
Taxi Queue, Passenger Queue or No Queue?

A Queue Detection and Analysis System using Taxi State Transition

Yu Lu, Shili Xiang, Wei Wu

Institute for Infocomm Research, A*STAR, Singapore

{luyu, sxiang, wwu}@i2r.a-star.edu.sg

ABSTRACT
Taxi waiting queues or passenger waiting queues usually re-
flect the imbalance between taxi supply and demand, which
consequently decrease a city’s tra�c system productivity
and commuters’ satisfaction. In this paper, we present a
queue detection and analysis system to conduct analytic-
s on both taxi and passenger queues. The system utilizes
the event-driven taxi traces and the taxi state transition
knowledge to detect queue locations at a coordinate level
and subsequently identify 4 di↵erent types of queue context
(e.g., only passengers queuing or only taxis queuing). More
specifically, it adopts the novel and easy-to-implement al-
gorithms to selectively extract taxi pickup events and their
critical features. The extracted taxi pickup locations are
then used to detect queue locations, and the extracted crit-
ical features are used to infer queue context. The extensive
empirical evaluations, which run on daily 12.4 million taxi
trace records from nearly 15000 taxis in Singapore, demon-
strate the high accuracy and stability of the queue analytics
results. Finally, we discuss the real world deployment issues
and the gained insights from the queue analysis results.

1. INTRODUCTION
In the densely populated Asian cities (e.g., Singapore, Bei-
jing and Taipei), relatively cheap taxi fares and large num-
ber of taxis greatly facilitate the pervasive usage of taxis
by urban citizens for various purposes, such as traveling be-
tween o�ce and home, purchasing groceries at supermarkets
and visiting friends. It is relatively di↵erent from the tax-
i usage at many cities in US or Europe, where taxis more
frequently serve airport routes and do not cover all urban
districts. The taxi usage characteristics in the Asian cities
easily cause that the temporal and spatial imbalance of taxi
supply and demand occurs frequently: taxis would queue up
for passengers due to temporarily low taxi demand but high
supply nearby; passengers would queue up for taxis due to
temporarily high taxi demand but low supply; in many time
periods, taxis and passengers would concurrently queue up
as both taxi demand and supply are high. Such queuing

c� 2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

(a) Taxi Queue (b) Passenger Queue

Figure 1: Di↵erent Types of Queue in Singapore

events usually not only reduce the productivity of an urban
tra�c system, but also greatly decrease the satisfaction of
public commuters as well as taxi drivers. Fig. 1 illustrates a
taxi queue and a passenger queue that both frequently occur
in Singapore.

Properly and accurately detection of queue locations and
queue context would benefit many parties and stakeholders.
The real time queuing events information and their long-
term patterns can be used in the recommendation systems
for taxi drivers and commuters (e.g., suggest commuters to
the nearby taxi queue locations). The information can al-
so be used in the taxi operators’ booking and dispatching
systems (e.g., guide available taxis to passenger queue lo-
cations). Moreover, the government agencies need such in-
formation to understand the imbalance between taxi supply
and demand, and accordingly take necessary actions (e.g.,
increase operating taxis or adjust taxi fares).

Motivated by the availability of abundant information in
taxi traces, e.g., GPS locations and taxi states, using taxi
traces to design and build a city scale queue detection and
analysis system is a promising solution. However, it is an
open and non-trivial problem. Firstly, taxi queuing for pas-
sengers is not simply a passenger pickup, dropo↵ or vehicle
parking event, only the GPS coordinates and the binary taxi
states (occupied or non-occupied) are not enough to capture
it. Secondly, passenger queuing for taxis is even more di�-
cult to detect, as no any direct information from the passen-
ger side and no apparent clue in taxi traces. Thirdly, both
taxi queuing and passenger queuing are highly dynamic in
terms of time and locations, which not only repeatedly occur
at fixed taxi stands or during peak hours.

In this paper, we present a practical system that captures

593 10.5441/002/edbt.2015.60

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2015.60

taxis and passengers queuing activities at a fine-grained s-
cale, i.e., at the individual coordinate level rather than a
region or zone, and subsequently analyzes di↵erent types of
queue context. We summarize the key contributions of this
work as follows:

• We propose a novel approach, using multiple taxi s-
tates and their transition information, to conduct the
city scale queue analytics for both taxis and passen-
gers.

• We design and implement a two-tier queue analytics
engine, where the lower tier module detects queuing
locations and the upper tier module identifies queue
context based on the selected taxi pickup events and
features.

• We conduct the extensive empirical evaluation of our
queue analytics results before we deploy the system
in the real world. We demonstrate its stability using
large scale taxi traces, and its accuracy using various
other data sources (e.g., landmark information, failed
taxi booking data).

The rest of the paper is organized as follows: section 2 in-
troduces the background of the dataset, and then section 3
depicts our overall system architecture and define the queue
types. In sections 4 and 5, we describe our queue spot de-
tection and queue context disambiguation modules in detail
respectively. Extensive empirical evaluations are conducted
in section 6, which is followed by a discussion on deployment
and other issues in section 6. The related work is present-
ed in section 8. At last, we conclude with future work in
section 9.

2. TAXI STATE AND EVENT-DRIVEN LOG
2.1 Mobile Data Terminal
As part of the taxi operators’ e↵orts on improving their
quality of service, each taxi in Singapore is equipped with
a specifically designed device, called mobile data terminal
(MDT), which is mainly used to handle taxi bookings and
monitor a taxi’s real time status. More specifically, it re-
ceives taxi booking tasks from the backend service (taxi cal-
l center), and sends back taxi driver’s decision (accept or
reject the task) via general packet radio service (GPRS).
Moreover, MDT keeps logging and updating a taxi’s real
time state by collecting the information from taxi meter,
roof-top signs and its frontend touch screen. Fig. 2 simply
depicts an MDT system on a Singapore taxi, where MDT
is hardwired directly to di↵erent on-vehicle devices and pro-
vides taxi drivers a multifunctional touch screen.

2.2 Taxi State
Based on the collected real time information, the MDT de-
vice is able to precisely identify 11 di↵erent taxi states. Ta-
ble 1 lists all the taxi states with their descriptions. The taxi
state transitions mainly depend on the type of a taxi job. In
principle, all taxi jobs can be classified into two categories:
street job and booking job.

A street job means a taxi picks up new passengers by street
hail, and the following is the typical taxi state transitions
on a street job:

Figure 2: A simplified telematics system on a Sin-
gapore Taxi

a) a passenger hails down a taxi with FREE state along a
road or a taxi stand.

b) the taxi driver starts the taximeter for a new trip, and
meanwhile the MDT updates the taxi state to POB.

c) during the trip, the taxi state keeps POB while the MDT
periodically updates the taxi GPS location.

d) the taxi is approaching the destination and the driver
presses the STC button on the MDT touch screen to
update the taxi state to STC.

e) upon arrival of the destination, the driver presses the but-
ton on the taximeter for printing the receipt, and mean-
while the MDT updates the taxi state to PAYMENT.

f) once the driver resets the taximeter after the passenger
alights, the MDT automatically updates the taxi state to
FREE again.

