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ABSTRACT
We present a system that combines intelligent online tracking with
complex event recognition against streaming positions relayed from
numerous vessels. Given the vital importance of maritime safety to
the environment, the economy, and in national security, our sys-
tem leverages the real-time acquisition of vessel activity with ge-
ographical and other static information. Thus, it can offer timely
notification in emergency situations, such as intrusion into marine
preservation areas, loitering, and unsafe sailing. Thanks to a mobil-
ity tracking module, evolving trajectories generated by massive po-
sitional updates can be compressed online into concise, but reliable
synopses per ship, retaining only salient motion features within a
sliding window. These features are exploited by a complex event
recognition module that detects suspicious situations of interest to
maritime authorities. We conducted a comprehensive empirical
validation against a real dataset of traces collected from thousands
of vessels. Our results confirm the scalability and approximation
accuracy of the proposed system, and thus demonstrate its poten-
tial for effective, real-time maritime monitoring.

1. INTRODUCTION
Maritime surveillance systems have been attracting attention both

for economic and environmental reasons [1, 3, 16]. For instance,
preventing ship accidents by monitoring vessel activity represents
substantial savings in financial cost for shipping companies (e.g.,
oil spill cleanup) and averts irrevocable damages to maritime ecosys-
tems (e.g., fishery closure). Nowadays, maritime navigation tech-
nology can automatically provide real-time information from sail-
ing vessels. The Automatic Identification System (AIS) [24] is a
tracking system for identifying and locating vessels at sea through
data exchange: either with other ships nearby, or AIS base stations
along coastlines, or even satellites when out of range of terrestrial
networks. AIS is intended to assist vessel crews in collision avoid-
ance and allows maritime authorities to monitor vessel movements.
This technology integrates a VHF transceiver with a positioning
device (e.g., GPS), and other electronic navigation sensors, such as
a gyrocompass or rate of turn indicator.

c�2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0.

AIS raw tracking data offers a wealth of information including
unique identification of vessels, their position, course, and speed.
Such information can be displayed on screen aboard of the ship
or in maritime control centers. AIS-equipped vessels may be of
diverse type, size, or tonnage. Not all of them relay their posi-
tion simultaneously or at a fixed frequency, but depending on the
transponder configuration aboard the ship, proximity to base sta-
tions, and the type of their motion. Vessels anchored or slowly
moving transmit less frequently than those cruising fast in the open
sea or manoeuvering near the docks. Note that this data is not noise-
free; AIS messages may be delayed, intermittent, or conflicting.

Considering that AIS information is continuously emitted from
over 400 thousand ships worldwide [2], it evidently fulfills all four
‘V’ challenges (Volume, Velocity, Variety, lack of Veracity), as well
as the ‘D’ challenge (Distribution of data sources) in big data man-
agement. Therefore, for effective vessel identification and tracking,
maritime surveillance systems need to scale to the increasing traf-
fic activity witnessed in the past few years1. Such systems should
detect threats and abnormal activity over voluminous, fluctuating,
and noisy data streams from thousands of vessels, and also corre-
late them with static data expressing vessel characteristics (type,
tonnage, cargo, etc.) and geographical information (such as bathy-
metric data and protected areas).

To address these requirements, we introduce a maritime surveil-
lance system that consists of two main components. A trajectory
detection component consumes a positional stream of AIS mes-
sages from a large fleet and tracks major changes along each ves-
sel’s movement. Thus, it can instantly identify “critical points” en
route, indicating important changes like a stop, a sudden turn, or
slow motion of a ship. Except for harsh weather conditions, traffic
regulations, local manoeuvres in ports, etc., ships are expected to
move along almost straight, predictable paths. Therefore, most of
the frequently relayed positional messages are not really required
for representing the actual trace of a vessel. Instead, by discarding
superfluous locations along a “normal” course with a known veloc-
ity, we can approximately reconstruct each vessel’s trajectory from
the sequence of its critical points only. This online summarization
achieves data compression close to 95%, incurring negligible loss
in approximation accuracy. With such dramatic reduction in system
load, execution of continuous and historical queries can be greatly
improved, e.g., reducing latency of online collision detection or
similarity search among recent vessel paths.

The detected critical points may be used for map display, but
they are mostly valuable for recognition of complex phenomena
and thus issuing alert notifications to marine authorities. To this
end, a complex event recognition component combines the derived

1
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Figure 1: Processing scheme of the maritime surveillance system.

stream of critical points expressing vessel activity, with static geo-
graphical and vessel data, and can detect suspicious or potentially
dangerous situations, such as loitering, vessels passing through pro-
tected areas, and unsafe shipping. In contrast to map display of cur-
rent locations or information about specific vessels of interest [2],
this module can be used to spot emergency situations in real-time.

The recognized complex events and lightweight trajectory syn-
opses may be physically archived in a database for extracting off-
line analytics, including travel statistics, motion trends, origin–
destination matrices, frequent routes, area and vessel classification
(suspicious areas, illegal or dangerous shipping), and much more.

In this paper, we emphasize the real-time features of our mar-
itime surveillance system, developed in the context of the AMI-
NESS project [1]. This interdisciplinary project aims to reinforce
safety and assist in the management of sea environments, partic-
ularly in the Aegean Sea. We conducted an extensive empirical
validation of the proposed system on a large dataset of real ves-
sel traces collected in the summer of 2009 from AIS base stations
along the coastline of Greece. Our study confirms that the high
compression ratio achieved by the trajectory detection component,
along with the efficient pattern matching algorithms of the complex
event recognition component, allow this system to scale to high ve-
locity data streams expressing the current activity of large fleets.

The remainder of the paper is organized as follows. In Section 2,
we present the architecture of the proposed maritime surveillance
system. Sections 3 and 4 respectively present the two main compo-
nents: the trajectory detection and complex event recognition mod-
ules. Section 5 reports performance results from a comprehensive
evaluation of the implemented system. In Section 6, we compare
our approach against related systems and methodologies. Finally,
in Section 7 we summarize our work and outline directions for fur-
ther research and implementation.

2. SYSTEM ARCHITECTURE
In this Section, we outline the processing flow of the proposed

maritime surveillance system. As illustrated in Figure 1, the system

consumes a stream of AIS tracking messages from vessels, detects
important features that characterize their movement and recognizes
complex events such as suspicious vessel activity. These results
can be used to evaluate continuous location-aware queries, e.g., to
detect whether a ship is approaching a port or if a vessel has just
entered into an environmentally protected area.

In order to meet the real-time requirements of data stream pro-
cessing, this online process necessitates the use of a sliding window
[18, 29], which abstracts the time period of interest and keeps up
with the evolving movement. Typically, a window looks for phe-
nomena that occurred in a recent range ! (e.g., positions received
during past 60 minutes). This window moves forward to keep in
pace with newly arrived stream tuples, so it gets refreshed at a spe-
cific slide step every � units (e.g., each minute). For instance, an
aggregate query could report at every minute (�) the distance trav-
eled by a ship over the past hour (!). Typically, it holds that � < !;
so, as time goes by, successive window instantiations may share po-
sitional tuples over their partially overlapping ranges.

