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ABSTRACT
Smart electricity meters have been replacing conventional meters
worldwide, enabling automated collection of fine-grained (every
15 minutes or hourly) consumption data. A variety of smart meter
analytics algorithms and applications have been proposed, mainly
in the smart grid literature, but the focus thus far has been on what
can be done with the data rather than how to do it efficiently. In
this paper, we examine smart meter analytics from a software per-
formance perspective. First, we propose a performance benchmark
that includes common data analysis tasks on smart meter data. Sec-
ond, since obtaining large amounts of smart meter data is diffi-
cult due to privacy issues, we present an algorithm for generat-
ing large realistic data sets from a small seed of real data. Third,
we implement the proposed benchmark using five representative
platforms: a traditional numeric computing platform (Matlab), a
relational DBMS with a built-in machine learning toolkit (Post-
greSQL/MADLib), a main-memory column store (“System C”),
and two distributed data processing platforms (Hive and Spark).
We compare the five platforms in terms of application development
effort and performance on a multi-core machine as well as a cluster
of 16 commodity servers. We have made the proposed benchmark
and data generator freely available online.

1. INTRODUCTION
Smart electricity grids, which incorporate renewable energy

sources such as solar and wind, and allow information sharing
among producers and consumers, are beginning to replace con-
ventional power grids worldwide. Smart electricity meters are a
fundamental component of the smart grid, enabling automated col-
lection of fine-grained (usually every 15 minutes or hourly) con-
sumption data. This enables dynamic electricity pricing strategies,
in which consumers are charged higher prices during peak times
to help reduce peak demand. Additionally, smart meter data ana-
lytics, which aims to help utilities and consumers understand elec-
tricity consumption patterns, has become an active area in research
and industry. According to a recent report, utility data analytics is
already a billion dollar market and is expected to grow to nearly 4
billion dollars by year 2020 [16].
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A variety of smart meter analytics algorithms have been pro-
posed, mainly in the smart grid literature, to predict electricity
consumption and enable accurate planning and forecasting, extract
consumption profiles and provide personalized feedback to con-
sumers on how to adjust their habits and reduce their bills, and
design targeted engagement programs to clusters of similar con-
sumers. However, the research focus has been on the insights that
can be obtained from the data rather than performance and pro-
grammer effort. Implementation details were omitted, and the pro-
posed algorithms were tested on small data sets. Thus, despite the
increasing amounts of available data and the increasing number of
potential applications1, it is not clear how to build and evaluate a
practical and scalable system for smart meter analytics. This is ex-
actly the problem we study in this paper.

1.1 Contributions
We begin with a benchmark for comparing the performance of

smart meter analytics systems. Based on a review of the related
literature (more details in Section 2), we identified four common
tasks: 1) understanding the variability of consumers (e.g., by build-
ing histograms of their hourly consumption), 2) understanding the
thermal sensitivity of buildings and households (e.g., by building
regression models of consumption as a function of outdoor tem-
perature), 3) understanding the typically daily habits of consumers
(e.g., by extracting consumption trends that occur at different times
of the day regardless of the outdoor temperature) and 4) finding
similar consumers (e.g., by running times series similarity search).
These tasks involve aggregation, regression and time series analy-
sis. Our benchmark includes a representative algorithm from each
of these four sets.

Second, since obtaining smart meter data for research purposes
is difficult due to privacy concerns, we present a data generator for
creating large realistic smart meter data sets from a small seed of
real data. The real data set we were able to obtain consists of only
27,000 consumers, but our generator can create much larger data
sets and allows us to stress-test the candidate systems.

Third, we implement the proposed benchmark using five state-
of-the-art platforms that represent recent data management trends,
including in-database machine learning, main-memory column
stores, and distributed analytics. The five platforms are:

1. Matlab: a numeric computing platform with a high-level lan-
guage;

2. PostgreSQL: a traditional relational DBMS, accompanied by
MADLib [17], an in-database machine learning toolkit;

1See, e.g., a recent competition sponsored by the United States
Department of Energy to create new apps for smart meter data:
http://appsforenergy.challengepost.com.
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3. “System C”: a main-memory column-store commercial sys-
tem (the licensing agreement does not allow us to reveal the
name of this system);

4. Spark [28]: a main-memory distributed data processing plat-
form;

5. Hive [25]: a distributed data warehouse system built on top
of Hadoop, with an SQL-like interface.

We report performance results on our real data set and larger re-
alistic data sets created by our data generator. Our main finding is
that System C performs extremely well on our benchmark at the
cost of the highest programmer effort: System C does not come
with built-in statistical and machine learning operators, which we
had to implement from scratch in a non-standard language. On the
other hand, MADLib and Matlab make it easy to develop smart me-
ter analytics applications, but they do not perform as well as Sys-
tem C. In cluster environments with very large data sizes, we found
Hive easier to use than Spark and not much slower. Spark and Hive
are competitive with System C in terms of efficiency (throughput
per server) for several of the workloads in our benchmark.

Our benchmark (i.e., the data generator and the
tested algorithms) is freely available for download at
https://github.com/xiufengliu. Due to privacy issues, we are
unable to share the real data set or the large synthetic data sets
based upon it. However, a smart meter data set has recently
become available at the Irish Social Science Data Archive2 and
may be used along with our data generator to create large publicly
available data sets for benchmarking purposes.

