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ABSTRACT
Complex Event Processing (CEP) systems process large streams of
data trying to detect events of interest. Traditional CEP systems,
such as Esper, lack the required scalability and processing capa-
bility to cope with the constantly increasing amount of data that
needs to be processed. Furthermore, user defined rules are static so
changes in the monitored environment cannot be easily detected.
In this paper we investigate the development of a scalable and dy-
namic traffic management system. Our work makes several con-
tributions: We propose a novel system that combines Esper with
a stream processing framework, Storm, in order to parallelize the
processing of larger amounts of data. We propose a novel rules’ as-
signment algorithm for distributing Esper rules to the available CEP
engines, in a way that maximizes the overall system’s throughput.
Finally, our system adapts to changes of the environment by pro-
cessing historical data via Hadoop and dynamically updating the
Esper rules based on the generated results. Our work has been eval-
uated using real data, in several traffic monitoring scenarios for the
city of Dublin. Our detailed experimental results indicate the ben-
efits in the working of our approach and the significant increase in
the system’s throughput when a large number of Esper rules were
examined concurrently.

Categories and Subject Descriptors
H.2.4 [Information Systems]: Systems—complex event process-
ing, stream processing

1. INTRODUCTION
Today there is a large increase in the amount of data that needs
to be analysed and processed in real-time in a wide variety of do-
mains, ranging from financial processing [13] to traffic monitoring
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[8] to healthcare infrastructures [23]. Complex Event Processing
systems (CEP) have emerged as a valid solution for analyzing this
huge stream of information and detecting events of interest. In a
CEP system, user-defined rules process primitive events received
from a monitored environment in order to detect composite phe-
nomena by composing primitive or other composite events using a
set of event composition operators. Complex event processing for
such Big Data applications is challenging as they need to be able to
process high volumes of stream data at low processing latencies.

Traditional CEP systems such as Esper [14] are unable to cope with
the current data deluge, mainly because they are based on central-
ized architectures where the CEP engine receives and processes all
incoming events in a single host. Due to this reason, there is a
shift in performing the CEP processing in Distributed Stream Pro-
cessing Systems (DSPS) such as Storm [27], Streams [9] or Spark
[3] which are now considered major platforms for data analysis.
While such systems provide scalability and fast processing, they
lack expressiveness, as the user must provide the actual implemen-
tation of the rules that the system has to execute, often needing to
express complex tasks and requiring a large amount of code. In
contrast, systems like Esper, provide an SQL-like language, EPL
(Event Processing Language) for expressing the rules, making it
much easier to use and learn. Given the popularity of frameworks
such as Storm, Streams and Spark, optimizing the performance of
CEP processing in DSPS systems is important, as they do not only
provide robust, scalable and reliable solutions to processing fast
larger amounts of data, but can also be cost-effective solutions as
they can reduce the money paid by users to hosting environments
such as clouds. Our architecture uses these frameworks in order to
meliorate the value offered from the Big Data systems, scaling the
system’s velocity and volume. The system’s value is optimized as
our system is able to support and execute more rules and process
larger volume of tuples.

One challenge with rules running in current CEP systems is that
they tend to be rather static; this means that their behaviour does not
change radically over time. For example, in a traffic management
system we may want to be able to detect when a bus is delayed. In
most cases this is accomplished with a rule that compares the com-
puted delay for a newly arrived bus trace with a static threshold;
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when this threshold is exceeded an event is triggered [5], [6]. How-
ever, using a pre-defined threshold at all times is not beneficial, as
the behaviour of the traffic conditions typically change during the
course of the day. So, it is of great interest to automatically de-
cide these rules’ thresholds. Towards this goal was the work of
[25], however it requires a time consuming training phase before it
generates the rules that will be used by their CEP system. In con-
trast, our aim is to dynamically compute the rules’ thresholds and
change the rules accordingly, in real-time. In our previous work [6]
we have illustrated that the Lambda architecture, operating in both
batch and stream processing modes, is a promising approach for
processing heterogeneous data streams for intelligent urban traffic
management. In this work we focus on the scalability aspect of our
system and illustrate that our system can effectively support multi-
ple concurrently running Esper engines and can dynamically adapt
to rules’ thresholds changes in real-time.

In this work we investigate the development of a CEP system for
scalable and dynamic traffic management, that is both powerful and
easy-to-use. We provide a system that offers: (i) scalability, (ii)
low-latency processing, (iii) ease of use, and (iv) dynamic rule up-
dating to changing system conditions. We focus on the ease of
usage because we want the rules running in our system to be easily
understood even by non-expert users. Our proposal combines the
two approaches (CEP systems and DSPS), exploiting the expres-
siveness and ease of use of a traditional centralized CEP system
such as Esper, and the scalability and fast processing offered by
Storm. Supporting dynamic rules is important because it offloads
effort from the user as she no longer needs to manually tune the
rules’ thresholds. Our approach makes the following contributions:

1. We present a novel system architecture that combines Storm,
Esper and Hadoop [17], offering a truly scalable and easy-to-
use framework for efficient complex event processing. Storm
enables us to use a number of Esper engines in parallel, in-
creasing the overall system throughput. Furthermore, by us-
ing more engines we are able to concurrently execute multi-
ple Esper rules, further improving the system’s performance.

2. We provide algorithms for distributing the Esper rules to the
available engines, examining the impact of the assignment
on the system’s throughput. Our proposed solution aims to
balance the load across the engines, so that rules are allocated
in a way that all engines process rules with approximately the
same amount of input data.

3. We use the Hadoop MapReduce system that is ideally suited
for processing historical data. This allows us to compute new
thresholds for the running rules and adapt the Esper engines’
in real-time for accurate detection of complex events. By
using dynamic rules we are able to capture the changing con-
ditions of the environment and detect only events of interest.

4. We have implemented our approach and evaluated it using a
real traffic monitoring application in the city of Dublin1. Our
experimental results indicate that our approach is truly scal-
able, achieves a significant increase in the system’s through-
put, and can support several concurrently running Esper rules.

