
Procrastination Beats Prevention

Timely Sufficient Persistence for Efficient Crash Resilience

Faisal Nawab⇤,† Dhruva R. Chakrabarti†

Terence Kelly† Charles B. Morrey III†

⇤CS Dept., UC Santa Barbara †HP Labs, Palo Alto, CA

ABSTRACT
Preserving the integrity of application data across updates
in the presence of failure is an essential function of com-
puting systems, and byte-addressable non-volatile memory
(NVM) broadens the range of fault-tolerance strategies that
implement it. NVM invites database systems to manipu-
late durable data directly via load and store instructions,
but overheads due to the widely used mechanisms that en-
sure consistent recovery from failures impair performance,
e.g., the logging overheads of transactions. We introduce
the concept of Timely Su�cient Persistence (TSP) mech-
anisms, which is relevant to both conventional and emerg-
ing computer architectures. For a broad spectrum of fault-
tolerance requirements, satisfactory TSP mechanisms typ-
ically involve lower overheads during failure-free operation
than their non-TSP counterparts; hardware and OS support
can facilitate TSP mechanisms. We present TSP variants of
programs representing two very di↵erent classes of shared-
memory multi-threaded software that store application data
in persistent heaps: The first employs conventional mutexes
for isolation, and TSP substantially reduces the overhead of
a fault-tolerance mechanism based on fine-grained logging.
The second class of software employs lock-free and wait-free
algorithms; remarkably, TSP is very easy to retrofit onto a
non-resilient design and enjoys zero runtime overhead. Ex-
tensive experiments confirm that TSP yields robust crash
resilience with substantially reduced overhead.

1. INTRODUCTION
Runtime failures such as process crashes, operating sys-

tem kernel panics, and power outages can corrupt or de-
stroy application data unless e↵ective measures protect ap-
plication data integrity. Both disk-based and main-memory
database systems running on conventional hardware with
volatile byte-addressed memory and non-volatile block stor-

c� 2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0
.

age employ sophisticated techniques to preserve the integrity
of application data across updates in the presence of fail-
ures [13]. Unfortunately these techniques sometimes su↵er
painful runtime overheads due to the performance charac-
teristics of hard drives and solid state drives.

Emerging hardware promises durability with greatly im-
proved performance [14]. Byte-addressable non-volatile
memory (NVM) is becoming available [1] and has en-
abled new database system designs with improved perfor-
mance [17, 21, 26]. NVM has sparked increased interest in
main-memory databases that store all data in memory and
directly manipulate durable data in persistent heaps via
load and store instructions rather than through database
or filesystem interfaces [25]. Such approaches o↵er supe-
rior performance compared to disk- and SSD-based systems
with comparable fault tolerance, but they su↵er noticeable
overheads during failure-free operation [14].

We begin by introducing a conceptual framework that
encompasses both conventional and emerging hardware.
We then systematically characterize as a function of fault-
tolerance requirements the circumstances under which run-
time overheads may safely be postponed until failures actu-
ally occur and/or eliminated outright, and we tailor the spe-
cific measures taken to the available hardware. The result is
the concept of Timely Su�cient Persistence (TSP). Loosely
speaking, a TSP fault-tolerance mechanism eschews costly
preventive measures in favor of minimalist remediation when
failure is imminent, which typically reduces runtime over-
heads substantially. It furthermore helps us to identify new
hardware and OS support to facilitate new fault tolerance
mechanisms. We restrict ourselves in this paper to the con-
text of a single computer, and the following types of failures:
process crashes, kernel panics, and power outages.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews emerging hardware architectures, describes
corresponding fault tolerance mechanisms and application
programming styles, and discusses how these new develop-
ments relate to traditional fault-tolerance objectives. Sec-
tion 3 defines Timely Su�cient Persistence and describes
how it can be implemented on both conventional and emerg-
ing hardware. Section 4 presents two case studies illustrat-
ing the benefits of TSP: In one case, TSP imbues a pro-
gram with crash resilience while adding zero runtime over-
head; in another case, TSP substantially reduces the runtime
overhead of an existing fault-tolerance technique. Section 5
presents experimental results confirming both the fault tol-

689 10.5441/002/edbt.2015.70

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2015.70

erance properties and performance advantages of TSP in our
two case studies, and Section 6 concludes with a discussion.

