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ABSTRACT
We present a transactional and concurrent replication scheme
that is designed for hybrid data store architectures. The sys-
tem design and the requirements are motivated by the real
business cases we encountered during the development of our
commercial database product. We consider two databases
where the original database handles read/write transactional
application workloads while the second database handles
read-only workloads from the same applications over the
data periodically replicated from the original database. The
main requirement is ensuring the application of the updates
on the replica database in the exact same order they were
executed in the original database, which is called execution-
defined order. Although this requirement could easily be
satisfied by the serial execution of the updates in the commit
order, doing so in an e�cient manner by exploiting concur-
rency is a challenging problem. We present a novel concur-
rency control algorithm to addresses that problem by also
allowing the read-only workloads on the replica database to
interleave with the concurrent replication. The extensive
experiments show the e�cacy of the proposed solution.

1. INTRODUCTION
Increasingly more organizations are using multiple database

types side-by-side instead of trying to fit one database to all
data management needs. The reason is each database prod-
uct could be better fit for di↵erent business requirements.
We call the use of multiple database types in the same com-
puting environment hybrid data store architecture.

It is natural that data need to be replicated among those
data stores, as the upstream applications ideally would like
to use the underlying databases in a seamless fashion with-
out worrying about and the availability of the data sets at
a certain location.

An interesting hybrid architecture we are observing is us-
ing key-value stores along with relational databases. The re-
lational databases have well known strengths and long, suc-
cessful history in transactional data processing. Key-value
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Figure 1: Caching for web applications.

stores have gained popularity for their seamless scalability
and elasticity and also their lower-cost profile.

In this work, we specifically focus on the replication, where
data need to be replicated from a relational database to a
key-value store. The system design and the requirements are
motivated by the real business cases we encountered during
the development of our commercial database product, Par-
tiqle [20], which is commercialized under the name of IERS1.
Partiqle is an elastic transactional SQL engine that is imple-
mented on top of a key-value store. In a typical scenario the
users already have a traditional relational databases prod-
uct in use. They want to increase the scalability of the
database with the increasing demand from the applications.
However, the users don’t prefer to scale-up the traditional
relational database, instead they consider the scale-out ap-
proach through a key-value store, which is the replica of the
relational database and serves a specific and demanding part
of the workload. Naturally, the main requirement is ensur-
ing the application of the updates on the replica database
in the exact same order they were executed in the original
database, which is called execution-defined order.

Another prominent example of such setting is caching,
where data from relational database are cached in a large-
scale cache cluster implemented as a key-value store, such
as memcached [3]. Memcached is used to significantly re-
duce the read load on the database system by caching fre-
quently read application generated data in a scale-out in-
memory key-value cache. Figure 1 depicts the architecture
of a web application that uses memcached. Indeed, most of
the largest web applications including Facebook, YouTube,
Twitter and Wikipedia are already using memcached as the
key scale-out technology in their architecture.

An extreme case of application layer caching approach is

1http://www.nec.com/iers
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to cache all the working set data instead of only parts of it.
In fact, in this case all the working set data in database is
replicated in the cache system that can either be a memory
based system like memcached or disk based key-value store
system like memcachedb [4] or membase [2] to provide data
persistence and recovery. In addition to having the all ad-
vantages of normal caching system, such a replication-based
system eliminates the cache miss possibility for applications.
This is very beneficial when the access pattern to the data
is such that reduces the probability of cache hit. Uniform
distribution of data access is one of such patterns that may
reduce usability of caching. The replication approach also
simplifies the application developers’ job by not requiring
explicit cache value update or invalidation since all the up-
dates are propagated to the replicated data automatically.

With all the benefits of such caching, a major issue that
may arise is the exposition of stale data to application, which
happens because the replica always lags behind the original
data. If there is a high transactional update load on the
original data, the replica may significantly be out of sync.
Therefore, shortening the lag for the replica would signifi-
cantly reduce the probability of exposing stale data to the
application.

As shown in Figure 1, the relational database handles
transactional read/write workload and the key-value store
is responsible for handling a read-only workload. The trans-
actional updates in the original database are shipped to the
key-value store and applied in the same order to guaran-
tee the correct state for the replica. We call this order as
execution-defined order. Transactions may interleave dur-
ing their execution against the original database. However
their correct order is defined by their original execution and
that order should be respected when doing the log replay
for replication. Consequently we have the following require-
ments:

• The replication process should respect the execution-
order of the transactions in the original database.

• The replication process should be e�cient to increase
replication speed and reduce replica lag.

• The read-only access should be allowed to interleave
with an on-going replication process.

The first requirement states that the replication algorithm
should guarantee that the resulting serialization order for
transactions in the replica is exactly the same as the serial-
ization order in the original database and no other serializa-
tion order is acceptable. To illustrate the problem, consider
two transactions in Figure 2. If Ti is executed before Ti+1

then the data item with key Keyk will not exist in the data
store. On the other hand, if Ti+1 is executed before Ti the
data item with key Keyk with value Object will exist in the
data store. Therefore, although both executions are correct
from serialization point of view, the second execution is not
acceptable since it does not result in the correct state con-
sidering the predefined execution order.

The above requirement could be trivially implemented by
replaying the update values in commit order serially. How-
ever this kind of serial execution would be prohibitively in
e�cient – the second requirement. Therefore the replication
algorithm should improve the e�ciency by exploiting con-
currency while still respecting the execution-defined order

and allowing the read-only workload on the replica to see
consistent database state concurrently.

As we discuss in the related work section, although there
are related methods in the literature, none of them directly
meets the requirements in the given system settings.

Figure 2: Impact of serialization order on system

state.

The contributions of this paper can be summarized as
follows:

• We present a replication algorithm that exploits con-
current execution for e�ciency while guaranteeing the
execution-defined order in the replica database and al-
lowing read-only application workloads to interleave
on the replica database.

• We present the architecture of the system, TxRep,
we implemented based on the replication method pre-
sented in the paper and hybrid data store architecture.
The actual system is used to generate our experimental
results presented in the paper.

