 7]

Table 1: Sample set T of rankings (items are represented by
their ids).

query performance. The considered rankings do not contain
any duplicate items.

Rankings are represented as arrays or lists of items, where
the left-most position denotes the top ranked item. Without
loss of generality, in the remainder of the paper, we assume
that items are represented by their ids. The rank of an item
i in a ranking ⌧ is given as ⌧(i).

A distance function d quantifies the distance between two
rankings—the larger the distance the less similar the rank-
ings are. Therefore, for a given query ranking q, distance
function d, and distance threshold ✓, we want to find all
rankings in T with distance below or equal to ✓, that is,

{⌧i|⌧i 2 T ^ d(⌧i, q)  ✓}

In this work, we focus on the computation of Spearman’s
Footrule distance, but the proposed coarse index can be ap-
plied to any metric distance function. A more detailed intro-
duction to rankings specifically top-k rankings, metric dis-
tance functions, and how to work with items i that are not
in a ranking ⌧ is described in Section 3.

The objective of this work is to study in-memory indexing
and query processing techniques, with the overall aim to
decrease the average query response time. We consider ad-
hoc similarity queries over rankings, where the query ranking
and query similarity threshold are specified at query time.

1.2 Contributions and Outline
In this work, we make the following contributions:

• we present a coarse index and a cost model that al-
lows automated tuning of the coarsening threshold for
optimal performance

• we derive distance bounds for early stopping / pruning
inside position-augmented inverted indices—concepts
that are largely orthogonal to each other and can be
combined

• we show the results of a carefully conducted experi-
mental evaluation involving a suite of algorithms and
hybrids under realistic workloads derived from real-
world rankings

The remainder of this paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 presents background
information on rankings and discusses distance functions for
rankings. Section 4 introduces a coarse, hybrid index that in-
dexes partitions of rankings. Section 5 describes a cost model
that allows picking the sweet spot between inverted-index-
access time and result-validation time. Section 6 shows how
to compute distance bounds and to enable e↵ective pruning
of entire index lists at runtime. Section 7 presents the ex-
perimental evaluation, while Section 8 concludes the paper.

2. RELATED WORK
There is an ample work on computing relatedness between

ranked lists of items, such as to mine correlations or anti-
correlations between lists ranked by di↵erent attributes; like
age and weight. Arguably, the two most prominent similarity
measures are Kendall’s tau and Spearman’s Footrule. Fagin
et al. [18] study comparing top-k lists, that is, lists capturing
a subset of a global set of items, rendering the lists incom-
plete in nature. In the scenarios motivating our work, like
similarity search of favorite/preference rankings, the lists are
naturally incomplete, capturing, e.g., only the top-10 movies
of all times. In this work, we focus on the computation of
Spearman’s Footrule distance, for which Fagin et al. [18]
show that it retains its metric properties also for incomplete
rankings under certain assumptions (cf., Section 3).

We primarily distinguish two indexing paradigms for han-
dling ranked lists. First, considering the similarity metric
among them and applying indexing techniques for metric
spaces. Second, treating ranked lists as plain sets and index-
ing them using methods like inverted indices.

Helmer and Moerkotte [22] present a study on indexing
set-valued attributes as they appear for instance in object-
oriented databases. Retrieval is done based on the query’s
items; the result is a set of candidate rankings, for which
the distance function can be computed. For metric spaces,
data-agnostic structures for indexing objects are known, like
the M-tree by Ciaccia et al. [14, 37]. For discrete metrics,
the tree structure proposed by Burkhard and Keller [10] re-
sembles an n-ary search tree, called BK-tree, where subtrees
group items according to their (discrete) distance to the par-
ent node. Similarly, Ganti et al. [21] present single-pass al-
gorithms for clustering data in metric distance space using
a R*-tree–style [7] structure for mapping objects to (evolv-
ing) clusters. The vantage-point tree [32, 36] partitions the
space by choosing vantage points (pivots) that segment the
space into two areas, similar to the k-d tree [8]. Chávez and
Navarro [12] describe an algorithm to create non-overlapping
partitions of data in a metric space based on pivots and
fixed-diameter or fixed-size partitions; several ways to choose
pivots are studied. We consider indexing clusters of rankings
to shrink the size of the inverted index, by considering parti-
tions of rankings within a pre-determined distance threshold
(Section 4)—e↵ectively trading-o↵ cluster retrieval time and
final result validation cost. The partitioning can be done in
any of the above ways; we choose the BK-tree [10]. The
book by Hanan Samet [26] gives a comprehensive overview
of indexing techniques for metric spaces. The recent work
by Wang et al. [34] propose MapReduce [16] algorithms for
all-pairs similarity search in metric spaces. Previously, Ja-
cox and Samet [24] proposed sequential algorithms for the
similarity join problem in metric spaces.

Augmenting the inverted index with rank information al-
lows computing the Footrule distance on the fly. For score-
ordered index lists used in top-k query processing, there
is a large variety of work. Most prominently, the family
of threshold algorithms [18] and variants like the work by
Bast et al. [4] that is emphasizing on disk-I/O optimal ac-
cess. For k nearest neighbor (KNN) or similarity queries, the
per-dimension information of the indexed objects is not pre-
sorted by “score” as this depends on the query that is not
known a priori. Work on KNN search in databases [9] trans-
forms the KNN problem into a range query over the involved
dimensions, that can be answered using standard database
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⌧ A ranking
⌧(i) The rank of item i in ranking ⌧
F (⌧i, ⌧j) Footrule distance between ⌧i and ⌧j
d(⌧i, ⌧j) Distance between ⌧i and ⌧j
dmax maximum distance between two rankings
T Set of rankings to be indexed
k Size of rankings
D⌧ Items contained in ranking ⌧
D Global domain of items
q Query ranking
✓ Similarity threshold, set at query time
✓C Maximum pairwise similarity within a

partition
Pi A partition of rankings. Partitions are

pairwise disjoint.

Table 2: Overview of notation used in this paper

indices that support range queries, like B+ trees [6]. Work
on similarity join in databases [2, 27, 28] focuses on defin-
ing and implementing the similarity join as relational op-
erators. Mamoulis [25] addresses processing joins between
sets (relations) of tuples with set-valued attributes. Terrovi-
tis et al. [29] considers containment queries over sets with
skewed data distributions. The work in [30] proposes combi-
nation of trees and inverted files to answer superset, subset
and equality queries over set-valued attributes. Recently, the
most prominent technique for answering set similarity joins
are the prefix-filtering based methods [35, 5, 11]. The main
idea behind this method is to reduce the size of the inverted
index. This is done by imposing a total ordering of the el-
ements in the universe U (or what we refer to as the dic-
tionary D), sorting the elements in the records, and then,
based on the threshold value, indexing only a prefix, and
not the complete records. Similarly, we propose a technique
for dropping some of the elements in the query (Section 6),
however, our technique does not require the threshold value
to be known during index construction. Additionally, we do
not require a global ordering to be imposed on the items
in the rankings, i.e., the rankings keep their original struc-
ture. Wang et al. [33] propose the AdaptJoin algorithm that
improves on previous prefix filtering work by using variable
length prefix scheme and a cost model that selects the most
e�cient prefix length for each object. They further propose
the AdaptSearch algorithm for processing ad-hoc queries us-
ing the same adaptive framework. As rankings can also be
seen as plain sets, AdaptSearch can be applied for comput-
ing relatedness between rankings as well.