As input, we consider AIS messages of certain types (1, 2, 3, 18,
19) and extract position reports. Each message specifies the MMSI

(Maritime Mobile Service Identity) of the reporting vessel. For a
given MMSI , each of its successive positional samples p consists
of longitude/latitude coordinates (Lon,Lat) measured at discrete,
totally ordered timestamps ⌧ (e.g., at the granularity of seconds).
Without loss of generality, we abstract vessels as 2-dimensional
point entities moving across time, because our primary concern is
to capture their motion features. By monitoring the timestamped
locations from a large fleet of N vessels, the system must deal with
a positional stream of tuples hMMSI , Lon, Lat, ⌧i. A Data Scan-
ner decodes each AIS message, identifies those four attributes (the
rest are ignored in our analysis), and cleans them from distortions
caused during transmission (e.g., discard messages with bad check-
sum). This constitutes an append-only data stream, as no deletions
or updates are allowed to already received locations.

But it is the sequential nature of each vessel’s trace that mostly
matters for capturing movement patterns en route (e.g., a slow turn),
as well as spatiotemporal interactions (e.g., ships traveling together).
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Such a trajectory is approximated as an evolving sequence of suc-
cessive point samples that locate this vessel at distinct timestamps
(e.g., every few seconds). In order to detect motion changes, the
Mobility Tracker module maintains one velocity vector per ves-
sel based on its two most recent positions2. Working entirely in
main memory and without any index support, the Mobility Tracker
checks when and how velocity changes with time. Thus, it can
detect trajectory events, either instantaneous (e.g., a sudden turn)
or of longer duration (e.g., a smooth turn). At each window slide,
those events are properly filtered (e.g., from possible outliers) via a
Compressor. Then, a sequence of “critical” points (such as a stop)
is emitted, which are much fewer compared to the originally re-
layed positions. So, the current vessel motion can be characterized
in real time with particular annotations (e.g., stop, turn). Once new
trajectory events are detected per vessel upon each window slide,
the annotated critical points can be readily emitted and visualized
on maps through a Trajectory Exporter, e.g., as KML polylines (for
trajectories) and placemarks (for vessel locations).

Moreover, the derived critical points are transmitted to the Com-
plex Event Recognition module, which combines this event stream
with static geographical and vessel data, such as bathymetric data
and protected areas. The objective of this process is to detect poten-
tially suspicious or dangerous situations, such as loitering, vessels
passing through protected areas, and unsafe shipping. The recog-
nized complex events are pushed in real-time to the end user (ma-
rine authorities) for real-time decision-making.

Finally, historical information can be progressively compiled from
these detected features. “Delta” critical points (issued once the win-
dow slides forward) are periodically sent from main memory into a
staging area on disk. An offline module accepts these lightweight,
digested traces and reconstructs trajectory segments for archiving
in Hermes Moving Objects Database (MOD) [30], instead of naïvely
storing enormous quantities of raw AIS positions. This reconstruc-
tion process also identifies ships docked at ports, so that trajec-
tory semantics can be enriched accordingly so as to extract further
knowledge through motion mining or computation of statistics.

3. DETECTING TRAJECTORY EVENTS
With the possible exception of local manoeuvres near ports, ma-

rine regulations, or harsh weather conditions, vessels are normally
expected to follow almost straight, predictable routes. In terms of
vessel mobility, what matters most is to detect when and how the
general course has changed, e.g., identify a stop, a turning point, or
slow motion. Such trajectory movement events (ME) suffice to in-
dicate “critical points” along the trace of each vessel and thus offer
a concise, yet quite reliable representation of its course. It turns out
that a large portion of the raw positional reports can be suppressed
with minimal loss in accuracy, as they hardly contribute any addi-
tional knowledge. We distinguish two kinds of trajectory events:

• Instantaneous trajectory events involve individual time points
per route, by simply checking potentially important changes
with respect to the previously reported location (e.g., a sharp
change in heading).

• Long-lasting trajectory events are deduced after examining a
sequence of instantaneous events over a longer time period
in order to identify evolving motion changes. For example,
a few consecutive changes in heading may be very small if

2Typically for trajectories [8], linear interpolation is applied between each pair of
successive measurements (p

i

, ⌧
i

) and (p
i+1, ⌧i+1). For simplicity, we assume that

this also holds in the case of vessels. With the exception of intermittent signals, their
course between any two consecutive positions practically evolves in a very small area,
which can be locally approximated with a Euclidean plane using Haversine distances.

(a) Pause (b) Change in speed

(c) Turn (d) Off-course position

Figure 2: Instantaneous events and outliers in a vessel’s course.

each is examined in isolation from the rest, but cumulatively
they could signify a notable change in the overall direction.

In this Section, we first describe how the sequence of vessel po-
sitions can be processed online in order to detect such trajectory
events. An early version of the online tracking module was intro-
duced in [28]. This has been substantially enhanced to identify
additional events and much more robust in coping with increased
data volumes. We also explain how the resulting critical points per
vessel can provide a lightweight summary of its trajectory, which
then offers many opportunities for affordable offline analysis.

3.1 Online Tracking of Moving Vessels
As illustrated in Figure 1, the system accepts fresh AIS messages

from ships and extracts positional tuples hMMSI , Lon, Lat, ⌧i.
In order to identify significant changes in movement, it first com-
putes the instantaneous velocity vector �!v

now

from the two most
recent positions reported by each vessel MMSI . Then, the mobil-
ity tracker can instantly deduce a variety of instantaneous events
by examining the trace of each vessel alone:

• Pause indicates whether a vessel is currently halted, once
its instantaneous speed �!v

now

does not exceed a suitable
threshold v

min

. For example, if �!v
now

is currently less than
v
min

= 1 knot, then the ship rests practically immobile. For
the vessel shown in Figure 2(a), the red bullets indicate sev-
eral pause events; apparently, the ship is anchored at the port
and such small displacements may be caused by GPS errors
or sea drift.

• Speed change is issued once current v
now

deviates by more
than ↵% from the previously observed speed v

prev

. For a
given threshold ↵, the formula | vnow

�v

prev

v

now

| > ↵

100 indi-
cates whether the vessel has just decelerated or accelerated.
This is normally the case when a ship is approaching to or
departing from a port, as depicted in Figure 2(b).
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(a) Gap in reporting (b) Smooth turn

(c) Long-term stop (d) Slow motion

Figure 3: Long-lasting trajectory events.

• Turn: It occurs when the direction has changed by more than
a given angle �✓, e.g., there is a difference of more than
15o from its previous heading. Red bullets in Figure 2(c)
illustrate two such sudden turns.

• Off-course positions incur a very abrupt change in vessel’s
velocity �!v

now

(both in speed and heading). Yet, such an
outlier can be easily detected as it signifies an abnormal,
yet only temporary, deviation from the known course as ab-
stracted by mean velocity �!v

m

of the ship over its previous m
positions. Figure 2(d) illustrates such a case.

No critical point gets immediately issued upon detection of any
such simple events. An instantaneous pause or turn may be coinci-
dental and is not meaningful out of context, because a series of such
events may signify that the ship is stopped for some time, as we will
explain shortly. Besides, accepting an outlier would drastically dis-
tort the resulting trajectory representation, as the red dashed line in
Figure 2(d) illustrates. Even worse, such noisy positions may af-
fect detection of important events. For instance, an outlier breaking
the subsequence of instantaneous pause events could prevent char-
acterization of a long-term stop, and instead yield two successive
such stops very close to each other. Thus, any off-course positions
should be discarded as noise.