1.2 Roadmap
The remainder of this paper is organized as follows. Section 2

summarizes the related work; Section 3 presents the smart meter
analytics benchmark; Section 4 discusses the data generator; Sec-
tion 5 presents our experimental results; and Section 6 concludes
the paper with directions for future work.

2. RELATED WORK

2.1 Smart Meter Data Analytics
There are two broad areas of research in smart meter data analyt-

ics: those which use whole-house consumption readings collected
by conventional smart meters (e.g., every hour) and those which
use high-frequency consumption readings (e.g., one per second)
obtained using specialized load-measuring hardware. We focus on
the former in this paper, as these are the data that are currently col-
lected by utilities.

For whole-house smart meter data feeds, there are two classes of
applications: consumer and producer-oriented. Consumer-oriented
applications provide feedback to end-users on reducing electricity
consumption and saving money (see, e.g., [10, 21, 24]). Producer-
oriented applications are geared towards utilities, system operators
and governments, and provide information about consumers such
as their daily habits for the purposes of load forecasting and clus-
tering/segmentation (see, e.g., [1, 3, 5, 8, 12, 13, 14, 15, 22, 23]).

From a technical standpoint, both of the above classes of appli-
cations perform two types of operations: extracting representative
features (see, e.g., [8, 10, 13, 14]) and finding similar consumers
based on the extracted features (see, e.g., [1, 12, 23, 24, 26]).
Household electricity consumption can be broadly decomposed
into the temperature-sensitive component (i.e., the heating and
2http://www.ucd.ie/issda/data/commissionforenergyregulationcer/

cooling load) and the temperature-insensitive component (other ap-
pliances). Thus, representative features include those which mea-
sure the effect of outdoor temperature on consumption [4, 10, 23]
and those which identify consumers’ daily habits regardless of tem-
perature [1, 8, 13], as well as those which measure the overall vari-
ability (e.g., consumption histograms) [3]. Our smart meter bench-
mark, which will be described in Section 3, includes four represen-
tative algorithms for characterizing consumption variability, tem-
perate sensitivity, daily activity and similarity to other consumers.

We also point out recent work on smart meter data quality
(specifically, handling missing data) [18], symbolic representation
of smart meter time series [27], and privacy (see, e.g., [2]). These
important issues are orthogonal to smart meter analytics, which is
the focus of this paper.

2.2 Systems and Platforms for Smart Meter
Data Analytics

Traditional options for implementing smart meter analytics in-
clude statistical and numeric computing platforms such as R and
Matlab. As for relational database systems, two important tech-
nologies are main-memory databases, such as “System C” in
our experiments, and in-database machine learning, e.g., Post-
greSQL/MADLib [17]. Finally, a parallel data processing platform
such as Hadoop or Spark is an interesting option for cluster environ-
ments. We have implemented the proposed benchmark in systems
from each of the above classes (details in Section 5).

Smart meter analytics software is currently offered by several
database vendors including SAP3 and Oracle/Data Raker4, as well
as startups such as Autogrid.com, C3Energy.com and OPower.com.
However, it is not clear what algorithms are implemented by these
systems and how.

There has also been some recent work on efficient retrieval of
smart meter data stored in Hive [20], but that work focuses on sim-
ple operational queries rather than the deep analytics that we ad-
dress in this paper.

2.3 Benchmarking Data Analytics
There exist several database (e.g., TPC-C, TPC-H and TPC-DS)

and big data5 benchmarks, but they focus mainly on the perfor-
mance of relational queries (and/or transactions) and therefore are
not suitable for smart meter applications. Benchmarking time se-
ries data mining was discussed in [19]. Different implementations
of time series similarity search, clustering, classification and seg-
mentation were evaluated. While some of these operations are
relevant to smart meter analytics, there are other important tasks
such as extracting consumption profiles that were not evaluated in
[19]. Additionally, [19] evaluated standalone algorithms whereas
we evaluate data analytics platforms. Furthermore, [7] bench-
marked data mining operations for power system analysis. How-
ever, its focus was on analyzing voltage measurements from power
transmission lines, not smart meter data, and therefore the tested
algorithms were different from ours. Finally, Arlitt et al. propose a
benchmark for smart meter analytics that focuses on routine com-
putations such as finding top customers and calculating monthly
bills [9]. In contrast our work aims to discover more complex pat-
terns in energy data. Their workload generator uses a Markov chain
model that must be trained using a real data set.

3http://www.sap.com/pc/tech/in-memory-computing-
hana/software/smart-meter-analytics/index.html
4http://www.oracle.com/us/products/applications/utilities/meter-
data-analytics/index.html
5https://amplab.cs.berkeley.edu/benchmark
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We also note that the TCP benchmarks include the ability to gen-
erate very large synthetic databases, and there has been some re-
search on synthetic database generation (see, e.g., [11]), but we are
not aware of any previous work on generating realistic smart meter
data.

3. THE BENCHMARK
In this section, we propose a performance benchmark for smart

meter analytics. The primary goal of the benchmark is to measure
the running time of a set of tasks that will be defined shortly. The
input consists of n time series, each corresponding to one elec-
tricity consumer, in one or more text files. We assume that each
time series contains hourly electricity consumption measurements
(in kilowatt-hours, kWh) for a year, i.e., 365 ⇥ 24 = 8760 data
points. For each consumption time series, we require an accompa-
nying external temperature time series, also with hourly measure-
ments.