2. NEW HARDWARE & SOFTWARE
Database management systems are designed to survive

severe failures, e.g., power outages. When they run on
conventional hardware with volatile DRAM memory, they
must therefore write data to block-addressed storage de-
vices, which perform poorly for random writes. Write-ahead
logging and grouping partially mitigate the storage I/O bot-
tleneck [13]. The need to synchronously commit such writes
to block storage may limit overall database performance to
storage bandwidth [10]. Solid state drives (SSDs) enable
databases with improved performance compared with disk-
based designs [19]. However, SSDs still su↵er from the same
fundamental drawback as HDDs: both kinds of storage de-
vices require databases to synchronously commit data via
a relatively slow block I/O interface [19]. Main-memory
databases are optimized for the case where all data fits in
memory [22]. To this end, systems such as HBase [9] and
Silo [24] redesign recovery and locking mechanisms so as to
minimize the impact of these bottlenecks. However, main-
memory databases that have not been re-architected for the
case that all data fits in durable memory still su↵er from
the I/O bottleneck of persisting on stable storage. Tradi-
tional filesystems running on conventional hardware provide
an alternative means of manipulating durable data, but they
su↵er the same storage bottlenecks that a✏ict databases [4].

Byte-addressable non-volatile memory (NVM) has re-
cently become available. Conventional DRAM is approach-
ing density scaling limits [1], and the most promising re-
placement technologies—phase change memory, spin-torque
transfer memory, and memristors—all happen to be non-
volatile [26]. If any of these technologies architecturally sup-
plants or supplements DRAM it will provide inherently non-
volatile random-access memory (NVRAM). Meanwhile, hy-
brid DRAM/flash memory DIMM packages backed by bat-
teries or supercapacitors (NVDIMMs) implement NVM by
persisting the contents of DRAM to flash when power is
lost [14]. Non-volatile CPU caches have been proposed to
complement NVM [28]. Another way to preserve the con-
tents of volatile DRAM across utility power outages is to fail
over to an uninterruptible power supply, a traditional build-
ing block of fault-tolerant systems [12]. Regardless of the un-
derlying technology, all forms of NVM share several advan-
tages over block-addressed storage devices. NVM is installed
on the memory bus and enjoys access latencies and band-
width comparable to DRAM. NVM is accessed at cache-line
granularity via load and store instructions. In contrast
to the relatively coarse, slow, mediated updates o↵ered by
database and file systems atop block storage devices, NVM
enables fast, fine-grained, direct updates by application soft-
ware.

The potential of NVM has been explored in the context
of disk-based and main-memory databases [17, 21, 26] and
filesystems [5]. However the arrival of new forms of NVM has
also renewed interest in a style of application programming
that has long been possible but that has remained outside
the mainstream until recently. Since the days of MULTICS,
some operating systems have o↵ered application programs
the illusion that load and store instructions operate upon
durable data [6]; file-backed memory mappings provide this

illusion on modern POSIX systems [23]. Atop such mecha-
nisms it is possible to layer higher-level abstractions ranging
from straightforward persistent heaps [18] to sophisticated
object databases [27].

Compared with the more mainstream approach in which
applications manipulate durable data via filesystem or
database interfaces, the “NVM style” of direct manipula-
tion o↵ers several attractions. The most obvious is that
in-memory data structures and algorithms are sometimes
more convenient and more natural than the storage-oriented
alternatives. A related issue is that translating between in-
memory and serial data formats can be cumbersome. Trans-
lation between serial and in-memory formats can also be
slow and error-prone; parsers, for example, are notorious for
harboring bugs.

Supporting fault-tolerant “NVM-style programming” in
the age of genuine NVM presents interesting new oppor-
tunities and challenges. Failures that abruptly terminate
program execution can leave application data in NVM in an
inconsistent state, so the challenge is to ensure that recov-
ery can always restore consistency to data that survives the
failure. Recent research has proposed transactional updates
of persistent heaps, where transactions are defined either ex-
plicitly by the programmer [25] or are automatically inferred
from the target program’s use of mutual exclusion primi-
tives [2, 3]. In the latter approach, synchronously flushing
UNDO log entries to NVM immediately before store in-
structions execute enables recovery code to roll back trans-
actions as necessary to restore the persistent heap to a con-
sistent state, and such synchronous flushing adds noticeable
overhead during failure-free operation.

