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ABSTRACT
SAP HANA started as one of the best-performing database engines
for OLAP workloads strictly pursuing a main-memory centric ar-
chitecture and exploiting hardware developments like large number
of cores and main memories in the TByte range. Within this pa-
per, we outline the steps from a traditional relational database en-
gine to a Big Data infrastructure comprising different methods to
handle data of different volume, coming in with different velocity,
and showing a fairly large degree of variety. In order to make the
presentation of this transformation process more tangible, we dis-
cuss two major technical topics–HANA native integration points
as well as extension points for collaboration with Hadoop-based
data management infrastructures. The overall of goal of this paper
is to (a) review current application patterns and resulting technical
challenges as well as to (b) paint the big picture for upcoming ar-
chitectural designs with SAP HANA database as the core of a SAP
Big Data infrastructure.

Categories and Subject Descriptors
H.2.4 [Database Management]: Query Processing

General Terms
Big Data, Streaming, Map-Reduce

1. INTRODUCTION
The event of the “Big Data” hype has triggered a significant push

within the data management community. On the one hand, new sys-
tems following unconventional system architectural principles have
been developed. On the other hand, traditional data management
systems have incorporated requirements usually voiced within the
context of a “Big Data” discussion. For SAP, the Big Data strategy
is of tremendous relevance because of the opportunity to extend
traditional as well as reach out to novel application scenarios. A
premium example for extending existing applications can be seen
with respect to traditional data-warehouse solutions. Many stud-
ies show a significant growth in terms of numbers of installations
as well as the requirement to embrace non-traditional data sources

c�Copyright is with the authors. Published in Proc. 18th International Con-
ference on Extending Database Technology (EDBT), March 23-27, 2015,
Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Com-
mons license CC-by-nc-nd 4.0

and data formats [5]. Novel application scenarios address primar-
ily a mixture of traditional business applications and deep analytics
of gathered data sets to drive business processes not only from a
strategic perspective but also to optimize the operational behavior.

With the SAP HANA data platform, SAP has delivered a well-
orchestrated, highly tuned, and low-TCO software package for push-
ing the envelope in Big Data environments. As shown in figure 1,
the SAP HANA data platform is based in its very core on the SAP
HANA in-memory database system accompanied with many func-
tional and non-functional components to take the next step towards
mature and enterprise ready data management infrastructures. In
order to be aligned with the general “definition” of Big Data, we
outline the SAP HANA data platform capabilities according to the
criteria volume, velocity, and variety.

Figure 1: SAP HANA Data Platform Overview

Variety
Since the SAP HANA database system has its origins partially in
document processing, support for semi- and unstructured text is
part of SAP HANA’s DNA [8]. Recent extensions to cope with
the aspect of variety additionally consists in comprehensive support
for geo-spatial data and time series data as seamless extensions of
the traditional table concept. Moreover the pure relational concept
is relaxed and extended within SAP HANA within two directions.
First, SAP HANA offers so-called “flexible tables” to extend the
schema during insert operations allowing applications to extend
the schema on the fly without the need to explicitly trigger DDL
operations. Second, SAP HANA provides a native graph engine
next to the traditional relational table engine to support schema-
rich and agile data settings within one single sphere of control and
based on the same internal storage structures [22]. Such an ar-
chitecture reduces TCO by operating only one single system and–
at the same time–allows for cross-querying between different data
models within a single query statement.

Figure 2 shows an example of time series support for a rich set of
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series data style application scenarios e.g. within monitoring man-
ufacturing equipment or analyzing energy meter data in the large.
As can be seen, the system does not only provide the opportunity
to explicitly model the semantics of the data set (e.g. certain char-
acteristics or missing value compensation strategies) but also pro-
vides an optimized internal representation to increase query perfor-
mance and reduce the memory footprint. As indicated in figure 2
it is quite common to compress the data by more than a factor of
10 compared to row-oriented storage and more than a factor of 3
compared to columnar storage.

Figure 2: SAP HANA timeseries support

Velocity
In order to cope with the requirements coming from the “veloc-
ity” dimension of the Big Data definition, the SAP HANA data
platform addresses velocity from an end-to-end perspective. With
SQL Anywhere, the platform provides a mature instrument for dis-
tributed data capturing, local processing, and efficient propagation
into central database installations. As can be seen in figure 1, exter-
nal data can be imported using Data Services instruments [2] and
replicated using SAP Replication Server [3]. In order to cope with
extreme low-latency requirements, the mature event stream proces-
sor (ESP) solution is integrated and coupled with the in-memory
database system. Section 3 will provide a deeper look into this
technical solution.

Volume
While volume is fundamental to “Big Data”, the SAP platform im-
plements the full spectrum ranging from being able to work with
large main-memory installations as well as providing a disk-based
extension based on Sybase IQ technology. While the core in-memory
HANA engine has successfully proven to work on systems with 12
TByte in a single appliance configuration (e.g. HANA-Hawk [18]),
Sybase IQ still holds the world record for the largest DW installa-
tion with 12.1 PByte [21]. The transparent integration of IQ tech-
nology into the HANA core database system yields an unprece-
dented combination of high performance as well as the ability to
handle large volumes, well beyond of any of today’s enterprise-
scale requirement.

Application Patterns
Looking at the different requirements, the SAP HANA infrastruc-
ture is designed to cope with different application patterns rang-
ing from traditional decision support systems to web-scale oper-
ational recommendation applications as shown in figure 3. Typi-
cally, data from online sources is captured and pre-filtered using the
SAP HANA ESP component and then forwarded to the central SAP
HANA system. In addition, low-level log data stored in Hadoop
infrastructures are tapped and used for statistical algorithms (e.g.
recommendation algorithms). Staying within the single system, the

outcome is directly forwarded to the operational system (e.g. SAP
ERP) to trigger a subsequent business request.