Those instantaneous events are used to detect spatiotemporal phe-
nomena of some duration, i.e., long-lasting trajectory events like:

• Gap in reporting is issued when a vessel has not emitted a
message for a time period �T , e.g., over the past 10 minutes.
Therefore, its course is unknown during this period, as it oc-
curs between the two red bullets in Figure 3(a). Reporting
such a critical point (i.e., when the gap started) is important,
not only for properly monitoring vessels, but also for safety
reasons, e.g., a suspicious move near maritime boundaries,
or a potential intrusion of a tanker into a marine park.

Figure 4: Critical points identified along a vessel trajectory.

• Smooth turn can be identified by checking whether the cumu-
lative change in heading across a series of previous positions
exceeds a given angle �✓, as illustrated with the red points
in Figure 3(b). Then, the latest of them is emitted as a critical
(turning) point.

• Long-term stop occurs when at least m consecutive instan-
taneous pause or turn events are found within a predefined
radius r (e.g., 200 meters). In Figure 3(c), the red points in-
side the circle succeed one another and indicate such immo-
bility, so they could be collectively approximated by a single
critical point (their centroid) with their total duration.

• Slow motion means that the vessel consistently moves at low
speed ( v

min

) over its m last messages, as in Figure 3(d).
In contrast to a stop event, these successive locations usually
occur along a path and not all of them fall in a small circle.
The median of these m positions is reported as a representa-
tive critical point.

Thus, critical points are emitted from each long-lasting event.
Provided that they do not qualify for outliers, instantaneous events
for speed change (Figure 2(b)) or isolated turns (Figure 2(c)) also
contribute to critical points. The example trajectory in Figure 4 il-
lustrates the data compression gains achieved when retaining criti-
cal points only. Obviously, such filtering greatly depends on proper
choice of parameter values, which is a trade-off between reduction
efficiency and approximation accuracy. For a suitable calibration
of these parameters, apart from consulting maritime domain ex-
perts (our partners in the AMINESS project [1]), we have also con-
ducted several exploratory tests on randomly chosen vessels from
AIS data in the Aegean Sea. For instance, setting �✓ = 5o in-
stead of �✓ = 15o incurs a 10% increase in the amount of critical
points, because more original AIS locations would qualify as turn-
ing points due to sea drift and discrepancies in GPS signals. Since
our analysis is mostly geared towards data reduction, for our empir-
ical study (Section 5.1) we have chosen the aggressive parametriza-
tion listed in Table 3, which yields quite tolerable accuracy. With
relaxed parameter values, additional events can be detected, captur-
ing slighter changes in each trajectory.

The complexity for detecting instantaneous events and commu-
nication gaps is O(1) per incoming positional tuple, since only the
two latest locations are examined per vessel. The cost for the re-
maining long-lasting events is O(m), where m is the number of
latest positions that need inspection. As m is usually a small inte-
ger (we set m = 10 in our experiments), this cost is affordable.

Rules for such trajectory events are suitably defined in the mo-
bility tracker, which is equipped with robust data structures for in-
memory maintenance of movement features. Note that more events
can be detected by simply enhancing the mobility tracker with extra
conditions. In future work, we plan to complement this methodol-
ogy so as to capture additional features, such as traveled distance
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from a given origin (e.g., a port). Better coping with noisy sit-
uations is also a challenge, e.g., ignoring delayed positions that
erroneously mark a ship moving back and forth along its course.
Nonetheless, even with this set of events, we can figure out the
mutability in each trajectory and distinctly characterize its course
across time. Most importantly, these spatiotemporal features can
serve as a basis to recognize more complex maritime events, as we
discuss later in Section 4.

3.2 Trajectory Reconstruction
By taking advantage of those online annotations at critical points

along trajectories, lightweight, succinct synopses can be retained
per vessel over the recent past. Then, the compressor evicts point
locations that have not been detected as critical. Instead of resort-
ing to a costly simplification algorithm, we opt to reconstruct vessel
traces approximately from already available critical points. This
summarization depends on the type of detected movement events
(i.e., stop, low speed, turn, gap, speed change), so as to refresh
each trajectory accordingly. This main-memory process affects tra-
jectory portions currently within the sliding window.

But we also incrementally update trajectories in the underlying
database with “delta” points. Once the window slides forward,
expiring critical points are transferred in an intermediate staging
table on disk. So, this table temporarily records all recent “delta”
changes, i.e., critical points evicted from the window, but not yet
admitted in disk-based trajectories. Obviously, information archived
in the database is always lagged behind the current vessel reports
by !. This is a deliberate decision dictated for data consistency
reasons, so as to avoid having any trajectory portions duplicated in
memory (online) and on disk (offline).

Offline trajectory reconstruction in Hermes MOD [30] period-
ically converts a sequence of critical points per ship into disjoint,
consecutive trajectory segments. In particular, a long journey breaks
up into smaller trips between ports. This segmentation reduces the
latency for offline queries in the database, and also decreases the
cost of trajectory updates on every batch of critical points. Eventu-
ally, instead of representing the entire motion of a vessel with one
long trajectory that gets repetitively updated, Hermes MOD deals
with multiple, but much smaller segments; only the last segment
per vessel may receive any updates.

AIS messages sometimes include information regarding the des-
tination of sailing vessels. Unfortunately, after scrutinizing AIS
data samples, we concluded that this voyage-related information is
often missing or error-prone, mainly because it is updated manually
by the crew. So, we employ an automated procedure for performing
semantic enrichment of trajectories with added value information
about trips between ports. This method takes as input the critical
points identified as long-term stops and a set of known port areas
(polygons). Once a stop is located inside such a polygon, the name
of the respective port becomes an attribute of that point. It is rea-
sonable to assume that between two such distinct stops O and D,
the ship sailed from origin port O and reached destination port D.
Then, this is identified as a new trip with a known destination D.
Note that origin port O may remain unknown, because the ship
might have been on the move when the AIS base stations started
receiving its signals. Of course, as each vessel continues sailing,
more and more critical points will be detected. However, as long as
a specific destination port is not yet identified, these points will be
piling up in the staging table awaiting assignment to a trajectory.

3.3 Offline Trajectory Analysis
Once reconstructed trajectories get stored in Hermes MOD, use-

ful statistics and patterns can be extracted from them in an offline

fashion. Since the focus of this paper is on online processing, we
only give a brief overview of such analytics. First, a series of
derived tables can offer historical information about traveled dis-
tances and travel times per ship, idle periods at dock, visited ports,
etc. Such aggregates may be obtained at various time granularities
(e.g., per week, month, or year) and may be computed by other
dimensions as well (e.g., flag, cargo, vessel type, etc.). By main-
taining Origin-Destination matrices, we may identify connections
between ports and compute aggregated statistics (duration, speed,
frequency, etc.) for such itineraries, often varying by ship type, pe-
riod of the year, etc. In addition, motion patterns can be identified,
such as frequently traveled paths (“corridors”), periodicity in move-
ment (e.g., ferries between two specific ports), etc. Hermes MOD
incorporates an algorithm for spatiotemporal clustering, which can
help exploring periodicity of trips. Indeed, two (or more) trajec-
tory clusters may be almost identical spatially, but they are distinct
because the temporal dimension is taken into consideration when
calculating distances between pairs of trajectory segments.