For each task, we measure the running time on the input data set,
both with a cold start (working directly from the raw files) and a
warm start (working with data loaded into physical memory). In
this version of the benchmark, we do not consider the cost of up-
dates, e.g., adding a day’s worth of new points to each time series.
However, adding updates to the benchmark is an important direc-
tion for future work as read-optimized data structures that help im-
prove running time may be expensive to update.

Utility companies may have access to additional data about their
customers, e.g., location, square footage of the home or family size.
However, this information is usually not available to third-party
applications. Thus, the input to our benchmark is limited to the
smart meter time series and publicly-available weather data.

We now discuss the four analysis tasks included in the proposed
benchmark.

3.1 Consumption Histograms
The first task is to understand the variability of each consumer.

To do this, we compute the distribution of hourly consumption for
each consumer via a histogram. The x-axis in the histogram de-
notes various hourly consumption ranges and the y-axis is the fre-
quency, i.e., the number of hours in the year whose electricity con-
sumption falls in the given range. For concreteness, in the proposed
benchmark we specify the histograms to be equi-width (rather than
equi-depth) and we always use ten buckets.

3.2 Thermal Sensitivity
The second task is to understand the effect of outdoor tem-

perature on the electricity consumption of each household. The
simplest approach is to fit a least-squares regression line to the
consumption-temperature scatter plot. However, in climates with a
cold winter and warm summer, electricity consumption rises when
the temperature drops in the winter (due to heating) and also rises
when the temperature rises in the summer (due to air conditioning).
Thus, a piecewise linear regression model is more appropriate.

We selected the recently-proposed algorithm from [10] for the
benchmark, to which we refer as the 3-line algorithm. Consider a
consumption-temperature scatter plot for a single consumer shown
in Figure 1 (the actual points are not shown, but a point on this plot
would correspond to a particular hourly consumption value and the
outdoor temperature at that hour). The upper three lines correspond
to the piecewise regression lines computed only for the points in
the 90th percentile for each temperature value and the lower three
lines are computed from the points in the 10th percentile for each
temperature value. Thus, for each time series, the algorithm starts
by computing the 10th and 90th percentiles for each temperature
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Figure 1: Example of the 3-line regression model.

value and then computes the two sets of regression lines. In the final
step, the algorithm ensures that the three lines are not discontinuous
and therefore it may need to adjust the lines slightly.

As shown in Figure 1, the 3-line algorithm extracts useful infor-
mation for customer feedback. For instance, the slopes (gradients)
of the left and right 90th percentile lines correspond to the heat-
ing and cooling sensitivity, respectively. A high cooling gradient
might indicate an inefficient air conditioning system or a low air
conditioning set point. Additionally, the height at the lowest point
on the 10th percentile lines indicates base load, which is the elec-
tricity consumption of appliances and devices that are always on
regardless of the temperature (e.g., a refrigerator, a dehumidifier,
or a home security system).

3.3 Daily Profiles
The third task is to extract daily consumption trends that occur

regardless of the outdoor temperature. For this, we use the periodic
autoregression (PAR) algorithm for time series data from [8, 13].
The idea behind this algorithm is illustrated in Figure 2. At the top,
we show a fragment of the hourly consumption time series for some
consumer over a period of several days. We are only given the total
hourly consumption, but the goal of the algorithm is to determine,
for each hour, how much load is temperature-independent and how
much additional load is due to temperature (i.e., heating or cool-
ing). Once this is determined, the algorithm computes the average
temperature-independent consumption at each hour of the day, il-
lustrated at the bottom of Figure 2. Thus, for each consumer, the
output consists of a vector of 24 numbers, denoting the expected
consumption at different hours of the day due solely to the occu-
pants’ daily habits and not affected by temperature.

For each consumer and each hour of the day, the PAR algorithm
fits an auto-regressive model, which assumes that the electricity
consumption at that hour of the day is a linear combination of the
consumption at the same hour over the previous p days (we use p =
3, as in [8]) and the outdoor temperature. Thus, it groups the input
data set by consumer and by hour, and computes the coefficients of
the auto-regressive model for each group.

3.4 Similarity Search
The final task is to find groups of similar consumers. Customer

segmentation is important to utilities so they can determine how
many distinct groups of customers there are and design targeted
energy-saving campaigns for each group. Rather than choosing
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Figure 2: Example of a daily profile.

a specific clustering algorithm for the benchmark, we include a
more general task: for each of the n time series given as input,
we compute the top-k most similar time series (we use k = 10).
The similarity metric we use is cosine similarity. Let X and Y be
two time series. The cosine similarity between them is defined as
their dot product divided by the product of their vector lengths, i.e,

X·Y
||X||⇤||Y || .

3.5 Discussion
To recap, the proposed benchmark consists of 1) the consump-

tion histogram, 2) the 3-line algorithm for understanding the ef-
fect of external temperature on consumption, 3) the periodic auto-
regression (PAR) algorithm to extract typical daily profiles and 4)
the time series similarity search to find similar consumers. The first
three algorithms analyze the electricity consumption of each house-
hold in terms of its distribution, its temperature sensitivity and its
daily patterns. The fourth algorithm finds similarities among differ-
ent consumers. While many more smart meter analytics algorithms
have been proposed, we believe the four tasks we have chosen accu-
rately represent a variety of fundamental computations that might
be used to extract insights from smart meter data.