Figure 3: SAP HANA Big Data Infrastructure Core Compo-
nents

In order to cope with such very typical application patterns, a
comprehensive solution acting as an umbrella for individual sys-
tems and algorithmic tasks is required, which may consist of dif-
ferent components but presenting itself as a single point of control
for the application as well as administration.

2. BEYOND THE TRADITIONAL Vs
While the SAP HANA data platform is well setup to cope with

the traditional V-requirements, SAP especially focuses on deliver-
ing additional Value to customers and therefore goes beyond the
traditional Vs.

Value
The SAP HANA platform provides added Value scenarios for cus-
tomers by representing not only a core database system but an
enterprise-scale data platform with additional services like:

• integrated repository of application artifacts for holistic life
cycle management; for example application code in com-
bination with database schema and pre-loaded content can
be atomically deployed or transported from development via
test to a production system.

• single administration interface and consistent coordination
of administrative tasks of all participating platform compo-
nents; for example, backup and recovery between the main-
memory based SAP HANA core database and the extended
IQ store is synchronized providing a consistent recovery mech-
anism.

• single control of access rights based on credentials within
the platform; for example, a query in the SAP HANA event
stream processor (ESP) may run with the same credentials
as a corresponding query in the SAP HANA core database
system.

More technically, SAP HANA defines Value of data with respect
to relevance distinguishing the low and high density data being han-
dled with different technologies embedded into the SAP HANA
platform. Figure 4 outlines the interplay between age (on the x-
axis) and Value (on the y-axis). Very recent data may come into the
system at a high speed and high volume and is directly digested by
the HANA Streaming component (ESP); from there, enriched and
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Figure 4: SAP HANA Big Data Infrastructure Core Compo-
nents

potentially aggregated data can be propagated into the core SAP
HANA database engine. In low-velocity scenarios raw data may
directly be loaded into the SAP HANA database or handed over
to a Hadoop installation as cheap background store for low-density
data. High Value is defined as enriched data after usually com-
plicated transformation and cleansing steps. For example “golden
records” within a master data management system or statistically
corrected and improved fact data within a typical data warehouse
scenario represent data sets with high relevance and customer data.
As this intensively used data usually fits into the main-memory of a
smaller cluster of machines, this data can be managed by the SAP
HANA core database engine. HANA low-density data or data with
low business value reflect fine-grained log or sensor data, (frozen)
archives for legal reasons or extracted images of source systems
required to feed complex data transformation processes. For eco-
nomical reasons but also because of its high volume archival data is
stored on disk. Value therefore does not directly correlate with vol-
ume, i.e. even cleansed business data may show–especially consid-
ering historic data–significant volume but require extremely high
performance. Hence, depending on its value we store high-volume
data with high-value data in the extended storage and low-value
data in Hadoop.

SAP Big Data = Data Platform + Applications
As mentioned before, the SAP HANA platform provides a single
point of entry for the application as well as reflects a single point of
control with respect to central administration for backup/recovery
or life cycle management. Therefore, SAP defines Big Data infras-
tructures not only via core technology components but as a compre-
hensive application suite with support for data capturing, cleansing,
transformation, and finally consumption using a large variety of
transactional and analytical applications. From that perspective, the
SAP business warehouse (SAP BW) solution may be considered a
foundation and starting point for Big Data Analytics using the SAP
HANA platform. The SAP BW solution comprises a complete tool
chain for data provisioning and consumption in the traditional data
warehouse sense and is based (in addition to other database sys-
tems) on the SAP HANA core database engine. Sybase IQ may
be used (alternatively to other approaches) as nearline archive con-
trolled by the SAP BW suite. Also, as shown in figure 5, SAP BW
(starting with version SPS08) may exploit the extended storage to
transparently move cold data to the SAP HANA extended storage.
The SAP Big Data Strategy is now pushing the envelope in an evo-

lutionary way with respect to streaming and extended storage as
well as supporting Hadoop installations and without compromising
the industry-strength tool chain of data provisioning as well as data
consumption.

Figure 5: Extension of SAP HANA Business Warehouse

SAP Big Data–The Native and Open Strategy
Figure 5 sketches the positioning of the SAP data platform from
a specific perspective of the overall Big Data design space. Ob-
viously, the data platform is designed to deploy the components
required to solve a specific Big Data problem using SAP propri-
etary as well as embracing open systems. In general, this leads to
the following SAP Big Data strategy:

• HANA Native Strategy: For any Big Data installation, a
data platform with only native SAP HANA components is
able to cope with any number of volume, velocity, and vari-
ety requirements ([8]).

• HANA Open Strategy: Any existing Hadoop installation1

can be embedded into a SAP HANA ecosystem leveraging
SAP HANA added value capabilities like life cycle manage-
ment and integrated application development.

Following these statements, we will detail the technical impli-
cations in the remainder of this paper. Section 3 sketches the in-
tegration of SAP Sybase IQ as extended storage (HANA IQ) na-
tively into the SAP HANA core database engine and outlines the
native support of SAP Sybase ESP as streaming component with
SAP HANA (HANA Streaming). Following this native integra-
tion concepts, we will outline challenges and opportunities of the
HANA open strategy and show the integration of data residing in
the Hadoop Distributed File System (HDFS) and pushing process-
ing logic to Hadoop (code to data).

3. HANA NATIVE INTEGRATION POINTS
As outlined, the native Big Data strategy of SAP addresses the

full spectrum of Big Data use cases using the native SAP HANA
in-memory storage together with a native integration of the IQ stor-
age and ESP event streaming systems. The SAP HANA core in-
memory engine is optimized for processing large volumes of data
in an OLTP and OLAP-style allowing to serve as a consolidation
vehicle for transactional as well as decision support systems [19].
1Currently, distributions of Hortonworks are preferred.
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Within a Big Data installation, the SAP HANA core database sys-
tem is usually positioned to keep high value data, i.e. hot and
warm data for high-performance access. Although main memory
prices went down dramatically in the recent past, it is still not cost-
effective to keep bulks of cold data or archival data in main mem-
ory [9]. The SAP HANA data platform addresses this economical
aspect through native integration points with the extended storage
concept which is based on the IQ storage engine. However, in or-
der to provide an end-to-end solution for Big Data scenarios, the
SAP HANA data platform integrates tightly with the HANA event
stream processor (ESP) of SAP for high-velocity data of (yet) low
value.