A booking job means a taxi picks up new passengers, who
have made a booking via telephone, short message service
(SMS) or mobile phone applications (apps). The typical taxi
state transitions on a booking job can be described as below:

a) a passenger makes a taxi booking, and the backend ser-
vice dispatches the booking information to the nearby
taxis with FREE or STC state.

b) a taxi driver successfully bids the booking job by pressing
the button on the MDT touch screen, and meanwhile the
MDT updates the taxi state to ONCALL.

c) upon arrival of the booking pickup location, the MDT
updates the taxi state to ARRIVED.

d) if the passengers do not show up within a specific time
period (e.g., 15 minutes), the MDT updates the taxi state
to NOSHOW first and then to FREE within 10 seconds.

e) if the passenger gets on the taxi in time, the MDT up-
dates the taxi state to POB once the driver starts the
taximeter.

f) the subsequent taxi state transitions are the same as
street job’s procedure, i.e., from street job’s step c) to
step f).

Fig. 3 illustrates a complete taxi state transition diagram,
which includes the procedures of both street jobs and book-
ing jobs.

594

Table 1: Taxi State and Description

Taxi State Description
FREE Taxi unoccupied and ready for taking new passengers or bookings

POB Passenger on board and taximeter running

STC Taxi soon to clear the current job and ready for new bookings

PAYMENT Passenger making payment and taximeter paused

ONCALL Taxi unoccupied, but accepted a new booking job

ARRIVED Taxi arrived at the booking pickup location and waiting for the passenger

NOSHOW No passenger showing up and the booking canceled soon

BUSY Taxi driver temporarily unavailable due to a personal reason

BREAK Taxi on a break and driver logged on MDT

OFFLINE Taxi on a break and driver logged off from MDT

POWEROFF MDT shut down and not working

PAYMENT

ARRIVED

POWEROFF

STC

POB

FREE

BREAK OFFLINE

ONCALL

BUSY
NO

SHOW

Figure 3: Taxi State Transition Diagram

2.3 MDT Log
As the central processing device on a taxi, MDT keeps up-
dating and tracking any changes of taxi state and other crit-
ical information, e.g., GPS location, vehicle speed and taxi
fares. The MDT logging module writes all such informa-
tion to its local storage, and meanwhile selectively and peri-
odically sends them to the backend service via GPRS. The
MDT logging frequency is not fixed by default, and a logging
action is triggered by the taxi state changes, GPS location
updates and a few other critical vehicle events. Di↵eren-
t from the traditional GPS localizer traces, the MDT log
module adopts the event-driven logging mechanism, which
are explicitly driven by the 11 taxi state transition events.
Therefore, the MDT log captures much more accurate and
abundant information than the traditional GPS traces, and
accordingly provides more opportunities to discover and un-
derstand activities of both taxis and passengers.

We use the MDT log from a large local taxi operator, and
select its 6 fields: timestamp, taxi ID, GPS location, instan-
taneous taxi speed and taxi state. Table 2 gives the selected
fields in the MDT log and a sample record.

Table 2: Selected Fields of MDT Log with a Sample

Timestamp Taxi ID Longitude Latitude Speed Taxi State

01/08/2008 19:04:51 SH0001A 103.7999 1.33795 54 POB

3. SYSTEM OVERVIEW
The system block diagram with the proposed Queue Ana-
lytic Engine is illustrated in Fig 4, and it mainly consists of
two core modules:

• Queue Spot Detection Module: this module is the com-
ponent for detecting queue locations (spots) based on
the selected taxi pickup events. An algorithm is specif-
ically designed for this module to extract pickup event
sub-trajectories, which uses both the taxi state tran-
sition knowledge and the taxi instantaneous speed. In
order to detect stable queue spots, it requires a rel-
atively long-term historical dataset, e.g., a full day’s
MDT logs, from a large number of taxis.

• Queue Context Disambiguation Module: this module
is the component for identifying di↵erent queuing situ-
ations, as defined in Table 3, at a queue spot. Based on
the two newly proposed algorithms, the module firstly
fetches the required features from the input of pick-
up event sub-trajectories, and then uses the features
to resolve distinct queue types. The taxi state transi-
tion knowledge are used to accurately capture di↵erent
time points in pickup events. This module mainly runs
on a relatively short-term historical dataset for analyz-
ing queue context transition patterns and queue types.

As mentioned earlier, Table 3 defines the four queue types,
i.e., C1 to C4. The queue type C1 is both taxi queue and
passenger queue concurrently occur at the given queue spot,
which indicates taxi demand and supply are presently both
high. The queue type C2 is only passenger queue, C3 is only
taxi queue, and C4 is neither taxi queue nor passenger queue
at the given queue spot.

In this paper, “queue” refers to a stable number of waiting
entities during a specific time period, which indicates that
the average arrival rate exceeds the average service rate. To

595

Figure 4: System Block Diagram of Queue Analytic
Engine

Table 3: Four Types of Queue Context

Queue Type Passenger Queue No Passenger Queue

Taxi Queue
No Taxi Queue

clarify the above described queue types, we define taxi queue
and passenger queue as below:

• Taxi Queue: One available taxi or more steadily await-
ing for taking new passengers at a queue spot during
a given time period.

• Passenger Queue: One passenger or more steadily await-
ing for taxis at a queue spot during a given time period.

Note that no taxi queue or no passenger queue only means no
stable waiting taxis or passengers, and it does not necessarily
mean no any taxis waiting for a short time or passengers
quickly getting taxis. Moreover, for both the taxi queue and
the passenger queue, we do not impose any assumptions on
the queue shapes and service modes, but only the first-come
first-served (FIFO) discipline.

4. QUEUE SPOT DETECTION
It seems that queue spots can be easily detected by clus-
tering the most frequent taxi pickup/dropo↵ locations and
taxi parking locations. However, such a straightforward ap-
proach has di�culties due to two reasons. Firstly, a high
proportion of quick pickup and dropo↵ events occur at any
non-restricted locations in the city, and it would easily re-
sult the entire road rather than a small queuing area be-
ing a cluster. Secondly, a frequent taxi parking location is
not necessarily a taxi queue spot for passengers, and thus
the specific taxi state transitions need to be considered and
checked.

We therefore only consider such pickup events: a taxi with

an unoccupied state parks for a time of period and then
departs with an occupied state. We propose a new algorithm
to extract such slow pickup events, and we then determine
taxi queue spots by clustering the most frequent locations
of the extracted pickup events.

4.1 Preliminary
We firstly define and clarify several important terms which
are used in the following sections.

Definition 1. Individual taxi’s trajectory <: A temporal-
ly ordered sequence of the trimmed MDT log records from
one taxi, i.e., p1 ! p2 ! · · ·! p

n

, where p
i

(1 i n)
is the tuple containing the taxi state p

i.state

, instantaneous
speed p

i.speed

, latitude coordinate p
i.lat

, longitude coordi-
nate p

i.lon

and timestamp p
i.ts

.

Definition 2. Individual taxi’s sub-trajectory R(s, e): A seg-
ment of an individual taxi’s trajectory, i.e., p

s

! p
s+1 !

· · ·! p
e

, where 1 s < e n.