2. BASIC COMPONENTS - BACKGROUND
In this section we give an overview of the basic components of
our complex event processing framework and discuss some back-
ground information and related work.
1http://dublinked.com/datastore/datasets/dataset-304.php
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Figure 1: Storm Topology Example

2.1 Basic Framework Components
2.1.1 Storm

Storm [27] has emerged as one of the most commonly used Dis-
tributed Stream Processing Engines utilized by major companies
such as Twitter [32] and Groupon [16]. It has been successfully
employed for processing high volume and intensive workloads in
various application domains, where high levels of data throughput
and low response latencies are a necessity [26]. Processing massive
amounts of data in real-time is achieved by distributing the work-
load across multiple computers. Applications in Storm are imple-
mented as user-defined topologies. Topologies can be viewed as
processing graphs, consisting of nodes that represent user-defined
processing operations or primitive event nodes, and edges that rep-
resent the streaming of the data. The nodes of a topology graph
in Storm can be either spouts or bolts. Spouts represent the input
sources which feed the topology with data, while bolts encapsulate
the processing logic. For example, in a CEP application, spouts can
be seen as the input sources of primitive or complex events, while
bolts are the components that process these events and detect more
complex ones.

Users implement the code that will be executed by the Storm com-
ponents and decide the communication patterns. This essentially
represents the subscription of bolts to their input sources. Storm
gives the users the capability of deciding how many instances of
the implemented bolts’ and spouts’ code to run in the framework
by setting two basic parameters: the number of tasks and executors
to utilize. By choosing these parameters, we can increase the paral-
lelism of the topology, making it more scalable. The executors pa-
rameter (as can be seen in Figure 1) can be used to adjust the num-
ber of threads that will execute the processing implemented on the
spouts and bolts. The actual processing is performed by the com-
ponents’ tasks. Tasks are Java objects containing the user-defined
code for the components. Ideally there should be one executor for
each task. If the number of tasks is greater than the number of
executors, tasks assigned to the same executor are executed in a
pseudo-parallel way. In Figure 1, we give an example of a possible
assignment of tasks to the corresponding executors in a snapshot
of the Storm topology we use for monitoring the traffic conditions
in the city of Dublin. Because the SpeedCalculatorBolt has two
tasks but only one executor, its tasks are assigned to this single ex-
ecutor. All other components exploit fully the parallelism they can
use, thus their tasks are assigned to separate executors.

From an architectural perspective, a Storm cluster consists of a set
of physical machines, called Worker nodes that are responsible for
executing the user topologies, and a Master node called Nimbus
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that coordinates the execution of the topologies. Once a topology
has been allocated to the Storm cluster, its executors are assigned
to a set of Java processes (worker processes) running on the avail-
able nodes. Each node is configured with a fixed number of slots
that will represent the maximum number of worker processes that
can execute in it. The assignment of the executors to the available
worker processes follows a simple round-robin approach.

2.1.2 Esper
Esper [14] is a Complex Event Processing (CEP) system, applied to
streaming data, that triggers actions when the incoming data satisfy
some predefined rules. Esper libraries are available for the Java lan-
guage such as Esper, and for .NET such as NEsper. Esper keeps all
the required data structured in memory making the processing fast.
The core of the Esper system is the Esper engine which consists of
a set of standing queries (or rules). The plethora of technologies
that have been developed in Big Data community require the data
first to be saved and then to be processed. Esper, on the other hand,
provides real time Big Data analytics as it is a ’NoDatabase’ tech-
nology meaning that no data has to be saved. Esper stores rules in
the Esper engine and when new data arrive checks whether or not
these rules are fired. This procedure is continuous, as new arriving
data are processed serially and the Esper engine responds in real
time if any of the stored events meets the constraints. The triggered
events can be pushed further into the Esper engine feeding other
rules or sent to their listeners. Listeners are associated with rules
and define the actions to be taken when the rule is activated. The
user can create queries and add them into the Esper engine. These
queries are written in Event Processing Language (EPL) and their
syntax is similar to SQL queries, with SELECT, FROM, WHERE,
GROUP BY, HAVING and ORDER BY clauses. EPL was designed
aiming to be similar to the SQL query language. The main dif-
ference between EPL and SQL is that EPL uses views instead of
tables. Views are the different operations applied to the incom-
ing data to structure data in an event stream. An example of such
operation is the expiry policy for events that specify for how long
an event will remain in the event stream. Finally, each EPL query
defines a sliding or batch window of the incoming stream that it
monitors.

2.1.3 Hadoop
The MapReduce programming and execution model [12], along
with its open-source implementation Hadoop [17], has emerged as
one of the most widely adopted programming models for process-
ing massive-scale datasets. Hadoop has been utilized in a wide
variety of application domains including traffic monitoring, stock-
market data analysis and financial trading applications. For traffic
monitoring applications, such as the one we study, Hadoop can be
used to process and analyze historical data in order to compute and
store statistics on the stream data, such as to identify normal traffic
conditions in different city areas during the course of the day. In
the MapReduce model, each computation, or job, is modelled as a
sequence of two basic operators: map and reduce. Jobs are auto-
matically parallelized and executed on the available cluster nodes,
these are executed as multiple map and reduce tasks. The map and
reduce tasks have the following specifications:

map(k1, v1) ) [k2, v2]

reduce(k2, [v2]) ) [k3, v3]

In Hadoop, each map task is responsible for processing a distinct
chunk of the data stored in its distributed filesystem (HDFS [18]).

The output of the map phase is partitioned using a hash function
into a user-defined number of reduce tasks. Reduce tasks receive
their corresponding input data and invoke the reduce method on
them. All intermediate data generated by the map tasks as well as
the final results are stored in HDFS for fault-tolerance, but at the
cost of extra processing [29], [33].

2.2 Related Work
Stream processing frameworks such as IBM’s Infosphere streams
[8], Storm [27] and TUD-Streams [9] have been successfully ap-
plied for complex event processing. However they lack an expres-
sive language such the one offered by Esper. So the user is re-
sponsible to implement all the components required for detecting
complex events. Another recently proposed stream processing en-
gine is Spark [36]. Spark aims to unite the worlds of batch and
stream processing offering a common framework for both types of
computation. Despite its rise in popularity, it is still limited with re-
spect to the expressiveness of the computations, requiring the user
to manually implement multiple processing components.