When processing top-k, KNN, or similarity queries, the
ultimate goal is to identify the final result objects as soon as
possible, without exhaustive evaluation of scores/distances.
In the NRA algorithm by Fagin et al. [19] over score-sorted
index lists, this is achieved by maintaining score bounds for
each seen object. We come back to this in Section 6.

3. BACKGROUND ON RANKINGS AND DIS-
TANCE FUNCTIONS

Pairwise similar rankings can be retrieved by means of dis-
tance functions, like Kendall’s Tau or Spearman’s Footrule
distance, over all pairs or selectively for a given query rank-
ing. We first discuss metrics over complete rankings over

a single domain and then we discuss results on computing
distances for top-k lists (incomplete rankings).

Complete rankings are considered to be permutations over
a fixed domain D. We follow the notation by Fagin et al.
[18] and references within. A permutation � is a bijection
from the domain D = D� onto the set [n] = {1, . . . , n}. For
a permutation �, the value �(i) is interpreted as the rank
of element i. An element i is said to be ahead of an ele-
ment j in � if �(i) < �(j). For two permutations �1,�2 over
the same domain, the Kendall’s tau K(�1,�2) and Spear-
man’s Footrule F (�1,�2) measures are two prominent ways
to compute the distance between �1 and �2. Both measures
are distance metrics, that is, they have symmetry property,
i.e., d(x, y) = d(y, x), are regular, i.e., d(x, y) = 0 i↵ x = y,
and su�ce the triangle inequality d(x, z)  d(x, y)+ d(y, z),
for all x, y, z in the domain. Spearman’s Footrule metric is
the L1 distance between two permutations, i.e., F (�1,�2) =P

i |�1(i) � �2(i)| and in this work we specifically focus on
this metric, but the proposed coarse index can be applied to
any metric distance function. We refer the reader to Table 2
for an overview of the notation used in this paper.

We consider incomplete rankings, called top-k lists in [18].
Formally, a top-k list ⌧ is a bijection from D⌧ onto [k]. The
key point is that individual top-k lists, say ⌧1 and ⌧2 do not
necessarily share the same domain, i.e., D⌧1 6= D⌧2 . Fagin et
al. [18] discuss how the above two measures can be computed
over top-k lists.

There exists a Spearman’s Footrule adaptation that is also
a metric for top-k lists by considering an artificial rank l for
items not contained in a ranking, i.e., ⌧(i) = l if i /2 D⌧ .
Consider the rankings ⌧1 = [2, 5, 6, 4, 1], ⌧2 = [1, 4, 5], and
⌧3 = [0, 8, 4, 5, 7]. For a rank l = 6 for not-contained items,
we obtain F (⌧1, ⌧2) = 15, F (⌧2, ⌧3) = 17, and F (⌧1, ⌧3) = 22.

In this work, we assume that ⌧(i) takes values from 0 to
k � 1 (instead of 1 to k), and we fix the value of l to k as
suggested in [18]. It is clear that this does not a↵ect our
algorithms. We further consider only rankings of same size
k, thus the largest possible value of the Footrule distance is
k⇥ (k+1) and occurs if two disjoint rankings are compared.
The smallest distance is 0, for the compared rankings are
identical. In the rest of the paper, for ease of presentation,
we use normalized values for the Footrule distance and ✓,
ranging from 0 to 1, i.e., dmax = 1.

4. FRAMEWORK
Rankings can be considered as plain sets and accordingly

indexed in traditional inverted indices [22] that keep for each
item a list of rankings in which the item appears. At query
time such a structure allows e�ciently finding those rankings
that have one or more items in common with the query
ranking. A compact example is given below:

inverted index

item a

< ⌧1, ⌧5, ⌧7 >

item b

< ⌧4, ⌧9, ⌧12, ⌧19 >

The key point of using inverted indices is their ability to
e�ciently reduce the global amount of all rankings to poten-
tial candidates by eliminating the rankings with maximum
distance dmax to the query. This is done in the first query
processing phase, namely the filtering phase. In this phase,
for a given query ranking q and a user defined threshold ✓,
the inverted index is queried for each item in Dq. The ob-
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tained index lists are merged to identify all rankings that
have at least one overlapping item with the query ranking
q. These are considered candidates.

For each of them, the distance function d(q, ⌧) is evaluated
to identify the true results, i.e., the rankings where d(q, ⌧) 
✓. This is done in the validation phase. We refer to this
as the Filter and Validate (F&V) algorithm. Naturally, we
assume that the query threshold ✓ is strictly smaller than
the maximum possible distance dmax.

Although the inverted index is good for finding rankings
(sets) that intersect with the query, the F&V comes with
two drawbacks:

(i) It naively indexes all rankings and, hence, is of massive
size, despite the fact that often rankings are (near)
duplicates

(ii) The validate phase evaluates the distance function on
each ranking separately, although known metric in-
dex structures suggest pre-computing distances among
(similar) rankings for faster identification of true re-
sults

While directly using metric index structures, like M-Trees
[14] or BK-Trees [10], appears promising at first glance, they
are not ideal for boiling down the space to intersecting rank-
ings. In fact, we show in our experiments that using metric
data structures is an order of magnitude slower than using
pure inverted indexes.

To harness the pruning power of inverted indices but at
the same time not to ignore the metric property of the
Footrule distance, we present a hybrid approach that blends
both performance sweet spots by representing near duplicate
rankings by one representative ranking, which is then put
into an inverted index. That way, depending on how aggres-
sive this coarsening is, the inverted index drastically shrinks
in size, hence, lower response time, and the validation step
is benefiting from the fact that near duplicate rankings are
represented by a metric index structure.

Below, we describe more formally how such an index or-
ganisation is realized and how queries are processed on top
of it. We present a highly accurate cost model that allows
trading-o↵ the coarsening threshold to find the optimal trade-
o↵ between the inverted index cost and the cost to validate
rankings in the metric index structure.