• Through extensive experiments we evaluate the per-
formance of the proposed transactional replication al-
gorithm under variety of parameters.

The rest of the paper is organized as follows. We review
the related work in Section 2 and then present the system
architecture and the consistency model in Section 3. Section
4 describes query translator followed by the details of our
transaction manager and concurrency control algorithm in
Section 5. We present our experimental results in Section 6.
Section 7 concludes the paper.

2. RELATED WORK
Application level caching systems such as memcached [3],

memcachedb [4] and membase [2] have been used as scale
out solution in many web applications. However, such sys-
tems do not provide any transactional consistency guaran-
tees for data access and updates with the rest of the sys-
tem. Transactional cache (TxCache) provides transactional
access to application level caching systems such as mem-
cached [19]. TxCache guarantees that any data accessed
regardless of being in cache or database is consistent based
on a valid snapshot of the database. It may result in stale
snapshots which is acceptable for web applications. Unlike
TxCache and other application level caching approaches, our
proposed scale out approach replicate whole data base in the
key/value store and prevents all read transactions from hit-
ting the relational database.

In the relational database context, a common approach
for scale-out is replication [13]. In [17] Manassiev et. al.,
present a replication technique for scaling and continuous
availability of relational databases. The approach assigns a
master for each conflict class where all update transactions
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for the class are sent to the corresponding master. Each mas-
ter node has a set of slaves that are its replicas and serve the
read-only transactions in the system. Updates are dissem-
inated from master to its slave nodes either eagerly upon
their arrival or lazily by packing several updates and apply-
ing them together. This approach can be further improved
by using a modified version of our algorithm in applying the
updates on slave nodes.

Providing equivalence to a predefined serialization order
has been explored in the context of relational databases.
Conservative timestamp ordering guarantees the execution
order based on the assigned timestamps to the transactions
[10]. By delaying the execution of operations until com-
pletion of execution of conflicting operations with smaller
timestamp, conservative T/O guarantees there will be no
conflicts in execution of each operation. In practice, this ap-
proach serializes all write operations in the database. The
improved version of this protocol, SDD-1, tries to provide
more concurrency by using transaction classes [11]. Trans-
actions are places in transaction classes and only potentially
conflicting transaction classes should be dealt with conser-
vatively.

Our concurrency control algorithm is very similar to con-
currency control by validation [16]. This approach also as-
signs three states to transactions, START, VAL and FIN
which are equivalent to START, COMITTED and COM-
PLETTED states in our algorithm. However, in our algo-
rithm we have a predefined order that we should follow while
in the validation-based case the order is decided in the val-
idation phase. In the validation-based case if a transaction
cannot be validated it is simply rolled back which will result
in a di↵erent serialization order compared to the case where
the transaction could be validated. But in our case this is
not acceptable and we strictly should follow the predefined
order.

Jiménez-Peris et. al., proposed a deterministic thread
scheduling to enable replicas to execute transactions in the
same order [14]. This approach requires careful considera-
tion of the impact of interleaving of local threads and sched-
uled threads.

In [21] Thomson and Abadi propose a distributed database
system that guarantees equivalence to a predetermined se-
rial ordering of transactions by combining a deadlock avoid-
ance technique with concurrency control schemes. All the
transactions in the system go through a preprosessor com-
ponent that determines the execution order and then are
propagated to replicas using a reliable, totally ordered com-
munication layer. The conflicting transactions are aborted
and retried, however, all abort and retry actions are deter-
ministic although the order may change by preprosessor. In
our proposed approach, on the other hand, we do not have
the possibility of changing serialization order and we should
follow the predefined order strictly all the times.

Polyzois and Garcia-Molena proposed a similar algorithm
for remote backup in transaction processing systems [18].
To execute transactions in the backup they use tickets to
order transactions and two phase locking protocol for con-
currency. Each transaction requests lock on the items that it
needs, however, the locks are granted according to the trans-
action ticket number and the protocol ensures that no lock
is granted to a transaction unless all the transactions with
the smaller ticket that requested the same lock have been
granted. Unlike this approach our concurrency control algo-

rithm follows a technique similar to optimistic concurrency
control.

3. SYSTEM ARCHITECTURE
Figure 3 illustrates the architecture our implemented sys-

tem. We assume a standard relational database as the database
that stores all the persistent application data. The database
system provides a SQL interface for the applications and is
responsible for handling read/write transactional workload.
It is important to note that, we do not change the standard
relational database’s API’s, query execution mechanisms, or
optimizations.

To improve the performance of the database system for
certain application workloads, the database is replicated into
a distributed key-value store. The key-value store can be
memory-based or disk-based store. The replicated key-value
store plays similar role to cache for the database and is used
to handle the read only workload while the read/write work-
load bypasses the key-value store and is run directly on the
database. The system does not have any specific assumption
about the key-value store and as long as the store provides
standard PUT/ GET/ DELETE interface to access data, it
can be used in our system. For instance, we can use mem-
cached[3], memcachedb[4] or Dynamo [12] as the key-value
store in our system. In our system we provide both key-
value store API (PUT/ GET/ DELETE operations) and
also SQL API to the key-value store. The key-value store
API is the native API and it does not require any additional
component. To enable SQL API to the key-value store we
used our Partiqle system [20]. There are other examples of
providing SQL-like APIs to key-value stores, such as UnQL2

and CQL3, which could also be used for this purpose.

Figure 3: Scale out architecture of TxRep using key-

value store.

Between the relational database and the key-value store
we have three main components of our system that are re-
sponsible for synchronizing the key-value store with the re-
lational database.

The Replication Middleware component is responsible for
shipping the transaction log from the relational database
to the replica in the key-value store. It periodically reads
the transaction log in the database, packs the new transac-
tions into a relocation message and ships the messages to the
key-value store. Note that the transaction log only includes
write statements and there is no need to apply read state-
ments from the relational database in the replica. We used
an MQ-based system (Apache ActiveMQ) as the replication
middleware. Although it is an important part of the system

2http://www.unqlspec.org
3Cassandra Query Language: http://www.datastax.com
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architecture, the replication middleware details are not di-
rectly relevant for the concurrent replication method, which
is the main focus of the paper. Therefore, we give some
details of the component in the appendix for the interested
readers.