Authors in [2] have focused on the placement of worker processors
and executors of a Storm topology on the available cluster nodes,
with the main goal being the minimization of the inter-node com-
munication. Similar scheduling techniques have been proposed in
[21], and [34]. These works are orthogonal to ours and can fur-
ther enhance the working of Storm, increasing the overall system’s
performance. In [35], the impact of intra-node communication was
examined, and it was illustrated that in order to minimize the intra-
process communication overhead the number of worker processors
should be equal to the number of cluster nodes. We adopted this
scheduling policy in our framework to minimize the impact of the
intra-node communication in the system’s performance.

Traffic monitoring has been a field of great interest in the complex
event and stream processing community [8], [28]. However, these
works detect events based on statically defined rules so any updates
to the traffic conditions overtime are not taken into account. In
contrast, our proposal computes new thresholds for the rules and
dynamically updates them. Linear Road benchmark [4] is one of
the most commonly used platforms for the evaluation of complex
event processing frameworks. Many works such as [10] use this
framework for their evaluation. However a real dataset such the one
we use, can offer a wider variety of events to detect. A recent city
transportation application was proposed in [24]. They implemented
an application that enables the sharing of taxi rides in a large city,
in a way that is beneficial for both citizens and taxi drivers.

With respect to parallelizing the execution of complex event pro-
cessing systems, work was mainly done by [7]. They increase the
parallelism of a complex event procedure by executing multiple in-
stances of the corresponding Finite State Machine, but each with
different proportion of the input data. Their approach differs from
ours in the fact that their proposal is limited to sequential rules
while ours can be applied to all types of Esper rules. Our system,
from an architectural perspective, is similar to the work proposed
in [15]. In their proposal they combine Streams [9] with Esper try-
ing to detect events in a football match. However they use only one
Esper engine so they do not exploit the parallelism of the DSPS to
improve their system’s performance.

Authors in [20] propose a system that supports scalable CEP by
using more engines and a rules allocation schema that tries to as-
sign rules to engines based on the similarity of their attributes. Our
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approach differs in two aspects: (1) our framework can scale-up
automatically via the features provided by Storm, while (2) our
proposed rules allocation algorithm takes into account both the at-
tributes’ similarity as well as the expected input rate. In [1], they
tackle the problem of distributing the processing of primitive events
on the event sources by generating multi-step event acquisition and
processing plans with the goal to minimize the event transmissions
cost. Also in [31], they propose Next CEP, a distributed complex
event processing system that optimizes the usage of the available
system resources. This work was evaluated on a fraud detection
application, applying their rules in streams with credit card trans-
actions. Finally, in [30], a scalable CEP system was proposed that
targets industrial infrastructures, specifically, e-energy applications
in the cloud. However, they do not provide any rules allocation
algorithm for the distribution of the rules to the nodes.

3. TRAFFIC MONITORING
3.1 Setting Up the Problem
This work is focused on developing a novel architecture and tech-
niques for a scalable and dynamic traffic management system. Our
objective is to recognize in real time abnormal traffic events, like
accidents and traffic congestions in the Dublin City2. The Dublin
City traffic control receives data from various voluminous sources,
including cameras CCTV, static sensors that measure the traffic
flow on several junctions and buses that move in Dublin city. It
is not possible for humans to monitor this large amount of data,
so the development of a system that receives raw data, processes
them and alerts automatically in case of an emergency, is required.
An example of an emergency situation in Dublin is presented in
Figure 2.

Dublin City Council (DCC) Intelligent Transportation Systems de-
partment provided us with the main requirements of a traffic moni-
toring system applied in Dublin city. These requirements are sum-
marized bellow:

• Their main aim is to be able to identify the spatial locations
where the traffic behavior from the buses, obtained through
streaming, exceeds the expected normal behaviour for that
particular location. An example of this is a rule that checks
if in three consecutive bus stops, buses traversing them, re-
ported simultaneously delays greater than the expected.

• Another requirement of DCC is to determine the normal be-
haviour for different spatial locations. In traffic monitoring
systems the traffic behaviour varies for different areas of the
city. This behaviour also varies for different hours of day and
between weekdays and weekends. It is usual to have greater
delays and lower speed in the city centre than the suburbs and
greater delays in working hours than the weekends. So it is
essential to set up different thresholds which will enable us to
model normal traffic behaviour for different spatial locations,
hours and days.

• Also it is possible these thresholds to change over time; for
example if a new road is constructed the thresholds may be
relaxed and the system should adapt to these changes.

• Finally the traffic monitoring system should work in real time,
be able to process large amounts of streaming data and re-
spond quickly in unusual conditions.

2This work was done in the context of an EU-funded project Insight
http://www.insight-ict.eu/

Attribute Description
Timestamp the time of the measurement
LineId the line of the bus
Direction true or false
GPS position Longitude and Latitude of the bus
Delay the seconds that the bus is ahead of schedule
Congestion true or false
Bus Stop the id of the closest bus stop
Vehicle Id The value that is used to distinguish different buses

Table 1: Description of the Dataset

Property Value
Number of buses 911
Size of data 160 MB per day
Number of lines 67
Data frequency 3 tuples/min per bus
Time interval 6am till 3am

Table 2: Dataset Properties

Figure 2: Traffic accident in Dublin city

The traffic monitoring system that we built has been tested on bus
data across Dublin city, provided from DCC. Each bus transmits
every 20 seconds information about its position and congestions.
The description of the data provided by the buses is given in Ta-
ble 1. The dataset’s properties are described in Table 2. In order
to get more meaningful information about the traffic conditions we
decided to process further the raw data, enhancing them with new
features. For each tuple that the buses transmit, we compute the
speed of the bus movement and the change in the delay value from
its previously received measurement, labelled as actual delay.