Other database vendors also attempt to optimize the storage tech-
nology for the access patterns of the data. For example, the DB2
multi-temperature feature [1] allows to assign hard disks or SSDs
as storage technology on the level of table spaces. Also, DB2 BLU
can be used to opt either for conventional row-based and disk-based
processing or column-oriented (and mainly) in-memory processing
on the table level [20]. In a similar fashion, Microsoft SQL Server
also features the in-memory engines Hekaton [7] and Apollo [13]
for in-memory processing of data. In [23] the authors discuss a pro-
totype for the in-memory row store, Hekaton, for identifying tuples
that can be stored in cold storage. Overall, for both DB2 and SQL
Server the decision for in-memory processing currently seems to
be done on the table level while SAP HANA supports hot and cold
partitions within the same logical table.

As we discuss in this section, both extended storage and ESP are
integrated into the SAP HANA query processing. On the applica-
tion level, a common repository is used to manage the life cycle of
development artifacts. Administrators and developers use the SAP
HANA Studio as the main interface for development and adminis-
tration tasks. Meta data is centrally managed by SAP HANA and
exploited during query optimization and query execution. Finally,
aspects like backup and recovery are tightly integrated. In the fol-
lowing, we will outline technical details of this integration.

3.1 HANA IQ extended storage
SAP HANA offers a variety of options to store data: row-oriented

storage in main memory is used for extremely high update fre-
quencies on smaller data sets and the execution of point queries.
Column-oriented storage is the basic option for both read- and update-
intensive workload, especially for scan-intensive OLAP workloads.
In this section we discuss a new storage option, the extended stor-
age, which addresses use cases where massive data sets are mainly
inserted and infrequently used for reporting. According to [9], it
is still the case that rarely accessed data shall primarily reside on
(cheaper) disk storage. In order to address this requirement, the
extended storage option in SAP HANA offers a tightly integrated
disk-based storage based on the Sybase IQ storage manager [15].

For example a concrete scenario for using the extended storage
related to the SAP BW application includes the management of the
persistent staging area (PSA) where massive amounts of data from
a source system are directly mirrored into the BW infrastructure.
The main purpose of a PSA is to keep the extracted data sets as
sources for refinement processes within BW as well as for prove-
nance and archiving reasons. Since objects of a PSA are (after be-
ing used to derive higher value data sets by different BW processes)
only rarely used, a disk-based storage reflects an economically rea-
sonable solution without compromising the overall in-memory ap-
proach of SAP HANA.

A similar use case with respect to the management of a PSA are
so-called write-optimized DataStore objects (DSO) which serve as
a corporate memory, i.e. data must be kept for very long durations

for legal reasons. Similar to PSA objects, DSOs are rarely accessed
and performance is not of paramount concern. Overall, using the
extended storage SAP HANA customers transparently enjoy the
benefit of low-cost storage on disk, but they can still expect reason-
ably short response times for infrequently accessing data stored on
disk.

As a natural extension for hot and cold data stored in a single
table, hybrid tables allow one or more partitions of a table to be
represented like a SAP HANA in-memory column table and other
partitions as extended storage. Figure 6 outlines the architectural
setup. The IQ engine is completely shielded by the SAP HANA en-
vironment and therefore not accessible to other applications. This
restriction allows for a tight integration with SAP HANA as the
only “application” for IQ. In addition to query shipping to exter-
nal partitions, SAP HANA provides an integrated installation and
administration using SAP HANA Studio. Additionally, the tight
integration allows to provide a consistent backup and recovery of
both engines. Furthermore, the system allows to directly load mass
data into the extended storage and register the data at the orches-
trating SAP HANA instance. This direct load mechanism allows
therefore to support Big Data scenarios with high ingestion rate re-
quirements.

Figure 6: SAP HANA IQ Extension Overview

In summary, the concept of hybrid tables spanning SAP HANA
and the Sybase IQ storage manager has the following benefits:

1. It provides a simplified system landscape as SAP HANA is
the only interface to both hot and cold data including simpli-
fied setup or upgrade as well as integrated backup and recov-
ery.

2. Seamless growth of the data can be managed in the data
warehouse far beyond available main memory.

3. Integrated query processing with the extended storage in-
cluding function shipping to the extended storage exposes
the native query performance of the IQ storage engine even
when using as extended storage orchestrated by SAP HANA.

In addition to extending SAP HANA for dealing with cold data,
the extended storage deployment scenario also provides a seamless
migration path from standalone IQ installations to the SAP HANA
data platform. Without moving data out of an IQ system, an IQ in-
stance can be registered at a SAP HANA system, and the customer
may take advantage of the overall SAP data platform properties.

584



Extension on Table and Partition level
In using the extended storage, two different levels of working with
the extended storage option can be differentiated: In the first sce-
nario, an existing Sybase IQ table is directly exposed and therefore
accessible in SAP HANA using the following syntax:

CREATE TABLE table_name table_definition
USING HYBRID EXTENDED STORAGE

In this syntax the HYBRID clause is optional, because the ex-
tension is based on a table level and no mixture of IQ and SAP
HANA tables is configured [4]. The extended storage technology
performs data type mappings between the engines as well as pro-
vides full transactional support. Additionally, a data load issued
against such an external table directly moves the data into the ex-
ternal store without taking a detour via the in-memory store fol-
lowed by a subsequent push into the extended store. Moreover, the
extended storage technique supports schema modifications like any
other table in SAP HANA to complete the hybrid table concept.