The Query Translator (QT) component is responsible for
translating the update only SQL statements into native key-
value store API operations that can be directly executed on
the key-value store. Note that the replication workload only
contains the write operations to key-value store. We will
discuss details of the QT component shortly.

The Transaction Manager (TM) component is used to ap-
ply the transactions to the key-value store concurrently. The
TM component essentially implements the proposed concur-
rent replication method in the paper. Note that when the
transactions reach the TM they are in the form of native
key-value store API as they have been translated by QT
component. The result of applying the transactions should
be exactly the same as applying them in serial manner with
execution-defined order. We will provide more details on the
TM in Section 5.

3.1 Consistency model
Our system provides both transactional and non-transactional

access to the stored data. The read/write transactions by-
pass the key-value store and are run directly on the database.
Non-transactional read only workload can be directly exe-
cuted on the key-value store. This is the same access method
that is provided in systems like memcached and memcachedb.
For such workload the only consistency guarantee is the
one that is provided by the key-value store and the read
data may also be stale. Most of the existing key-value
store systems can provide key level consistency guarantees
where access to single key-value item (a single PUT, GET
or DELETE operation) can be atomic.

4. QT: RELATIONAL DATA IN K/V STORE
In this section we present the details of the Query Trans-

lator component. We first present the data layout on a key-
value store and then describe how transaction logs in SQL
format are translated into key-value store API operations.
In order to facilitate the discussion, we use a modified ver-
sion of TPC-W benchmark [8] schema as a running example.
Figure 4 depicts the modified relational schema. When a
customer orders an item, a new tuple corresponding to the
order is added into the order relation.

Figure 4: A relational schema for a web based store.

4.1 Relational data over key-value store
Since we replicate the relational data in RDBMS into a

key-value store and the data layout on these two stores are
di↵erent, we need to provide a mapping scheme to map the
relational data layout into the key-value data layout.

The first step in storing relational data in the key-value
store is to store data in relations. To store the tuples of a
relation in the key-value store we represent each tuple as a
key-value object. We construct the key for each tuple by
combining the name of the relation and the primary key.
This generates a unique key for each tuple in each relation.
The value for the generated key is the set of all fields for
tuple. For instance, consider the ITEM table in our example.
Figure 5 depicts three tuples in this table. To represent
each tuple as a key-value object, we first create a unique
key for each tuple by concatenating the name of the relation
with the primary key. For the first tuple the key will be
”ITEM 1”. The corresponding value for the first tuple will
be the set of fields in the tuple, {1, ’Item1’, ’Item1 Desc’,
100}.

Figure 5: Tuples in item table.

The above mapping of relational data into key-value ob-
jects provides primary key access to tuples where the appli-
cation can query, read and write each tuple by its primary
key. However, tuples cannot be accessed using any other at-
tribute. For instance, a query cannot access an item based
on its cost which is the value of ”I COST” column in ITEM
table. This is because there is no key in the key-value store
that provides access to item tuples using their cost value.
Note that, usually, we are not allowed to scan the entire
table: such an operation, which spans over the entire key-
value nodes is very ine�cient and is not a↵ordable for web
applications where the response time is limited. In order
to provide access to the tuples through an attribute other
than primary key, we create a hash index for the attribute
in the key-value store. A hash index structure is composed
of set of key-value objects. For each distinguished value for
the indexed attribute, we create a key-value object. The
key is constructed using the value of the indexed attribute
and the value for the object is the set of keys for the tuples
that the value of their corresponding attribute is the same
as the value that was used to construct the key. As an ex-
ample consider we want to provide access to items through
the item cost. For each cost value in the ITEM table we
should create a key-value object. The key for such an object
is constructed using the relation name, which is ”ITEM”, the
attribute name which is ”COST” and the value of the cost
column. The value of the object is the keys for the tuples
that have the same cost. Figure 7 shows a hash index for
the cost attribute in the ITEM relation. Assuming the cost
of items with id 1 and 7 is 100, the value for the hash in-
dex object with key ”ITEM COST 100” will be ”ITEM 1”
and ”ITEM 7” which are the keys to access the tuples cor-
responding to these items.

4.2 Range index using B-link tree
Although we can use a hash index to access tuples through

any of their attributes, we cannot use it to answer range
queries and queries that need to scan a whole table. To pro-
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Figure 6: Key/value objects for the tuples in ITEM

table.

Figure 7: A hash index to access items with their

cost value.

vide this capability over key-value store we propose another
index structure that is based on B-link tree [15]. B-link tree
is a concurrent B-tree that reduces the lock usage for e�-
ciency. A B-link tree is a B+-tree with an extra pointer in
each node. This extra pointer in a node points to the right
sibling of the node in the tree. Using this extra pointer,
look up operation in B-link tree do not need to acquire any
locks and insert and delete operations need to acquire locks
on a small number of nodes. We create a key-value object
for each B-link tree node. Hence, (1) conflicts among write
operations are translated to conflicts on key-value store API
operations, which are managed by the TM component (in-
stead of locking), and (2) read-only transactions can access
the B-link tree mapped on a key-value store without being
blocked by updates.

4.3 SQL statement translation
The replication is done by shipping the transaction log

from the relational database and applying the database up-
date operations on the key-value store. Therefore the trans-
lation between the relational transactional log to key-value
store API operations (such as PUT) involves translating IN-
SERT / UPDATE / DELETE statements from the database
log. This operation is not particularly di�cult and we used
our existing system components from Partiqle system [20]
for this purpose.