4. COMPLEX EVENT RECOGNITION
The critical Movement Events (ME) computed by the trajectory

detection component are transmitted to the Complex Event Recog-
nition module. This module correlates the derived stream of MEs
with static geographical and vessel information, such as bathymet-
ric data and locations of protected areas, to detect potentially suspi-
cious and dangerous situations, such as forbidden fishing or unsafe
shipping. When recognized, such Complex Events (CE) are for-
warded to the marine authorities for real-time decision making.

Our CE recognition component is based on the Event Calculus
for Run-Time reasoning (RTEC) [5, 6]. The Event Calculus [17]
is a logic programming language for representing and reasoning
about events and their effects. The benefits of a logic program-
ming approach to CE recognition are well-documented [26]: such
an approach has a formal, declarative semantics, and direct routes
to machine learning for constructing CE definitions in an automated
way. The use of the Event Calculus has additional advantages: the
process of CE definition development is considerably facilitated,
as the Event Calculus includes built-in rules for complex temporal
representation and reasoning, including the formalization of iner-
tia. With the use of the Event Calculus, one may develop intuitive,
succinct CE definitions, facilitating the interaction between CE def-
inition developer and domain expert (marine authorities), and al-
lowing for code maintenance. In this Section, we present RTEC
following [5, 6], and illustrate its use for maritime surveillance.

4.1 Representing Maritime Activities
The time model of RTEC is linear and includes integer time-

points (such as the timestamps of the MEs computed by the tra-
jectory event detection component). Variables start with an upper-
case letter, while predicates and constants start with a lower-case
letter. Where F is a fluent—a property that is allowed to have
different values at different points in time—the term F =V de-
notes that fluent F has value V . Boolean fluents are a special case
in which the possible values are true and false. holdsAt(F =V, T )
represents that fluent F has value V at a particular time-point T .
holdsFor(F =V, I) represents that I is the list of the maximal in-
tervals for which F =V holds continuously. holdsAt and holdsFor

are defined in such a way that, for any fluent F , holdsAt(F =V, T )
if and only if T belongs to one of the maximal intervals of I for
which holdsFor(F =V, I).

The happensAt predicate represents an instance of an event type.
E.g., happensAt(turn(vessel1 ), 5 ) represents the occurrence of
event type turn(vessel1 ) at time 5 . When it is clear from the con-
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text, we do not distinguish between an event and its type. An event
description in RTEC includes rules that define the event instances
with the use of the happensAt predicate, the effects of events with
the use of the initiatedAt and terminatedAt predicates, and the values
of the fluents with the use of the holdsAt and holdsFor predicates, as
well as other, possibly atemporal, constraints. Table 1 presents the
predicates available to the event description developer.

We represent instantaneous MEs and CEs by means of happensAt,
while durative MEs and CEs are represented as fluents. In the mar-
itime surveillance setting, the stream of critical MEs, which consti-
tutes the input of RTEC, consists of both instantaneous MEs, such
as speedChange(Vessel), and durative ones, such as
stopped(Vessel)= true indicating the maximal intervals during
which a Vessel is considered stopped. The majority of CEs are
durative and, therefore, in CE recognition the task generally is to
compute the maximal intervals for which a fluent representing a CE
has a particular value continuously.

For a fluent F , F =V holds at a particular time-point T if F =V
has been initiated by an event that has occurred at some time-
point earlier than T , and has not been terminated at some other
time-point in the meantime. This is an implementation of the law
of inertia. To compute the intervals I for which F =V , that is,
holdsFor(F =V, I), we find all time-points T

s

at which F =V is
initiated, and then, for each T

s

, we compute the first time-point
T
f

after T
s

at which F =V is ‘broken’. The time-points at which
F =V is initiated are computed by means of domain-specific
initiatedAt rules. The time-points at which F =V is ‘broken’ are
computed as follows:

broken(F =V , Ts , T ) 
terminatedAt(F =V , Tf ), Ts < Tf  T

(1)

broken(F =V1 , Ts , T ) 
initiatedAt(F =V2 , Tf ), Ts < Tf  T , V1 6= V2

(2)

broken(F =V ,Ts ,T ) represents that F =V is terminated at some
time Tf such that Ts<TfT . Similar to initiatedAt, terminatedAt

rules are domain-specific (examples are presented below). Accord-
ing to rule (2), if F =V2 is initiated at Tf then effectively F =V1 is
terminated at time Tf , for all other possible values V1 of F . Thus,
rule (2) ensures that a fluent cannot have more than one value at
any time. We do not insist that a fluent must have a value at every
time-point. There is a difference between initiating a Boolean flu-
ent F = false and terminating F = true: the former implies, but is
not implied by, the latter.

In what follows, we illustrate the use of RTEC for CE represen-
tation in the maritime domain.

Scenario 1. In maritime surveillance, it is necessary to detect
areas in which vessel activity is suspicious. Below is the formal-
ization of one type of suspicious activity:

initiatedAt(suspicious(Area)= true, T ) 
happensAt(start(stopped(Vessel)= true), T ),
holdsAt(coord(Vessel)=(Lon,Lat), T ),
close(Lon,Lat ,Area),
holdsAt(vesselsStoppedIn(Area)=N , T ), N > 3

terminatedAt(suspicious(Area)= true, T ) 
happensAt(end(stopped(Vessel)= true), T ),
holdsAt(coord(Vessel)=(Lon,Lat), T ),
close(Lon,Lat ,Area),
holdsAt(vesselsStoppedIn(Area)=N , T ), N  3

(3)

stopped(Vessel)= true is a durative ME stating that Vessel has
stopped. start(F =V ) (respectively end(F =V )) is a built-in RTEC
event taking place at each starting (ending) point of each maxi-
mal interval for which F =V holds continuously. Along with each

Table 1: Main predicates of RTEC.
Predicate Meaning

happensAt(E, T ) Event E occurs at time T

holdsAt(F =V, T ) The value of fluent F is V
at time T

holdsFor(F =V, I) I is the list of the maximal
intervals for which F =V
holds continuously

initiatedAt(F =V, T ) At time T a period of time
for which F =V is initiated

terminatedAt(F =V, T ) At time T a period of time
for which F =V is terminated

vessel critical ME, the trajectory event detection system provides
the coordinates (Lon,Lat) of the vessel. These are represented in
RTEC by the coord fluent. close(Lon,Lat ,Area) is an atempo-
ral predicate calculating whether the Haversine distance between a
point (Lon,Lat) and an Area is less than some predefined thresh-
old. Fluent vesselsStoppedIn(Area) records the number of ves-
sels that have stopped in this Area at some point in time.

According to rule-set (3), an Area is said to be suspicious as long
as at least four vessels have stopped close to, or in it. The value of
four vessels was set by domain experts. Usually, officials moni-
toring vessel activity are familiar with potentially suspicious areas,
such as areas where loitering takes place, and thus restrict3 compu-
tation of the maximal intervals of the suspicious fluent to these ar-
eas. The maximal intervals during which suspicious(Area)= true

holds continuously are computed using the built-in RTEC predicate
holdsFor from rule-set (3).

initiatedAt(F =V, T ) does not necessarily imply that F 6=V at T .
Similarly, terminatedAt(F =V, T ) does not necessarily imply that
F =V at T . Suppose that F =V is initiated at time-points 10 and
20 and terminated at time-points 25 and 30 (and at no other time-
points). In that case F =V holds at all T such that 10<T25.
Note that, in this case, the event start(F =V ) takes place at 10 and
at no other time-point, while the event end(F =V ) takes place at
25 and at no other time-point.