In terms of computational complexity, the first three algorithms
perform the same task for each consumption time series and there-
fore can be parallelized easily, while similarity search has quadratic
complexity with respect to the number of time series. Comput-
ing histograms requires grouping the time series according to con-
sumption values. The 3-line algorithm additionally requires group-
ing the data by temperature, and requires statistical operators such
as quantiles and least-squares regression lines. The PAR and simi-
larity algorithms require time series operations. Thus, the proposed
benchmark tests the ability to extract different segments of the data
and run various statistical and time series operations.

4. THE DATA GENERATOR
Recall from Section 3 that the proposed benchmark requires n

time series as input, each corresponding to an electricity consumer.
Testing the scalability of a system therefore requires running the

benchmark with increasing values of n. Since it is difficult to ob-
tain large amounts of smart meter data due to privacy issues, and
since using randomly-generated time series may not give accurate
results, we propose a data generator for realistic smart meter data.

The intuition behind the data generator is as follows. Since elec-
tricity consumption depends on external temperature and daily ac-
tivity, we start with a small seed of real data and we generate the
daily activity profiles (recall Figure 2) and temperature regression
lines (recall Figure 1) for each consumer therein. To generate a
new time series, we take the daily activity pattern from a randomly-
selected consumer in the real data set, the temperature dependency
from another randomly-selected consumer, and we add some white
noise. Thus, we first disaggregate the consumption time series of
existing consumers in the seed data set, and we then re-aggregate
the different pieces in a new way to create a new consumer. This
gives us a realistic new consumer whose electricity usage combines
the characteristics of multiple existing consumers.

Figure 3 illustrates the proposed data generator. As a pre-
processing step, we use the PAR algorithm from [13] to generate
daily profiles for each consumer in the seed data set. We then run
the k-means clustering algorithm (for some specified value of k,
the number of clusters) to group consumers with similar daily pro-
files. We also run the 3-line algorithm and record the heating and
cooling gradients for each consumer.

Now, creating a new time series proceeds as follows. We ran-
domly select an activity profile cluster and use the cluster centroid
to obtain the hourly consumption values corresponding to daily ac-
tivity load. Next, we randomly select an individual consumer from
the chosen cluster and we obtain its cooling and heating gradients.
We then need to input a temperature time series for the new con-
sumer and we have all the information we need to create a new
consumption time series6. Each hourly consumption measurement
of the new time series is generated by adding together 1) the daily
activity load for the given hour, 2) the temperature-dependent load
computed by multiplying the heating or cooling gradient by the
given temperature value at that hour, and 3) a Gaussian white noise
component with some specified standard deviation �.

5. EXPERIMENTAL RESULTS
This section presents our experimental results. We start with an

overview of the five platforms in which we implemented the pro-
posed benchmark (Section 5.1) and a description of our experimen-
tal environment (Section 5.2). Section 5.3 then discusses our ex-
perimental findings using a single multi-core server, including the
effect of data layout and partitioning (Section 5.3.1), the relative
cost of data loading versus query execution (Section 5.3.2), and the
performance of single-threaded and multi-threaded execution (Sec-
tion 5.3.3 and 5.3.4, respectively). In Section 5.4, we investigate the
performance of Spark and Hive on a cluster of 16 worker nodes. We
conclude with a summary of lessons learned in Section 5.5.

5.1 Benchmark Implementation
We first introduce the five platforms in which we implemented

the proposed benchmark. Whenever possible, we use native statis-
tical functions or third-party libraries. Table 1 shows which func-
tions were included in each platform and which we had to imple-
ment ourselves.

The baseline system is Matlab, a traditional numeric and statisti-
cal computing platform that reads data directly from files. We use

6In our experiments, we used the temperature time series corre-
sponding to the southern-Ontario city from which we obtained the
real data set.
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Figure 3: Illustration of the proposed data generator.

Table 1: Statistical functions built into the five tested platforms
Function Matlab MADLib System C Spark Hive

Histogram yes yes no no yes
Quantiles yes yes no no no

Regression yes yes no third third
and party party
PAR library library

Cosine no no no no no
Similarity

the built-in histogram, quantile, regression and PAR functions, and
we implemented our own (very simple) cosine similarity function
by looping through each time series, computing its similarity to ev-
ery other time series, and, for each time series, returning the top 10
most similar matches.

We also evaluate PostgreSQL 9.1 and MADLib version 1.4 [17],
which is an open-source platform for in-database machine learn-
ing. As we will explain later in this section, we tested two ways of
storing the data: one measurement per row, and one customer per
row with all the measurements for this customer stored in an array.
Similarly to Matlab, everything we need except cosine similarity
is built-in. We implemented the benchmark in PL/PG/SQL with
embedded SQL, and we call the statistical functions directly from
within SQL queries. We use the default settings for PostgreSQL7.

Next, we use System C as an example of a state-of-the-art com-
mercial system. It is a main-memory column store geared towards
time series data. System C maps tables to main memory to improve
I/O efficiency. In particular, at loading time, all the files are mem-
ory mapped to speed up subsequent data access. However, System
C does not include a machine learning toolkit, and therefore we
implemented all the required statistical operators as user-defined
functions in the procedural language supported by it.