Definition 3. Individual taxi’s sub-trajectory set !: A col-
lection of an individual taxi’s sub-trajectories, i.e., {Rk|k =
1, 2, · · · }, where Rk = R(s

k

, e
k

).

Definition 4. Multiple taxis’ sub-trajectory set W : A col-
lection of multiple taxi’s sub-trajectory sets, i.e., {!j |j =
1, 2, · · · }, where !j is the jth taxi’s individual sub-trajectory
set.

Based on the taxi state descriptions in Table 1, we classify
the taxi states into three state sets:

Definition 5.1 Taxi occupied state set ⇥: { POB, STC, PAY-
MENT }.

Definition 5.2 Taxi unoccupied state set : { FREE, ON-
CALL, ARRIVED, NOSHOW }.

Definition 5.3 Taxi non-operational state set ⇤: { BREAK,
OFFLINE, POWEROFF }.

The BUSY state is a special state, and we do not assign it
into the above defined three taxi state sets. We will discuss
it separately in the subsequent sections.

4.2 Pickup Event Extraction

In order to detect each individual taxi’s slow pickup events,
we propose a simple and practical algorithm, called pickup
extraction algorithm (PEA): its input is an individual tax-
i’s trajectory < and output is the sub-trajectory set ! of
the required taxi pickup events. The basic idea behind the
PEA algorithm is that a slow taxi pickup event normally
has at least two consecutive low speed records (e.g., below
10 km per hour) during the period of moving forward in the
waiting line. Meanwhile, a pickup event shows certain taxi
state transitions in the corresponding sub-trajectories, e.g.,
from FREE to POB. The complete algorithm is shown in
Algorithm 1.

596

Algorithm 1 Pickup Extraction Algorithm

Input: A taxi’s trajectory < and speed threshold ⌘
sp

.
Output: The sub-trajectory set !.
1: �1 false; �2 false; k 1;
2: for i = 1! n do
3: if p

i.state

/2 ⇤ then
4: if p

i.speed

 ⌘
sp

and �1=false and �2=false then
5: �1 true;
6: else if p

i.speed

 ⌘
sp

and �1=true and �2=false
then

7: Rk.Add(p
i�1); R

k.Add(p
i

); �2 = true;
8: else if p

i.speed

 ⌘
sp

and �1=true and �2=true
then

9: Rk.Add(p
i

);
10: else if p

i.speed

>⌘
sp

and �1=true and �2=false then
11: �1 false;
12: else if p

i.speed

>⌘
sp

and �1=true and �2=true then
13: if p

sk.state 2 ⇥ and p
ek.state 2 then

14: goto TAG1 ;
15: else if p

sk.state=FREE and p
ek.state=ONCALL

then
16: goto TAG1 ;
17: else if the taxi states in Rk never change then
18: goto TAG1 ;
19: else
20: !.Add(Rk); k k + 1;
21: end if
22: else
23: goto TAG1 ;
24: end if
25: else
26: TAG1 : Rk ;; �1 false; �2 false;
27: end if
28: end for

The proposed PEA algorithm firstly filters out the sub-
trajectories with any of the non-operational taxi state, i.e.,
p
i.state

/2 ⇤. After that, it sets the low speed flag �1 to true
when the first low speed is detected, i.e., the taxi speed falls
below (or equal to) the speed threshold ⌘

sp

. Only when the
subsequent taxi speed also falls below the speed threshold,
it starts to add the tuple p

i

into an empty sub-trajectory Rk

and repeats such an adding action until the speed becomes
bigger than the threshold again. Thus, all the extracted sub-
trajectories have at least two tuples with the speeds below
the given threshold.

Finally, PEA adds the new Rk into the sub-trajectory set !,
given Rk satisfies the following state transition constraints:
1) Rk does not start with an occupied state and end with
an unoccupied state, i.e., p

sk.state /2 ⇥ and p
ek.state /2 , as

it is simply a “passenger alight” event; 2) Rk does not start
with FREE and end with ONCALL, as it means the taxi
leaves for a new booking job at another location; 3) Rk has
at least one-time state transition, as we need to filter out
Rk caused by tra�c jams or red tra�c lights.

4.3 Pickup Location Clustering
Given an individual taxi’s trajectory < having multiple slow
pickup events, the output of the PEA algorithm, i.e., the

sub-trajectory set !, contains a number of sub-trajectories,
i.e., {Rk|k = 1, 2, · · · }. For each sub-trajectory Rk, i.e.,
p
sk ! · · ·! p

ek , we compute a central GPS location (c̄
lat

, c̄
lon

)
by averaging their latitude coordinates and the longitude
coordinates. Accordingly, we have a GPS location set c =
{(c̄k

lat

, c̄k
lon

)|k = 1, 2, · · · } derived from the sub-trajectory
set !.

After running the PEA algorithm on all taxis’ trajectories
respectively, we have a sub-trajectory set W = {!j |j =
1, 2, · · · }, where !j is the jth taxi’s sub-trajectory set !.
Accordingly, we have the GPS location set C = {cj |j =
1, 2, · · · }, where cj is the jth taxi’s GPS location set c.

Given all taxis’ GPS location set C, we run it with the
density-based clustering method DBSCAN [5], which is an
e↵ective way to discover high density clusters and remove
noises. We then compute the centroid of all the found clus-
ters, and each centroid is the detected taxi queue spot. Giv-
en the fact that people always queue for taxis at the places
where taxis usually take passengers, it is reasonable to as-
sume the detected taxi queue spots are also the possible
spots where taxi passengers queue up. We thus call an
obtained centroid queue spot rather than taxi or passenger
queue spot.

The GPS location set C is normally a large dataset. When
running the DBSCAN algorithm on it, we need to careful-
ly select its parameters and strive to reduce the runtime
complexity (e.g., using the R-Tree based or grid based s-
patial index). We will address all of these implementation
issues in section 6. On the other hand, many other advanced
density-based clustering methods can also be considered and
introduced [13].

5. QUEUE CONTEXT DISAMBIGUATION
5.1 Wait Time Extraction
Given W (r) is the extracted pickup event sub-trajectory
set W for queue spot r, it consists of a large number of sub-
trajectories from di↵erent taxis. For each sub-trajectory in
W (r), the corresponding wait time is the time interval be-
tween the wait start time and the wait end time. We there-
fore present a simple algorithm, called wait time extraction
(WTE) algorithm: its input is W (r) for a queue spot r and
output is the taxi wait time set Y (r) = {tm

end

� tm
start

|m =
1, 2, · · · }, where tm

end

and tm
start

are the wait start time and
wait end time of the mth taxi. The complete algorithm is
shown in Algorithm 2.

For each sub-trajectory R(s, e) in W (r), the WTE set the
wait start time t

start

to the timestamp when the first FREE,
ONCALL or ARRIVED state appears. However, if any
PAYMENT is detected thereafter, it resets t

start

to the
timestamp when the subsequent FREE state appears. After
the wait start time t

start

is determined, the wait end time
t
end

is set to the timestamp when the first POB state ap-
pears. Finally, the time interval between the wait start time
and the end time is added into the taxi wait time set Y (r),
i.e., {tm

wait

|m = 1, 2, · · · }.