CE recognition for maritime surveillance requires reasoning over
streaming data, such as the MEs reported by the trajectory event de-
tection system, as well as atemporal reasoning [14]. In rule-set (3),
for instance, we had to compute the Haversine distance between a
point and an area. Unlike various other CE recognition approaches,
such as [12, 18, 9], which lack the ability of (complex) reason-
ing over static/domain knowledge, RTEC combines event pattern
matching over event streams with atemporal reasoning.

Scenario 2. Marine authorities are often interested in detecting
illegal fishing. Below is a formalization of two of the conditions in
which illegal fishing starts being recognized:

initiatedAt(illegalFishing(Area)= true, T ) 
happensAt(start(stopped(Vessel)= true), T ),
fishing(Vessel),
holdsAt(coord(Vessel)=(Lon,Lat), T ),
close(Lon,Lat ,Area)

initiatedAt(illegalFishing(Area)= true, T ) 
happensAt(slowMotion(Vessel), T ),
fishing(Vessel),
holdsAt(coord(Vessel)=(Lon,Lat), T ),
close(Lon,Lat ,Area)

(4)

3Such a restriction is achieved through the ‘declarations’ facility of RTEC.
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fishing is an atemporal predicate indicating fishing vessels. In ad-
dition to having a database of fishing facts, this predicate may com-
pute whether a vessel (not recorded in the database) is a fishing one
given its characteristics. slowMotion(Vessel) is an ME indicat-
ing that Vessel was moving ‘too’ slowly at some point in time (see
Section 3). The computation of the maximal intervals during which
illegalFishing(Area)= true holds continuously is restricted to ar-
eas in which fishing is forbidden. According to rule-set (4), illegal
fishing starts being recognized when a fishing vessel stops or moves
‘too’ slowly close to, or in an area in which fishing is forbidden.

Illegal fishing stops being recognized when there are no fishing
vessels in the forbidden fishing area, or when their movement does
not allow for fishing. The termination rules are formalized similar
to the rules already shown and are therefore omitted to save space.

Scenario 3. A common feature of illegal shipping is commu-
nication gap; vessels with illegal activity, such as those passing
through protected areas in order to minimize the length of a trip
and therefore fuel consumption, switch off their transmitters and
stop sending position signals. In such cases, it is often claimed that
the transmitter temporarily broke down. To capture this type of
activity, we defined the rule below:

happensAt(illegalShipping(Area), T ) 
happensAt(gap(Vessel), T ),
holdsAt(coord(Vessel)=(Lon,Lat), T ),
close(Lon,Lat ,Area)

(5)

gap(Vessel) is an ME—the trajectory detection component reports
such an ME when the Vessel stops sending signals, i.e. when the
communication gap starts. The computation of the time-points of
the illegalShipping(Area) events is restricted to protected areas,
such as the National Marine Park of Alonnisos in the Aegean sea.
According to rule (5), illegalShipping(Area) is recognized when
a vessel stops reporting position signals close to a protected Area .

Scenario 4. Ships sometimes approach inadvertently or inten-
tionally (to reduce the length of a trip and fuel consumption) ‘too’
shallow waters. To alert marine authorities and prevent accidents
resulting from such type of shipping, we formalized the rule below:

happensAt(dangerousShipping(Area), T ) 
happensAt(slowMotion(Vessel), T ),
shallow(Area,Vessel),
holdsAt(coord(Vessel)=(Lon,Lat), T ),
close(Lon,Lat ,Area)

(6)

shallow is an atemporal predicate indicating whether some waters
are ‘too’ shallow for a vessel. Similar to the fishing predicate, in
addition to having a database of shallow facts, we may compute
whether an area is ‘too’ shallow for a vessel (not recorded in the
database) given the vessel’s characteristics. In rule (6), we chose
the slowMotion ME as a condition for the recognition of danger-
ous shipping. Similarly, we may add rules with other types of ves-
sel movement for recognizing this CE.

4.2 Recognizing Maritime Activities
CE recognition may be performed retrospectively—e.g., at the

end of each day in order to evaluate the activity of a particular
fleet of vessels. Typically, though, CE recognition has to be ef-
ficient enough to support real-time decision-making, and scale to
very large numbers of MEs and CEs. MEs may not necessarily ar-
rive at the CE recognition system in a timely manner, i.e. there may
be a (variable) delay between the time at which MEs take place and
the time at which they arrive at the CE recognition system.

RTEC performs CE recognition by computing and storing the
maximal intervals of fluents and the time-points in which events oc-

time
Q136 Q138Q137

Window ω 

Q139

Figure 5: Complex event recognition in RTEC.

cur. CE recognition takes place at specified query times Q1, Q2, . . . .
At each Q

i

the MEs that fall within a specified sliding window !
(“working memory” in the terminology of RTEC) are taken into
consideration. All MEs that took place before or at Q

i

�! are dis-
carded. This is to make the cost of CE recognition dependent only
on range ! and not on the complete ME history.

Window parameters for range ! and slide step � are specified
by the users along with the definition of events, since they actually
reflect the time horizon over which interesting phenomena shall be
detected. Usually, range ! could span many minutes or even sev-
eral hours for capturing meaningful events across a vessel’s route.

At Q
i

, the maximal intervals computed by RTEC are those that
can be derived from MEs that occurred in the interval (Q

i

�!, Q
i

],
as recorded at time Q

i

. When the range ! is longer than the slide
step �, it is possible that an ME occurs in the interval (Q

i

�!, Q
i�1]

but arrives at RTEC only after Q
i�1; its effects are taken into ac-

count at query time Q
i

. This is illustrated in Figure 5. Occurrences
of MEs are displayed as dots and a Boolean fluent as line segments.
For CE recognition at Q138, only the events marked in black are
considered, whereas the greyed out events are neglected. Assume
that all events marked in bold arrived only after Q137. Then, we ob-
serve that two MEs were delayed, i.e., they occurred before Q137,
but arrived only after Q137. In our setting, the window range !
is larger than the slide step. Hence, these events are not lost but
considered as part of the recognition process at Q138.

In the common case that MEs arrive at RTEC with delays, it is
thus preferable to make the range of ! longer than the slide step.
Note that information may still be lost. Any MEs arriving between
Q

i�1 and Q
i

are discarded at Q
i

if they took place before or at
Q

i

�!. To reduce the possibility of losing information, one may
increase the window range !. But doing so, decreases recognition
efficiency. This issue is illustrated in the following section.

5. EMPIRICAL EVALUATION
Our maritime surveillance system has a modular design with

loosely coupled components. The online component for trajec-
tory detection is developed in GNU C++ and runs entirely on main
memory for efficiently coping with massive, volatile, streaming lo-
cations. RTEC, the CE recognition component, is implemented in
YAP Prolog4. Built on top of PostgreSQL, Hermes MOD5 accepts
feeds of critical points from a Java wrapper and performs offline
processing through SQL queries and stored procedures.