5. TM: CONCURRENCY CONTROL FOR
REPLICATION

The transaction manager (TM) component is responsi-
ble for concurrently executing transactions on the key-value
store. A transaction starts with start statement and ends
with commit statement. We consider the transactions that
are executed by TM are the ones in transaction log of the
relational database that were shipped by the replication mid-
dleware. However, read-only transactions from application
can also be interleaved with the shipped update transac-
tions if they need transactional access to the replicated data
in the key-value store. To maintain the correctness of the
replicated data in the key-value store the transaction man-
ager should guarantee that the result of concurrent execu-

tion of the update transactions shipped from the database
is exactly the same as serial execution of them in the same
order as they were executed in the database. The simple
way to provide such guarantee is to execute all the trans-
actions in the key-value store side serially. However, if the
update rate in the database is high, the replica could signifi-
cantly lag behind the database and increase staleness of the
data in the key-value store. It may also significantly reduce
the throughput of the read only transactions that are being
executed on the key-value store side.

To address this issue we can execute transactions concur-
rently, however, we need to provide concurrency control to
guarantee correctness of the transaction executions. Such
concurrency control mechanism is di↵erent from the ordi-
nary concurrency control systems because of the execution-
defined order of transactions. In an ordinary concurrency
control algorithm when a set of transactions are executed,
as long as the result of the execution is equal to some serial
order of transaction execution the result is acceptable. How-
ever, in our case the concurrency control algorithm has to
guarantee that the result of concurrent execution of trans-
actions is exactly the same as the result of serial execution
of them in the same order that they were already executed
in the database. Therefore, the existing concurrency control
algorithms cannot be used in our TM component.

We propose a new concurrency control algorithm that pro-
vides such a guarantee while executes transactions concur-
rently.

The algorithm receives a set of transactions as input and
uses a set of threads in a threadpool to execute the transac-
tions concurrently. Similar to the ordinary concurrency con-
trol algorithms we consider two types of conflicts, read/write
conflict and write/write conflict. In read/write conflict two
operations conflict if one of them is GET and the other is
PUT or DELETE and both access the item with the same
key. For instance, the following operations have read/write
conflict: GET (“key100), PUT (“key100, object1). In write/write
conflict two operations conflict if they are PUT or DELETE
and both of them access the item with the same key. For in-
stance, the following PUT operations have write/write con-
flict: PUT (“key200 , object2) , PUT (“key200 , object3).

Two concurrent transactions conflict if and only if there is
at least one read/write or write/write conflict between their
corresponding PUT/ GET/ DELETE operations. Note that
if two transactions are not concurrent, i.e., one starts after
the other completes, they do not conflict even if there are
conflicting operations. In order to define concurrency on the
key-value store, we assume that the underlying key-value
store provides consistent read-write, meaning that a write
operation (PUT / DELETE) is atomic and its e↵ect is im-
mediately available for read (GET) operations (no stale data
is read). This feature either is supported or can be added
easily in most of key-value stores including Dynamo and
HBase [12, 1].

Another important assumption that we have is that each
transaction is assigned with a sequence number that indi-
cates the place of the transaction in the ordered list of trans-
actions. The sequence number for the update transactions
can be easily assigned when the ordered list of transactions
are generated by the publisher agent in the database side
or when the list is received by the subscriber agent in the
key-value store side. However, since we may also want to ex-
ecute some read only transactions in the key-value store side
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in a transactional manner we assign the sequence numbers
for transactions in the subscriber agent along with assigning
sequence numbers to the read only transactions. This guar-
antees that each transaction has a unique sequence number
and the order of sequences for update transactions in the
key-value store side is the same as database side while they
may be interleaved with read only transactions in the key-
value store side.

Figure 8: Transaction manager component.

Figure 8 depicts the transaction manager (TM) compo-
nent in our system. There are two threadpools in the sys-
tem that provide concurrent execution. The first threadpool
which is shown on top of the concurrency controller is used
for concurrent conversion of transactions into PUT / GET
/ DELETE operations with their corresponding data items.
We refer to this threadpool as top threadpool. Each trans-
action is run over the key-value store using one thread from
this threadpool and is represented as a set of PUT / GET
/ DELETE operations that is going to be evaluated by the
concurrency controller. After evaluation of a transaction by
the concurrency controller, if there is no conflict, the trans-
action is passed to the next threadpool that is shown in the
bottom of the concurrency controller where another thread is
used to apply the results of the transaction to the key-value
store. We refer to this threadpool as bottom threadpool.

Figure 9: Internal architecture of concurrency con-

troller.

We now present the details of transaction execution in the
transaction manager component. The first step in execution
of a transaction in the transaction manager is to detect the
set of keys that the PUT / GET / DELETE operations in
the transaction access. This is done in one thread that is
acquired from the top threadpool shown in Figure 8. For
each transaction, we find this set of keys using the query
translator and a dedicated bu↵er. After a transaction starts

we create an exclusive bu↵er for the transaction. For every
GET operation in the transaction, if the value for the key
does not exist in the bu↵er the value is retrieved from the
key-value store. The value is also stored in the transaction
bu↵er for future accesses. On the other hand, if the value
for the key exists in the bu↵er, the GET operation uses
the value in the bu↵er and does not access the key-value
store. For every PUT operation in the transaction the cor-
responding key-value pair is added to the transaction bu↵er
without accessing the key-value store. Therefore, until the
commit statement in the transaction all the changes that
are being done by a transaction are stored in the transac-
tion bu↵er and the transaction does not a↵ect data in the
key-value store. In this step multiple transactions execute
concurrently using the threads in the top threadpool in Fig-
ure 8. When a transaction reaches to its commit statement
it is passed to the concurrency controller in the transac-
tion manager. The concurrency controller uses our proposed
concurrency control algorithm to detect the conflicts among
transactions. If there is no conflict between a transaction
and the transactions with lower sequence numbers, the up-
dates of the transaction can be executed concurrently and
the key-value store can be updated based on the new values
in the transaction bu↵er. Note that a transaction is only
checked for conflicts with its predecessors and there is no
need to check for conflict with the transactions that have
higher sequence number. If a transaction does not conflict
with its predecessors, it can commit by applying its oper-
ations to the key-value store using one of the threads in
the bottom threadpool as shown in Figure 8. Otherwise, if
there is a conflict, because of predefined serialization order
the transaction with higher sequence number should restart.