In the second scenario of partition level extension, an SAP HANA
table may be partitioned into one or multiple hot partitions, which
are realized by regular in-memory column-oriented storage and one
or multiple cold partitions which live in a table of the IQ storage.
Such a resulting table is considered a SAP HANA hybrid table. The
residence of hot and cold data is decided on the partitioning crite-
ria and can be controlled by the application. Additionally, the SAP
HANA data platform provides a built-in aging mechanism, which
periodically moves data from the hot storage of the in-memory par-
titions into the cold storage. The decision is based on a flag in a
dedicated column of the hybrid table.

Configuration Scenarios
In order not to interfere with the memory management of the in-
memory engine, the IQ engine is usually deployed at a separate
host/cluster. This allows for a more specific sizing of the involved
nodes in the SAP HANA distributed landscape. For example, the
extended storage may rely on a more powerful I/O subsystem than
the server where the SAP HANA database is running and usually
requires less main memory. The notion of a data platform ensures
that the overall system landscape is kept manageable because of a
unified installer and integrated administration tool chain.

Transactions
From an application perspective, both extended tables and hybrid
tables appear like regular row or column tables in SAP HANA.
This implies that they can participate in update transactions that in-
sert, update or delete data in the extended or hybrid table. As a
consequence, database operations on SAP HANA extended tables
participate in (normal) distributed HANA transactions. In such a
scenario, SAP HANA coordinates the transaction, e.g. generating
the transaction IDs and commit IDs to integrate extended storage.
As a seamless integration, we use the improved two-phase commit
protocol described in [14] also for the extended storage. Conse-
quently, SAP HANA will be able to recover the data in case of
failures as any other SAP HANA table, including point-in-time re-
covery. In case of an error of the extended system, every access to
a SAP HANA table may throw a runtime error. In particular, any
query that touches objects located on the extended storage will be
aborted. Additionally, if that access is part of a transaction that also
touches in-memory column tables in SAP HANA, the entire trans-
action will be aborted. Finally, the recovery of an extended storage
instance is recovered jointly with SAP HANA. Without this inte-
grated recovery any transaction that had touched the extended store

Figure 7: Federated query processing

but not committed will be marked as “in-doubt”. Clients will have
the ability to manually abort these “in-doubt” transactions.

Query Processing
Due to the tight integration of the IQ engine into the SAP HANA
distributed query processing framework, the SAP HANA engine is
able to exploit a huge variety of query processing tweaks, espe-
cially push-downs to the IQ storage manager. Capabilities include
the ability to perform inserts, updates or deletes, order by, group
by, different kinds of joins, or execution of nested queries. The
cost-based query optimizer of SAP HANA either uses q-optimal
histograms based on values for cardinality estimates on the ex-
tended storage [16]. The query optimizer considers communica-
tion costs for the data access to the extended storage. The dis-
tributed exchange operator is used to mark the boundary between
HANA-local processing and remote execution in the IQ query pro-
cessor. Sub plans below this operator are executed on the remote
data source. During query optimization different alternatives exists
to evaluate subplans in the extended storage:

• Remote Scan: Process a complete sub query independent
from SAP HANA in the extended storage. The optimizer
decides if the result should be returned in columnar or row-
oriented format for further processing in SAP HANA.

• Semijoin: In this alternative data is passed from SAP HANA
to the extended storage where it is used for filtering either in
an IN-clause or a join using a temporary table. The optimizer
picks such a strategy for example if parts of the fact table
are sitting in IQ and require a join with smaller (and usually
frequently updated) dimension tables.
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• Table Relocation: This alternative considers SAP HANA
tables as remote tables for IQ and pulls data on demand from
SAP HANA.

• Union Plan: Do local processing in SAP HANA and the IQ
storage engine, and use a union to integrate the partial results.
Such a strategy is usually picked, if the dedicated aging flag
allows for partition-local joins and partial group-bys.

Figure 7 shows the plan for a query that joins a columnar SAP
HANA table with a selective local predicate with a table in the ex-
tended storage. In this scenario, the semijoin strategy is the most
effective alternative because only a single row is passed from SAP
HANA to the extended storage where it can be used to filter the
large remote table. In this example it is even possible to push the
group-by operation to the remote data source.

3.2 HANA Stream Extension
The HANA stream extension is based on the SAP Sybase Event

Stream Processor (SAP Sybase ESP) and addresses the specific
needs of data acquisition and responding with actions in realtime
in a Big Data scenario. The data acquisition part deals, for exam-
ple, with filtering out irrelevant events or immediate aggregation of
the captured data for further processing in the SAP HANA core en-
gine or Hadoop. The SAP Sybase ESP may also detect predefined
patterns in the event stream and trigger corresponding actions on
the application side.

To illustrate these use cases consider a telecom company that
captures live data from its mobile network, for example information
on the health status of its network or unexpected drops of customer
calls (figure 8). In this figure, multiple components of the SAP
HANA platform interact; each component is shown in a separate
box with distinct color. In this telecom scenario, data is generated
in high volume in the telecom network, but not all data has high
value. Sensors in the telecom network capture various events, e.g.
information about started or terminated phone calls. As long as the
network is in a healthy state, no specific action has to be taken,
and it is sufficient to store aggregated information on the status
of the network. Hence, the SAP Sybase event stream processor
uses the Continuous Computation Language (CCL)2 to analyze the
raw event data, instantly analyze it, and aggregate events over a
predefined time window for further processing.

Furthermore, the raw data may be pushed into an existing HDFS
using a dedicated adapter such that it is possible to perform a de-
tailed offline analysis of the raw data. The resulting network data
archive is then analyzed using map-reduce jobs in the Hadoop clus-
ter. Such an advanced analysis might attempt to optimize the net-
work utilization or to improve the energy efficiency of the network.
In this scenario we use Hadoop for archiving purposes as the in-
coming data has highly variable structure. For more strictly struc-
tured data using the extended storage would be more appropriate.