3.2 Our System Architecture
The main goals of our work is to provide a scalable and easy-to-
use traffic monitoring system. We propose a system architecture
(shown in Figure 3) that consists of: (i) a Distributed Stream Pro-
cessing System (Storm), (ii) a batch processing framework (Hadoop),
(iii) a distributed filesystem (HDFS), (iv) a storage medium (MySQL
Server) and (v) multiple Complex Event Processing (Esper) en-
gines used for detecting events of interest. Our architecture bares
a lot of similarities with the Lambda-Architecture [22], however
we differ in that we exploit the expressiveness of CEP engines to
support complex rules. In our framework the queries we execute
are user-defined Esper rules, and the merging of the real-time and
batch views is done by exploiting the capabilities of Esper (we will
discuss this in more detail in Section 4.2).
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Users in our framework complete an XML file that includes the de-
scription of the submitted topology (e.g., spouts, bolts) along with
the Esper rules they want to apply to the incoming raw data. We
enhanced Storm’s library by supporting the creation of topologies
via XML. The advantage of this, is that we avoid Storm’s standard
topology creation procedure, where the user must manually (with
Java code) specify how the components should interact with each
other. In the simplest case, the user must submit only a spout for
specifying the input source along with the rules she wishes to ex-
ecute. However, for more complex scenarios she can also define
extra bolts for pre-processing the raw data before the actual sub-
mission to the Esper engines. The pre-processed data before being
forwarded to the Esper engines, are stored to a distributed filesys-
tem, HDFS in our case.

Data stored in HDFS are used for computing the threshold val-
ues that will be utilized by the Esper rules for detecting complex
events. This computation is done by the batch processing layer,
in our case Hadoop. We chose Hadoop, since the stored data may
increase significantly in size, as new data constantly arrive in our
framework. We apply simple MapReduce computations in these
historical data and the calculated threshold values are stored to the
storage medium in order to be accessible from the Esper engines. In
our current implementation the storage medium is a MySQL server
but it can easily be substituted by a distributed solution, such as
Cassandra [11].

Storm via its scalability features (specifically the usage of more
tasks per bolt) enables us to increase the number of Esper engines
used for the event detection. This is achieved by increasing the
parallelism of the bolt that will be responsible for running the Esper
engine. So, if we increase the number of tasks for a bolt, we end up
having multiple concurrently running engines. To make full usage
of the parallelism, when we increase the number of tasks of the
corresponding bolt, we also increase the number of executors in
order to run each engine in a separate thread. Furthermore, we
allocate the executors into different worker processors to make sure
that each cluster node will be assigned with the same number of
Esper engines.

Using more engines increases the system’s throughput and the num-
ber of rules that can execute concurrently. Special care must be
given on how to allocate the user-defined rules to the available en-
gines (Section 4.2), as we want to fairly distribute the rules, avoid-
ing overloaded situations. Furthermore, rules in our framework
should dynamically adapt to new thresholds as threshold values
change overtime by the computations performed from the batch
processing layer. We examined several techniques (Section 4.3.1)

for collecting this information from the storage medium and join
them with the streaming data.

3.3 Rules Description
We define rules that allow us to detect events of interest in the traffic
data. Finding out where there may be traffic incidents or identifying
anomalies in traffic patterns, are examples of events of interest for
the Dublin City traffic management system. All events signify cer-
tain activities like low speed or increased delays at a particular area.
In general the complexity of the rules can vary significantly, as each
rule has different characteristics. For example, identifying if a bus
is delayed might be simple to detect, while detecting anomalies in
traffic patterns might involve computations over multiple simpler
events.

We created a generic rule template that checks if the reported at-
tributes from the buses aggregated in different locations, exceed
the thresholds. This generic template was selected after discus-
sion with the traffic experts in the Dublin City Council. The rule
template has the following parameters: bus data attribute, spatial
location and window length. The bus data attribute corresponds to
the bus data field or fields that the rule checks if they exceed the
predefined threshold. Example of these fields are the buses’ de-
lay or speed. We monitor different attributes in order to improve
our knowledge of the traffic conditions. The spatial location is the
spatial area that the rule checks for abnormalities. The reason why
we selected to create rules for different areas is that traffic jams
have spatial extent and in order to identify them we have to search
for abnormalities in these areas. The window length is the window
size of the stream that the rule keeps in memory for processing. In
our scenario we compute the average value of all the values in the
streaming window in order to compare it with the corresponding
thresholds. We used window-based streams because traffic data are
very noisy and taking the average value makes them smoother. The
generic rule described above has the following format and is fired
when the incoming data satisfy the following condition:

^f(attributei, l, s) > threshold(attributei, s)

threshold(attributei, s) = mean(attributei, s)+stdv(attributei, s)

where attributei is the data attribute that we check, f is the oper-
ator that is applied in the stream of data, l is window length of the
stream that we monitor and s is the spatial location in the city map
that we monitor. This generic rule’s complexity changes overtime
as the different spatial locations do not have fixed mean and stdv.

The EPL code that implements the generic rule template, described
above, is presented in Listing 1. The EPL rule contains three streams
as it is defined in the FROM clause. The first stream consists of
the last event that arrived in the system. The second stream con-
tains the last l values that arrived in the system and have the same
location as the last event. The last stream named thresholdLoca-
tion contains all the thresholds for all the possible locations for dif-
ferent hours of day and for weekdays and weekends. In addition,
the streaming data join with this stream in order to retrieve their
thresholds. The rule is fired when the average value of a specific
attribute is greater than the corresponding threshold, for a specific
location, hour and day.

Listing 1: Esper EPL Rule template

SELECT ⇤
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Figure 5: Evolution of delay value for 3 different buses

FROM
bus . s t d : l a s t e v e n t ( ) as bd ,
bus . s t d : groupwin ( location ) . win : l e n g t h ( l ) as bd2 ,
thresholdLocation . win : k e e p a l l ( ) as t h r e s h o l d s

WHERE
bd . hour= t h r e s h o l d s . hour and
bd . day= t h r e s h o l d s . day and
bd . l o c a t i o n = t h r e s h o l d s . l o c a t i o n and
bd . location=bd2 . location

GROUP BY
bd2 . location

HAVING
avg ( bd2 . attribute ) > avg ( t h r e s h o l d s . attribute )

An example of a rule is presented in Figures 4 and 5. Figure 4
shows the trajectories of 3 buses moving in the Dublin city and the
corresponding area of interest. The rule checks for abnormalities
in this area. The rule is fired when the average delay’s value from
all the buses that move in the area of interest is greater than the
threshold for the particular area. Figure 5 shows the evolution of
the 3 buses that are in the bounding box, the average value of delay
for the 3 buses and the threshold for this area. The rule is fired
when the delay’s moving average exceeds the threshold value.