Fortunately, some characteristics of emerging hardware
work to our advantage when addressing specific kinds of
failures. For example, the time and energy costs of flush-
ing volatile CPU cache contents to the safety of NVM are
miniscule compared to the corresponding costs of evacuat-
ing data in volatile DRAM to block storage [14]—a crucial
di↵erence that helps enormously if we must quickly panic-
halt a faulty OS kernel. In general, the key to finding the
best designs for meeting given fault-tolerance requirements
on emerging hardware is to systematically consider the costs
of moving data out of harm’s way and to devise contingency
plans that replace burdensome migrations during failure-free
operation with guarantees of last-minute rescue. We shall
see that emerging architectures sometimes reward procras-
tination handsomely.

3. TIMELY SUFFICIENT PERSISTENCE
Application requirements must distinguish tolerated fail-

ures from non-tolerated failures. Process crashes and ker-
nel panics resulting from software or hardware errors are
frequently placed in the former category, as are power out-
ages. Application requirements must furthermore specify
what subset of critical application data must survive toler-
ated failures. For example, requirements might declare that
the entire state of a process is critical; more selective require-
ments might instead deem the process heap to be critical but
permit thread execution stacks to be lost. Requirements
might even designate di↵erent fault tolerance requirements
for di↵erent subsets of application data. Requirements must
also distinguish between fail-stop failures that abruptly halt
process/thread execution and failures that first corrupt ap-

690

plication data. For example, when a process on a POSIX
system receives a SIGKILL signal, all threads merely halt;
the same is sometimes true when a process triggers a trap,
e.g., by executing illegal instructions. By contrast, memory
corruption errors in C/C++ programs often corrupt critical
application data.

Fault-tolerance strategies typically move data from places
where tolerated failures threaten corruption or destruction
to places beyond the reach of tolerated failures; we respec-
tively refer to such locations as vulnerable and safe. Safety
can be defined only with respect to fault-tolerance require-
ments and is orthogonal to hardware characteristics such
as volatility. For example, ordinary volatile DRAM can be
safe with respect to process crashes, but even hard disks may
be deemed vulnerable if we must tolerate catastrophes that
wipe out entire data centers. Finally, we must ask whether
we have adequate notice of tolerated failures to move crit-
ical data from vulnerable locations to safe ones. If so, we
may seek improved performance while still meeting fault-
tolerance requirements by trading runtime guarantees that
critical data is in a safe location for guarantees that the data
will be moved to safety should the need ever arise.

Timely Su�cient Persistence (TSP) describes fault-
tolerance mechanisms that make such tradeo↵s. A TSP de-
sign satisfies its requirements by moving a minimal amount
of data (typically only critical data) to a location that is
adequately safe (typically no safer) and does so in a timely
manner (typically “just in time”). For example, Whole Sys-
tem Persistence [14] is an ingenious two-stage TSP design
that protects the entire state of a computer from power out-
ages by flushes the contents of volatile CPU registers and
caches into volatile DRAM using residual energy stored in
the system power supply and then evacuating the contents
of DRAM into flash storage using energy stored in superca-
pacitors. This design completely avoids any overhead during
failure-free operation. Presently we shall consider other TSP
designs that tolerate a wider range of failures (e.g., due to
software errors), that protect critical data more selectively,
and that o↵er similarly attractive performance.

In our experience it is instructive to ask simple questions
about the minimum support needed to satisfy given fault tol-
erance requirements—if only just barely—and to ask what
“hidden” support may be present in the hardware and sys-
tems we are already using. Such exercises have more than
once led the authors to insights that in turn informed im-
proved TSP designs that, in retrospect, had been right un-
der our noses but that we had overlooked before we began
to seek TSP solutions explicitly. For example, consider the
requirement that critical data that is explicitly placed in
memory allocated through a special interface must survive
process crashes only. A näıve approach might begin with
the observation that physical memory allocated to a process
is promptly reclaimed by the OS when the process crashes,
with no opportunity for the process to rescue its contents.
This line of reasoning might then conclude that crash tol-
erance in this context requires preemptively (and perhaps
synchronously) committing data to durable media during
failure-free operation.