5.2 Time Slot with Pickup Event Feature
We divide the time domain into L continuous time slots,
where time slot T j (1 j L) starts at tj�1 and ends at

597

Algorithm 2 Wait Time Extraction Algorithm

Input: W (r) for queue spot r.
Output: Taxi Wait time set Y (r).
1: t

start

 null; t
end

 null;
2: for each sub-trajectory R(s, e) in W (r) do
3: for i = s

m

! e
m

do
4: if p

i.state

= {FREE or ONCALL or ARRIV ED}
and t

start

= null then
5: t

start

 p
i.ts

;
6: else if p

i.state

= PAYMENT and t
start

6= null
then

7: t
start

 null; t
end

 null;
8: else if p

i.state

= POB and t
start

6= null and t
end

=
null then

9: t
end

 p
i.ts

;
10: end if
11: end for
12: if t

start

6= null and t
end

6= null then
13: Y (r).Add(t

end

� t
start

)
14: end if
15: t

start

 null; t
end

 null;
16: end for

tj . The time t0 and tj are the start time and end time of
the time domain. Accordingly, set Y (r) can be divided into
L partitions, where Y (r)j = {tm

wait

|tj�1 tm
start

< tj} and
1 j L.

Given Y (r)j consists of multiple tm
wait

, we have their arith-
metic mean, denoted by t̄

wait

(r)j , as the average taxi wait
time over time slot T j . When computing t̄

wait

(r)j , we on-
ly consider all street jobs’ wait time, i.e., tm

start

set by the
timestamp of FREE, as a booking job’s wait time mainly
depends on a specific booking passenger’s individual arrival
time.

Given the arrival number of FREE taxi over time slot T j , de-
noted by N

arr

(r)j , and time slot length tj � tj�1, we have
the average arrival rate of FREE taxis over time slot T j :

�̄(r)j = Narr(r)
j

t

j+1�t

j . According to Little’s Law [7], which re-

lates average arrival rate, average wait time and average
queue length, we have the average FREE taxi queue length
over time slot T j : L̄(r)j = t̄

wait

(r)j ⇤ �̄(r)j .

Meanwhile, the taxi departure interval can be computed
by tm+1

end

� tm
end

, where tm
end

and tm+1
end

are the consecutive
wait end time in Y (r)j . Accordingly, we have the arithmetic
mean of all the departure intervals, denoted by t̄

dep

(r)j over
time slot T j . When computing t̄

dep

(r)j , we consider the
departure time intervals of all the departed taxis, i.e., both
street job ones and booking job ones. Thus t̄

dep

(r)j depicts
the departure rate of all departed taxis over time slot T j .

Finally, we have a 5-tuple to depict time slot T j of spot r:

'(r)j =
D
t̄
wait

(r)j , N
arr

(r)j , L̄(r)j , t̄
dep

(r)j , N
dep

(r)j
E
, where

t̄
wait

(r)j and N
arr

(r)j depict the FREE taxi arrival activi-
ties, L̄(r)j gives the FREE taxi queue length, t̄

dep

(r)j and
N

dep

(r)j depict all taxis’ departure activities. All the 5 vari-
ables are pickup event features.

As described earlier, the MDT logging is an event-driven ac-
tion, where it records the exact moment that the taxi state
switch to FREE, ARRIVED, PAYMENT or POB. There-
fore, the values in the 5-tuple are highly accurate and valid.

5.3 Queue Context Disambiguation
Given the 5-tuple for each time slot at a queue spot, we
propose a conceptually simple and easily implemented algo-
rithm, called queue context disambiguation (QCD) algorith-
m, to identify the di↵erent queue types defined in Table 3.
The basic idea behind the QCD algorithm is that: a pas-
senger queue may exist when taxi pickup events frequently
and continuously occur; besides, a passenger queue may also
exist when a considerably high proportion of booked taxis
appear, even though the frequency of taxi pickup events is
not high.

The main input of QCD is the derived 5-tuple feature set
for all time slots ⌦(r) = {'(r)j |j = 1, 2, · · · , L}, and the
output is the labeled time slots, i.e., C1, C2, C3 and C4.
The complete algorithm is shown in Algorithm 3.

Algorithm 3 Queue Context Disambiguation Algorithm

Input: ⌦(r), thresholds ⌘
wait

,⌘
dep

,⌧
arr

,⌧
dep

,⌘
dur

,⌧
ratio

.
Output: Labeled T j , where 1 j L.
1: Routine 1 :
2: for j = 1! L do
3: if L̄(r)j < 1 then
4: if N

arr

(r)j � ⌧
arr

and t̄
wait

(r)j < ⌘
wait

then
5: Label T j to C2;
6: else if N

arr

(r)j < ⌧
arr

and t̄
wait

(r)j � ⌘
wait

then
7: Label T j to C4;
8: end if
9: end if
10: if L̄(r)j � 1 then
11: if N

dep

(r)j � ⌧
dep

and t̄
dep

(r)j < ⌘
dep

then
12: Label T j to C1;
13: else if N

dep

(r)j < ⌧
dep

and t̄
dep

(r)j � ⌘
dep

then
14: Label T j to C3;
15: end if
16: end if
17: end for
18: Routine 2 :
19: for j = 1! L do
20: if T j not labeled and N

dep

(r)j ⇤ t̄
dep

(r)j > ⌘
dur

and
Narr(r)

j

Ndep(r)
j < ⌧

ratio

and L̄(r)j � 1 then

21: Label T j to C1;
22: else if T j not labeled and N

dep

(r)j ⇤ t̄
dep

(r)j > ⌘
dur

and Narr(r)
j

Ndep(r)
j < ⌧

ratio

and L̄(r)j < 1 then

23: Label T j to C2;
24: end if
25: end for

In general, the proposed QCD algorithm consists of 2 rou-
tines to identify the queue type, which use di↵erent criteria
to label the time slots. In Routine 1, it firstly examines
whether a taxi queue exists during the given time slot by
checking the queue length value L̄(r)j . When a taxi queue
does not exist, i.e., L̄(r)j < 1, it further analyzes the average
taxi wait time t̄

wait

(r)j and arrival taxi number N
arr

(r)j : a
considerably large taxi arrival number with a small average

598

taxi wait time value indicates a passenger queue exist, and
thus it labels the time slot as C2; On the other hand, a small
taxi arrival number with a considerably large average taxi
wait time value indicates no passenger queue exist, and thus
it labels the time slot as C4. In other words, the taxi arrival
number together with the average taxi wait time value serves
as the indicator of a passenger queue. When a taxi queue
exists, i.e., L̄(r)j >= 1, it analyzes the average taxi depar-
ture interval N

dep

(r)j and departure taxi numberN
dep

(r)j :
a large taxi departure number with a notably small average
taxi departure interval value indicates a passenger queue ex-
ist, and thus it labels the time slot as C1; On the other hand,
a small taxi departure number with a notably large average
taxi leave interval value indicates no passenger queue exist,
and thus it labels the time slot as C3. Note that the aver-
age taxi wait time value is no longer a good indicator of a
passenger queue when a taxi queue exist, i.e., L̄(r)j >= 1,
as the queuing delay becomes significant and even a domi-
nant factor; on the other hand, the average taxi departure
interval value is not a good indicator of a passenger queue
when a taxi queue does not exist, i.e., L̄(r)j < 1, as some
taxis may depart with booking passengers, and the corre-
sponding leave intervals are only determined by the booking
passengers’ arrival time.