We conducted experiments against a real AIS dataset obtained
from IMIS Hellas6, our partner in the AMINESS project. Raw data
is 23GB in size and spans from 1 June 2009 to 31 August 2009
for N = 6425 vessels in the Aegean, the Ionian, and part of the
Mediterranean Sea. Not all vessels were actually on the move at all
times, since a considerable part (chiefly cargo ships) were just pass-
ing by, and thus tracked for a limited period (days or even hours).

4The source code of RTEC, along with several sample CE definitions, is available at
http://users.iit.demokritos.gr/~a.artikis/EC.html.
5Available at https://hermes-mod.java.net/
6
http://www.imishellas.gr/
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Figure 6: Online mobility tracking cost per window.
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Figure 7: Varying arrival rates.

Table 2: Experimental settings.
Parameter Value
Vessel count N 6425
Window range ! 10min, 1h, 2h, 6h, 9h, 24h

Window slide �
1min, 5min, 10min, 15min,
20min, 30min, 1h, 90min, 2h, 4h

Stream arrival rate ⇢ (positions/sec) original, 1K, 2K, 5K, 10K

Table 3: Mobility tracking parameters.
Parameter Value
Minimum speed v

min

for asserting movement 1 knot (⇠=1.852 km/h)
Rate of speed change ↵ 25%
Minimum gap period �T 10 minutes
Turn threshold �✓ 5o, 10o, 15o, 20o

Radius r for long-term stops 200 meters
Minimal number m of inspected positions 10

But most vessels were frequently sailing, e.g., passenger ships or
ferries to the islands. When decoded and cleaned from corrupt mes-
sages, the dataset yielded 168,240,595 timestamped positions7.

We simulated a streaming behavior by consuming this positional
data little by little, i.e., reading small chunks periodically accord-
ing to window specifications. We examine sliding windows with
varying ranges ! and slide steps � based on timestamps from the
original AIS messages. Thus, we replay this stream and the win-
dow keeps in pace with the reported timestamps and not the actual
time of each simulation. The arrival rate of positions is fluctuating
throughout this 3-month period and varies widely among vessels;
none of them reports at a fixed frequency, whereas there are ships
inactive for large intervals. On average, each vessel reports its po-
sition once every 2 minutes, by considering only its activity period
(i.e., when it actually relays positions, either moving or not). This
translates into a mean arrival rate ⇢ of about 50 positions/sec. For
consistency with the real-world scenario, we consume the origi-
nal stream “as is” in all our simulations, with the exception of one
test conducted at artificially increased rates. Simulation settings
are listed in Table 2, whereas calibrated settings for online mobility
tracking are given in Table 3; default values are shown in bold.

Next, we report indicative results from these experiments. The
trajectory event detection component operated on a server running
Debian Linux “Wheezy” 7.5 amd64 with two Intel Xeon X5675
processors at 3.07GHz. This machine has 48GB of RAM, and five
hard disks at 15K RPM with RAID 0 and a total capacity of 3TB.

7This anonymized data (with MMSIs replaced by sequence numbers) is publicly avail-
able at http://www.chorochronos.org/?q=content/imis-3months

The complex event recognition component operated on a computer
with Intel i7-4770@3.40GHz⇥8 processors and 16GiB RAM, run-
ning Ubuntu Linux 14.04 and YAP Prolog 6.2.2.

5.1 Assessment of Trajectory Detection
Performance of online tracking. The first set of experiments

examines performance of online mobility tracking for window spec-
ifications with varying ranges ! and slide steps �. Figure 6 illus-
trates the execution cost for the entire fleet per window, i.e., how
much time it takes to update the window with fresh locations, evict
expired ones, detect trajectory events, and report critical points. All
values are averages over the total count of window instantiations,
so they represent the per slide cost for window maintenance and
identification of any trajectory events therein. Simulations with the
original arrival rate reveal that critical points are issued almost in-
stantly for small ranges up to two hours (Figure 6(a)). Not surpris-
ingly, this cost escalates linearly when the window slides forward
less often (larger �), because the mobility tracker must check many
more fresh positions spanning a wider period �. Yet, processing
positional batches arrived over the past � = 30 minutes never takes
more than 500ms for small window ranges. The same linear pattern
in online tracking cost repeats with wider ranges (Figure 6(b)), but
it takes more time to complete upon each slide. In the worst case
of a window spanning 24 hours, critical points are reported in only
72 seconds based on the bulk of data accumulated over each 4-hour
period, which clearly demonstrates the robustness of this method.

One might argue that such performance results should be ex-
pected, given the low rate of the original stream. For a more strin-
gent assessment of the online mobility tracking module, we per-
formed an extra simulation, by admitting bigger chunks of data for
processing at considerably increased arrival rates up to ⇢ =10,000
positions/sec. Given the fleet size N , every ship appears as report-
ing almost twice per second. This is quite improbable in practice,
but makes sense as a stress test. As our objective is timeliness, the
window was set to span ! = 10 minutes and to slide each minute.
In Figure 7, observe that critical points are still issued promptly
for ⇢ = 1, 000 positions/sec, but the latency grows with increasing
rates. Reporting cost for critical points (i.e., cost after detection)
is included in these times, and this becomes a significant overhead
when massive AIS updates inevitably generate more critical points.
For ⇢ = 10, 000 positions/sec, the online tracker has to deal with
600,000 fresh positions every � = 1 minute, which is undoubtedly
a demanding task. Nonetheless, it never takes more than a few sec-
onds to respond, well before the next window slide. This behavior
confirms that the trajectory detection process is capable of handling
scalable volumes of streaming vessel positions.
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Figure 10: Trajectory maintenance cost.

Approximation error. Apart from performance, we also as-
sessed the quality of trajectories approximately reconstructed from
critical points only. For the entire motion history of each vessel, we
estimated deviation between the original trajectory and its approx-
imate representation (i.e., after compression). Deviation between
two polylines can be computed from the pairwise distance of their
corresponding points; in our case, between each pair of synchro-
nized locations. Suppose that an original AIS point p

i

did not qual-
ify as critical and was discarded at timestamp ⌧

i

. To estimate the
resulting deviation for a particular vessel, we interpolated between
the pair of adjacent critical points retained immediately before and
after each such p

i

. Assuming a constant velocity between these two
critical points, we obtained its time-aligned point trace p0

i

along the
approximate path at timestamp ⌧

i

. Thus, the compressed trajec-
tory retained its approximate shape, but with additional (synchro-
nized) vertices that account for the evicted positions. Assuming
that a vessel originally reported M positions, we estimated the root
mean square error (RMSE ) between original and synchronized se-
quences of its locations using this formula:

RMSE =

vuut 1
M

·
MX

i=1

(H(p
i

, p0
i

))2

where H denotes the Haversine distance between geographic coor-
dinates, and returns RMSE estimates in meters. One error value
was computed per vessel trajectory; Figure 8 plots the average
and maximum RMSE of them for several values of turn thresh-
old �✓, which is used to recognize significant changes in heading.
As discussed in Section 3.1, the degree of trajectory approximation
is sensitive mostly to angle �✓ compared to other parameters in
Table 3. In our tests, average error along complete trajectories (i.e.,
the entire motion history of each vessel) never exceeds 16 meters.
This is negligible compared to the much larger size of most ships,
and also considering the discrepancies inherent in GPS position-
ing. The maximum RMSE ever observed is 182 meters, under a
relaxed sensitivity of �✓ = 20o for capturing important turns only.
Although such a threshold is rather wide for actual monitoring of
maritime activity, the worst error among all trajectories is compara-
ble to the length of large ships. So, it turns out that the online track-
ing component provides quite acceptable accuracy and can capture
most, if not all, critical changes along each vessel’s course.