A better approach begins by asking what minimal degree
of “durability” su�ces to survive process crashes: POSIX
calls it “kernel persistence,” and files in memory-backed
filesystems have this property. We then consider what hap-
pens when such a file is memory mapped into the address

space of a process that stores data into the mapping re-
gion and then crashes. The modified physical memory page
frames corresponding to the mapping are also pages in the
backing file and are not reclaimed by the OS when the pro-
cess crashes. Furthermore stored data in the CPU cache
at the time of the crash will eventually be evicted into the
memory-backed file and meanwhile will be visible from the
cache to any process that reads the file. Therefore if the
process places critical data in memory corresponding to a
memory-mapped file from a DRAM-backed file system, fol-
lowing a crash the file will contain all data stored by the
process up to the instant of the crash, and we obtain this
guarantee with no overhead during failure-free operation.
(Our technical report provides additional detail and refer-
ences on the interaction between process crashes and file-
backed memory mappings [15].) Of course, additional mea-
sures may be required to ensure that application data stored
in the file can be restored to a consistent state following a
crash; we consider two di↵erent ways of ensuring consistent
recoverability in Section 4. The important point is that seek-
ing a TSP solution has gotten us halfway to our goal with
zero runtime overhead.

Di↵erent kinds of failures call for di↵erent TSP designs.
If we are required to tolerate kernel panics, for example, we
must arrange for the dying OS to flush volatile CPU caches
to memory. This su�ces to meet the requirement if memory
is non-volatile (or if the machine architecture preserves the
contents of memory across “warm reboots” [16]). If mem-
ory is volatile and is not preserved across OS re-starts, the
contents of memory must be written to stable storage be-
fore the panic’d OS shuts down the machine. An HP team
has implemented the required support in the Linux kernel’s
panic handler, which required a relatively small amount of
straightforward code. Power outages admit a spectrum of
TSP designs ranging from mundane uninterruptible power
supplies to sophisticated and resourceful strategies for stor-
ing and scrounging just enough energy to rescue critical
data [14]. Emerging non-volatile memories can dramatically
reduce the time and energy cost of keeping a machine run-
ning long enough to rescue critical data after utility power
fails.

Conventional relational database management systems al-
low the user to trade consistency for performance via config-
uration parameters. For example, serializability and snap-
shot isolation o↵er di↵erent performance and consistency
guarantees. TSP designs provide a wider range of appli-
cations with analogous tradeo↵s among failure toleration
requirements, hardware and system software support, and
performance during failure-free operation.

4. CASE STUDIES
We now consider in detail two approaches to ensuring con-

sistent recovery of application data in multi-threaded pro-
grams that manipulate persistent heaps via CPU load and
store instructions. Both approaches share several features
in common: the programming model is convenient, famil-
iar, and readily implementable in mainstream programming
languages such as C++; the programmer obtains access
to address space regions backed by durable media via a
conventional memory allocation interface (e.g., malloc for
C/C++); and the programmer assists recovery by ensur-
ing that all live application data in the persistent heap are

691

reachable from a heap-wide root pointer manipulated via
simple get_root() and set_root() interfaces. Finally, in
both approaches the application programmer must ensure
that concurrent threads access shared data in an orderly
manner, free of data races and other concurrency bugs. In
one of our approaches, multithreaded isolation depends upon
conventional synchronization primitives (e.g., Pthread mu-
texes); the other relies upon non-blocking algorithms. We
describe how TSP enables both kinds of multithreaded soft-
ware to ensure consistent recovery of the persistent heap
without high-latency CPU cache flushing during failure-free
operation.