In Routine 2, the QCD algorithm continues to label the time
slots that can not be identified in Routine 1: it mainly uses

the ratio Narr(r)
j

Ndep(r)
j , i.e., the ratio of the arrival FREE taxi

number to the total departure taxi number (street jobs +
booking jobs) over the given time slot, to infer whether a
passenger queue exist. More specifically, a small value of
Narr(r)

j

Ndep(r)
j essentially means a large portion of ONCALL taxis

depart from this queue spot, which strongly indicates the
di�culty to get a FREE taxi at the current spot and time
slot. Meanwhile, if the departure events occur over a long
time period, i.e., N

dep

(r)j ⇤ t̄
dep

(r)j > ⌘
dur

, the QCD algo-
rithm would infer the existence of a passenger queue, and
accordingly labels the given time slot to C1 or C2 according
to the taxi queue length value L̄(r)j . Note that in Singa-
pore, people usually prefer hailing down a FREE taxi rather
than booking a taxi, as they have to pay a compulsory 3 to
4 Singapore dollars’ taxi booking fee, which easily takes up
more than 30% of a single-trip taxi fare.

The threshold values used in the proposed QCD algorithm
need to be properly set, and di↵erent queue spots may have
di↵erent threshold values: for example, a queue spot located
at a hospital might have distinct threshold values from the
one in the airport. We will illustrate how to determine these
values in section 6.

6. EMPIRICAL EVALUATION
6.1 Queue Spot Detection Experiment
6.1.1 Data Preprocessing

Our entire dataset contains about 15000 taxis’ MDT logs,
which occupy around 60% of the total taxis in Singapore.
In general, the 15000 taxis generate around 12.38 million
daily MDT log records, and each MDT generate 848 daily
MDT log records. It is natural that such a large MDT log
dataset contains some errors, and the main error types are:
(1) improper/missing taxi states; (2) record duplication; (3)

GPS coordinates outside Singapore or in inaccessible zones.

Firstly, the standard taxi state transition diagram is given
in Fig. 3, but the taxi states in some MDT logs appear at
improper places. For example, a FREE state is found be-
tween the two PAYMENT states in many MDT logs. We
found that it is a software bug caused by the clock syn-
chronization between the old version MDT device and the
taximeter. Another common issue is some intermediate tax-
i states, e.g., ARRIVED, NOSHOW or STC, are missing
and lost. Two possible reasons are identified: 1) these in-
termediate states sometimes last only several seconds and
then switch to another state before the MDT logging thread
tracks them down. 2) logging some intermediate states re-
quires taxi driver manually press some specific buttons on
the MDT touch screen, but some drivers omit this step either
purposely or accidentally. Secondly, the duplicate records in
the MDT logs are mainly caused by the re-transmission of
the GPRS messages between MDT and the backend service.
Thirdly, the GPS coordinates errors are normally caused by
the urban canyon e↵ect [3].

In short, we remove the above described erroneous records
from the raw MDT log dataset, which occupy around 2.8%
of the total MDT log records.

6.1.2 Experiment Setup and Parameter Selection

We use the daily MDT logs from all 15000 taxis for the queue
spot detection. Firstly, we run the proposed PEA algorithm
on the 15000 taxis’ daily individual trajectories, where 10
km per hour is as the speed threshold ⌘

sp

, and successfully
extract more than 264000 pickup event sub-trajectories for
each single day. Each extracted sub-trajectory provides us
one central GPS location, and accordingly we have around
264000 GPS locations, i.e., the GPS location set C, for the
DBSCAN clustering. Running the DBSCAN clustering al-
gorithm on such a large-size point set is significantly slow
due to its O(n2) complexity. Therefore, we simply divide
Singapore into 4 rectangular zones based on their di↵erent
characteristics, i.e., Central, North, West and East, as illus-
trated in Fig. 5. The central zone covers Singapore’s central
business district(CBD) and most of tourist attractions. The
other 3 zones are typically residential and industrial areas
with a few tourist attractions. Therefore, the GPS loca-
tion set C is further divided into 4 subsets, and we run the
DBSCAN clustering algorithm on each subset respectively.

Moreover, properly choosing the two parameters of DB-
SCAN, i.e., eps "

d

and min-points p
d

, is not a trivial issue:
"
d

specifies the maximum radius of the neighborhood and p
d

sets the minimum number of points in an eps-neighborhood
of the point. An unduly small "

d

or an overly large p
d

may
lead a large part of the data points cannot be clustered,
while an overly large "

d

or an unduly small p
d

would merge
di↵erent clusters into one. Fig. 6 shows the number of the
detected queue spot with respect to di↵erent "

d

and p
d

. We
see that small "

d

values (e.g., 10 meters) or large p
d

values
(e.g., 100 points) result that only a few number of queue
spots are detected and many actual ones are neglected. On
the other hand, large "

d

values (e.g., 20 meters) or small p
d

values (e.g., 25 points) would easily merge adjacent queue
spots and meanwhile bring many insignificant queue spots.

599

Figure 5: Four Rectangular Zones

0

50

100

150

200

250

300

350

400

5 10 15 20

D
et

e
ct

e
d

 Q
u

e
u

e
 S

p
o

t
N

u
m

b
e

r

Eps Value (meter)

MinPts=25

MinPts=50

MinPts=100

MinPts=150

Figure 6: DBSCAN Performance with Di↵erent Pa-
rameter Pairs

By carefully comparing the DBSCAN clustering results, we
finally set its parameter "

d

and p
d

to 15 meters and 50 points
respectively when processing the daily Singapore taxis’ MDT
log dataset. Roughly speaking, the selected two parameter-
s allow detect the queue spot that has more than 50 taxi
pickup events within its proximity of 15 meters. Note that
the selected parameters are used to process the MDT log
dataset on the daily basis, and for di↵erent time durations,
e.g., one week’s MDT log dataset, we may have to change
and reset the DBSCAN parameters.

6.1.3 Queue Spot Detection Results and Analysis

With the selected DBSCAN parameters, totally around 180
queue spots are detected in the four zones of Singapore, as
illustrated in Fig. 7. We analyze and manually label the
detected queue spots by locating their GPS coordinates on
Google Maps with its Street View feature. It shows that
most of the detected queue spots are located nearby the pub-
lic facilities or landmarks. Table 4 summarizes the result:
almost half of the queue spots are nearby Singapore Mass
Rapid Transit (MRT) stations or bus stations, around 20%
of them are located nearby the shopping malls, hotels or of-
fice buildings. Only around 5% of the detected queue spots
do not have any significant nearby facility or landmark.