Algorithm 1 depicts our concurrency control algorithm in
the transaction manager. Figure 9 also illustrates the in-
ternal architecture of the concurrency controller and di↵er-
ent data structures that are used by concurrency controller.
The algorithm receives the transactions in the form of PUT/
GET/ DELETE operations with the corresponding keys for
each operation. These transactions are inserted into a prior-
ity queue that is used to sort transactions based on their se-
quence numbers. After generation of set of PUT/GET/DELETE
operations for its corresponding transaction, each thread in
the top threadpool puts its transaction in the priority queue.
The priority queue, which is referred to as CommitReqPQ in
the algorithm, is responsible for keeping the order of trans-
actions based on ascending order of their sequence numbers.
Each transaction can be in one of the following states:

• ACTIVE: An active transaction has started its execu-
tion but has not committed yet.

• COMMITTED: A committed transaction is the one
that does not have any conflict with its predecessors.
However, the updates in its bu↵er has not been applied
to the key-value store.

• COMPLETED: A completed transaction is a commit-
ted transaction that the updates in its bu↵er have been
applied to the key-value store.

In addition, each transaction is assigned with the following
values:

• startT ime: The time that the transaction starts its
execution. This is the time when the transaction is as-
signed to a thread from the top threadpool in Figure 8.
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Algorithm 1 Concurrency control in Transaction Manager

1: CommitReqPQ: Priority queue for commit request.
2: CommittedTransactionList: List of committed trans-

actions.
3: CompletedTransactionList: List of completed transac-

tions.
4: Transaction Ti is the first transaction in CommitReqPQ
5: if Ti’s sequence number is NOT the next sequence num-

ber. then
6: goto line 4 (wait for the right transaction).
7: end if

8: Remove transaction Ti from CommitReqPQ.
9: for all Tj 2 CommittedTransactionList do

10: if Ti conflicts with Tj then

11: Add Ti to restart list of Tj (Ti will restarts when
Tj is completed.)

12: return

13: end if

14: end for

15: for all Tj 2 CompletedTransactionList do
16: if Ti.startTime < Tj .completeTime then

17: if Ti conflicts with Tj then

18: Restart Ti.
19: return

20: end if

21: end if

22: end for

23: Add Ti to CommittedTransactionList.
24: Change the expected sequence number to i+ 1.
25: In a new thread from bottom threadpool:

Execute Ti’s statements.
Move Ti to CompletedTransactionList when

the execution is complete.
Restart the transactions in Ti’s restart list.

• commitT ime: The time that the concurrency control
algorithm detects that the transaction does not have
any conflict with its predecessors.

• completeT ime: The time that the updates in the trans-
action bu↵er for a committed transaction are applied
to the key-value store.

The algorithm also uses two lists, one for the committed
transactions and one for the completed transactions. The
committed transaction list holds the transactions that are
in COMMITTED state and have committed successfully.
Note that, although these transactions are considered com-
mitted, the e↵ect of their execution which is stored in their
corresponding bu↵ers have not been applied to the key-value
store. The completed transaction list contains the transac-
tions that are in COMPLETED state which are the commit-
ted transactions that have also been applied to the key-value
store.

The concurrency control algorithm starts by checking the
first transaction in the CommitReqPQ. If this transaction’s
sequence number is not the expected sequence number the
algorithm does nothing and waits until the transaction with
the expected sequence number is put into the CommitRe-
qPQ. If the transaction in the head of queue has the expected
sequence number it is removed from the queue and is exam-

ined for conflict. Note that when the expected transaction
is on top of the CommitReqPQ it means that all the preced-
ing transactions have been evaluated by the algorithm and
are in COMMITTED or COMPLETED state. Assuming
that the removed transaction is Ti, the algorithm checks the
conflicts with the transactions in both CommittedTransac-
tionList and CompletedTransactionList. The conflict evalu-
ation between Ti and the committed transactions is done in
the for loop depicted in lines 9 to 14. If Ti conflicts with
a committed transaction Tj , since the changes in Tj have
not been applied to the key-value store, Ti may have not
seen these changes and therefore, it needs to wait for Tj to
apply the changes into the key-value store and restart its
execution. In this case, the algorithm adds Ti to the restart
list of Tj . The restart list for a transaction is the list of
transactions that should be restarted after the transaction
is completed and its e↵ect is applied to the key-value store.
In case of such conflict since Ti should restart after comple-
tion of Tj , the algorithm stops processing other transactions
until completion of the conflicting committed transaction.
All other transactions after Ti also are not processed since
the expected transaction on top of the CommitReqPQ is
Ti. After Tj completes, it then notifies all of its conflicting
transactions to restart since now they can see the updates
from Tj .

If Ti does not have any conflict with the committed trans-
actions, the algorithm checks for conflicts with the com-
pleted transactions. This is done in the for loop depicted
in lines 15 to 22 in the algorithm. However, as shown in
line 16 the algorithm ignores the conflict test between Ti

and the transactions that have completed before Ti started.
Since we assume writes on the key-value store are immedi-
ately available for the readers, there is no concurrency be-
tween these transactions: This means that even if there is a
conflict between Ti and such transactions, Ti used the up-
dated data from these transactions. On the other hand, if Ti

starts before completion of a completed transaction like Tj

and Ti conflicts with Tj , then it is possible that Ti may have
used out of date data. Therefore, the algorithm restarts Ti

in order to make sure that Ti uses the correct data for its
execution.

Finally, if Ti does not have any conflict with its predeces-
sors, it can commit and be executed concurrently with them.
The algorithm first changes the state of Ti into COMMITTED
and adds Ti to the list of committed transactions and up-
dates the expected sequence number. Then, using a thread
from the bottom threadpool, it applies the corresponding
changes that should be made to data in the key-value store.
When the thread finished updating the key-value store, the
transaction is completed. At this point, the algorithm changes
the state of the transaction to COMPLETED and removes
Ti from the CommittedTransactionList and adds it to the
CompletedTransactionList. It also restarts all the transac-
tions that have been waiting for completion of Ti. As men-
tioned, these transactions are stored in Ti’s restart list.