4.1 Index Creation
The aim is to group together rankings that are similar to

each other—with a quantifiable bound on the maximum dis-
tance. That is, partitions Pi of similar rankings are created,
and each represented by one ⌧m 2 Pi, the so called medoid of
the partition. It is guaranteed that 8⌧i 2 P : d(⌧m, ⌧)  ✓C .
The distance bound ✓C is called the partitioning threshold.
We write ⌧m � ⌧ to denote that ranking ⌧ is represented by
ranking (medoid) ⌧m.

To find partitions of rankings, we employ a BK-tree [10],
an index structure for discrete metrics, such as the Footrule
distance. Figure 1 depicts the general shape of such a BK-
tree. Ignoring for a moment the di↵erent colors and black,
solid circles: each node represents an object (here, ranking)
and maintains pointers to subtrees whose root has a specific,
discrete distance. We create such a BK-tree for the given
rankings. Then, in order to create partitions of similar rank-
ings, the tree is traversed and, for each node, the children
with distance above ✓C are considered in di↵erent partitions.

The procedure continues recursively on these children. The
children within distance  ✓C are forming a partition with
their root node, which acts as the medoid. In Figure 1, each
partition is illustrated by its root (representative ranking)
shown as a black, solid circle, and the green subtrees below
it (those with distance 1 or 2). A partition is not represented
as a plain set (or list) of rankings, but by the correspond-
ing subtree of the BK-tree. The immediate benefit is that
these subtrees (that are full-fledged BK-tree themselves) are
used to process the original query (with threshold ✓) on the
clusters, without the need to perform an exhaustive eval-
uation of the partition’s rankings. Alternatively, any algo-
rithm that creates (disjoint) partitions of objects within a
fixed distance bound can be used, such as the approach by
Chávez and Navarro [12], which randomly picks medoids, as-
signs objects to medoids, and continues this procedure until
no object is left unassigned. We use this simple model to
reason about the trade-o↵s of our algorithm below.

Irrespective of the way to find medoids and their parti-
tions, medoids are rankings, too, and can be indexed using
inverted indices. In Section 6 we further propose techniques
for more e�cient retrieval of the rankings indexed with an
inverted index.

4.2 Query Processing

Lemma 1. For given query threshold ✓ and partitioning
threshold ✓C , at query time, for query ranking q, all medoids
⌧m with distance d(⌧m, q)  ✓ + ✓C need to be retrieved in
order not to miss a potential result ranking.

Lemma 1 ensures that rankings {⌧i|⌧m � ⌧i^d(⌧i, q)  ✓^
d(⌧m, q) > ✓} will not be omitted from the result set. In other
words, Lemma 1 avoids missing result rankings with distance
 ✓, which are represented by a medoid with distance > ✓.
On the other hand, since the medoids are indexed using an
inverted index, we assume that ✓ + ✓C < 1. This is needed
because medoids ⌧m that are not overlapping with q at all,
cannot be retrieved from the inverted index.

For each of the found medoids ⌧m (i.e., d(⌧m, q)  ✓ +
✓C), the rankings R := {⌧ |⌧m � ⌧} are potential result
rankings. For each such candidate ranking ⌧i 2 R it needs
to be checked if in fact d(q, ⌧i)  ✓. The rankings ⌧i 2 R
with d(q, ⌧i) > ✓ are so called false positives and according to
Lemma 1 there are no false negatives. As for each a↵ected
medoid ⌧m, the rankings in R are represented in form of
a BK-tree (or any other metric index structure), it is the
task of this tree to identify the true result rankings (i.e.,
eliminating the false positives).

Algorithm 1, depicts the querying using the relaxed query
threshold, and the subsequent retrieval of result rankings.
In this algorithm, as well as in the actual implementation,
the partitions, represented by the medoids, are arranged as
BK-trees, created at partitioning time.

It is clear that the partitioning threshold ✓C a↵ects the
cost for querying the metric index structure: The larger the
partitions are (i.e., the larger ✓C is) the larger is the tree to
be queried. On the other hand, then, there are less medoids
to be indexed in the inverted index. This apparent tradeo↵
is theoretically investigated in the following section to find
the design sweet spot between the naive inverted index and
the case of indexing the entire set of rankings in one metric
index structure.
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method: processCoarse

input: QueryProcessor over Medoids qp, double ✓, ✓C ,
Map:Int! BK-Tree map

output: list of query results rlist
1 rTemp  qp.execute(✓+✓C) . query with relaxed threshold

2 for each id 2 rTemp
3 tree  map[id]
4 rList.addAll(tree.execute(✓))
5 return rList

Algorithm 1: Query processing using the coarse index.

5. PARAMETER TUNING
Setting the clustering threshold ✓C allows tuning the per-

formance of the coarse index. For a clustering threshold ✓C =
0, only duplicate rankings are grouped together, whereas for
✓C = 1 there is only one large group that consists of all
rankings. That means, for larger ✓C the inverted index be-
comes smaller, with more work to be done at validation time
inside the retrieved clusters. For smaller ✓C the inverted in-
dex is larger, but clusters are smaller, hence, less work to be
done in the validation phase. There are, hence, two separate
costs: filtering cost—the cost for querying the inverted in-
dex, and, validation cost—the cost for validating the par-
titions represented by the medoids returned as results by the
inverted index, in order to get the final query answers.

We try to make as few assumptions as possible and for
now we assume we know only the distribution of pairwise
distances. That is, for a random variable X that represents
the distance between two rankings, we know the cumulative
distribution function P [X  x], hence, we know how many
rankings of a population of n rankings are expected to be
within a distance radius r of any ranking, i.e., n⇥P [X  ✓C ].
We assume that medoids are also just rankings (by design)
and are accordingly distributed. According to the cluster-
ing method described by Chávez and Navarro [12], we ran-
domly select medoids, one after the other. After each se-
lected medoid, all rankings that are not yet assigned to any
medoid before and that are within distance ✓C to the cur-
rent medoid are assigned to it. The process ends as soon as
no ranking is left unassigned:
The radius r of the created partitions around the medoids

is modeled as P [X  ✓C ]. We are interested in the number
of medoids that need to be created to capture all rankings
in the database. This resembles the coupon collector prob-
lem [20]. The solution to this problem describes how many
coupons a collector needs to buy, in expectation, to capture
all distinct coupons available. The first acquired coupon is
unique with probability 1. The second pick is not seen before
with probability (c � 1)/c; c denoting the total number of
distinct coupons. The third pick with probability (c� 2)/c,
and so on. In the case of medoids and their partitions, we
specifically consider the variant of the coupon collector prob-
lem with package size larger or equal to one, i.e., batches of
coupons are acquired together. Within each such package,
there are no duplicate coupons. Figure 2 depicts the generic
sampling of the ranking space, where fixed-diameter circles
are forming the partitions around the medoid at the center.
The deviation from the standard coupon collectors prob-
lem is that for picking medoids, in each round of picks, the
medoid itself has not been selected before. Thus, the number

1 2 3 4 5 6 . . .