We also use Spark [28] as an example of an open-
source distributed data processing platform. Spark reports im-
proved performance on machine learning tasks over standard
Hadoop/MapReduce due to better use of main memory [28]. We

7We also experimented with turning off concurrency control and
write-ahead-logging which are not needed in our application, but
the performance improvement was not significant.

use the Apache Math library for regression, but we had to imple-
ment our own histogram, quantile and cosine similarity functions.
We use the Hadoop Distributed File System (HDFS) as the under-
lying file system for Spark.

Finally, we test another distributed platform, Hive [25], which is
built on top of Hadoop and includes a declarative SQL-like inter-
face. Hive has a built-in histogram function, and we use Apache
Math for regression. We implemented the remaining functions
(quantiles and cosine similarity) in Java as user-defined functions
(UDFs). The data are stored in Hive external tables.

In terms of programming time to implement our benchmark,
PostgreSQL/MADLib required the least effort, followed by Mat-
lab and Hive, while Spark and especially System C required by far
the most effort. In particular, we found Hive UDFs easier to write
than Spark programs. However, since we did not conduct a user
study, these programmer effort observations should be treated as
anecdotal.

In the remainder of this section, we will refer to the five tested
platforms as Matlab, MADLib, C (or System C), Spark and Hive.

5.2 Experimental Environment
We run each of the four algorithms in the benchmark using each

of the five platforms discussed above, and measure the running
times and memory consumption. We use the following two test-
ing environments.

• Our server has an Intel Core i7-4770 processor (3.40GHz,
4 Cores, hyper-threading is enabled, two hyper-threads per
core), 16GB RAM, and a Seagate hard drive (1TB, 6 GB/s,
32 MB Cache and 7200 RPM), running Ubuntu 12.04 LTS
with 64bit Linux 3.11.0 kernel. PostgreSQL 9.1 is installed
with the settings “shared _buffers= 3072MB, temp_ buffers=
256MB, work_ mem=1024MB, checkpoint_segments =64"
and default values for other configuration parameters.

• We also use a dedicated cluster with one administration node
and 16 worker nodes. The administration node is the mas-
ter node of Hadoop and HDFS, and clients submit jobs
there. All the nodes have the same configuration: dual-
socket Intel(R) Xeon(R) CPU E5-2620 (2.10GHz, 6 cores
per socket, and two hyper-threads per core), 60GB RAM,
running 64bit Linux with kernel version 2.6.32. The nodes
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Figure 6: Cold-start vs. warm-start,
3-line algorithm, 10GB real dataset.

are connected via gigabit Ethernet, and a working directory
is NFS-mounted on all the nodes.

Our real data set consists of n = 27, 300 electricity consumption
time series, each with hourly readings for over a year. We also
obtained the corresponding temperature time series. The total data
size is roughly 10 GB. We also use the proposed data generator to
create larger synthetic data sets of size up to one Terabyte (which
corresponds to over two million time series), and experiment with
them in Section 5.4.

5.3 Single-Server Results
We begin by comparing Matlab, MADLib and System C running

on a single multi-core server, using the real 10GB dataset.

5.3.1 Data Loading and File Partitioning
First, we investigate the effect of loading and processing one

large file containing all the data versus one file per consumer. Fig-
ure 4 shows the time it took to load our 10-GB real data set into
the three systems tested in this section, both in a partitioned (one
file per consumer, abbreviated “part.”) and non-partitioned (one big
file, abbreviated “un-part.”) format. The partitioned data load also
includes the cost of splitting the data into small files. The loading
time into PostgreSQL is the slowest of the three systems, but it is
more efficient to bulk-load one large CSV file than many smaller
files. System C is not significantly affected by the number of files.
Matlab does not actually load any data and instead reads from files
directly. The single bar reported for Matlab, of roughly 4.5 min-
utes, simply corresponds to the time it took to split the data set into
small files.

Once data are loaded into tables in PostgreSQL or System C, the
number of input files no longer matters. However, Matlab reads
data directly from files, so the goal of our next experiment is to
investigate the performance of analytics in Matlab given the two
partitioning strategies discussed above. Figure 5 shows the running
time of the 3-line algorithm using Matlab on (partitioned and non-
partitioned) subsets of our real data sets sized from 0.5 to 2 GB.
(We observed similar trends when running the other algorithms in
the benchmark). The impact on Matlab is significant: it operates
much more efficiently if each consumer’s data are in a separate file.
Upon further investigation, we noticed that Matlab reads the entire
large file into an index which is then used to extract individual con-
sumers’ data; this is slower than reading small files one-by-one and
running the 3-line algorithm on each file directly.

Based on the results of this experiment, in the remainder of this
section, we always run Matlab with one file per consumer.

5.3.2 Cold Start vs. Warm Start
Next, we measure the time it takes each system to load data into

main memory before executing the 3-line algorithm (we saw sim-
ilar trends when testing other algorithms from the benchmark). In
cold-start, we record the time to read the data from the underly-
ing database or filesystem and run the algorithm. In warm-start,
we first read the data into memory (e.g., into a Matlab array, or in
PostgreSQL, we first run SELECT queries to extract the data we
need) and then we run the algorithm. Thus, the difference between
the cold-start and warm-start running times corresponds to the time
it takes to load the data into memory.