Compression efficiency. In this experiment, we examine the ef-
ficiency of our prototype in keeping only major trajectory charac-
teristics as critical points and discard the rest. In order to measure
the compression ratio accomplished by online trajectory tracking,
we compared the amount of discarded points against the originally
relayed locations per vessel. A compression ratio close to 1 signi-

Table 4: Statistics from compressed trajectories.
Critical points in reconstructed trajectories 7,776,947
Critical points remaining in staging area 2,524,925
Number of trips between ports 68,501
Average trips per vessel 30
Average number of critical points per trip 113
Average travel time per trip 1 day 07:20:58
Average traveled distance per trip 221.976km

fies stronger data reduction, as the vast majority of original loca-
tions are dropped. The line plot in Figure 9 depicts measurements
of this ratio with varying tolerance angles for detecting heading
changes. With a lower �✓, even slight deviations in vessel di-
rection can be spotted, and thus extra critical points get reported.
From the bar plot in Figure 9, we notice that every further increase
by 5o in turn threshold �✓ results in about 5% drop in the total
amount of critical points. So, relaxing the parameter values leads
to a slightly less intense compression. However, compression ratio
remains close to 94%, which means that about 6% of the original
locations only survive as critical. In a streaming context, such high
compression may lead to reduced system load in subsequent stages
of the analysis, and we stress that it comes without significant loss
in quality, as discussed earlier.

Trajectory maintenance. Since the system accepts streaming
positions from vessels and manages to maintain their historical tra-
jectories, we now provide some evidence of its overhead. Figure 10
plots the average processing cost per window slide for all four
phases. Evidently, online mobility tracking undertakes the hard-
est task by filtering the huge volume of incoming positions, hence
it dominates the trajectory maintenance cost especially for greater
window sizes. As argued before, tracking time escalates with the
window range, and also increases linearly when the window slides
less often. A batch of “delta” critical points evicted from the slid-
ing window is transferred into the staging area (on disk) in less than
260ms. This cost does not fluctuate a lot, as it mainly depends on
database connection tunnelling via the Java wrapper. Trajectory re-
construction into trips between ports is also quite efficient and takes
at most 163ms per batch of critical points. This offline module has
to consider a drastically reduced amount of critical points per vessel
instead of the voluminous dataset of raw positions, hence it incurs
little overhead. In the last stage of loading, trajectory segments are
inserted or updated in Hermes MOD, and this is also fast (390ms
in the worst case), thanks to the reduced data volumes involved.

In Table 4, we list representative statistics from trajectories re-
constructed and archived in the database. This computation took
place after the input stream was exhausted and all critical points
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Figure 11: Complex event recognition for 6,425 vessels and 35 areas.

were detected for the entire 3-month period. An outstanding bene-
fit is that, with only a moderate amount of points, we can approxi-
mately describe trips spanning more than a day and covering long
distances. Note that about 25% of critical points have not been as-
signed into any trajectory. These come from vessels still sailing and
having not yet reached their destination port (“open-ended” trips).
Besides, the number of trips is an order of magnitude greater than
fleet size N . This certainly increases the amount of records that
must be stored in the trajectory database, but thanks to their se-
mantic enrichment with port information, such shorter geometry
representations are more preferable at query time than protracted
sequences of featureless locations.

5.2 Complex Event Recognition Performance
The task of the complex event (CE) recognition module is to

detect activities of special significance for maritime surveillance,
given the critical movement events (ME) produced by the trajectory
event detection component. The input of RTEC—our CE recogni-
tion module—consists of the MEs (communication) gap, lowSpeed ,
stopped , speedChange and turn , as well as the coordinates of
each vessel at the time of ME detection. Given such an event
stream, RTEC recognizes suspicious vessel activity (several ves-
sels stopped in some area), illegal fishing, illegal shipping (passing
through protected areas) and dangerous shipping (sailing through
shallow waters). The choice of CEs and their definitions (see Sec-
tion 4) were specified in collaboration with the domain experts of
the AMINESS project. To allow for the recognition of the afore-
mentioned CEs, we enhanced the input of RTEC with static syn-
thetic data. For each vessel we added information about its draft,
while a number of vessels were designated as fishing vessels. More-
over, we generated 35 polygons representing protected areas, for-
bidden fishing areas, and areas with shallow waters.

Figure 11(a) shows the results of two sets of experiments. First,
we used a single processor to perform CE recognition for all 6,425
vessels and 35 areas. Second, we used two processors of the com-
puter on which RTEC operated in parallel. One processor per-
formed CE recognition for the areas located in, and the vessels
passing through the west part of the area under surveillance. Sim-
ilarly, the other processor performed CE recognition for the areas
located in, and the vessels passing through the east part of the mon-
itored area. Figure 11(a) shows average CE recognition times in
CPU seconds. The slide � is 1 hour, including approximately 7,000
MEs. The window range ! varies from 1 hour (⇡ 7,000 MEs) to 9
hours (⇡ 70,000 MEs). In the distributed setting—two processors
for CE recognition—the input MEs are forwarded to the appropri-

ate processor (according to vessel location). The number of CEs
also depends on the window range. For != 1 hour, approximately
200 CEs are recognized, while for != 9 hours RTEC recognizes
approximately 2,000 CEs.

Figure 11(a) shows that we can achieve a significant performance
gain by running RTEC in parallel. The input to each processor
is restricted to the MEs of the vessels for which it performs CE
recognition. Furthermore, each processor has to compute and store
the maximal intervals of a smaller number of CEs. One may further
distribute CE recognition by dividing further the monitored area,
thus reducing CE recognition times. Figure 11(a) also shows that
RTEC is capable of supporting real-time CE recognition. E.g., for
a window ! of 6 hours, RTEC recognizes all CEs requested by end
users in 8 sec when a single processor is used, and in 5 sec when
two processors are used in parallel.

Note that, since the input stream consists of critical MEs, most
of them fire the CE definition rules. This is in contrast to other ex-
periments [5, 6] where the input stream includes several events that
do not affect CE recognition. CE recognition performance does not
depend entirely on the size of the input data streams. The complex-
ity of the CE definitions affects recognition times significantly. In
this work, we make use of quite complex CE definitions including
various constraints on vessels and areas. This is in contrast to the
majority of the event processing literature where quite simple CE
definitions are used for empirical analysis.

Figure 11(b) shows average CE recognition times without spatial
reasoning. More precisely, the ME stream is augmented by times-
tamped facts indicating the spatial relations between vessels and
(protected, forbidden fishing, shallow) areas. Each ME expressing
the movement of a vessel is accompanied by facts stating whether
the vessel is ‘close’ to some area of interest—the timestamp of
these facts is the same as the timestamp of the ME. For these ex-
periments, the CE definitions were updated in order to make use
of spatial facts (as opposed to RTEC computing on-demand spa-
tial relations in the CE recognition process). Figure 11(b) shows
results concerning CE recognition by single processor, as well as
CE recognition performed by two processors in parallel. The slide
� is 1 hour. In this setting, however, 1 hour of data includes ap-
proximately 15,000 input facts: 7,000 MEs and 8,000 spatial facts.
Moreover, the window range ! varies from 15,000 MEs and spatial
facts (1 hour) to 125,000 MEs and spatial facts (9 hours). As ex-
pected, the number of recognized CEs does not change with respect
to the experiments including spatial reasoning.