4. DESCRIBING THE COMPUTATION
In order to tackle the traffic monitoring problem we decompose it
into three main components:

1. Off-line Computation. The computations performed by this
component enable us to support dynamic rules.

2. Start-Up Optimization. This component optimizes the sys-
tem’s parameters according to the user’s requirements.

3. On-line Processing. The component that is responsible for
the actual processing of newly arriving data as well as to de-
tect events of interest.

Our objective in this work is to improve throughput and be able
to process as big datasets as possible. We provide algorithms for
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Figure 6: Region Quadtree with bus stops

all three components but we focus on the Start-Up Optimization
component because this defines the instance of the architecture we
run. The first two components are used in order to optimize the
performance of the third component.

4.1 Off-line Computation
This component is responsible to prepare the system in order to
be initialized and support it in possible future changes. Also it
makes our system dynamic as it could change the system’s param-
eters over time and make it to adjust to new, dynamically posed,
requirements.

4.1.1 Spatial Indexing
The Dublin City Council requested to be able to monitor city’s traf-
fic conditions at different spatial extent, e.g. from small city blocks
to whole road lines. For this reason the rules were defined with
a hierarchical decomposition regarding the spatial locations. This
hierarchical decomposition was not given to us, so we partitioned
the map in sub-areas. In order to partition a map there are differ-
ent approaches that we could apply, including the Region quadtree
data-structure, Grids, Voronoi diagrams or even arbitrary shapes
that include areas of the city. In our application we utilized the
Region quadtree.

The quadtree represents a partition of the space in two dimensions
by decomposing each region into four equal sub-regions, and so
forth. The region quadtree is created by adding some initial data
points to it and then splitting until each region keeps a maximum
number of data points. So the resulting tree is not always balanced.
In our case the quadtree was created by adding important coordi-
nates of the Dublin city, e.g. main road segments. Because these
points are not equally distributed in the city, as can be seen in Fig-
ure 6, the regions created by the quadtree are unbalanced. The user
decides the spatial extent of the monitoring by specifying in Esper
rules, either the layer of the Quadtree she wants to examine or some
explicit area of interest.

4.1.2 Bus Stops
Furthermore, we decided to monitor the traffic condition at areas
near bus stops in Dublin city. Bus data are noisy, especially when
buses report their stops. More particularly, we observed that a spe-
cific bus stop is reported at different locations. Also buses reported
that they were stopped while they were actually moving. Also
nearby bus stops seem to have different ids. We decided to cal-
culate new bus stops and create a tool, that for each line, direction
and GPS position, will identify the closest bus stop.

In order to deal with the problem of identifying the bus stops we
applied the DENCLUE [19] clustering algorithm in the GPS loca-
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Parameters Values

Output Rule’s Latency
Input 1 length window of a rule, l
Input 2 number of thresholds in the Engine that rule joins

with, t

Table 3: Parameters of Single Rule Latency Function

tions, where the buses reported that they just reached the bus stop.
Initially DENCLUE added a 2-dimensional Gaussian distribution
with � = 20m at each data point and then added all the Gaussians
in order to calculate the global density. Then for each data point
we identified its local maxima named as density attractor and we
kept together all the points that their density attractors were close.
These clusters do not consider the bus direction (i.e. a cluster may
have bus stops, where buses move in one and the opposite direc-
tion). In order to keep the different directions we decided to split
the clusters further. Our approach works as follows: We found the
average angle that the bus had when it entered in the cluster per
line and direction, and then we placed in the same subcluster the
bus lines and directions that had similar average angle. Then for
each new set of GPS position, line and direction it is possible to
find the closest subcluster. For the rest of this paper we will call
these subclusters as bus stops.

4.1.3 Supporting Dynamic Rules
Given that we look for abnormalities during the course of the day
for different spatial locations, we compute statistics continuously
and update the rules accordingly. These statistics are calculated us-
ing Hadoop jobs. The jobs are invoked periodically, e.g., every one
hour, to compute statistics for the different spatial locations in the
upcoming time window, e.g. for the next hour. Specifically, the
job calculates the mean and standard deviation of the parameters
defined in Table 6 (see Section 5) for the different locations (e.g.
quadtree areas or bus stops). In the map phase we retrieve the his-
torical data from HDFS and then emit them to the reduce tasks. The
reducers aggregate the parameters’ values for the different spatial
locations and then compute the mean and the standard deviation.
The results are stored in our MySQL server and are retrieved dur-
ing the online processing to be used as thresholds for the running
rules.

4.1.4 Estimate Engine’s Latency
A key factor of our analysis is the estimation of each Esper engine’s
latency. We build a model that takes as parameters the set of rules
to run, their characteristics, the number of available cluster nodes
and Esper engines, and estimates the latency of each engine. The
model’s architecture is presented in Figure 7. In order to do this
estimation we created three regression functions that are presented
bellow:

• Single Rule Latency Function (Function 1) This function
estimates the latency of a rule that has window l and t thresh-
olds. As we observed that these are the two main components
that affect the latency of a rule. The input and the output of
this function are presented in Table 3.