Figure 6 shows the results on the real data set. The left bars
indicate cold-start running times, whereas the right bars represent
warm-start running times and are divided into three parts: T1 is the
time to compute the 10th and 90th quantiles, T2 is the time to com-
pute the regression lines and T3 is the time to adjust the lines in case
of any discontinuities in the piecewise regression model. Cold-start
times are higher for all platforms, but Matlab and MADLib spend
the most time loading data into their respective data structures, fol-
lowed by System C. Overall, System C is easily the fastest and the
most efficient at data loading—most likely due to efficient memory-
mapped I/O. Also note that for each system, T2, i.e., the time to run
least-squares linear regression, is the most costly component of the
3-line algorithm.

Figure 6 suggests that System C is noticeably more efficient than
Matlab even in the case of warm start, when Matlab has all the data
it needs in memory. There are at least two possible explanations
for this: Matlab’s data structures are not as efficient as System C’s,
especially at the data sizes we are dealing with, or Matlab’s im-
plementation of linear regression and other statistical operators is
not as efficient as our hand-crafted implementations within Sys-
tem C. We suspect it is the former. To confirm this hypothesis, we
measured the running time of multiplying two randomly-generated
4000x4000 floating-point matrices in Matlab and System C. In-
deed, Matlab took under a second, while System C took over 5
seconds.

5.3.3 Single-Threaded Results
We now measure the cold-start running times of each algorithm

in single-threaded mode (i.e., no parallelism). System C has con-
figuration parameters that govern the level of parallelism, while
for Matlab, we start a single instance, and for MADLib, we es-
tablish a single database connection. We use subsets of our real
data sets with sizes between 2 and 10 GB for this experiment. The
running time results are shown in Figure 7 for 3-line, PAR, his-
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(a) 3-line (b) PAR (c) Histogram (d) Similarity

Figure 7: Single-threaded execution times of each algorithm using each system.

(a) 3-line (b) PAR (c) Histogram (d) Similarity

Figure 8: Memory consumption of each algorithm using each system.

Figure 9: Two table layouts for storing smart meter data in
PostgreSQL.

togram construction and similarity search, from left to right. Note
that the Y-axis of the rightmost plot is different: similarity search
is slower than the other three tasks, and the Matlab and MADLib
curves end at 4GB because the running time on larger data sets was
prohibitively high. System C is the clear winner: it is a commercial
system that is fast at data loading thanks to memory-mapped I/O,
and fast at query execution since we implemented the required sta-
tistical operators in a low-level language. Matlab is the runner-up
in most cases except for histogram construction, which is simpler
than the other tasks and can be done efficiently in a database system
without optimized vector and matrix operations. MADLib has the
worst performance for 3-line, PAR and similarity search.

Figure 8 shows the corresponding memory consumption of each
algorithm for each platform; the plots correspond to running the
“free -m” command every five seconds throughout the runtime of
the algorithms and taking the average. Matlab and System C have
the lowest memory consumption; recall that for Matlab, we use sep-
arate files for different consumers’ data and therefore the number
of files that need to be in memory at any given time is limited.

In terms of the tested algorithms, 3-line has the lowest mem-
ory usage since it only requires the 10th and 90th percentile data
points to compute the regression lines, not the whole time series.
The memory footprint of PAR and histogram construction is higher
because they both require the whole time series. The memory us-
age of similarity search is higher still, especially for Matlab and
MADLib, both of which keep all the data in memory for this task.
On the other hand, since System C employs memory-mapped files,
it only loads what is required.

The relatively poor performance of MADLib may be related to
its internal storage format. In the next experiment, we check if us-
ing the PostgreSQL array data type improves performance. Table 1
in Figure 9 shows the conventional row-oriented schema for smart
meter data which we have used in all the experiments so far, with
a household ID, the outdoor temperature, and the electricity con-
sumption reading (plus the timestamp, which is not shown). That
is, each data point of time time series is stored as a separate row, and
a B-tree index is built on the household ID to speed up the extrac-
tion of all the data for a given consumer. Table 2 in Figure 9 stores
one row for each consumer (household) and uses arrays to store all
the temperature and consumption readings for the given consumer
using the same positional encoding. Using arrays, the running time
of 3-line on the whole 10 GB data set went down from 19.6 min-
utes to 11.3 minutes, which is faster than Matlab and Spark but
still much slower than System C (recall the leftmost plot in Fig-
ure 7). The other algorithms also ran slightly faster but not nearly
as fast as in System C: the PAR running time went down from 34.9
to 30 minutes, the histogram running time went down from 7.8 to
6.8 minutes, and the running time of similarity search (using 6400
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Figure 10: Speedup of execution time on a single multi-core server using the 10GB real dataset.

(a) 3-line algorithm (b) PAR algorithm (c) Histogram construction (d) Similarity search

Figure 11: Execution times using large synthetic data sets.

households, which works out to about 2 GB) went down from 58.3
to 40.5 minutes. Finally, we also experimented with a table layout
in between those in Table 1 and Table 2, namely one row per con-
sumer per day, which resulted in running times in between those
obtained from Table 1 and Table 2.