5.1 Discarding completed transactions
In our concurrency control algorithm the CompletedTrans-

actionList is the last list that stores transactions. However,
by processing more and more transactions this list will grow
larger. Therefore, we need to limit the size if this list and
remove the completed transactions from the list if there is no
need for them. The main reason to keep a completed trans-
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action Ti in the CompletedTransactionList is that if another
transaction Tj , starts before the completion of Ti and Tj has
conflict with Ti, there is a possibility that Tj did not use the
updated data resulted from Tj . Thus, in order to make sure
that Tj observes the results of Ti, we need to make sure that
Tj starts after completion of Ti. Based on this assumption,
if there is no active transaction that has started before com-
pletion of a transaction Ti, there is no need to keep Ti and
we can safely remove it from the CompletedTransactionList
without jeopardizing the correctness of the algorithm.

Algorithm 2 Asynchronous removal of transactions from
CompletedTransactionList.

1: ActiveTransactionList: List of active transactions.
2: CompletedTransactionList: List of completed transac-

tions.
3: for all Ti 2 CompletedTransactionList do
4: boolean shouldBeRemoved = true;
5: for all Tj 2 ActiveTransactionList do
6: if Tj .startTime < Ti.completeTime then

7: shouldBeRemoved = false;
8: end if

9: end for

10: if shouldBeRemoved then

11: CompletedTransactionList = CompletedTransac-
tionList - {Ti}

12: end if

13: end for

We use an asynchronous algorithm to remove the com-
pleted transactions from the CompletedTransactionList. We
consider a threshold for the CompletedTransactionList size
and whenever the size of the list passes the threshold the
transaction removal algorithm is called asynchronously. Al-
gorithm 2 shows the process of detecting and removing com-
pleted transactions that are not required from the Complet-
edTransactionList. For each transaction in the Completed-
TransactionList, the algorithm checks if there is any active
transaction in the ActiveTransactionList. The ActiveTrans-
actionList is the list that transactions are added when they
start execution in the system. If there is at least one transac-
tion that has started before completion of completed trans-
action Ti, the transaction Ti should not be removed from
the CompletedTransactionList. Otherwise, the algorithm
removes transaction from the CompletedTransactionList.

6. EXPERIMENTAL EVALUATION
The main goal of our experiments is to validate the ad-

vantage of using our proposed concurrency control algorithm
and to analyze the e↵ect of di↵erent tuning parameters in
the performance of the algorithm. In particular we present
the following results:

• The comparison of serial execution of transactions with
concurrent execution based on our concurrency con-
trol.

• The e↵ect of workload characteristics such as conflict
ratio, read/write ratio and number of concurrent clients
on our proposed concurrency control algorithm.

• The e↵ect of system parameters such as degree of par-
allelism (number of threads) and key-value cluster size
on our concurrency control algorithm.

6.1 Benchmark Description
Since we used web applications as one of the motivating

applications for our proposed system, we use TPC-W bench-
mark [8], which is a transactional web e-commerce bench-
mark. The benchmark emulates an on-line book store with
multiple on line browser sessions. The benchmark provides
three di↵erent interaction types: browsing (5% of transac-
tions are writes), shopping (20% of transactions are writes)
and ordering (50% of transactions are writes). We modified
an open source Java implementation of TPC-W benchmark
to only emulate database transactions part of the bench-
mark [9]. The database contains eight tables: customer,
address, orders, order line, credit info, item, author, and
country. In our implementation we also have two auxil-
iary tables, shoppingcart and shoppingcartline. These ta-
bles are used to store the persistent state of the shopping-
cart for each client. We used 2,000,000 items and 2880*1400
(4032000) customers, which results in a database with the
size of 7.2GB.

To be able to test the specific parts of the system, we also
create a synthetic workload on top of TPC-W database in
such a way that we can create transaction conflicts at de-
sired levels. In our synthetic workload each transaction has
only one update statement where we update the quantity of
an item in the database given the item id. We control the
probability of conflict with selecting the item id value from
a predefined range. The smaller the selection range, the
higher the probability of selecting the same item id for dif-
ferent transactions and therefore, the higher the probability
of conflict. Only accessing the same data item is not enough
to generate a conflict for two transactions and the other nec-
essary condition is the concurrent access to the item by both
transactions.

6.2 Experiments Setup
We set up our experimental environment based on our

scale out architecture shown in Figure 3. For relational
database in the architecture we use MySQL [5] and for the
key-value store we use Project Voldemort [6] which is an
open source of Amazon Dynamo [12]. We implemented
Replication Middleware, Query Translator and Transaction
Manager components all in Java. We used Apache Ac-
tiveMQ for the messaging middleware in our replication mid-
dleware component. The publisher agent reads the transac-
tion log from MySQL and constructs a replication message
that is delivered to the replication agent through the Ac-
tiveMQ framework. We run the experiments on a set of up
to 18 machines. We assign one machine to MySQL database
where the publisher agent from the replication middleware
also resides on it. Another machine is used as ActiveMQ
broker. The Query Translator (QT) and Transaction Man-
ager (TM) along with Subscriber Agent all reside in one ma-
chine. The rest of the machines in the experiment are used
for key-value store. All the machines except the one that
runs the Query Translator (QT) and Transaction Manager
(TM) along with Subscriber Agent are Intel Xeon machines
with 2.4GHz CPU and 16GB memory running CentOS 5.4.
The machine that we used for Query Translator (QT) and
Transaction Manager (TM) along with Subscriber Agent has
an Intel Core(TM)2 Duo CPU with 3.16GHz speed and 4GB
of memory running Ubuntu Linux kernel 2.6.32 and Sun’s
JDK 1.6.3. In all of the experiments, except the one for
evaluating the e↵ect of key-value cluster size, we use five
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machines for Voldemort key-value cluster.
The metrics that we used in our evaluations are as follows:
Throughput: The throughput is the number of transac-

tions that are executed in one time unit (second).
Execution time: The total execution time is the time it

takes to execute all of the given transactions.
Number of Conflicts: As mentioned two transactions

conflict when they access the same item concurrently during
their execution. For a set of transactions, the number of con-
flicts is the total number of times that any two transactions
conflict during the execution of the transaction set.