• Multiple Rules Latency Function (Function 2) The second
function estimates the total latency of an Esper engine to pro-
cess a tuple when we place multiple rules in the same engine.
This function takes as input the latency calculated from the
first function. If the user inserts rules with different format as

Parameters Values

Output Engine’s Latency
Input 1 Latency of rule 1
Input 2 Latency of rule 2

Table 4: Parameters of Multiple Rules Latency Function

Parameters Values

Output Latency Enginei
Input 1 Latency Enginei
Input 2 Latency Enginej
Input 3 Latency Enginek

Table 5: Engine’s Latency Function

Rule 1 
𝑇1, 𝐿1 

Rule 2 
𝑇2, 𝐿2 

Rule 3 
𝑇3, 𝐿3 

Rule 4 
𝑇4, 𝐿4 

Rule 5 
𝑇5, 𝐿5 

Function 1 

Function 1 

𝐿𝑎𝑡𝑒𝑛𝑐𝑦1 

𝐿𝑎𝑡𝑒𝑛𝑐𝑦2 

Function 1 

Function 1 

𝐿𝑎𝑡𝑒𝑛𝑐𝑦3 

𝐿𝑎𝑡𝑒𝑛𝑐𝑦4 

Function 1 

𝐿𝑎𝑡𝑒𝑛𝑐𝑦5 

Engine 1 

Engine 2 

Engine 3 

Function 2 

Function 2 

Function 2 

Node 1 

Node 2 

Latency 
Engine 2 

Latency 
Engine 1 

Latency 
Engine 3 

Latency 
Engine 1 

Function 3 

Latency 
Engine 2 

Function 3 

Latency 
Engine 3 

Function 3 

Figure 7: Estimation Model

ours, Single Rules Latency Function is not reliable, thus we
calculate the latency of the rule running in a single engine
and then insert in the second function this information. If
we place more than 2 rules we will call this function sequen-
tially, e.g. the output of this function will be fed again as its
input. The input and the output of this function are presented
in Table 4.

• Engine’s Latency Function (Function 3) Finally the last
function is used for estimating the latency of an engine’s
rules if it is placed in the same cluster node with other en-
gines. The latency of processing incoming events increases
if a cluster node is overloaded with many engines. The in-
put and the output of this function are presented in Table 5,
where three Esper engines run in the same cluster node.

4.2 Start-Up Optimization
This component is responsible for setting up the system, thus, is ex-
ecuted before the actual Storm topology starts processing incoming
data. Initially it collects all the rules that the user chose to run and
analyses their requirements. In the next step, the component de-
cides how to allocate these rules to different Esper engines. The
allocation is done based on the regression model explained in the
Section 4.1.4. Furthermore, the component’s optimizations can be
invoked periodically (or when new rules are submitted to the frame-
work) to adjust the rules allocation to the current system’s condi-
tions.

4.2.1 Rules Partitioning
Balancing the data processed by the Esper engines is one of the key
components to improving the overall system throughput. The rules
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Rule’s Partitioning Component

Input: Engines the set of Esper engines to use, rule the rule that
needs to be partitioned
Region_Rates Retrieve regions’ input rates for layer
rule.quadtree_layer
Sort Region_Rates in descending order
for all enginei in Engines do

rate[enginei] = 0
end for
for all region in Region_Rates do

less_loaded = engine1
min_rate = rate[engine1]
for all enginei in Engines do

if min_rate > rate[enginei] then
min_rate = rate[enginei]
less_loaded = enginei

end if
end for
Assign region to less_loaded engine
rate[less_loaded] = rate[less_loaded] + region.rate

end for
Algorithm 1: Rule’s Partitioning Algorithm

Rules Allocation Component

Input: N number of Esper engines, Groupings_Set set of the
groupings with their corresponding rules
for all groupingi in Groupings_Set do

scores[groupingi] Estimate groupingi’s rules score with 1
engine
engines[groupingi] = 1

end for
N = N � |Groupings_Set|
for j = 1 to N do

max_score = 0
chosen_group = grouping1
for all groupingi in Groupings_Set do

estimated_score Estimate groupingi’s rules score for
engines[groupingi] + 1
if max_score < estimated_score then

max_score = estimated_score
chosen_group = groupingi

end if
end for
scores[chosen_group] = max_score
engines[chosen_group] = engines[chosen_group] + 1

end for
Algorithm 2: Rules Allocation Algorithm

that our system examines detect abnormalities in buses’ reported
values at different spatial locations. Thus, we partition the rules by
sending the data that correspond to different spatial locations into
different Esper engines. We follow a partitioning schema that par-
titions a rule’s spatial locations to different engines based on their
input rates. The tuples are sent to the appropriate engine according
to this schema. We consider as the input rate of a spatial location,
the amount of bus traces expected to be processed by the engine
in that location. We have some initial knowledge about these rates
(e.g. from historical data) and incrementally update them while the
application runs. As you can see in Algorithm 1, the rule’s exam-
ining locations are partitioned in a way that all engines will receive
approximately the same aggregated input rate.

4.2.2 Rules Allocation
One of the key components for achieving fast processing of the con-
stantly arriving new primitive events is the allocation of the rules to
the available Esper engines. We exploit the hierarchical structure
of our rules and provide an efficient assignment of the rules to the

engines. Recall that the running rules examine spatial locations.
These locations may overlap as one rule may monitor the hole city
and other rules some specific roads or neighbourhoods.

Because we have multiple rules per spatial layer and a limited num-
ber of engines, we might need to group together rules that belong to
different layers. This approach can be beneficial because we avoid
data re-transmissions. If we assign each layer in a different engine,
newly arriving primitive events must be transmitted to all the en-
gines, limiting the benefits of the Storm’s parallelism and adding
extra traffic between the cluster nodes. Conversely, if we put all
rules examining the second and third quadtree layers in the same
grouping, we would not have to sent new events twice as areas of
the third layer will be assigned to the same engine with their par-
ents from the second layer. We achieve this by partitioning rules’
locations (see 4.2.1) based on the higher possible layer. So in the
previous case, we would partition the rules based on the spatial lo-
cations belonging to the second layer of our quadtree.

We propose a greedy algorithm (Algorithm 2) that receives as input
a possible set of groupings of the different layers examined by the
rules, and provides an allocation to the available engines in a way
that maximizes a score function. The time required to process the
input data for the rules of groupingi in Enginej is given by the
following formula:

timei,j = inputRatei ⇥ latencyj (1)

The score for each grouping will be related to the minimum time
required to process its set of tuples in the engines it has been as-
signed.

scorei =
WiX

i=1

wi ⇥ min
j2Engines

(timei,j) (2)

where Wi is the number of rules in groupingi. Also wi is the
weight of a particular rule. The traffic management operator may
select that some rules are more important than others. For example,
an appropriate policy may be to place higher weights in the rules
that take much time to execute.