5.3.4 Multi-Threaded Results
We now evaluate the ability of the tested platforms to take advan-

tage of parallelism. Our server has 4 cores with two hyper-threads
per core and so we vary the number of processes from 1 to 8. Again,
we can do so directly in System C, but we need to manually run
multiple instances of Matlab and start up multiple database con-
nections in MADLib. The histogram, 3-line and PAR algorithms
are easy to parallelize as each thread can run on a subset of the
consumers without communicating with the other threads. Simi-
larity search is harder to parallelize because for each time series,
we need to compute the cosine similarity to every other time series.
We do this by running parallel tasks in which each task is allocated
a fraction of the time series and computes the similarity of its time
series with every other time series.

Figures 10(a)–10(d) show the speedup obtained by increasing
the number of threads from 1 to 8 for each algorithm. Again, we
continue to use the 10-GB real data set. Each plot includes a di-
agonal line indicating ideal speedup (i.e., using two connections or
cores would be twice as fast as using one).

The results show that Matlab and System C can obtain nearly-
linear speedup when the degree of parallelism is no greater than
four. This makes sense since our server has four physical cores,
and increasing the level of parallelism beyond four brings diminish-
ing returns due to increasing resource contention (e.g., for floating

point units) among hyper-threads. Matlab appears to scale better
than MADLib, but this may be an artifact of how we simulate par-
allelism for these two platforms: Matlab instances effectively run
in a shared-nothing fashion because each consumer’s data are in a
separate file, while MADLib uses multiple connections to the same
database server, with each connection reading data from a single
table.

5.4 Cluster Results
We now focus on the performance of Spark and Hive on a clus-

ter using large synthetic data sets. We set the number of parallel
executors for Spark and the number of MapReduce tasks for Hive
to be up to 12 per node, which is the number of physical cores8.

5.4.1 System C vs. Spark and Hive
In the previous batch of experiments, System C was the clear

performance winner in a single-server scenario. We now compare
System C against the two distributed platforms, Spark and Hive,
on large synthetic data sets of up to 100GB (for similarity search,
we use 6,000 up to 32,000 time series). This experiment is unfair
in the sense that we run System C on the server (with maximum
parallelism level of eight hyper-threads) but we run Spark and Hive
on the cluster. Nevertheless, the results are interesting.

Figure 11 shows the running time of each algorithm. Up to 40GB
data size, System C is keeping up with Spark and Hive despite run-
ning on a single server. Similarity search performance of System C
8We experimented with different values of these parameters and
found that Spark was not sensitive to the number of parallel execu-
tors while Hive generally performed better with more MapReduce
tasks up to a certain point.
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(a) 3-Line, PAR and Histogram construc-
tion; 100GB data set

(b) Similarity search, 32k households

Figure 12: A comparison of throughput per server of System C, Spark and Hive.

(a) 3-Line (b) PAR (c) Histogram (d) Similarity

Figure 13: Execution times using the first data format in Spark and Hive.

is also very good.
Figure 12 illustrates another way of comparing the three systems

that is more fair. Part (a) shows the throughput, for 3-Line, PAR
and histogram construction, in terms of how many households can
be handled per second per server when using the 100GB synthetic
data set. That is, we divide the total throughput of Spark and Hive
by 16, the number of worker nodes in the cluster. Using this metric,
even at 100GB, System C is competitive with Spark and Hive on 3-
Line and PAR, and better on the simple algorithm of histogram con-
struction. Similarly, part (b) shows that the throughput per server
for similarity search is higher for System C at 32k households.

5.4.2 Spark vs. Hive using Different Data Formats
In this experiment, we take a closer look at the relative perfor-

mance of Spark and Hive and the impact of the file format, using
synthetic data sets up to a Terabyte. We use the default HDFS
text file format, with default serialization, and without compres-
sion. The three options we test are: 1) one file (that may be par-
titioned arbitrarily) with one smart meter reading per line, 2) one
file with one household per line (i.e., all the readings from a single
household on a single line), and 3) many files, with one or more
households per file (but no household scattered among many files),
and one smart meter reading per line. Note that while the first for-
mat is the most flexible in terms of storage, it may require a reduce
step for the tested algorithms since we cannot guarantee that all the
data for a given household will be on the same server. The second
and third options do not require a reduce step.

In Hive, we use three types of user-defined functions with the
three file formats: generic UDF (user defined function), UDAF

(user defined aggregation function) and UDTF (user defined table
function). UDF and UDTF typically run at the map side for the
scalar operations on a row, while UDAF runs at the reduce side for
an aggregation operations on many rows. We use a UDAF for the
first format since we need to collate the numbers for each household
to compute the tested algorithms. We use a generic UDF for the
second format, for which map-only jobs suffice. We use a UDTF
for the third format since UDTFs can process a single row and do
the aggregation at the map side, which functions as a combiner.
For the third format, we also need to customize the file input for-
mat, which takes a single file as an input split. We overwrite the
isSplitable() method in the TextInputFormat class by
returning a false value, which ensures that any given time series
is processed in a self-contained manner by a single mapper.