In a development system the raw events collected in the network
data archive may be replayed to the event stream processor to verify
the effectiveness of improved event patterns. If the patterns derived
through the map-reduce jobs in the Hadoop cluster prove useful,
they are deployed in the productive ESP system.

However, if an outage of the network is detected, immediate
action is required, which could be directly triggered by the SAP
Sybase ESP and forwarded to the SAP HANA database using the
SAP Data Services [2]. While an alert is immediately sent to the
operations staff, a detailed analysis of the imported event data of
2CCL is a SQL-like declarative language to process events over
windows of data, see [12] for details

Figure 9: Example Scenario for Complex Event Processing in
SQL HANA data platform

the exceptional event may also trigger reports to be prepared for
service engineers. In a similar way, business data, e.g. informa-
tion about the amount of transferred data but also standard business
processes like billing or marketing are processed in the SAP HANA
database.

Moreover, pre-aggregated and cleansed data may be loaded into
the SAP HANA database for online processing. For example, the
sensor data of antennas may be normalized into equi-distant mea-
sures of the network state and loaded into a time series table of
SAP HANA. This allows advanced analysis on that data, e.g. per-
form correlation analysis between different sensors. Furthermore,
the sensor data may trigger business actions because information
about established connections collected from the sensor data must
be matched with customer data for accounting purposes. This calls
for an integrated processing runtime of sensor data and relational
data stored in the SAP HANA database.

Use Cases
In general, the integrated ESP engine tackles the following three
main use cases, also depicted in figure 9:

1. Prefilter/pre-aggregate and forward: In this use case, in-
coming data streams are filtered and/or aggregated. The re-
sult is then forwarded and directly stored within native SAP
HANA tables. Although the ESP provides some temporary
storage capability to reconstruct the content of a stream win-
dow, the forward use case allows to permanently store the
window content under the control of the database system.

2. ESP join: In this case, slowly changing data is pushed dur-
ing CCL query execution from the SAP HANA store into the
ESP and there joined with raw data elements. For example,
city names are attached to raw geo-spatial information com-
ing from GPS sensors.

3. HANA join: In the opposite of a HANA join, a native HANA
query may refer to the current state of an ESP window and
use the content of this window as join partner within a rela-
tional query. Such a setup is particularly interesting, when
dynamic content, e.g. the current state of a machine or envi-
ronmental sensors, is required to be merged with traditional
database content.

As common in stream environments, no transactional guarantees
are provided; This however is usually accepted in high-velocity
scenarios.
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Figure 8: Example Scenario for Complex Event Processing in SQL HANA data platform

3.3 Summary
The overall strategy of SAP to rely on a native SAP HANA Big

Data story as well as embracing (usually existing) open source in-
frastructure components requires to provide the concept of a data
platform with an integrated set of different components. In this
section we outlined the native extension points of SAP HANA with
respect to IQ as the extended storage as well as ESP as the inte-
grated stream engine allowing cross querying between the table-
based database and the stream-based event processing world.

4. HANA INTEGRATION POINTS
WITH HADOOP

Huge amounts of data are already stored in HDFS, and signifi-
cant investments were made to analyze the data stored in the HDFS
using either custom-made map-reduce jobs or using more declara-
tive languages like HiveQL [25]. Clearly, for SAP customers want
to tap into this ocean of data and generate higher-value information
from it using these map-reduce jobs or Hive. In many cases, the
resulting information must be integrated with the enterprise data
warehouse or operational applications, e.g. for a detailed customer
analysis.

In this section, we explain the goals we want to achieve with
the Hadoop integration based on some customer scenarios. After
that we survey technical details of the Smart Data Access (SDA)
framework which is used to integrate SAP HANA with Hadoop.
We focus on the Hadoop-side caching which results in significantly
lower response times of map-reduce jobs and more effective use of
the Hadoop cluster.

The integration of SAP HANA with any Hadoop distribution il-
lustrates how easy and powerful it is possible to link almost any
external data source with SAP HANA in a loosely coupled way.
This open platform strategy is mainly realized with the Smart Data
Access (SDA) technology, SAP HANA’s capability-based adapter
framework.

4.1 Goals and scenarios
Within the previous section we already pointed out that SAP ESP

may push raw events immediately into the Hadoop Distributed File
System (HDFS) so that it can be analyzed further in a rather offline
fashion. In addition, significant amounts of data today are already
stored into the HDFS. Usually, the shear amount of data (volume)

but also its loose structure (high variety) makes it unattractive to
load this data immediately into a relational database. Since raw
data is of low value, freshness is not critical, and it is often sufficient
to thoroughly analyze this data in batch jobs and then exposing the
results to the SAP HANA database for reporting, planning etc.

In general, such a setup implies a co-existence of a conventional
database side by side with data stored in HDFS which is analyzed in
Hadoop [26, 17, 24, 6]. Map-reduce jobs are periodically executed
to derive higher-level information in a more structured form which
may be stored in a data warehouse but also to correlate the content
stored in a HDFS with data already available in a database.

In this loosely coupled setup two main scenarios exist to link the
database with Hadoop:

• Delegation of ad-hoc queries to Hadoop using an ODBC adap-
ter and Hive [25].

• Exposing the content in the HDFS by calling existing map-
reduce programs.

Having SAP HANA as the federation platform with Hadoop then
leads to a setup with two separate systems. Standard tools for
HANA, e.g. the eclipse-based administration and development tool
SAP HANA Studio, can be used to develop Big Data applications.
With these development tools at hand, SAP HANA can also han-
dle life cycle tasks, e.g. transporting map-reduce programs from a
development system to the productive system. As data now resides
both in SAP HANA row/column in-memory tables and HDFS, query
processing is distributed over both SAP HANA and Hadoop. In
such a setup, SAP HANA serves as the main interface for ad-hoc
queries and orchestrates federated query processing between these
stores. If Hive is used, parts of a query may even be shipped to Hive
based on the capabilities registered for Hive and Hadoop. Hadoop
returns its result in a structured form that is ready to be consumed
by HANA for further processing.