1 2 3 4 . . .

Figure 1: Creating partitions based on the BK-tree. The
green (distance 1 and 2) subtrees are indexed by their parent
node (medoid, as black dot). Distance 0 is not shown here.

of “coupons” that need to be acquired to get the ith distinct
coupon, given package size p = P [X  ✓C ]⇥ n, and a total
of c distinct coupons, which in our case is the number of
distinct rankings n is then:

h(n, i, p) =

(
1, if imod p = 0
n�(imod p)

n�i
, otherwise

(1)

And overall, the number of medoids (packages) is given as

M(n, ✓C) = p�1
n�1X

i=0

h(n, i, p) (2)

This gives us the expected number of medoids indexed by
the inverted index. Next, we first reason about the cost for
validating the partitions, and then we discuss the filtering
cost, i.e., the cost for querying the inverted index.

Cost for Validating Partitions

The number of medoids retrieved is following again the given
distribution of pairwise distances. Since we query the in-
verted index with threshold ✓ + ✓C we obtain

E[retrieved medoids] = P [X  ✓ + ✓C ]⇥M (3)

where M , for brevity, denotes M(n, ✓C).
Assuming that the retrieved medoids have the same size

on average, i.e., n/M for a total number of rankings n, we
have

E[candidate rankings] = P [X  ✓ + ✓C ]⇥ n (4)

candidate rankings retrieved that need to be checked against
the distance to the query ranking. This is also very intuitive.

For the case of brute-force evaluation of such candidate
rankings this is multiplied with the cost of computing the
distance measure. The cost of representing the partitions by
full-fledged BK-tree is expected to be lower, but it introduces
a complexity to the model. Our goal is to provide an easy
to compute, and yet accurate model. For a more complex
reasoning about the cost of querying the BK-tree we refer
the reader to [3].

Cost for Retrieving Partitions

When querying the inverted index with a threshold ✓+✓C to
find the resulting medoids, the overall cost is based on the
average index list length and the final medoids to be checked
against the threshold. We should first estimate the average
size of an index list in an inverted index.

We assume that the popularity of items in the rankings
follows Zipf’s law with parameter s. Sorting all items by
their popularity (frequency of appearance in the rankings),
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m1
m2

m3

m4

Figure 2: Four medoids with fixed-diameter partitions.

the law states that the frequency of the item at rank i is given
by f(i; s, v) = 1

isHv,s
, whereHv,s is the generalized harmonic

number and v is the total number of items. The size of the
index list for an item is equal to the number of rankings
that contain the item, i.e., n ⇥ f(i; s, v) for the ith most
popular item; where n is the number of indexed rankings.
Consider a random variable Y representing sizes yi of index
lists for items i. We are interested in E[Y ] =

P
i yi P [yi]

and assume that the chance of item i, that is the ith most
popular item, to be selected as a query item is following
the same Zipf distribution, f(k; s, v). That means, the items
appearing frequently in the data are also used often in the
queries. The average size of an index list is then given as
E[Y ] =

P
i n⇥f(i; s, v)

2. This is a generic result for inverted
indices, which in our cost model is applied on an inverted
index over M medoids (not n rankings) that together have
v0 distinct items; v0 is derived thereafter, so the expected
length of an inverted list for the inverted index is:

E[index list length] =
X

i

M ⇥ f(i; s, v0)2 (5)

For each query, k such index lists need to be accessed.
This is one part of the cost caused by the retrieval of the
medoids. For these k⇥E[index list length] medoids, we have
to compute the distance function, assuming that there are
no duplicate medoids retrieved.

The expectation of distinct items v0 within the medoids
is derived as follows. The probability that an item, out of
a global domain of v items, is not selected into a single
ranking of size k is ( v�1

v
)k, but we do know that a rank-

ing does not contain duplicate items, hence, P [¬selected] =
v�1
v
⇥ v�2

v�1 . . . v�k
v�k+1 = ⇧k

i=0
v�i

v�i+1 = 1 � ( k
v
). The proba-

bility that an item, out of a global domain of v items, is
not selected into a single ranking of size k, knowing that the
items in the ranking are unique, is P [¬selected] = 1 � ( k

v
).

The probability not to be selected in any of the M medoid
rankings is then (1� k

v
)M . And thus

E[v0] = v ⇥
 
1�

✓
1� k

v

◆M
!

(6)

To compute the overall cost, the above estimates are com-
bined as shown in Table 3. To bring both parts of the overall
cost to a comparable unit, we precompute the cost (runtime)
of a single Footrule computation CostFootrule(k) (for vari-
ous k) and the cost (runtime) to merge k lists of a certain
size, Costmerge(k, size).

Figure 3 shows the model for vary ✓C for the two datasets
used in the experimental evaluation (we refer the reader to
Section 7 for a description of the datasets). We empirically
estimated the skewness parameter s from samples of the
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Figure 3: The behavior of the theoretically derived perfor-
mance for varying ✓C .

datasets—s = 0.87 for the New York Times dataset (left
plot) and s = 0.53 for the Yago dataset (right plot)—and
fitted it in the above estimate of the expected index list
length.

Find medoids for query:

Inv. Index Cost: Costmerge(k,
P

i f(i; s, v
0)2 ⇥M)

+
Validation Cost: k

�P
i f(i; s, v

0)2 ⇥M
�
⇥ CostFootrule(k)

Validation of retrieved rankings:

Validation Cost: n⇥ P [X  ✓ + ✓C ]⇥ CostFootrule(k)

Table 3: Model of query performance (⇠runtime) of the
coarse index.

6. INV. INDEX ACCESS & OPTIMIZATIONS
Medoids are rankings as well and thus they can be indexed

using inverted indices. In this section, two optimizations over
inverted indices are presented.

First, a minimum-overlap criterion is derived; it indicates
how many of the k index lists can be dropped from consider-
ation, guaranteeing that no true result ranking can possibly
be missed.

For the second optimization, for a query ranking of size
k, the k corresponding index lists are accessed one after the
other, and the contained information in each list in the form
of (⌧i, ⌧(i)) are continuously aggregated for each (seen) rank-
ing. For each ranking observed during accessing the index
lists, upper and lower bounds for the true distance are de-
rived, to allow accepting or rejecting final result rankings
early.