First data format. Figure 13 shows the execution time of the
four tested algorithms on various data set sizes up to a Terabyte.
Spark is noticeably faster for similarity search (in Hive, we imple-
mented this as a self-join, which resulted in a query plan that did not
exploit map-side joins, whereas in Spark we directly implemented
similarity search as a MapReduce job with broadcast variables and
map-side joins), slightly faster for PAR and histogram construction,
and slower for 3-Line construction as the data size grows. Figure 14
shows the speedup relative to using only 4 out of 16 worker nodes
for the Terabyte data set, with the number of worker nodes on the
X-axis. Hive appears to scale slightly better as we increase the
number of nodes in the cluster. Finally, Figure 15 shows the mem-
ory usage as a function of the data set size, computed the same way
as in Figure 8. Spark uses more memory than Hive, especially as
the data size increases. As for the different algorithms, 3-Line is
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(a) 3-Line (b) PAR (c) Histogram (d) Similarity, 64k households

Figure 14: Speedup obtained using the first data format in Spark and Hive.

(a) 3-Line (b) PAR (c) Histogram (d) Similarity

Figure 15: Memory consumption of each algorithm in Spark and Hive.

the most memory-intensive because it requires temperature data in
addition to smart meter data.

Second data format. Figure 16 and 17 show the execution times
and the speedup, respectively, with one time series per line. For
3-Line, PAR and histogram construction, we do not require a re-
duce step. Therefore the running times are lower than for the first
data format, in which a single time series may be scattered among
nodes in the cluster. Spark and Hive are very close in terms of
running time because they perform the same HDFS I/O. We also
see a higher speedup than with the first data format thanks to map-
only jobs, which avoid an I/O-intensive data shuffle among servers
compared to jobs that include both map and reduce phases. Simi-
larity search is slightly faster than with the first data format; most
of the time is spent on computing the pair-wise similarities, and
the only time savings in the second data format are due to not hav-
ing to group together the readings from the same households. Note
that similarity search still requires a reduce step to sort the simi-
larity scores for each households and find the top-k most similar
consumers.

Third data format. Here, we only use the 100GB data set with
a total of 260,000 households and we vary the number of files from
10 to 10,000; recall that in the third data format, the readings from
a given time series are guaranteed to be in the same file. We test
two options in Hive: a UDTF with the customized file input format
described earlier, and a UDAF in which a reduce step is required.
We do not test similarity search since the distance calculations be-
tween pairs of time series cannot be done in one UDTF operation.
Figure 18 and Figure 19 show the execution times and the speedup,
respectively. Hive with UDTF wins in this format since it does
not have to perform a reduce step. Furthermore, while Hive does

not seem to be affected by the number of files, at least between
10 and 10,000, Spark’s performance deteriorates as the number of
files increases. In fact, we also experimented with more files, up to
100,000, and found that Spark was not even runnable due to “too
many files open” exceptions.

5.5 Lessons Learned
Our main finding is that System C, which is a commercial main-

memory column store, is the best choice for smart meter analytics
in terms of performance, provided that the resources of a single
machine are sufficient. However, System C lacks a built-in ma-
chine learning toolkit and therefore we had to invest significant
programming effort to build efficient analytics applications on top
of it. On the other hand, Matlab and MADLib are likely to be more
programmer-friendly but slower. Furthermore, we found that Mat-
lab works better if each customer’s time series is stored in a sepa-
rate file and that PostgreSQL/MADLib works well when the smart
meter data are stored using a hybrid row/column oriented format.

As for the two distributed solutions, Spark was slightly faster but
Hive scaled slightly better as we increased the number of worker
nodes. Moreover, we found Hive easier to use due to its DBMS-like
features and a declarative language. Furthermore, we showed that
the choice of data format matters; we obtained best performance
when each time series was on a separate line, which eliminated the
need to group data explicitly by household ID and thus avoided an
I/O-intensive data shuffle among servers. This feature allows our
implementations to remain competitive in terms of efficiency with
respect to System C for 3-line and PAR, whereas cluster computing
frameworks in general are known to suffer from poor efficiency
compared to centralized systems [6].
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(a) 3-Line (b) PAR (c) Histogram (d) Similarity

Figure 16: Execution times using the second data format in Spark and Hive.

(a) 3-Line (b) PAR (c) Histogram (d) Similarity, 64k households

Figure 17: Speedup obtained using the second data format in Spark and Hive.

6. CONCLUSION AND FUTURE WORK
Smart meter data analytics is an important new area of research

and practice. In this paper, we studied smart meter analytics from
a software performance perspective. We proposed a performance
benchmark for smart meter analytics consisting of four common
tasks, and presented a data generator for creating very large smart
meter data sets. We implemented the proposed benchmark us-
ing five state-of-the-art data processing platforms and found that
a main-memory column-store system offers the best performance
on a single machine, but systems such as MADLib/PostgreSQL
and Matlab are more programmer-friendly due to built-in statistical
and machine learning operators. In cluster environments, we found
Hive easier to use than Spark and not much slower. Compared
to centralized solutions, we found Hive and Spark competitive in
terms of efficiency for CPU-intensive data-parallel workloads (3-
line and PAR).

We are currently building a smart meter analytics system that in-
cludes the four algorithms from the proposed benchmark and many
more. As part of this ongoing project, we are investigating new
ways of improving the efficiency and effectiveness of smart me-
ter data mining algorithms, including parallel implementation. An-
other interesting direction for future work is to investigate real-time
applications using high-frequency smart meters (which are not yet
widely available, but are likely to become cheaper and more com-
mon in the future), such as alerts due to unusual consumption read-
ings, using data stream processing technologies. Finally, we are
interested in developing a general time series analytics benchmark
for a wider range of applications.
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