Having an interface from SAP HANA to Hadoop exposes several
features of Hadoop which are typically not available in a relational
database. For example, one can reuse libraries implemented on top
of Hadoop like Mahout for machine learning, or custom social me-
dia analysis [11]. These kinds of tasks are typically a weak side of
relational databases and can be softened using a Hadoop infrastruc-
ture. Moreover, one can use Hadoop as a scalable and very flexible
way to implement user-defined functions which are capable to ac-
cess schema-flexible data without the need to transform them into
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the relational model beforehand. Having SAP HANA as federation
layer also allows us to combine relational query processing and
Hadoop with the capabilities of statistical analysis with R [10].

To illustrate these use cases consider a project with a large SAP
customer in the automotive industry with the objective to predict
warranty claims. The data sources stored in SAP HANA on the
one side included condensed information on the production, as-
sembly and sales of automobiles but also facts about customers
and past marketing campaigns. The raw data stored in HDFS on
the other side included diagnosis read-outs on cars, support escala-
tions, warranty claims and customer satisfaction surveys. Overall,
the Hadoop cluster used twenty servers with 250 CPU cores, 1500
GB RAM and 400 TB Storage as aggregated compute power avail-
able in the Hadoop cluster. The HANA server was equipped with
40 cores, 512 GB RAM and 2 TB disk storage. Using Hive, we
extracted data from twelve months data for a specific car series and
made it available to the SAP HANA database server. With the SAP
predictive analysis library using the apriory algorithm thousands
of association rules were discovered with confidence between 80%
and 100%. The derived models then were used to classify new
readouts as warranty candidates in real-time in the SAP HANA
database.

4.2 SDA-based integration - Query shipping
An important building block for the integration of Hadoop with

SAP HANA is the Smart Data Access (SDA) framework imple-
menting an access layer for a wide variety of different remote data
sources like Hadoop, Teradata or other relational and non-relational
systems. Thereby, SAP HANA realizes an open strategy to inte-
grate and federate remote data sources.

Figure 10: SAP HANA SDA Overview

Figure 10 gives a high-level overview of the generic SDA frame-
work. In the SDA framework, remote resources are exposed as a
virtual table to SAP HANA. Consequently, these resources can be
referenced like tables or views in SAP HANA queries or views.
The communication to remote resources is realized by adapters
which are usually specific to the data source. There are various
SDA adapters already available, e.g. Hadoop3, any SAP database,
IBM DB2, Oracle, or Teradata. This means that by providing an
SDA adapter for a specific type data source makes this data source
3With HANA SPS09 we support the Hadoop distributions Intel
IDH, Hortonworks, and Apache Spark.

accessible for SAP HANA. As each SDA-adapter exposes capabil-
ities specific to this data source, the SAP HANA query optimizers
is able to forward parts of a query execution plan to the remote data
source. In the remainder of this section we focus on the integra-
tion of Hadoop using SDA adapters as one prominent example, but
most concepts also apply to other data sources.

Figure 11: SAP HANA / Hadoop side-by-side

Registering a Remote Data Source
We use SDA to communicate with Hadoop via Hive, especially
to address ad-hoc data analysis on data stored in HDFS. As indi-
cated in figure 10, we use ODBC to establish the connection to
the Hadoop system. In this setup SDA passes partial or complete
queries or DDL statements to Hive for execution in Hadoop. The
SDA framework and its integration into the HANA query compiler
takes care that only queries are passed to Hadoop that are also sup-
ported by Hive and Hadoop. SDA also applies the required data
type conversions with Hadoop. Below we show a typical workflow
to first create the remote access to a Hive-based Hadoop distribu-
tion, wrap the remote source as a virtual table, and finally query the
content of the data:

CREATE REMOTE SOURCE HIVE1 ADAPTER "hiveodbc"
CONFIGURATION ’DSN=hive1’

WITH CREDENTIAL TYPE ’PASSWORD’ USING
’user=dfuser;password=dfpass’;

CREATE VIRTUAL TABLE "VIRTUAL_PRODUCT"
AT "HIVE1"."dflo"."dflo"."product";

SELECT product_name, brand_name
FROM "VIRTUAL_PRODUCT";

Query Processing
As mentioned above, SDA relies on a description of the capabili-
ties of a remote server. For example, transactions for some database
servers e.g. updates and transactions, are supported. However, for
Hive and Hadoop only select statements without transactional guar-
antees are supported. For Hive on Hadoop it is possible, e.g. to
push predicates or joins to Hadoop, but also to use semi-join reduc-
tion for faster distributed joins between Hadoop data and HANA
tables. In the capability property file one finds, e.g. CAP_JOINS
: true and CAP_JOINS_OUTER : true, to denote that in-
ner joins and outer joins are supported. It is even possible that
complete queries are processed via Hive and Hadoop. When only
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parts of a query can be executed in Hive and Hadoop, the query
compiler generates a transient virtual table that represents the re-
sult of the subquery which will be processed by Hive and Hadoop.
It also adds the needed operations to integrate this subquery into the
plan executed in SAP HANA. In the simple-most case the results
are only integrated via joins or union, but in more complex cases
compensating operations might be required, e.g. mapping of data
formats and data types.

To estimate the costs for accessing the Hadoop data, we rely on
the statistics available in the Hive MetaStore, e.g. the row count
and number of files used for a table. These statistics and also esti-
mated communication costs are considered for generating the opti-
mal federated execution plan. The plan generator attempts to min-
imize both the amount of transferred data and the response time of
the query.