6.1 Pruning by Query-Ranking Overlap
Consider a ranking ⌧ with D⌧ \Dq = ;, i.e., the items in ⌧

are not at all overlapping with the query’s items. It is easy to
see that the Footrule distance is F (⌧, q) = k⇥(k+1) = L(k),
considering rankings of length k. L(k) is used to denote this
lowest possible distance1. In the case of zero overlap, L(k)
is also the exact distance. In general, considering an overlap
of size ! between Dq and D⌧ , the smallest possible Footrule
distance L(k,!) in that case is given when the ! overlapping
items are perfectly matched and positioned in the top of
both lists, hence, L(k,!) = L(k � !). For a given query
threshold ✓, rankings with an overlap of ! items can be
safely ignored if L(k,!) > ✓. In practice, this means that
some index lists can be entirely omitted from being accessed.

1We use the naming lower and upper bounds for distances
instead of best and worst distances, for clarity.
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It is immediately clear how to turn this insight into en-
hancements of algorithms that work with an inverted in-
dex: Solving L(k,!) = ✓ for ! tells that rankings ⌧ with
F (⌧, q)  ✓ must not have an overlap smaller than ! =
b0.5(1 + 2k �

p
1 + 4✓)c. From this it immediately follows

that k � ! + 1 index lists are su�cient to retrieve all the
candidate lists since a ranking missing from these lists must
have an overlap smaller than !.

If we further take into consideration the position of the !
overlapping items, i.e., that they are positioned at the top of
both lists, then we can ensure correctness by retrieving k�!
lists if at least one of the retrieved lists is of an item posi-
tioned in the top ! places. In this case, we can miss rankings
that have an overlap of ! with the query, but we will never
miss rankings that have overlap of ! where these ! items
are positioned at the top ! places. This leads immediately
to the following lemma.

Lemma 2. For given query threshold ✓ and ranking size
k, k � ! index lists are su�cient to retrieve all the candi-
date rankings ⌧ with F (⌧, q)  ✓, where ! = b0.5(1 + 2k �p
1 + 4✓)c.
This is a generic result, independent of the actual choice

of the index lists that can be dropped. Still, the expected im-
pact of the candidate pruning is larger if the largest lists are
dropped. In fact, experiments will show that specifically for
the query-log–based benchmark, drastic performance gains
can be enjoyed, literally for free. For the remaining lists
and rankings within, the exact distance still needs to be
determined, as there are obviously so called false positives
with distance larger than the query threshold. But the above
lemma guarantees that there are no false negatives, i.e., no
ranking ⌧ with F (⌧, q)  ✓ is missed.

Algorithms that make use of this dropping of entire index
lists carry the su�x +Drop in the title.

6.2 Partial Information
Instead of having only ranking ids stored in the inverted

index, such that an additional lookup is required to get the
actual ranking content, we can augment the inverted index
to make it hold the rank information as well, such that the
true distance can be directly computed.

inverted index w/ ranks

item a

<(⌧1 : 3),(⌧5 : 1),(⌧7 : 4)>

item b

<(⌧4 : 2),(⌧9 : 11),(⌧12 : 1),(⌧19 : 2)>

In a List-at-a-Time fashion, the individual index lists
determined by the query are accessed one after the other.
Similarly to the NRA algorithm by Fagin et al. [19], for a
ranking ⌧ that has been seen only in a subset of the index
lists, we can compute bounds for its final distance. This is
done by keeping track of the common elements seen between
the query q and ranking ⌧ . The lower and upper bounds are
computed by reasoning about the yet unseen elements: A
lower bound distance L(⌧, q) is given by assuming the best
configuration of the unseen elements, that is, the remaining
elements are common to both q and ⌧ , and are addition-
ally present in the same ranks in both rankings. Thus, their
partial contribution to the Footrule distance is zero.

The upper bound distance U(⌧, q) is obtained when none
of the (yet) unseen elements in ⌧ will be present in the query
q. The partial distance contribution of such an item i, at rank
⌧(i) in ⌧ is |k � ⌧(i)|, and overall we have

⌧0 = [1, 2, 3, 4, 5] ⌧5 = [4, 5, 1, 2, 3]
⌧1 = [1, 2, 9, 8, 3] ⌧6 = [1, 6, 2, 3, 7]
⌧2 = [9, 8, 1, 2, 4] ⌧7 = [7, 1, 6, 5, 2]
⌧3 = [7, 1, 9, 4, 5] ⌧8 = [2, 5, 9, 8, 1]
⌧4 = [6, 1, 5, 2, 3] ⌧9 = [6, 3, 2, 1, 4]

Table 4: Sample set T of rankings

U(⌧, q) = L(⌧, q) +
X

i unseen

|k � ⌧(i)|

The bounds allow pruning of candidates: If L(⌧, q) > ✓ we
know that ⌧ is not a result ranking, since L(⌧, q) is mono-
tonically non-decreasing. Similarly, if U(⌧, q)  ✓, we report
⌧ as the result, as U(⌧, q) is monotonically non-increasing.
For small values of ✓, many candidates can be evicted early
on in the execution phase. For larger values of ✓, candidate
results can be reported early—reducing bookkeeping costs.

Consider for instance the set T of the rankings presented
in Table 4 and a query q = [7, 6, 3, 9, 5]. The index list for
item 7 is:

item 7

<(⌧3 : 0),(⌧6 : 4),(⌧7 : 0)>

We can compute the bounds for the seen rankings, ⌧3, ⌧6,
and ⌧7. For all these rankings, we know the seen element is
item 7 and we have 4 unseen elements, since k = 5. Thus,
L(⌧3, q) = L(⌧7, q) = 0 and L(⌧6, q) = 4, as ⌧3(7) � q(7) =
⌧7(7) � q(7) = 0, and ⌧6(7) � q(7) = 4 and for the unseen
items we assume they are on the same position in all rank-
ings. U(⌧3, q) = U(⌧7, q) = 20 and U(⌧6, q) = 24, as we
assume that all of the unseen elements are not present in ⌧3,
⌧6, and ⌧7.

These distance bounds are used in the following online
aggregation algorithm that encounters partial information.
Algorithms that make use of this pruning for partial infor-
mation carry the su�x +Prune in their title.

6.3 Blocked Access on Index Lists
When index lists are ordered according to the rank val-

ues, since the ranks are integers, there might be a sequence
of index lists whose ranks are the same. We refer to this se-
quence of index lists as a block of index lists. Formally, we let
the block Bi@j to denote the set of rankings in which item
i appears at position j. We additionally have a secondary
index, one for each index list, which stores the o↵sets of the
individual blocks.