We run the workload on MySQL and then use the trans-
action log to construct the set of transactions with the pre-
defined order that should be applied to the replica in the
key-value store. Unless we specify explicitly, in all of the
experiments we used 20 threads in top threadpool and 20
threads for bottom threadpool (as shown in Figure 8). The
default key-value cluster size for the experiments also is five
except for the last experiment.

Figure 10: Throughput for Serial and Concurrent

execution of transactions.

6.3 Experimental Results
Concurrent vs. Serial execution: The first set of

experiments that we present is the comparison of serial ex-
ecution of transactions with concurrent execution that uses
the proposed algorithm. Most of the existing replication ap-
proaches use single threaded serial execution of updates in
the replica so we use the serial execution as the base line in
our experiment [7]. We measured throughput, total execu-
tion time and number of conflicts for serial execution and
concurrent execution with 10 and 20 threads in our concur-
rency control algorithm. Figure 10 depicts the throughput
for di↵erent number of transactions in the replication mes-
sage that are applied to the key-value store. As it is seen
our proposed concurrency control algorithm significantly in-
creases throughput in all cases. Similarly, the total transac-
tion execution time that is plotted in Figure 11 shows that
the proposed concurrency control algorithm is at least twice
as fast as executing the transactions in serial execution. This
will obviously reduce the replica lag behind the original data
and consequently the staleness of data in the replica.

As it is seen in both graphs, the benefit of using our con-
currency control algorithm is more significant when there are
fewer transactions in the replication message. In fact as it is
seen, the throughput decrease and execution time increase

Figure 11: Total execution time for Serial and Con-

current execution of transactions.

Figure 12: Conflict count for concurrent execution

of transactions.

are not linear with respect to the number of transactions
that are executed and by increasing the number of trans-
actions in the replication message the throughput reduces
faster and execution time increases faster too. This can be
described by considering the number of conflicts in the ex-
ecution process. Figure 12 depicts the number of conflicts
occurred in the execution of di↵erent number of transac-
tions in the replication message for 10 and 20 threads in the
concurrency controller. The number of conflicts increases
by increasing the number of transactions. This is expected
since the more transactions results in higher probability of
accessing same item by multiple transactions concurrently.
As described in Section 5, when two transactions Ti and
Tj conflict, the concurrency controller aborts the one which
is behind in the execution-defined order. Assuming i < j,
Transaction Tj should be aborted and restarted when the ef-
fects of Ti are applied to the key-value store. Note that, this
would a↵ect commit time for other transactions by delay-
ing their commit time too. Therefore, as it is seen a conflict
will not only slow down the conflicting transactions, but also
the ones that are behind them too. Thus, a high number of
conflicts reduces throughput more significantly.

Workload Read/Write ratio: We now represent the ef-
fect of read/write ratio in the workload on the performance
of our concurrency control algorithm. Here read/write ratio
is defined as the percentage of write transactions TPC-W
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interactions. We performed our experiments for all three
interaction types in TPC-W and present the results in Ta-
ble 1. The three interaction types are Browsing where 5%
of transactions are write transactions, Shopping where 20%
of transactions are write transactions, and Ordering where
50% of transactions are write transactions. The algorithm
has better throughput and execution time for browsing and
shopping workloads compared to the ordering workload. As
we discussed above, the larger number of write transactions
increases the probability of conflicts that results in restarting
transactions. This indeed increases the number of transac-
tions that are being executed and therefore reduces through-
put.

E↵ect of conflicts: Two transactions conflict if they
both access the same data item concurrently and at least
one of them updates the data item. To evaluate the ef-
fect of conflicts in our concurrency control algorithm we use
our synthetic workload on TPC-W benchmark where we can
control the number of conflicting transactions.

Figure 13 depicts the e↵ect of conflicts on the algorithm
throughput. In this figure we plot the improvement percent-
age over serial execution for 4500 transactions with di↵er-
ent number of conflicts. The percentage of improvement in
throughput is computed by dividing the di↵erence between
the measured throughput for the concurrency control algo-
rithm and the serial execution to the throughput of serial ex-
ecution and multiplying it by 100. When there is no conflict
in the workload we have a steady value for the throughput
improvement and the concurrent execution performs twice
better than the serial execution (approximately 100% im-
provement). On the other hand, when we introduce conflicts
in the workload the throughput declines as expected. This
is caused by restarting the conflicting transactions that slow
down the execution of other transactions.

Figure 13: Impact of conflicts in workload on

throughput.

The increase of conflicts can have more significant im-
pact on the concurrency control algorithm as it is depicted
for the case with 6179 conflicts (transaction restarts) in the
graph. In this case, the throughput of concurrent execution
is even less than serial execution which does not justify use
of concurrent execution for workloads with high conflict ra-
tio. Indeed, we evaluated this in Figure 14 where we show
the throughput improvement for di↵erent number of con-
flicts. Similarly, we conclude that the concurrency control
algorithm for concurrent execution of transactions is e↵ec-

tive only when the number of conflicts in the workload is
not too high. In case where the conflict ratio is too high
it is better to use the serial execution instead of concurrent
execution.

Figure 14: When to use concurrency.

Impact of number of threads in concurrency con-

troller: One of the main tuning parameters in our proposed
concurrency control algorithm is the number of threads that
are used by the algorithm in initial execution of transactions
to construct the set of PUT / GET / DELETE operations
and the number of threads to apply non conflicting trans-
actions to the key-value store. The more number of avail-
able threads for the transaction conversion to PUT / GET /
DELETE operation will result in greater number of transac-
tions requesting to be evaluated by concurrency controller.
The larger number of threads for applying non conflicting
transactions also should speed up concurrency controller by
preventing it from waiting for a non conflicting transaction
to be applied to the key-value store. We now present our
experimental results on the impact of the number of threads
on throughput and the number of conflicts.