4.3 HANA Direct Access to HDFS
Besides the ad-hoc query capabilities via Hive discussed above,

SAP HANA can also invoke custom map-reduce in Hadoop, see
figure 11. This allows customers to reuse their existing map-reduce
codebase and to access the HDFS files directly, i.e. without the ad-
ditional Hive layer. The basic workflow is shown below: The first
statement registers an Hadoop cluster with SAP HANA. The subse-
quent statement declares a virtual remote function that exposes an
existing map-reduce job as a regular table function in SAP HANA.
Finally, this virtual table function can be used in SQL statements
like any other table function in SAP HANA.

CREATE REMOTE SOURCE MRSERVER
ADAPTER hadoop CONFIGURATION
’webhdfs=http://mrserver1:50070;
webhcatalog=http://mrserver1:50111’
WITH CREDENTIAL TYPE ’password’
USING ’user=hadoop;password=hadooppw’;

CREATE VIRTUAL FUNCTION
PLANT100_SENSOR_RECORDS( )

RETURNS TABLE (EQUIP_ID VARCHAR(30),
PRESSURE DOUBLE)

CONFIGURATION
’hana.mapred.driver.class =

com.customer.hadoop.SensorMRDriver;
hana.mapred.jobFiles =

job.jar, library.jar;
mapred.reducer.count = 1’
AT MRSERVER;

SELECT A.EQUIP_ID, A.LAST_SERVICE_DATE,
B.PRESSURE

FROM EQUIPEMENTS A JOIN
PLANT100_SENSOR_RECORDS() B
ON A.EQUIP_ID = B.EQUIP_ID

WHERE B.PRESSURE > 90;

It is worth noting that this workflow is also embedded into SAP
HANA’s development environment and landscape management. For
example, views accessing the map-reduce job as a table function
keep their connection when the models are transported from test to
productive system.

4.4 Remote Materialization
The map-reduce jobs in Hadoop are typically used to turn large

volumes of rather low-value data into smaller data sets of higher
value data. As the runtime of these map-reduce jobs tends to be

significant, SAP HANA offers to cache the result of map-reduce
jobs on Hive side. As customers have a sound understanding of
their business data they will know where absolute data freshness is
not needed, e.g. for low velocity data. The freshness of the cached
results of map-reduce jobs is configurable.

Extended Query Processing
When an application submits a query that includes a Hive table
as a data source, it can request the use of the caching mechanism.
More precisely, the application appends WITH HINT (USE_RE-
MOTE_CACHE) to the query string to enable the cache usage. Dur-
ing query processing it is checked if caching is requested for the
query. If this is the case, a hash key is computed from the HiveQL
statement, parameters, and the host information. With this hash key
we can can ensure that the same query is cached at most once. If
a value is cached for this hash-key the corresponding query result
is returned immediately. If either no caching is requested, no cache
key was found or the cached value is older than a configurable pa-
rameter, the query is evaluated from scratch. Evidently, the cached
data is not related to specific transactional snapshots, but we expect
this to be of little concern in a Hive setup. The cached data is stored
in temporary tables in HDFS. Large caches are possible because the
HDFS often has enough space to keep materialized query results in
addition to the raw data. Overall, caching leads to a more effective
use of the compute resources in the Hadoop cluster.

To illustrate these concepts, consider the following query on the
TPC-H schema which references two virtual tables CUSTOMER and
ORDERS from Hive:

SELECT c_custkey, c_name,
o_orderkey, o_orderstatus

FROM customer JOIN orders
ON c_custkey = o_custkey

WHERE c_mktsegment = ’HOUSEHOLD’

Under normal execution, i.e. without any caching in Hive, when
the federated query is executed at the remote source, the Hive com-
piler generates a DAG of map-reduce jobs corresponding to the
federated query. Map-reduce jobs from this DAG are triggered
thereafter, upon completion of which the results are fetched back
into HANA for further operations. The query execution plan for
the normal execution mode of the example query is shown in fig-
ure 12. It shows two Virtual Table nodes corresponding to the ta-
bles CUSTOMER and ORDERS with their corresponding predicates,
and a Nested Loop Join node which is also computed at the
remote source. Since, there are no other tables accessed locally
inside SAP HANA, the data received in the Remote Row Scan
node is projected out. If the query has references to other local
HANA tables, the data received in the Remote Row Scan node
will be used for further processing along with data from the local
tables.

Under the enhanced mode with remote caching enabled, the op-
timizer identifies the hint to use remote materialization and materi-
alizes the results, after executing the DAG of map-reduce jobs gen-
erated by the Hive compiler, to a temporary table at the remote site.
It then modifies the query tree to read everything from this tempo-
rary table. It should be noted that this materialization process is a
single-time activity and every subsequent execution of this feder-
ated query will fetch the results from the materialized copy stored
in the temporary table instead of executing the corresponding DAG
of map-reduce jobs. The modified query execution plan for our ex-
ample query under the enhanced mode is shown in figure 13. It
shows one Virtual Table node from which all the interesting

589



Figure 12: Query plan without remote materialization

data required to answer the query can be retrieved. For the cur-
rent example, this virtual table node corresponds to the joined data
from the tables CUSTOMER and ORDERS with all the necessary
predicates already applied. We can see from the execution plan
in figure 13 that the Remote Row Scan node is directly fetch-
ing the necessary data from the temporary table, with no additional
predicates being applied on the temporary able.

Figure 13: Query plan with remote materialization

In addition to these basic caching techniques the remote materi-
alization implements further improvements: First, we only materi-
alize queries with predicates. This ensures that we do not replicate
the entire Hive table as a materialized result set as this will not
add any value to the performance of the system. Second, the du-
ration for which a materialized result set is valid and is persisted
in the remote source is controlled via a configuration parameter,
called remote_cache_validity. When the query optimizer
identifies the hint USE_REMOTE_CACHE, it checks if the mate-
rialized data set on the remote source is valid based on this pa-
rameter setting before actually using it. If it discovers that the
data set is outdated, it discards the old data set and materializes
the result set to a new copy at the remote source. Finally, the re-
mote materialization enhancement in SAP HANA is disabled by

20 40 60 80 100

Q16
Q14
Q19
Q10
Q5*
Q1*
Q6

Q12*
Q3*

Q13*
Q18*

Q4

29.1
31.18
32.07
32.26

54.93
75.73

80.51
83.68
87.31

91.27
93.41
95.03

performance improvement in %

Figure 14: Runtime benefit of remote materialization

default and can be controlled using the configuration parameter
enable_remote_cache. This parameter is useful in scenar-
ios when the customer needs to completely disable the feature, for
example, low storage availability in HDFS or when the tables in
Hive are being frequently updated.