Implementations of both approaches on emerging archi-
tectures featuring NVRAM or NVDIMM memory o↵er sub-
stantial advantages, but implementation on conventional
hardware (volatile DRAM and block-addressed storage) is
also possible. To tolerate process crashes only, it su�ces
to ensure that the persistent heap is backed by a memory-
mapped file in an ordinary filesystem or even a file in a
DRAM-backed file system (e.g, /dev/shm). To tolerate ker-
nel panics, the kernel must flush volatile CPU caches to
memory; if the latter is volatile, memory regions correspond-
ing to persistent heaps must be written to durable storage.
To tolerate power outages, su�cient standby power must
be available to flush CPU caches and move persistent heap
data to durable media. As noted in Section 1, NVRAM and
NVDIMMs dramatically reduce the time and energy cost of
tolerating both kernel panics and power outages.

Sections 4.1 and 4.2 describe the principles underlying the
two approaches; Section 5 describes corresponding imple-
mentations and our empirical evaluation of their correctness
and performance overheads.

4.1 Zero-Overhead Atomic Updates
This section presents the remarkable observation that a

well-known class of multi-threaded isolation mechanisms,
together with TSP, guarantee consistent recovery from
crashes without the need for any additional mechanisms or
precautions whatsoever.

Following the terminology of Fraser & Harris [8], we say
that an algorithm that ensures orderly multi-threaded ac-
cess to shared in-memory data is non-blocking if the suspen-
sion or termination of any subset of threads cannot prevent
remaining active threads from continuing to perform cor-
rect computation. Non-blocking algorithms cannot employ
conventional mutual exclusion because a mutex held by a
terminated thread will never be released, which prevents all
surviving threads from accessing data protected by the mu-
tex. Threads in non-blocking algorithms typically employ
atomic CPU instructions such as compare-and-swap to up-
date shared memory while precluding the possibility that
other threads may observe inconsistent states of application
data. Lock-free algorithms, a special case of non-blocking al-
gorithms, o↵er the stronger guarantee that forward progress
occurs even in the presence of contention for shared data.
Wait-freedom is yet a stronger guarantee that a bounded
number of operations is needed to complete an operation.
All wait-free algorithms are lock-free. We employ lock-free
and wait-free sub-species of non-blocking algorithms, using
the latter term for brevity. One additional definition helps
us to reason about the e↵ects of crashes: Following Pelley
et al. [20], we imagine a thread called the recovery observer
that is created at, and observes the state of program memory

at, the instant when all other threads in a program abruptly
halt due to a crash.

Consider a program whose application-level data resides
in a persistent heap and is manipulated with a non-blocking
algorithm. The heap is furthermore updated in TSP fash-
ion, i.e., in the event of a crash due to any tolerated failure,
data in volatile locations (e.g., CPU caches or DRAM) will
be flushed to durable media (NVRAM/NVDIMMs or sta-
ble storage) as necessary. We shall see that under these
assumptions, a crash cannot prevent consistent recovery of
the application data in the persistent heap.

Consider a crash that abruptly terminates all of the pro-
gram’s threads. We imagine a recovery observer created at
the instant of the crash and consider its view of memory.
Thanks to TSP, practical/implementable recovery code will
have precisely the same view of memory as our hypothetical
recovery observer. In particular, TSP ensures that the state
of recovered memory will reflect a strict prefix of the store

instructions issued by the terminated threads. By definition
of non-blocking algorithm, the termination of the program’s
threads by the crash cannot prevent the recovery observer
from making correct progress based on its view of memory,
regardless of what the recovery observer intends to do. In
particular, the recovery observer may traverse application
data in the persistent heap by starting at the heap’s root
pointer; again by the definition of non-blocking algorithm,
the recovery observer will never thereby encounter corrupt
or inconsistent application data. Identical reasoning applies
to any number of recovery observers, which collectively could
resume correct execution from the consistent state of appli-
cation data that they find in the persistent heap.

The main advantage of the approach outlined above is
that it requires relatively little additional e↵ort for the class
of software to which it applies. Unlike whole-system per-
sistence (WSP) [14], our technique does not simply resume
thread execution where a crash suspended it—which would
be fine for power outages but which isn’t the right remedy
for crashes induced by software bugs. Instead, we require ap-
plication code to resume execution from a consistent state
of the persistent heap. However our technique is potentially
applicable to a broader range of failures, including not only
the power outages handled byWSP but also software failures
including kernel panics and process crashes, so long as the
failures do not corrupt the persistent heap. One restriction
of the approach outlined above is the requirement that appli-
cations manipulate data in persistent heaps exclusively via
non-blocking algorithms. Such algorithms may o↵er excel-
lent performance, but they are less general, more complex,
and less widely used than alternative approaches. We now
consider how TSP enables e�cient support for consistent
recoverability in a much wider class of software.