Our algorithm is not a simple variation of the Bin-Packing problem
but the process we follow is a bit more complex. If we place more
than one rule in the same engine, the estimation of the engine’s la-
tency is not trivial, as it varies for different combinations of rules.
For this reason we propose an algorithm that utilizes the regres-
sion model for estimating the observed latency when we allocate
the rules to multiple engines and then computes the corresponding
score via Equation 2. The algorithm first gives in each grouping a
separate engine to execute. So if the initial grouping considers the
root layer with the second layer together, while the third layer sep-
arately, then the algorithm would allocate one engine for the first
pair of layers and a second engine for the third layer’s rules. Fur-
thermore for each grouping we estimate its achieved score for this
initial assignment.

In the next step of the algorithm, we estimate for each grouping its
score if we had added an extra engine for that particular grouping.
The grouping that leads to the greater score increase is the one that
will use the extra engine. This approach enables us to maximize the
achievable score without examining all the combinations of layers
and engines. In each step we keep the new score estimation for the
chosen grouping and increase the number of engines appropriately.
We repeat this procedure until all engines have been utilized.
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4.3 On-line Processing
This component consists of the Storm topology and the Esper en-
gines. The rules are allocated to these engines via the techniques
proposed in the Start-Up Optimization component.

4.3.1 Retrieve Batch Generated Data
Esper rules do not have a unique threshold but have different thresh-
olds for different input data (i.e. different bus stop, areas etc). Re-
call that these values are computed by Hadoop and stored in an
SQL server. These thresholds are retrieved using the SQL query
that is presented in Listing 2. This query takes as parameter the
value s which tunes the value of the threshold as s times the stan-
dard deviation away from the mean.

Listing 2: SQL Query that retrieves the thresholds

SELECT DISTINCT
a t t r _ m e a n +s⇤ a t t r _ s t d v as thresholdLocation ,
c u r r e n t H o u r ,
da teType ,
a r e a I d 1

FROM
s t a t i s t i c s _ a t t r i b u t e

In order to feed the rules with these thresholds we tested the fol-
lowing three methods:

• Join with Database Each new tuple that arrives in an Esper
engine will do a join with the database in order to retrieve the
corresponding threshold.

• Create Multiple Rules Retrieve all the thresholds from the
database in advance and for each possible combination create
the relevant rule.

• Add the Thresholds in an Esper stream Retrieve all the
thresholds from the database and add them in a new Esper
stream. Each new tuple will join with this thresholds’ stream.

4.3.2 Storm Topology
In Figure 8, we saw the Storm topology that we created for the
described traffic monitoring application. The application consists
of seven components. Newly arrived bus traces are emitted to the
topology from the BusReader spout. In our current implementation
the traces are stored in csv files so we use this spout for reading the
stored data. The PreProcess Bolt is responsible for adding extra in-
formation such as the vehicle’s speed and direction. These data are
forwarded to the Area Tracker bolt which detects the areas in the
different quadtree layers where the vehicle currently resides. Each
task of this bolt has an instance of the Region Quadtree and queries
it to find the areas that the new trace belongs. The BusStops Tracker
bolt also adds a new attribute in the examined trace, specifically it
adds the bus stop id. Then the data are emmitted to the Splitter Bolt
that is responsible to send each tuple to the appropriate Esper Bolt
task. As we mentioned above our system consists of many Esper
engines located in different tasks of the Bolt. It is crucial to route
each bus data tuple to the appropriate Esper engine as each engine
examines different spatial locations (Section 4.2.1). Finally the Es-
per Bolt executes the user-defined rules that are used for detecting
unusual traffic conditions in the city. We have multiple tasks of this
bolt to exploit the inherent parallelism of Storm. Detected events by
the EsperBolt are forwarded to the EventsStorer bolt which stores
them to a pre-decided storage medium, in our case a MySQL server.

BusReader 
Spout 

PreProcess 
Bolt 

Area 
Tracker 

Bus Stops 
Tracker 

Esper 
Bolt 

Events 
Storer 

MySQL  
Server 

Splitter 
Bolt 

Figure 8: Traffic Monitoring Topology

Parameters Values

Attribute: Delay, Actual Delay, Speed, Delay and Congestion,
All

Location: Bus Stops and Quadtree Areas
Window Length: 1, 10, 100, 1000

Table 6: Parameters of the generic rule template and the cor-
responding values

5. EVALUATION
We have performed an extensive experimental study of our ap-
proach on our local cluster consisting of 7 VMs, running on three
actual nodes. Each VM had attached one CPU processor and 2 GB
RAM. All VMs were connected to the same LAN and their clocks
were synchronized with the NTP protocol. We used Storm 0.8.2,
Hadoop 1.2.1 and Esper 5.1. We used a separate node in our cluster
where the Storm Master process (Nimbus) executed to avoid over-
loading one of the VMs. In this work, we use the values in Table 6
as parameters of the generic rule template described in Section 3.3.
For our evaluation we fed our system with bus traces from the pe-
riod of 1st to 31st January (4 GB in total) at full speed, so without
any delay between the tuples inter-arrivals. We followed this policy
to stretch our system’s performance, specifically every second our
application received 60, 000 bus traces.

We focused on the performance of the bolt that runs the Esper en-
gines, as it is responsible for the more heavy-weight processing and
also because it is the part of the topology where our optimizations
were applied. Two main metrics were considered:

1. The achieved throughput in regards to the number of input
data that are processed in a fragment of 40 seconds

2. The average latency to process a single input tuple. Again
we considered a time period of 40 seconds.

To collect these data we enhanced Storm with an extra monitor
thread per worker processor, that periodically (every 40 seconds
in our case) reports these metrics for each bolt’s task to the Nim-
bus node. The Nimbus aggregates these data to compute the final
monitor metrics per bolt.