Performance Analysis
We demonstrate the difference between using Hive and SAP HANA
with and without remote materialization. This small experiment
uses the TPC-H dataset with scale factor 1. The experiments were
performed using SAP HANA SPS07 as the primary database run-
ning SUSE SLES 11.2 on a server with 16 physical cores and
256GB RAM. The 7-node Hadoop cluster was accessed from SAP
HANA via Hive’s ODBC driver as remote source. We used a Hadoop
cluster configuration with Apache Hadoop 1.0.3, Hive 0.9.0 on an
HDFS with 21.5TB capacity, 240 map tasks, 120 reduce tasks, and
6 worker nodes. The following tables from the TPC-H schema were
federated remotely at Hive: LINEITEM, CUSTOMER, ORDERS,
PARTSUPP, and PART. The tables present locally in SAP HANA
were: SUPPLIER, NATION, REGION (, and PART only for Q14
and Q19). Such a small scale-factor is ridiculously small for a typ-
ical Hive and Hadoop setup, but for large data sets the positive
impact of remote materialization would be even more pronounced.
In that sense, this somewhat unrealistic setup is a very conserva-
tive analysis of the expected performance improvements of remote
materialization with SAP HANA and Hive.

We used slightly modified versions of the benchmark queries. In
particular, we removed the TOP and ORDER BY clauses from the
TPC-H queries, with the exceptions being those queries for which
the sorting was done inside SAP HANA. This is desirable as we
cannot make any assumptions about the ordering property of the
datasets fetched from Hive which were materialized earlier.

In figure 14 we present the runtime benefit achieved when using
SDA with remote materialization enhancement using the normal
execution mode with SDA as the baseline. We also demonstrate
the materialization overhead incurred in materializing the results
on the remote system; this is shown in figure 15. We have marked
the modified queries discussed above with an asterisk (*).

We can see from figure 14 that using remote materialization,
some queries can benefit as high as 95% with respect to query re-
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Figure 15: Materialization overhead of remote materialization

sponse time. There are two aspects to the overall query execution
time when we have a remote system in tandem with SAP HANA:
time taken to fetch the data required from the remote source, and
time taken to join the fetched data with local data in SAP HANA.
We can infer from the results that the queries can be divided into
two segments based on their respective performance gains.

The data displayed in figure 14 has been sorted based on the
maximum runtime benefit. The top seven queries for scale factor
1 demonstrate high gain of more than 75%. This is expected be-
cause all the tables accessed in these queries are federated tables,
and there are no local tables with which the results fetched from
the remote source are joined. For the remaining queries, the perfor-
mance gain is on the lower side because the results fetched from the
remote source are joined with local tables in HANA. This is also
expected since we demonstrate the percentage improvement in the
overall query execution time, and not just the time taken to fetch
the data required from the remote source. We can conclude from
the results of our experiment that our enhancement provides max-
imum benefits for the cases when the majority of the computation
is performed on the remote system and minimum data is read back
into HANA. In an analytical workload, several queries are executed
multiple times and with remote materialization enhancement, every
execution of the query can benefit by skipping this computation and
directly fetching the already materialized data. This enhancement
is specifically useful in case of Hive, because a user may not have
exclusive access to the Hadoop cluster and may only get a limited
share of the Hadoop cluster’s overall capacity.

The materialization process at the remote source has an associ-
ated overhead with it, which is also demonstrated in figure 14. This
overhead is the additional time required to materialize the results in
Hive and is a single-time cost, which is incurred when the query is
first executed with the optimizer hint USE_REMOTE_CACHE. As
long as the data in the Hive tables is not modified, SAP HANA
can be configured to continue reusing the materialized results from
Hive. This can have huge benefits with low velocity data stored in
Hive, depending on the frequency of queries that use these mate-
rialized results. This overhead in materialization process is partly
because CREATE TABLE AS SELECT (or CTAS) in Hive is cur-
rently a two-phase implementation: first the schema resulting from
the SELECT part is created, and then the target table is created. We

make use of this CTAS infrastructure provided by Hive to create
the temporary tables. The materialization overhead demonstrated
in our experiments is set to go down when the CTAS implementa-
tion in Hive gets optimized.

5. SUMMARY
The SAP HANA data platform reflects SAP’s answer to the ever-

increasing requirements and opportunities in management of data.
It was specifically designed as a single point of access for appli-
cation logic by providing a HANA native as well as HANA open
strategy:

• SAP HANA core database can serve real time, complex queries
and multi-structured data needs.

• SAP Sybase IQ (HANA IQ) can provide highly concurrent
OLAP workload in combination with large scale, disk-based
storage

• SAP Sybase ESP (HANA ESP) can provide high velocity on-
the-fly analysis with native hand-over to other SAP HANA
components.

• Hadoop can provide cheap data storage and pre-processing
for large scale unstructured/unformatted data and compiled
into the HANA data platform by allowing query/code push-
down and part of HANA’s life cycle management capabili-
ties.

• SAP BW and SAP EIM [2] – as some examples on an appli-
cation level – can provide consumption, modeling, and inte-
gration capabilities (including Hadoop)

This paper gives some insight into the overall picture of Big Data
applications in SAP’s perception as well as diving into technical
details of the HANA native and HANA open integration strategy.
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