We compare the queue spot detection results with the taxi
stand locations, which are sets up by Singapore Land Au-
thority (LTA): there are 31 taxi stands with more than 3 taxi

Figure 7: Detected Queue Spots in Singapore

Table 4: Landmark Nearby the Detected Queue
Spots

Nearby Facility or Landmark Detected Spots Percentage

MRT & BUS station 48.3%

Shopping Mall & Hotel 11.8%

Office Building 9.6%

Hospital & School 8.4%

Tourist Attraction 6.2%

Airport & Ferry Terminal 5.6%

Industrial and Residential Area 4.5%

Unidentified 5.6%

0

10

20

30

40

50

60

70

80

90

Mon Tue Wed Thur Fri Sat Sun

D
e

te
ct

e
d

 Q
u

e
u

e
 S

p
o

t
N

u
m

b
e

r

Day of Week

Central Zone North Zone West Zone East Zone

Figure 8: Queue Spot Number in Di↵erent Zones
and Days

parking lots in the CBD area, and 30 of them are correct-
ly detected with the average location error only 7.6 meters
(possibly caused by the GPS error). More importantly, more
than 15 queue spots in this area, which are not labeled by
LTA, are busy enough and even have more daily pickups
than many taxi stands.

We further compare the detected queue spot number in d-
i↵erent zones and days of week. Fig. 8 shows that central
zone has the largest number of queue spots, although it only
occupies around 6% of the total area. The main reason is
that most of the high-rise o�ce buildings, shopping mall-
s and tourist attractions in Singapore are located in this
zone. More importantly, Fig. 8 shows that queue spot num-
bers in all zones do not have a high fluctuation on di↵erent

600

Table 5: Hausdor↵ Distance between Queue Spot Sets on Di↵erent Days of Week (Meter)

Hausdorff distance Mon Tue Wed Thurs Fri Sat Sun
Mon 0 57.076 42.958 59.475 45.531 104.61 143.27
Tue 57.076 0 44.768 34.649 54.293 117.41 141.07

Wed 42.958 44.768 0 41.429 54.311 106.71 139.87
Thurs 59.475 34.649 41.429 0 57.721 111.58 133.21

Fri 45.531 54.293 54.311 57.721 0 81.125 119.41
Sat 104.61 117.41 106.71 111.58 81.125 0 67.111
Sun 143.27 141.07 139.87 133.21 119.41 67.111 0

week days (from Monday to Friday), while the queue spot
number slightly drops down on Saturday and Sunday in the
central zone. It is probably caused by fewer local working
people traveling in the CBD area during the weekend. The
queue spot number during weekend does not drop signifi-
cantly, as still many people go to the shopping malls and
tourist attractions in the central zone.

To gain further insight into the queue spot detection results
on di↵erent days of week, we adopt the modified Hausdor↵
distance [4] to evaluate their similarity and stability. Haus-
dor↵ distance (or called Pompeiu-Hausdor↵ distance) has
been widely used to measure the similarity of two point sets
in object matching. Briefly speaking, it is the maximum dis-
tance of a point set to the nearest point in the other point
set. Therefore, the Hausdor↵ distance between the detect-
ed queue spot sets illustrates whether the queue spot sets
on di↵erent days of week are stable and how far they are
from each other. Table 5 shows the Hausdor↵ distance be-
tween the detected queue spot sets in meter, where each set
consists of all the four zones’ detected queue spots.

Based on the definition of the Hausdor↵ distance, the value
“0” means the two spot sets are overlapped exactly, and a
large distance value means big mismatch between the two
queue spot sets. From Table 5, we see that the Hausdor↵
distances between any two queue spot sets are only around
50 meters on the week days and around 67 meters on the
weekend days: it indicates that the detected queue spots
match quite well and thus the queue locations are normally
stable. When we compare a week day queue spot set with a
weekend queue spot set, e.g., Monday and Sunday, the cor-
responding Hausdor↵ distance easily increases to around 130
meters, but it is still a relatively low value given Singapore
an area with 50 kilometers long and 26 kilometers wide.

In short, the proposed queue spot detection method with
the properly selected parameters e↵ectively detects the Sin-
gapore island-wide queue spots with a high accuracy and
stability.

6.2 Context Disambiguation Experiment
6.2.1 Feature Preparation and Threshold Selection

For each detected queue spot, say r, we have its correspond-
ing pickup event sub-trajectory set W (r), which usually con-
sists of a number of sub-trajectories ranging from 100 to

Table 6: Average Pickup Event Number

Avg. Sub-trajectory Number Central North West East

Working Day 217.5

165.5 223.3 267.2

Weekend Day 251.6 172.3 198.1 305.8

500 daily. Table 6 illustrates the daily average number at
a queue spot in di↵erent zones and days. We see that a
queue spot has around 200 sub-trajectories on average on
a week day, and the number slightly goes up on a weekend
day. Meanwhile, the average number in the east zone is al-
ways higher than the other 3 zones: it is probably caused
by a large number of pickup events at Singapore’s Changi
international airport, which is located at the east zone.

We conduct the experiment on a daily basis and divide one
day into 48 fixed-size time slot. Each time slot thus takes
1800 seconds, e.g., 00:00 to 00:30 or 18:30 to 19:00. For
each detected queue spot, say r, we run the WTE algorithm
on its pickup event sub-trajectory set W (r), and accordingly
derive the 5-tuple feature set for all 48 time slots, i.e., ⌦(r) =
{'(r)j |j = 1, 2, · · · , 48}.

Before running the QCD algorithm on ⌦(r), we need to de-
termine the 6 threshold values used in the algorithm. For
each queue spot, we select its top 20% shortest wait time
values and top 20% shortest departure intervals, which can
commonly depict taxi wait and departure events when the
passenger queue exists. We thus use their average values as
the threshold ⌘

wait

and ⌘
dep

respectively. Accordingly, we
set the threshold ⌧

arr

and ⌧
dep

to 1800
⌘wait

and 1800
⌘dep

respec-

tively, where 1800 is the predetermined time slot length in
seconds. Meanwhile, the threshold ⌘

dur

is set to 90% of the
current time slot length, namely 1620 seconds. To deter-
mine the threshold ⌧

ratio

, we calculate the daily ratio of the
total street job number to the total job number (street jobs
+ booking jobs) in di↵erent zones and days of week, and
then set the threshold ⌧

ratio

to the corresponding ratio val-
ue, e.g., 0.84 is the average ratio value in the central zone on
Sunday. The taxi state transition knowledge, as illustrated
in Fig. 3, is directly used to derive and separate booking
jobs and street jobs from the MDT logs.

Lastly, given the fact that our dataset, i.e., around 15000
taxis’ MDT logs, only occupies 60% of the total operating

601

Table 7: Proportion of Di↵erent Queue Types

Queue Type Percentage in All Time Slots

 30.1%
 11.7%
 8.6%
 33.1%

Unidentified 16.5%

taxis in Singapore, we increase the feature values N
arr

(r)j ,
L̄(r)j and N

dep

(r)j by multiplying an amplification factor
1.667 and decrease the feature value t̄

dep

(r)j by multiplying
0.6 for all time slots.