Figure 15 plots the throughput of the serial execution
along with the concurrency control algorithm for di↵erent
number of transactions where we use 2, 5, 10 and 15 threads
for each threadpool. The overall trend in this graph in-
dicates that by increasing the number of threads we gain
higher throughput in our concurrency control algorithm,
however, this gain does not increase significantly by adding

Figure 15: Thread count e↵ect on throughput.
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Browsing (5% write ) Shopping (20% write) Ordering (50% write)

Write Transactions 200 800 2000
Throughput (Tx/S) 247 256 129
Execution Time (ms) 808 3117 15503

Conflict Count 99 402 1033

Table 1: Results for di↵erent TPC-W workloads (4000 Transactions)

Figure 16: Thread count e↵ect on conflicts.

more threads to the system. As it is depicted the through-
put gain for 10 and 15 threads is almost the same. The
main reason is that the serial evaluation of transactions for
conflicts in concurrency controller. Although we use con-
currency in conversion of transactions to PUT / GET /
DELETE operations and also in applying the transactions to
the store, all the transactions should be evaluated according
to their execution-defined order. Therefore, increasing the
number of threads can improve throughput initially but at
some point the serial evaluation of conflicts in concurrency
controller will dictate the execution speed and therefore fur-
ther increase of the number of threads will have negligible
e↵ect on the throughput.

The other factor in reducing the e↵ect of more threads is
the increased number of conflicts because of more threads
in the system. To have two conflicting transactions not only
they should access the same data item where at least one
of them writes the data item, but also these accesses should
be concurrent. Therefore, increased number of threads ele-
vates the probability of conflict among transactions, which
negatively a↵ects the throughput. Figure 16 validates the
impact of more threads on the number of conflicts encoun-
tered by the algorithm. As shown, by increasing the number
of threads in the system, we will have more number of con-
flicts for the same number of transactions.

Impact of key-value cluster size: In order to analyze
the impact of the key-value cluster size on our concurrency
control algorithm we used Voldemort key-value store with
three di↵erent setting, 5, 10 and 15 nodes. Figure 17 de-
picts the throughput for di↵erent number of transactions
and di↵erent key-value cluster size. The overall trend in
the figure is that the throughput is higher when there are
more key-value nodes in the system. The larger number of
nodes in key-value cluster results in smaller portion of load
on each key-value node which in turn speeds up execution
of PUT / GET / DELETE operations on each node. There-
fore, by increasing the number of nodes in key-value system
we can increase the throughput of our concurrency control

Figure 17: Key-value cluster size.

algorithm.

7. CONCLUSIONS AND FUTURE WORK
We presented a scale out architecture based on fully repli-

cation of relational database on key-value store system where
the key-value store is used for read-only transactions. Our
proposed architecture ships transaction logs from relational
database to the key-value store and applies them in such a
way that the state of key-value store is exactly the same as
the relational database. To reduce the replica lag in the key-
value store side we proposed a novel concurrency control al-
gorithm that guarantees a predefined serialization order (the
one same as the order in transaction log). We empirically
showed that the proposed algorithm significantly improves
throughput compared to serial execution of transactions.

An interesting optimization to our concurrency control al-
gorithm is to exploit transaction classes to speed up conflict
detection and increase parallelism. By classifying transac-
tions into transaction classes our algorithm would only eval-
uate conflicts for potentially conflicting transactions. This
would eliminate many unnecessary operations and speeds up
our concurrency controller.
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APPENDIX
A. REPLICATION MIDDLEWARE
The data in the key-value store is the replication of the

data in the original database. To maintain the replicated

data in the key-value store synchronized with the original
data in the relational database we use our replication mid-
deware. Details of the replication middleware are depicted
in Figure 18. Our replication middeware is implemented on
top of a publish/subscribe system. It includes a publisher
agent that resides in the database system, a subscriber agent
that resides in the key-value store side and a messaging mid-
dleware that provides communication framework between
publishers and subscribers.The publisher agent periodically
reads the transaction log from the database and packages the
transactions in a message. The transaction log only includes
write statements and does not contain the read statements
in the transactions. The frequency of reading the log is a
tunable parameter and can be adjusted based on di↵erent
factors such as staleness limit for read only transactions in
the key-value store.

The subscriber agent resides in the key-value store side.
This agent receives the messages containing transactions
from the publisher agent and applies them to the key-value
store through the query translator and transaction manager.
Since these transactions have already been executed in the
database, the serialization order for the transactions is de-
termined. The easiest way to guarantee such order is to
execute these transactions serially over the key-value store.
In this case, the subscriber agent issues the transactions to
the key-value store through the query translator component
using a single thread and each transaction starts after com-
mit of its predecessor. However, as we describe in Section 5
our proposed concurrency control algorithm can guarantee
such predefined serialization order while executing transac-
tions concurrently. In this case, the subscriber agent uses
a set of threads in a threadpool to concurrently issue the
transactions to the key-value store through the query trans-
lator and transaction manager components.

Figure 18: Replication middleware from RDBMS to

Key-Value store.

We use a publish/subscribe system to route the transac-
tion log from the publisher agent to the subscriber agent.
This functionality is provided by the message broker com-
ponent as shown in the Figure 18. We consider a single
node as message broker, however, a federated set of message
brokers can also be used to provide better scalability.

One of the main advantages of using a publish/subscribe
system as communication framework for the replication mid-
dleware is the decoupling of the publisher agent and the
subscriber agent. This eliminates the need for the pub-
lisher agent to know the subscriber agent and we can add
more subscriber agents to provide multiple replicas with-
out putting any extra load on the publisher agent. All the
complexity and load of delivering transaction logs to the
corresponding subscriber agents is handled by the message
broker and the underlying publish/subscribe system.
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