The advantage with such an index list organization strat-
egy is that processing the entire index list can be avoided
in many cases. We describe this in detail. It is obvious that
result candidates which have a partial distance greater than
✓ can be pruned out. In such an index organization ap-
proach, we avoid processing blocks which would produce
candidates with a partial distance greater than ✓. Given a
query q = [q1, . . . , qk] with a threshold ✓, all result candi-
dates obtained while traversing the block Bi@j have a partial
distance of at least |j � i|. Thus, we modify the List-at-a-
Time algorithm so that blocks, Bi@j , where |j � i| > ✓ are
omitted, avoiding processing the bulk of the index list.

Consider for instance the inverted index in Figure 4, con-
structed according to the rankings in Table 4. For the query
q = [3, 2, 1] and ✓ = 1, blocks B3,1 need to be accessed for
item 3, B2,1, B2,1 and B2,3 for item 2. Finally, blocks B1,2,
B1,3 and B1,4 for item 1. In the process 17 out of 28 index
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item 1! (⌧0 : 0), (⌧1 : 0), (⌧6 : 0) , (⌧3 : 1), (⌧4 : 1), (⌧7 : 1), (⌧10 : 1) , (⌧2 : 2), (⌧5 : 2) , (⌧9 : 3) , (⌧8 : 4)

item 2! (⌧8 : 0) , (⌧0 : 1), (⌧1 : 1) , (⌧6 : 2), (⌧9 : 2) , (⌧2 : 3), (⌧4 : 3), (⌧5 : 3), (⌧10 : 3) , (⌧7 : 4)

item 3! (⌧9 : 1) , (⌧0 : 2) , (⌧6 : 3) , (⌧1 : 4), (⌧4 : 4), (⌧5 : 4)

item 4! (⌧5 : 0) , (⌧10 : 2) , (⌧0 : 3), (⌧3 : 3) , (⌧2 : 4), (⌧9 : 4)

. . .

Figure 4: Inverted Index for rankings in Table 4 with highlighted blocks of same-rank entries

lists are processed which accounts for less than 50% index
lists being accessed.

7. EXPERIMENTS
We implemented the described algorithms in Java 1.7 and

report on the setup and results of an experimental study.
The experiments are conducted on a quad-core Intel Xeon
W3520 @ 2.67GHz machine (256KiB, 1MiB, 8MiB for L1,
L2, L3 cache, respectively) with 24GB DDR3 1066 MHz (0.9
ns) main memory.

Datasets

Yago Entity Rankings: We have mined top-k entity rank-
ings out of the Yago knowledge base, as described in [23].
The facts, in form of subject/predicate/object triples, are
used to define constraints, for which the qualifying entities
are ranked according to certain criteria. For instance, we
generate rankings by focusing on type building and predi-
cate located in New York, ranked by height. This dataset,
in total, has 25,000 rankings.
NYT: We executed 1 million keyword queries, randomly
selected out of a published query log of a large US Inter-
net provider, against the New York Times archive [31] using
a unigram language model with Dirichlet smoothing as a
scoring model. Each query together with the resulting doc-
uments represents one ranking.

The two datasets are naturally very di↵erent: while the
Yago dataset features real world entities that each occur in
few rankings, the NYT dataset has many popular documents
that appear in many query-result rankings.

Algorithms under Investigation

• the baseline approaches Filter and Validate (F&V)
and Merge of Id-Sorted Lists (ListMerge) both de-
scribed below

• filter and validate technique combined with the opti-
mization based on dropping entire index lists (F&V+

Drop)
• blocked access with pruning (Blocked+Prune)
• blocked access with pruning based on both overlap and

pruning (Blocked+Prune+Drop)
• query processing on the coarse index using the F&V

technique (Coarse)
• query processing on the coarse index using the F&V+

Drop technique (Coarse+Drop)
• a competitor AdaptSearch, and Minimal F&V al-

gorithm, both described below

Next to the actual algorithms, we implemented a minimal
Filter and Validate algorithm (Minimal F&V) that has
for each query materialized a single index list in an inverted
index that contains exactly the true query-result rankings.

For each of these, the Footrule distance is computed. The
cost for the single index lookup and the Footrule computa-
tions serves as a lower bound for the performances of the
discussed algorithms.

We also implemented AdaptSearch [33] as the most re-
cent and competitive work on ad-hoc set similarity search
in main memory. We implemented AdaptSearch by follow-
ing the C++ implementation of the AdaptJoin algorithm
available online2. We computed the size of the prefix of the
query using the overlap threshold ! derived in Section 6. In
the validation phase, AdaptSearch computes the Footrule
distance for each of the candidate rankings.

The implementation of the M-tree is obtained from [15].
We implemented the BK-tree ourselves, according to the
original work in [10]. The inverted index implementations
make use of the Trove library3.

Merge of Id-Sorted Lists with Aggregation: If the
information within each index list is sorted by ranking id,
and further contains rank information, the problem of com-
puting the actual distances of the rankings to the query
ranking can be achieved using a classical merge “join” of
id-sorted lists. This is very e�cient, in particular as the in-
dex lists do not contain any duplicates. Cursors are opened
to each of the lists, and the distances of each ranking is fi-
nalized on the fly. There is no bookkeeping required as, at
any time, only one ranking is under investigation (the one
with the lowest id, if sorted in increasing order). Rankings
do either qualify the query threshold or not. It is clear that
this algorithm is threshold-agnostic, that is, its performance
is not influenced by the query threshold ✓; the index lists
have to be read entirely.

We mainly focus on rankings of size 10 since in a previous
study [1] we observed that at ranker.com most common are
rankings of size 10.

Performance Measures

• Wallclock time: For all algorithms we measure the wall-
clock time needed for processing 1000 queries.

• Distance function calls: For the filter&validate algo-
rithms, specifically F&V, F&V+Drop, Blocked+Prune+
Drop, Coarse, and Coarse+Drop, we measure the num-
ber of distance function computations performed.

For the coarse index processing techniques, we also inves-
tigate the performance of the individual phases.

7.1 Query Processing Performance

Inverted Index vs. Metric Index Structures

We first compare the two main concepts of processing sim-
ilarity queries over top-k rankings: First, the use of met-
2https://github.com/sunlight07/similarityjoin
3http://trove.starlight-systems.com/
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Figure 5: Performance of the M-tree vs. BK-tree (NYT)
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Figure 6: Performance of the BK-tree vs. the performance
of inverted index (NYT)

ric index structures is compared, here, represented by the
BK-tree and the M-tree [37] (Figure 5). Second, the use of
inverted indices is compared to the BK-tree (Figure 6).