6.2.2 Experiment Results and Analysis

Based on the extracted 5-tuple feature set and the deter-
mined threshold values, we run the QCD algorithm on 25
randomly selected queue spots respectively. Table 7 summa-
rizes the queue type identification results: nearly 84% time
slots in total are successfully labeled as C1 to C4 respective-
ly, among which 30% time slots are labeled as C1, namely
taxi queue and passenger queue concurrently exist, while
33% time slots are labeled as C4, namely no any taxi queue
or passenger queue during these time slots. Meanwhile, only
11.7% time slots are labeled as C2, namely only passenger
queue exists, and 8.6% time slots are labeled as C3, namely
only taxi queue exists. It shows that such two situations do
not occur as frequently as C1 or C4. Besides, around 16%
time slots cannot be identified by the QCD algorithm due
to their insignificant features. For example, during a time s-
lot T j that no taxi queue exist, i.e., queue length L̄(r)j < 1,
only several taxis, e.g., 7 or 8, arrive and depart with a
moderate average wait time value; meanwhile, there is no
significant number of ONCALL taxis arrive and leave. In
such cases, the QCD algorithm does not label the time slot
to any predefined type, but simply label it as unidentified
or insignificant type.

We further compare the queue type identification results on
di↵erent days of week. Fig. 9 shows that during the five
week days, all queue types’ proportion do not have a high
fluctuation. However, during the two weekend days, espe-
cially on Sunday, the proportion of C4 significantly goes up
from 30% to around 40%, and meanwhile the proportions of
C2 and the unidentified time slots drop down. One possible
explanation is that during weekend days fewer business and
working people traveling leads to more C4 time slots and
accordingly fewer C2 and unidentified time slots. Fig. 9 also
shows that the proportion of C3 slightly goes down and C1

generally maintains its proportion over a whole week.

To further validate the queue type identification results, we
collect the waiting taxi number from an independent vehicle
monitor system [14], which is set up for continuously observ-
ing the vehicle number inside a taxi stand area (normally a
predefined polygon). The monitor system updates the ve-
hicle number every 60 seconds via its RESTful web service,
which can be used as a good indicator for the existence of
a taxi queue. On the other hand, we take the failed taxi
booking records from the taxi operator’s backend database.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Mon Tue Wed Thur Fri Sat Sun

Q
u

e
u

e
 T

yp
e

 P
e

rc
e

n
ta

ge

Day of Week

C1 C2 C3 C4 Unidentified

Figure 9: Proportion of Queue Type in Di↵erent
Days of Week

Table 8: Average Number of Taxis and Failed Book-
ings

Queue Type Avg. Taxi Number Avg. Failed Booking Number

 6.13 0.35
 1.35 4.29
 3.26 0.13
 0.32 0.73

Unidentified 1.56 0.24

A failed taxi booking means the booking request has been
successfully dispatched to all the nearby taxis, but the pas-
senger finally fails to get a taxi due to no taxi available inside
the dispatching circle centered at the pickup location with
radius 1 kilometer. Frequently failed bookings over a short
period at the same pickup location indicate that the passen-
ger’s current demand is much higher than the taxi’s current
supply, and thus can be used to imply the existence of a
passenger queue.

Table 8 shows the average taxi number obtained from the
vehicle monitor system and the average failed bookings num-
ber obtained from the taxi operator during the labeled time
slots. We see that the average taxi numbers of C1 and C3 are
notably higher than the corresponding values of C2 and C4:
it suggests a high chance of a taxi queue occurring during
the time slots labeled as C1 and C3. Meanwhile, the aver-
age failed booking numbers of C2 is significantly higher than
the others: it strongly indicates a high chance of a passenger
queue occurring during the time slots labeled as C2. Note
that the time slots labeled as C1 do not have many failed
bookings: it is probably because many available taxis queu-
ing at or nearby the queue spot. In short, the failed booking
data combined with the information from an independent
vehicle monitor system, at least to some extend, validates
the queue type identification results.

6.2.3 A Sample Case: Lucky Plaza Queue Spot

To demonstrate the queue type identification results from
the individual perspective, we take one queue spot, which
is detected nearby the main entrance of Singapore Lucky
Plaza, as an illustrative example. Lucky Plaza is a shopping
center located at Orchard Road, which is a famous retail
and entertainment hub in Singapore. We simply pick up
a Sunday’s queue type identification results at the Lucky

602

Table 9: A Sample Queue Type Identification Result

Queue Type C1 C2 C3 C4 Unidentified

Time Slot

00:00 --- 00:30
09:30 --- 10:00
11:00 --- 15:30
17:30 ---19:30

15:30 --- 17:30
19:30 --- 20:00

00:30 --- 1:30
10:00 --- 11:00
20:00 --- 21:30

1:30 --- 08:30
21:30 --- 23:30

8:30 --- 9:30
23:30 --- 24:00

Plaza queue spot, and summarize them in Table 9.

From Table 9, we see that during the early midnight the
queue type C1 (from 00:00 to 00:30) and C3 (from 00:30
to 01:30) are identified, which means the concurrent pas-
senger queue and taxi queue occur first and then only the
taxi queue left. After that, the queue type C4 lasts 7 hours
(from 01:30 to 8:30), meaning no taxi queue or passenger
queue until the early morning. During the peak shopping
hours (from 11:00 to 20:00), the queue type shifts between
C1 and C2, meaning either the concurrent passenger queue
and taxi queue or only the passenger queue at Lucky Plaza.
After the peak shopping hours, the queue type switches back
to C4 (from 21:30 to 23:30), i.e., no taxi queue or passenger
queue. We conducted a short term study at the Lucky Plaza
queue spot: the actual queue variance pattern fits well with
the above described queue type identification result. For ex-
ample, during the early midnight, most of people, who just
leave the nearby night clubs, usually wait taxis at this queue
spot, which explains why the queue type changes to C1 or
C3 during such time slots.

7. DISCUSSION
7.1 A Real World Deployment
To better serve the stakeholders of our solution (the gov-
ernment agencies, public commuters and taxi operator), we
implemented a practical taxi queue detection and analysis
system, which consists of a backend queue analytic engine
and a web-based frontend user interface.

Within the queue analytic engine, the queue spot detection
module uses the relatively long-term historical dataset to
extract queue spots. Based on the evaluation results, the
queue spot sets in Singapore show some di↵erences between
week days and weekend days. Thus, we simply use historical
week days’ dataset to extract queue spots for a week day,
and use historical weekend days’ dataset to extract queue
spots for a weekend day. In the current implementation, the
queue spot detection module collects the most recent 5 week
days’ dataset and 2 weekend days’ dataset to extract and up-
date the corresponding queue locations. The queue context
disambiguation module currently mainly runs on the short-
term historical dataset to generate the queue type transition
reports for week day and weekend day respectively. The
historical dataset size and the update frequency for both
modules can be configured by system users.

The web-based user interface provide users a simple way to
understand and access the queue detection and analysis re-
sults. When a user opens the query page, it firstly shows all
the latest detected queue spots in Singapore on the Google
Map. By zooming into a region and placing the mouse on
a specific queue spot, the user can see the identified queue
type at the selected time slot together with the nearby fa-
cility name as shown in Fig. 10. If necessary, the user can

Figure 10: User Interface of the Deployed System

further query the long-term queue type transition reports
and save it into the database or a text file.

The backend queue analytic engine is mainly implemented in
Java and uses Java database connectivity (JDBC) to retrieve
the readily available MDT logs in a PostgreSQL database
system. The frontend user interface is developed based on
Google Map Javascript API.