5.1 Regression Evaluation
In order to build the regression model, described in Section 4.1.4,
that estimates the latency for an engine if we add in it two sets of
rules, we used polynomial regression. Initially we ran several ex-
periments in order to build the appropriate dataset and we splitted
it in training and test set. Then we feeded a first and a second order
polynomial regression model in this dataset. From the experiments
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Figure 10: Performance of retrieving location thresholds methods

we identified that the first order polynomial regression has less av-
erage absolute error (around 60%) than the second order. This is
the reason why we selected to use this model in order to model
this function. The identified function is: 0.0077598⇥ latency1 +
2.3016⇥ e�05 ⇥ latency2 +2.4717. The generated model is pre-
sented in Figure 9. We followed a similar approach for creating the
other two regression functions.

5.2 Retrieving Results From Storage Medium
We evaluated our three proposed techniques for dynamically re-
trieving the rules’ thresholds from the storage medium, depicting
their impact on the observed latency. We also provide results when
a static threshold is used. In this case no data needs to be retrieved
from the storage medium. This depicts the optimal scenario where
we do not have the retrieval overhead. As you can see in Figures
10(a), 10(b), using an inner SQL query for each rule deteriorates
the performance of the framework because for each incoming tu-
ple we have to join the tuples’ attributes with the ones stored in the
storage medium, leading to a significant increase in the latency.
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Figure 11: Rules Allocation Throughput Performance

In regards to the two other methods you can see that using a new
stream for the thresholds (blue line in the Figures) has latency com-
parable to the one observed in the no threshold scenario. The multi-
ple rules approach leads to an increased latency because the engines
are overloaded with multiple rules, so there is a significant differ-
ence compared to the new stream approach as you can see more
clearly in Figure 10(b). For the remaining experimental evaluation
we used the new stream approach.

5.3 Rules Partitioning
In regards to partitioning the rules to their allocated engines, we
compared our proposal with two other approaches:

1. All Grouping: Rules’ spatial locations are partitioned to the
engines similarly to our approach, but newly arrived tuples
are emitted to every engine.

2. All Rules: All engines have all the rules’ locations allocated
to them and each incoming tuple is forwarded to the engine
that was decided by our partitioning schema.

We compared them with our algorithm when 10 rules are running.
Five of the rules examined each of the different attributes (see Table
6) for the bus stops, while the other five monitored the leaves of
the quadtree. All rules had 100 tuples in their window length. As
you can see in Figures 12, 13, our partitioning proposal achieves
a larger increase in the system’s throughput, because the system is
not overloaded with extra tuples (as the All Grouping technique
does) and also the engines are not overloaded with rules as in the
All Rules scenario.

5.4 Rules Allocation
We evaluated the performance of our proposed allocation algo-
rithm, when rules belonging to different quadtree layers must be
allocated to the available engines. We used two Workloads based
on the attributes and locations described in Table 6. Workload 1
used 1, 10 and 100 window lengths while in Workload 2, rules
had 100 and 1000 as window lengths. We compared our algorithm
with a simple round-robin approach that considers the rules based
on the layer of the quadtree they belong. The algorithm assigns
the engines to these layers via a round-robin fashion. As you can
see in Figure 11 our algorithm achieves better results because it al-
locates rules from different layers together avoiding the overhead
of retransmissions that occur when the round-robin algorithm is
applied. Specifically our algorithm allocated for both workloads
all rules together, until fourteen engines were considered. When
fourteen engines were used, rules concerning the bus stops were
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Figure 12: Observed latency for differ-
ent partitioning approaches
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Figure 13: Achieved throughput for dif-
ferent partitioning approaches
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Figure 14: Observed latency for differ-
ent workloads
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Figure 15: Achieved throughput for dif-
ferent workloads
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Figure 16: Observed latency for differ-
ent number of VMs
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Figure 17: Achieved throughput for dif-
ferent number of VMs

examined in their own dedicated set of engines, and all the other
rules were put together to the remaining engines. So our approach
maximizes the overlapping between the layers and thus minimizes
the required data re-transmissions.

5.5 Different Workloads
We also examined the performance of our system when different
workloads are assigned to the available Esper engines. In these
experiments we used our proposed allocation algorithm, and ex-
amined how our system scales with different workloads. We con-
sidered three different workloads based on the rules running in our
application. In our evaluation we also examined cases where these
workloads were issued concurrently.

• Last Event. Consisted of ten rules that kept only one pre-
vious tuple in their time window. Five rules examined the
attributes values at the bus stops, while the other five moni-
tored the attributes in the leaves layer of the quadtree.

• Last Ten Values. Consisted of ten rules that kept ten pre-
vious tuples in their time window. Rules had the same at-
tributes and locations as the Last Event workload.

• Last One Hundred Values. Similarly, this workload con-
sisted of ten rules with the same structure as the other two
workloads, only this time we kept one hundred previous tu-
ples in the rules’ time windows.

As you can see in Figure 15, our system is able to achieve a steady
increase in the overall system’s throughput even when we apply all
the workloads at the same time.

5.6 Scalability
Finally we evaluated the scalability of our framework when we vary
the number of VMs that were used. We examined the framework’s
performance for 3, 5 and 7 VMs. We used the last workload from
the previous section for these experiments. In Figures 16, 17, you
can see that when more VMs are available we achieve a steady
throughput increase. In regards to latency we can see how over-
loading the system can lead to its significant increase. For example
in the 3 VMs case, using more than four Esper engines leads to a
huge increase in the observed latency. Also you can observe that
the best results in regards to latency occur when we do not exceed
the available processing resources (CPU cores).

6. CONCLUSION
In this paper we presented a novel traffic management system for
detecting complex events in the city of Dublin. We proposed a
new system architecture that combines Storm, Esper and Hadoop,
offering a truly scalable and easy-to-use framework for efficient
complex event processing. We provided algorithms for allocating
the rules to the available Esper engines and processing historical
data in order to be able to support dynamic rules. Our experimen-
tal results in our local cluster indicate a clear improvement in the
system’s performance.
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