4.2 Mutex-Based Software
Atlas is a system that employs compile-time analysis

and instrumentation, run-time logging, and sophisticated
recovery-time analysis to imbue conventional mutex-based
multithreaded software with crash resilience [2,3]. Atlas op-
erates upon multi-threaded programs that correctly employ
mutexes to prevent concurrency bugs and ensure appropriate
inter-thread isolation but that take no measures whatsoever
to ensure consistent recovery from durable media. Atlas
is nearly transparent, requiring minimal changes to target
programs: durable data must reside in a persistent heap

692

and all active data structures in the persistent heap must
be reachable from the persistent heap’s root pointer. At-
las guarantees that recovery will restore the persistent heap
to a consistent state and that crashes cannot corrupt the
integrity of data within it. We explain how TSP improves
performance during failure-free operation after briefly re-
viewing the workings of Atlas; previous publications supply
the details [2, 3].

Atlas leverages the fact that shared heap data may be
modified within critical sections protected by mutexes and
assumes that each outermost critical section (OCS) in the
target program both finds and leaves the heap in a consistent
state according to application-level integrity criteria. There-
fore each OCS represents a bundle of changes to the persis-
tent heap that should be applied failure-atomically. Atlas
instruments target programs with logging mechanisms to en-
sure that an OCS interrupted by a crash can be rolled back
during recovery. Furthermore, subtle interactions among
OCSes can produce situations where OCSes that completed
prior to a crash must nonetheless be rolled back upon re-
covery (see Section 2.3 of [2]); Atlas recovery code correctly
handles such situations. Finally, it is possible for crashes to
cause Atlas-fortified software to leak memory; Atlas recently
incorporated a recovery-time garbage collector to reclaim
leaked memory.

Compared with the approach to consistent recovery of
programs that employ non-blocking algorithms described
in Section 4.1, Atlas o↵ers several advantages: Atlas op-
erates upon more general classes of software that employ fa-
miliar isolation mechanisms, as opposed to more restricted
and much more esoteric non-blocking algorithms. Further-
more, because Atlas rolls back critical sections interrupted
by crashes, it can tolerate failures that cause data corruption
within such critical sections; thus Atlas-fortified software is
robust against a wider range of failures.

Timely Su�cient Persistence brings substantial perfor-
mance benefits to Atlas-fortified software. Atlas employs
undo logging at run time to retain the ability to roll back
OCSes during recovery: Before allowing a store instruc-
tion in the target program to alter a persistent heap loca-
tion for the first time in an OCS, Atlas first adds an entry
to its undo log. If TSP is not available, Atlas must syn-
chronously flush the undo log entry from the CPU cache
into memory before allowing the store to occur. This syn-
chronous flushing adds considerable overhead beyond the
unavoidable Atlas overhead of logging. However if TSP is
available, synchronously flushing CPU caches is no longer
necessary because TSP guarantees that recovery will read
the most recent state of all persistent memory locations, re-
gardless of what tolerated failure has occurred. The details
of how TSP delivers on this guarantee will of course depend
on the details of how TSP tolerates failures (Section 3).

5. EXPERIMENTS
We performed fault-injection experiments to confirm that

both of the approaches described in Section 4 do indeed en-
sure consistent recovery of persistent heap data. We also
measured the overhead of the logging required by Atlas
(Section 4.2) and of the failure-free cache flushing that At-
las would require if TSP were not available. Previously
published experiments applying Atlas to real applications
(OpenLDAP and memcached) and benchmarks (Splash2)

have shown a 3⇥ performance overhead of logging alone
and 5⇥ overhead when both logging and synchronous flush-
ing are enabled [3]. The more recent results in Section 5.2
below extend and confirm our earlier findings.