7.2 Interesting Findings
Driver Behavior : the taxi BUSY state, as describe in Ta-
ble 1, is designed for taxi drivers when they temporarily
unavailable due to personal reasons. However, we find that
during the time slots of C1 and C2, especially C2 (name-
ly only passenger queue), a number of taxis enter the queue
spots with a BUSY state and then quickly leave with a POB
state. Such a phenomenon indicates that some taxi drivers
only pick up their favorite passengers and deny the other-
s by using the BUSY state as an excuse. We are currently
further investigating on this issue and the possible solutions.

Sporadic Queue Spot : although the detected queue spot-
s in Singapore show an overall high stability, there are a
few exceptions. For example, a queue spot inside the west
zone periodically appears only on every Sunday (occasion-
ally on Saturday) but never shows during week days. By
manually labeling this queue spot, we locate it at a local
leisure park, which is not a quite famous tourist attraction
in Singapore but only a popular place for the local family
during the weekend. Another example is that an individual
queue spot is detected only on a specific Sunday at Sentosa
island, and through the local newspaper we find that it is
caused by a company’s anniversary celebration event. These
examples not only show that the sporadic queue spots can
be precisely captured by our solution, but also demonstrate
that meaningful semantics behind both regular and sporadic
queue spots can be further explored.

8. RELATED WORK
8.1 Queue Sensing and Detection
Queuing theory [6] has been extensively studied and widely
applied (e.g., in the wireless communications), while there is
limited research work on detection and analysis of the real
world queuing behaviors. The early studies [10] conduc-

603

t video analytics to detect human queuing activity based
on stationary cameras. Recently, people start using smart-
phones [12] and sensor networks [11] to sense and detect
human and vehicle queues. All the existing solutions re-
quire fixed infrastructures with maintenance overheads and
additional costs.

8.2 Taxi Trace Analytics
Driven by the availability of abundant information in taxi
traces, especially the GPS location information, mining taxi
traces has received massive attentions from both academia
and industry in recent years. The existing work can be gen-
erally classified into three categories: 1) mining taxi traces
to study the city population movement patterns and behav-
iors [9, 15]; 2) using taxi traces as a probe to infer or predict
tra�c conditions for city road networks [1, 8]; 3) mining taxi
traces to discover and sense human or vehicle’s special events
and behaviors [16, 17]. For example, the authors in [16] use
taxi traces to sense refueling behavior and citywide petrol
consumption. Our work can be classified into the third cate-
gory, and we refer the interested readers to a good survey [2]
for taxi traces analytics.

To the best of our knowledge, there is no previous work
using taxi traces to conduct the real world queue analytics
for both taxis and their passengers.

9. CONCLUSION AND FUTURE WORK
By leveraging on the event-driven MDT logs and the taxi
state transitions, we design and implement a practical sys-
tem to e↵ectively detect the queue spots and identify the
queue context in Singapore. The extensive evaluation re-
sults show the feasibility and the accuracy of the deployed
queue analytic engine.

The deployed system and the queue context analysis results
lay a solid foundation for future work:

• Integrate the queue analytic information into the ex-
isting MDT system to conduct recommendations for
taxi drivers, e.g., suggesting recent emerging passen-
ger queue spots.

• Periodically publish both taxi queue and passenger
queue information to the public and help to reduce
queuing events in the city.

• Work with LTA to set up new taxi stands at the busy
queuing spots and improving the existing facilities.

Lastly, we would like to highlight that the nature of this work
is applicable to not only Singapore but also other densely
populated cities, given their taxis equipped with the MDT-
like telematics devices.

10. REFERENCES
[1] J. Aslam, S. Lim, X. Pan, and D. Rus. City-scale tra�c

estimation from a roving sensor network. In Proc. ACM
Conference on Embedded Network Sensor Systems
(SenSys), 2012.

[2] P. S. Castro, D. Zhang, C. Chen, S. Li, and G. Pan. From
taxi gps traces to social and community dynamics: A
survey. ACM Comput. Surv., 46(2):17:1–17:34, Dec. 2013.

[3] M. Dottling, F. Kuchen, and W. Wiesbeck. Deterministic
modeling of the street canyon e↵ect in urban micro and
pico cells. In Proc. IEEE International Conference on
Communications (ICC), pages 36–40, June 1997.

[4] M.-P. Dubuisson and A. Jain. A Modified Hausdor↵
Distance for Object Matching. In Proc. IAPR International
Conference on Computer Vision and Image Processing,
pages 566–568, Oct. 1994.

[5] M. Ester, H. peter Kriegel, J. S, and X. Xu. A
density-based algorithm for discovering clusters in large
spatial databases with noise. In Proc. ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining (KDD), 1996.

[6] D. Gross, J. F. Shortle, J. M. Thompson, and C. M. Harris.
Fundamentals of Queueing Theory. Wiley-Interscience,
New York, NY, USA, 2008.

[7] J. D. C. Little. A Proof for the Queuing Formula: L = �W.
Operations Research, 9(3):383–387, 1961.

[8] S. Liu, Y. Liu, L. M. Ni, J. Fan, and M. Li. Towards
mobility-based clustering. In Proc. ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining (KDD), 2010.

[9] L. Moreira-Matias, J. Gama, M. Ferreira,
J. Mendes-Moreira, and L. Damas. Predicting
taxi-passenger demand using streaming data. IEEE
Transactions on Intelligent Transportation Systems,
14(3):1393–1402, Sept 2013.

[10] J. Segen. A camera-based system for tracking people in real
time. In Proc. International Conference on Pattern
Recognition (ICPR), 1996.

[11] R. Sen, A. Maurya, B. Raman, R. Mehta,
R. Kalyanaraman, N. Vankadhara, S. Roy, and P. Sharma.
Kyun queue: A sensor network system to monitor road
tra�c queues. In Proc. ACM Conference on Embedded
Network Sensor Systems(SenSys), 2012.

[12] Y. Wang, J. Yang, Y. Chen, H. Liu, M. Gruteser, and R. P.
Martin. Tracking human queues using single-point signal
monitoring. In Proc. ACM Conference on Mobile Systems,
Applications, and Services (MobiSys), 2014.

[13] I. H. Witten and E. Frank. Data Mining: Practical
machine learning tools and techniques. San Francisco:
Morgan Kaufmann, 2005.

[14] W. Wu, W. S. Ng, S. Krishnaswamy, and A. Sinha. To taxi
or not to taxi? - enabling personalised and real-time
transportation decisions for mobile users. In Proc. IEEE
International Conference on Mobile Data Management
(MDM), pages 320–323, July 2012.

[15] N. J. Yuan, Y. Zheng, L. Zhang, and X. Xie. T-finder: A
recommender system for finding passengers and vacant
taxis. IEEE Transactions on Knowledge and Data
Engineering, 25(10):2390–2403, 2013.

[16] F. Zhang, D. Wilkie, Y. Zheng, and X. Xie. Sensing the
pulse of urban refueling behavior. In Proc. ACM
International Joint Conference on Pervasive and
Ubiquitous Computing(UbiComp), 2013.

[17] Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma. Mining
interesting locations and travel sequences from gps
trajectories. In Proc. ACM Conference on World Wide
Web (WWW), New York, NY, USA, 2009.

604