Figure 5 reports the query performance of the BK-tree
compared to the M-tree and Figure 6 on the query perfor-
mance of the BK-tree index structure versus the plain query
processing using the inverted index with subsequent valida-
tion, i.e., filter and validate, F&V. We see that the inverted
index performs orders of magnitudes better than the M-tree.
Although the M-tree is a balanced index structure it still
performs worse than the BK-tree. Chávez et al. [13] show
that balanced index structures perform worse than unbal-
anced ones in high dimensions—we calculated the intrinsic
dimensionality of both datasets to be around 13 (cf. [13] for
the definition of intrinsic dimensionality). Despite the better
performance of the BK-tree, the inverted index still outper-
forms it. Hence, only techniques using the inverted index
paradigm are further studied.

Coarse Index Performance Based on ✓C

Next, we studied the performance of the coarse index for dif-
ferent ✓C values. We focus on the performance of the coarse
index combined with the F&V technique as this combina-
tion resembles the model presented in Section 4 most. In
Figure 7, the filtering and validation times are shown when
varying ✓C and fixed k = 10, for both datasets. We see that
the curves resemble the ones plotted for the cost model in
Figure 3. Both dataset show a similar behavior of the execu-
tion time. The filtering time is reducing as we increase the
value of ✓C , since the number of indexed medoids reduces.
The validation time, on the other hand, is rising, since the
size of the partitions is increasing proportionally with ✓C .
Most importantly, we see that we can find a specific value of
✓C for which the coarse index performs optimally and this
value depends on the value of ✓+✓C as modeled in Section 4.

Cost Model Correctness

The performance of the coarse index if the trade-o↵ value of
✓c as computed by the model is chosen, is shown in the plots
in Figure 7 as a small rectangle. The vertical line denotes
the di↵erence between the performance of the coarse index
in case of the two trade-o↵ ✓c values—the modeled optimal
one and the real optimal one. We observe that except for
✓ = 0.1, for the NYT dataset, the di↵erence in performance

✓ = 0.1 ✓ = 0.2 ✓ = 0.3

NYT 29.47 10.23 4.75
Yago 3.28 0.41 2.38

Table 5: Di↵erence in ms between the minimal performance
of the coarse index, and the performance for the theoretically
computed best value of ✓c (k = 10)

is smaller than 11ms (Table 5). For ✓ = 0.1 the di↵erence is
29.47ms. For the Yago dataset, the di↵erence in performance
is less than 4ms for any value of ✓.

As we are considering the task of processing ad-hoc queries,
even choosing the optimal value of ✓C for some previously
defined maximum value of ✓ would result in a performance
close to the optimal one, as the performance of the coarse in-
dex remains stable in this region. The major increase in the
performance happens for very small values of ✓C or larger
than the optimal ✓C . We show this in the experiments com-
paring di↵erent algorithms, where we set ✓C = 0.5—the op-
timal value for ✓ = 0.3.

We also measure the performance of the coarse index com-
bined with the F&V+Drop technique as this should result in
even bigger performance gains. For this technique, we mea-
sured the optimal value for ✓C to be 0.06, since for smaller
values of ✓ + ✓C we can drop more index lists.

Comparison of Different Algorithms

Next, we study the performance of di↵erent query process-
ing methods performed over the two datasets; for rankings
of size 10 and 20 and ✓ ranging from 0 to 0.3. First, in
Figure 8 we compare the performance of the coarse index
with the remaining techniques, for the NYT dataset. For
a better visibility, we group the algorithms in the plots in
two groups. The first (left) group contains the Coarse and
Coarse+Drop techniques, the two baseline approaches F&V
and ListMerge, and the competitors AdaptSearch and Min-
imal F&V. The second (right) group contains the remaining
hybrid techniques.

We see that for all threshold values the coarse index, with
and without dropping index list, significantly outperforms
the AdaptSearch algorithm. In fact, the Coarse+Drop index
outperforms the competitor by at least factor of 34. The
coarse index outperforms the Minimal F&V technique by
a factor of up to 7, since the number of Footrule distance
function calls reduces significantly as shown in Figure 10.
Dropping entire lists from the query even further boosts the
performance of the coarse index, and results in up to 24
times better performance than the Minimal F&V. The base-
line approaches, although threshold agnostic, perform worse
than the rest of the algorithms. Increasing the values of ✓
degrades the performance of all the processing techniques ex-
cept for the baseline F&V and ListMerge techniques, as they
are threshold agnostic. In fact, because of its simple and ef-
ficient implementation, the ListMerge even outperforms the
AdaptSearch algorithm for ✓ � 0.1 for rankings with k = 10.
For k = 20, since we increase the number of lists that need
to be merged, the performance of the ListMerge is worse and
thus the AdaptSearch outperforms it for all values of ✓.

For rankings of size 10, all hybrid techniques outperform
AdaptSearch, but not the coarse index. The Blocked+Prune
algorithm dynamically computes the best score for the yet
unseen blocks to decide when to terminate further schedul-
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Figure 7: Trend of the filtering and validation time of the coarse index for k = 10, ✓ = 0.2 and varying ✓C . The small rectangle
depicts the performance of the coarse index if ✓C was chosen by the model and the vertical line the di↵erence in performance.

ing of blocks. In cases where the best blocks will not re-
sult in similar rankings, Blocked+Prune terminates early.
Thus, when searching for exact matches, the Blocked+Prune
technique performs especially well, outperforming Adapt-
Search by a factor of 1.2. Same as for the coarse index, drop-
ping lists further improves the performance of the Blocked+
Prune technique. Increasing the values of ✓ degrades the
performance of all the processing techniques. The Blocked+
Prune+Drop technique performs worse than the F&V+Drop,
because sorting the lists adds some overhead to the process-
ing while the pruning is not so e↵ective. The F&V+Drop
technique is performing very well, in fact we measured its
performance to be very close to the Minimal F&V, espe-
cially for small values of ✓. Although they are both based on
the same concept, F&V+Drop performs better than Adapt-
Search, first because it drops one index list more than Adapt-
Search, and second, because we are processing relatively
short rankings, thus the simple algorithms perform well.

Most of the query processing techniques display the same
behavior in the experiments performed on the Yago dataset
(Figure 9). What is di↵erent here is that none of the process-
ing techniques perform as good as the Minimal F&V, which
shows a runtime close to zero. This is due to the fact that the
items in the Yago dataset are more equally distributed. In
this dataset we have small clusters of similar rankings. How-
ever, the clusters seem to be di↵erent among them, allowing
more rankings to be pruned early on. Moreover, for the Yago
dataset the Blocked+Prune technique performs very poorly.
We believe this is because the overhead of sorting the index
list is too big for the small index size. In fact, we measured
that for 35% of the queries sorting of the index lists ac-
counts for a third of the execution time, when k = 10. The
percentage increases as we increase k. The simple baseline
ListMerge technique surprisingly outperforms the coarse in-
dex and the AdaptSearch algorithm. We believe that this
happens because of the small data size and the size of the
rankings. Still, ListMerge does not perform better than the
Coarse+Drop technique, except for ✓ = 0.3 and k = 10. For
this dataset, the AdaptSearch algorithm shows better per-
formance, performing better than the coarse index in most of
the cases. However, the Coarse+Drop technique and some
of the hybrid techniques still outperform the competitor,
AdaptSearch.