5.1 Map Interface & Implementations
Our experiments employ two di↵erent multi-threaded im-

plementations of the familiar “map” interface, i.e., a local
key-value store that in the present case maps integer keys to
integer values. We divide the key space into a small lower
range L used for integrity checks and the remaining much
larger higher range H. Each thread t 2 [1 . . . T] maintains
in the map two private counters indexed with keys c1,t and
c2,t in L. Iteration i of the main loop of each worker thread
performs three steps as atomic and isolated operations: it
first sets the value associated with c1,t to i, then increments
the value associated with a key drawn with uniform proba-
bility from H, then sets the value associated with c2,t to i.
The correctness invariants of the map are the following two
inequalities:

TX

t=1

c1,t �
TX

t=1

c2,t T (1)

TX

t=1

c1,t �
X

keyk2H

map[k].value �
TX

t=1

c2,t (2)

Our non-blocking map implementation is based on a lock-
free skip list by Herlihy & Shavit [11]. We employ a mature
and stable C implementation by Dybnis that is believed to
be bug-free [7]. We wrote our own mutex-based map imple-
mentation in C. It employs a separate-chaining hash table
and moderate-grain locking (one mutex per 1000 buckets).

Our fault-injection methodology mimics the e↵ects of a
sudden process crash caused by an application software er-
ror, e.g., a segmentation violation, illegal instruction, or inte-
ger divide-by-zero. We abruptly and simultaneously termi-
nate all threads in a running process by sending the process
a SIGKILL signal, which cannot be caught or ignored. Recov-
ery code then attempts to locate the map in the persistent
heap by starting from the heap’s root pointer, traverse the
contents of the map, and verify the integrity of the map by
testing the invariants of Equations 1 and 2.

5.2 Results
Both our map implementations recovered completely suc-

cessfully after hundreds of injected process crashes, consis-
tent with previous findings concerning Atlas [3] and with the
reasoning in Section 4.1. Similar results would occur under
other kinds of non-corrupting failures.

We measured the performance of four variants of our map
implementations, where the metric used is “total number
of iterations of all worker threads per second” (recall from
Section 5.1 that each iteration performs three atomic oper-
ations). The throughput of our native unmodified mutex-
based code is compared with two Atlas-fortified variants of
the same code, one with UNDO logging alone and one with
both logging and synchronous CPU cache flushing. We can
thus quantify the overhead of logging alone, which is suf-
ficient for consistent recovery if TSP is available, and of
synchronous flushing, which is necessary for consistent re-
covery if TSP is not available. We include the performance
of the non-blocking map for completeness, noting that com-

693

Hardware Platform Throughput (millions iter/sec)
CPU type hardware Mutex-Based

Computer @ GHz threads DRAM no Atlas log only log + flush Non-Blocking
ENVY Phoenix 800 Desktop i7-4770 @ 3.4 8 32 GB 3.66 2.36 1.58 2.54
DL580 Gen8 Server E7-4890v2 @ 2.8 30 1.5 TB 2.13 1.50 1.06 2.00

Table 1: Hardware platforms & experimental results. All computers are HP, all CPUs Intel.

parisons with the mutex-based map are problematic because
the two maps employ di↵erent data structures (hash table
vs. skip list). All performance and fault-injection experi-
ments were conducted on the HP/Intel computers described
on the left-hand side of Table 1.

The right-hand side of Table 1 presents our performance
results. In all cases we report results for runs with eight
worker threads. For the server experiment we pinned all
software threads to a single one of the DL580’s four CPU
sockets; each socket has 15 cores and 30 hardware threads.
Running Atlas in “TSP mode” (logging enabled but syn-
chronous flushing disabled) compared with unfortified code
reduces throughput by roughly 35% on the desktop and by
roughly 30% on the server. This is the price we pay for using
Atlas to ensure consistent recovery when TSP is available.
When TSP is not available Atlas must synchronously flush
log entries, and the throughput reduction resulting from At-
las fortification increases to 57% on the desktop and 50% on
the server. Comparing the throughput of TSP vs. non-TSP
modes of Atlas, we see that TSP increases throughput by
49% on the desktop machine and 42% on the server.