Figure 11(b) shows that even though the stream used as input for
CE recognition increases significantly when RTEC does not per-
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form spatial reasoning, the average CE recognition times decrease
substantially. Moreover, this figure shows that RTEC scales to large
data streams—e.g. CE recognition for all 6,425 vessels and 35 ar-
eas using a window of 125,000 input facts takes on average 1.5 sec
when two processors are used in parallel.

5.3 Discussion
Empirical results confirm that the proposed system is capable of

recognizing, in real-time, suspicious and potentially dangerous sit-
uations that require immediate attention from marine authorities.
Even when it must cope with an increased amount of incoming po-
sitions (expressed with larger window ranges sliding less often),
it can recognize complex events in a few seconds at most. Such
performance is noteworthy, given the large number of monitored
vessels in the simulated scenario. This comes thanks to the scala-
bility and robustness of the trajectory event detection mechanism,
which offers reliable incremental response (often in less than a sec-
ond) and can filter out noisy or intermittent input signals. In ad-
dition, the complex event recognition module can take advantage
of the evolving trajectory features in order to recognize complex
spatiotemporal relationships between vessels and areas of interest.

6. RELATED WORK
Detecting events from massive, streaming data has attracted a lot

of research interest, but also opens up great perspectives for build-
ing powerful monitoring applications in several domains. Event
detection from both live and archived streams has been proposed
in [10], introducing optimizations specifically for recency-probing
pattern queries. The goal of UpStream platform [23] is to answer
continuous queries with the lowest staleness possible, when each
data item represents an update to a previous one; this certainly ap-
plies to GPS positions from moving vessels, but UpStream lacks
support for the specific demands of trajectory monitoring. Au-
tomating ingestion of streaming data feeds from various sources
into data warehouses is also a challenging issue, as outlined in a
recent tutorial [15]. To the best of our knowledge, no streaming
framework is specifically tailored for maritime surveillance over
fluctuating, noisy, intermittent AIS messages from large fleets.

Detecting trajectory events from positional streams essentially
performs path simplification, a topic explored in several previous
works. Some strategies opt for acceptable approximations in terms
of a given error margin, such as those in [8, 19, 22]. Besides, the
memory space available for retaining a compressed sequence may
also be crucial in a single-pass evaluation [31]. Dead-reckoning
policies like [33] are employed in moving sources to relay posi-
tional updates upon significant deviation from the course already
known to a centralized server, so they aim to reduce communication
cost. This is not the case with AIS data, as maritime control centers
wish to locate ships as frequently as possible. The advantage of
our proposed scheme is that it accounts for stream imperfections,
i.e., the noise inherent in vessel positions due to sea drift, delayed
arrival of messages, or discrepancies in GPS signals. Most impor-
tantly, we annotate reduced representations according to particular
movement events along each vessel trace.

For archiving trajectories, we make use of Hermes [30], a pro-
totype Moving Object Database (MOD) equipped with a powerful
query language. Hermes MOD supports modeling and querying
of moving objects, and enables support of aggregative Location-
Based Services. It defines a trajectory data type as well as a col-
lection of spatiotemporal operations (range, nearest neighbor, simi-
larity, etc.), which take advantage of a robust indexing mechanism.
Semantic-aware trajectory construction [34] applies cleaning, com-
pression and segmentation over positional data, in order to define

“stop” and “move” episodes along each trace in online fashion. Be-
sides, a formal model for OLAP operations at different granulari-
ties was recently proposed in [20], but it is mostly geared towards
visual analytics over offline trajectory data.

In terms of Complex Event Recognition, RTEC has a formal,
declarative semantics in contrast to other related systems that usu-
ally rely on an informal and/or procedural semantics. Cugola and
Margara [9] point out that almost all “complex event processing
languages”, including [4], and several “data stream processing lan-
guages”, such as ESL [7], lack a rigorous, formal semantics. Eck-
ert and Bry [13] note that the semantics of “event query languages”
often are somewhat ad hoc, unintuitive and generally have an alge-
braic and less declarative flavor. Paschke and Kozlenkov [27] state
that commercial “production rule languages” lack a declarative se-
mantics. Unlike [12, 18, 9], RTEC supports complex atemporal
reasoning and reasoning over background knowledge (e.g., iden-
tifying the type of a vessel given its characteristics), which are
quintessential for maritime surveillance [14]. This way, it is possi-
ble to express the complex phenomena required by the maritime ex-
perts [32]. Furthermore, RTEC explicitly represents complex event
intervals and thus avoids the related logical problems (see [25] for
a discussion of these problems), and supports out-of-order event
streams (in contrast to e.g. [11, 9, 10, 21]). Concerning the Event
Calculus literature, a key feature of RTEC is that it includes a win-
dowing semantics. In contrast, no Event Calculus system “forgets”
or represents concisely the event history.

7. SUMMARY & FUTURE WORK
In this paper, we introduced a system that monitors the activity of

thousands of vessels and can instantly detect and recognize events
with a potentially serious impact on the environment and on safe
navigation at sea. The system can sustain large amounts of stream-
ing messages from vessels and can filter out noise and redundant
positions along their course. Hence, it can retain only succinct syn-
opses of vessel trajectories, drastically reducing the original path
into few critical points that convey major motion characteristics.
Furthermore, this reduced information may be readily analyzed on-
line for complex event recognition. Equipped with efficient pattern
matching algorithms, this module correlates critical trajectory po-
sitions with static geographical and vessel data, and detects sus-
picious or dangerous situations, such as loitering, vessels passing
through protected areas, and unsafe shipping. Our platform has
been empirically validated against a large real dataset and met ex-
pectations for timeliness, scalability, and robustness.

We plan further extensions and improvements in the existing im-
plementation. First, we soon expect to be given access to live AIS
feeds from all vessels across the Aegean Sea. This will integrate
our system with a precious source of online data, offering to ma-
rine experts and authorities the means to instantly locate, recognize,
and correlate events from real-time vessel traces.

Existing definitions of complex events were manually developed
in collaboration with vessel traffic service staff. However, creating
CE definitions manually is painstaking and error-prone. We have
begun exploring techniques based on abductive-inductive logic pro-
gramming, for automated generation and refinement of definitions
from very large datasets.

Besides, maritime surveillance exhibits various types of uncer-
tainty, exactly like most event processing applications. So, we are
porting RTEC into probabilistic logic programming frameworks, in
order to deal with imperfect complex event definitions, incomplete
and erroneous data streams. A probabilistic treatment would be
also challenging for addressing the gradual ageing and transmis-
sion delays in AIS data. Traffic forecasts at short-term horizons
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(e.g., 5, 15, or 30 minutes ahead) could also be issued, gracefully
weighing online events with offline trajectory analytics.

Last, but not least, maritime surveillance may benefit from com-
bining multiple data sources. As RTEC readily supports heteroge-
neous stream processing [6], we aim to experiment with additional
data, such as weather forecasts, for improved monitoring.
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