Distance Function Computations

The di↵erence in performance between the Coarse, Coarse+
Drop, F&V+Drop and Blocked+Prune+Drop algorithms can
be explained by looking at the number of distance functions
calls, shown in Figure 10. We see that for the Yago dataset

size in MB construction

time in sec.

NYT Yago NYT Yago

Plain Inverted Index 480 24 3.37 0.03
Augmented Inverted
Index

661 38 5.72 0.11

Delta Inverted Index 417 35 3.63 0.086
BK-tree 276 11 1206.75 12.11
M-tree 265 11 35.00 0.47
Coarse Index 367 26 1392.35 19.57

Table 6: Size and construction time of indices for k = 10

the final result set is very small, practically almost 1, and
the number of distance function computations performed
by all the algorithms is significantly larger than the final re-
sult set. On the other hand, for the NYT data set—where
we have a skewed distribution of the items—the number of
false positives is very small, resulting in a very good perfor-
mance of the F&V+Drop and Blocked+Prune+Drop pro-
cessing techniques. Combining these with the coarse index
even further reduces the number of distance function compu-
tations, i.e., the number of distance function computations is
smaller than the final result set. This is because for the exact
matching rankings in one partition, the Footrule distance is
not computed again during query processing time.

7.2 Index Size and Construction Time
In Table 6 the size and the index construction time is

shown for both datasets for k = 10. Delta Inverted Index is
the index used in the AdaptSearch algorithm. For the coarse
index, we set ✓C = 0.5. We see that all the indices are smaller
than 1GB. All indices store the complete rankings, thus
their sizes do not di↵er significantly. The rank-augmented
inverted index requires the most storage as it keeps both
the complete rankings, and the position augmented index
lists to support di↵erent processing techniques.

The construction time of the coarse index is the most ex-
pensive one, as we need to build a BK-tree, partition it and
add the medoids to the inverted index. The construction of
the BK-tree is expensive as the tree is unbalanced and in
worst case, we need O(n2) distance computations. The M-
tree index construction time is lower than the BK-tree. Both
construction times are worse than the one of the inverted in-
dex; creating the inverted index does not imply making any
distance computations. However, the construction time of
the plain inverted index is cheaper than the augmented one,
as we do not consider the position of the rankings.
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hybrid methods over inverted index (right block) (NYT).

 0

 10

 20

 30

 40

 50

 60

 70

0 0.1 0.2 0.3

tim
e

 m
e

a
su

re
d

 in
 m

ili
se

co
n

d
s

Threshold (θ)

k=10; Coarse θc=0.5; Coarse+Drop θc=0.06 

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

0 0.1 0.2 0.3

tim
e

 m
e

a
su

re
d

 in
 m

ili
se

co
n

d
s

Threshold (θ)

k=20; Coarse θc=0.5; Coarse+Drop θc=0.06

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

0 0.1 0.2 0.3

P
e

rf
o

rm
a

n
ce

 (
in

 M
ill

is
e

co
n

d
s)

Threshold (θ)

F&V
ListMerge

AdaptSearch
Minimal F&V

Coarse
Coarse+Drop

Blocked+Prune
Blocked+Prune+Drop

F&V+Drop

Figure 9: Comparing query processing over coarse index with baseline and competitor approaches (left block) and with other
hybrid methods over inverted index (right block) (Yago).
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Figure 10: # of distance function calls (DFC) for di↵erent query processing methods (Coarse ✓c=0.5; Coarse+Drop ✓c = 0.06)

It is di�cult to compare the complexity of the construc-
tion time of the di↵erent index structures, since the com-
plexity of the metric index structures is usually measured
in distance function computation, as this is the most costly
operation. On the other hand, in the case of the inverted
index there are no distance functions performed during con-
struction at all.

Lessons Learned

Combining the coarse index with the proposed optimiza-
tions on the inverted index always leads to performance im-
provements, independent of the distribution of the items in
the dataset. The experiments demonstrate that the Coarse+
Drop technique outperformed state-of-the-art algorithm for
similarity search, AdaptSearch, for both datasets. The sim-
ple yet accurate model for picking the optimal trade-o↵ point
(cf., Section 4) leads close to the best performance of the
coarse index. When the query threshold is not known, we
can tune the coarse index for the maximum query threshold
that we might have. In these cases, the coarse index shows to
perform better for a skewed dataset. When having a dataset
where the items are unevenly distributed, the F&V+Drop
algorithm alone results in huge gains as we only process the
smallest index lists. These, as the distribution of the items
is skewed, can often contain only few false positives. On the
contrary, when the dataset contains chunks of rankings simi-

lar to each other, i.e, we have more evenly distributed items,
the e↵ect of the early pruning of rankings is most expressed.
Thus in these cases, using the Blocked+Prune+Drop algo-
rithm, which combines the early pruning with dropping of
entire index lists, leads to the biggest benefits, for small val-
ues of ✓. Varying the size of the rankings does not have a
great impact on the di↵erent algorithms. Only when hav-
ing very small ranking sizes, for instance k=5, the simple
baseline ListMerge shows to perform well.

8. CONCLUSION AND OUTLOOK
In this paper, we addressed indexing mechanisms and query

processing techniques for ad-hoc similarity search inside sets
of rankings. We specifically considered Spearman’s Footrule
distance for top-k rankings and investigated the trade-o↵s
between metric index structures and inverted indices, known
in the literature for indexing set-valued attributes. The pre-
sented coarse index synthesizes advantages of metric-space
indexing and the ability of inverted indices to immediately
dismiss non-overlapping rankings. To understand and auto-
matically tune the necessary partitioning of the rankings, we
developed an accurate theoretic cost model; and showed by
experiments that it allows reaching performance close to the
optimal trade-o↵ point. Further, we presented an algorithm
that avoids accessing blocks of an index list during query
processing thereby improving performance. We derived up-
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per and lower distance bounds for such an online processing
and, further, studied the impact of dropping entire parts of
the query depending on the tightness of the query threshold.
The presented approaches are to a large extent orthogonal
and, by a comprehensive performance evaluation using two
real-world datasets, we showed that the individual benefits
add up, showing better performance than the competitor,
AdaptSearch.

As ongoing work we consider processing large batches of
queries, instead of the single ad-hoc queries we addressed
in this work. We believe that an approach similar to the
coarse indexing can be fruitful here: the query batch can be
partitioned into related medoid rankings to prune the search
space of potential result rankings.
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