6. CONCLUSIONS
Timely Su�cient Persistence brings substantial benefits

when application fault tolerance requirements and available
hardware and system software support enable TSP. Our ex-
perience with both real applications [3] and small bench-
marks (Section 5.2) shows that TSP designs outperform
their non-TSP counterparts by wide margins. Remarkably,
readily implementable TSP designs for non-blocking algo-
rithms can sometimes completely eliminate runtime over-
heads while satisfying stringent fault tolerance requirements.
Looking forward, we believe that TSP points the way to ef-
ficient tradeo↵s among runtime overheads, fault tolerance
objectives, and hardware and system software support.

7. REFERENCES
[1] G. W. Burr et al. Overview of candidate device

technologies for storage-class memory. IBM J. of
Research & Development, 52(4.5), 2008.

[2] D. R. Chakrabarti and H.-J. Boehm. Durability
semantics for lock-based multithreaded programs. In
Hot Topics in Parallelism (HotPar), 2013.

[3] D. R. Chakrabarti et al. Atlas: Leveraging locks for
non-volatile memory consistency. In OOPSLA, 2014.

[4] V. Chidambaram et al. Optimistic crash consistency.
In SOSP, 2013.

[5] J. Condit et al. Better I/O through byte-addressable,
persistent memory. In SOSP, 2009.

[6] F. J. Corbató and V. A. Vyssotsky. Introduction and
overview of the Multics system. In Fall Joint
Computer Conference, Part I. ACM, 1965.

[7] J. Dybnis. Non-blocking data structures library for
x86 and x86-64, Apr. 2009.
https://code.google.com/p/nbds/.

[8] K. Fraser and T. Harris. Concurrent programming
without locks. ACM TOCS, 25(2), May 2007.

[9] HBase. http://hbase.apache.org.
[10] G. Heiser et al. Rapilog: reducing system complexity

through verification. In EuroSys, pages 323–336, 2013.
[11] M. Herlihy and N. Shavit. The Art of Multiprocessor

Programming. Morgan Kaufmann, 2008. Pp. 339–349.
[12] D. E. Lowell and P. M. Chen. Free transactions with

Rio Vista. In SOSP, 1997.
[13] C. Mohan et al. Aries: A transaction recovery method

supporting fine-granularity locking and partial
rollbacks using write-ahead logging. ACM Trans.
Database Syst., 17(1), 1992.

[14] D. Narayanan and O. Hodson. Whole-system
persistence. In ASPLOS, 2012.

[15] F. Nawab et al. Procrastination Beats Prevention.
Technical Report HPL-2014-70, HP Labs, 2014.

[16] W. T. Ng and P. M. Chen. The systematic
improvement of fault tolerance in the Rio file cache. In
IEEE FTCS, 1999.

[17] I. Oukid et al. Instant recovery for main-memory
databases. In CIDR, 2015.

[18] S. Park, T. Kelly, and K. Shen. Failure-atomic
msync(). In EuroSys, 2013.

[19] S. Pelley et al. Do query optimizers need to be
SSD-aware? In ADMS@VLDB, 2011.

[20] S. Pelley et al. Memory persistency. In ISCA, 2014.
[21] S. Pelley et al. Storage management in the NVRAM

era. In VLDB, 2014.
[22] M. Stonebraker et al. The end of an architectural

era:(it’s time for a complete rewrite). In VLDB, 2007.
[23] The Open Group. Portable Operating System Interface

(POSIX) Base Specifications, Issue 7, IEEE Standard
1003.1. IEEE, 2008. See line 43041 on page 1310 of
the PDF version of the standard for the semantics of
writes to shared memory mappings.

[24] S. Tu et al. Speedy transactions in multicore
in-memory databases. In SOSP. ACM, 2013.

[25] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne:
Lightweight persistent memory. In ASPLOS, 2011.

[26] T. Wang and R. Johnson. Scalable logging through
emerging non-volatile memory. PVLDB, 7(10), 2014.

[27] S. J. White and D. J. DeWitt. Quickstore: A high
performance mapped object store. In VLDB, 1995.

[28] J. Zhao et al. Kiln: Closing the performance gap
between systems with and without persistence
support. In MICRO, 2013.

694

