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ABSTRACT
The introduction of columnar in-memory databases, along
with hardware evolution, has made the execution of transac-
tional and analytical workloads on a single system both fea-
sible and viable. Yet, doing analytics directly on the trans-
actional data introduces an increasing amount of resource-
intensive aggregate queries which can slow down the overall
system performance in a multi-user environment. To in-
crease the scalability of a system in the presence of mul-
tiple such queries, we propose an aggregate cache in the
general delta-main architecture that provides an e�cient
means to handle costly aggregate queries by applying in-
cremental materialized view maintenance and query com-
pensation techniques. Handling aggregate queries based on
joins of multiple tables however is still a challenge as query
compensation can be very expensive in the delta-main ar-
chitecture of columnar in-memory databases. Our analysis
of enterprise applications has revealed several data schema
and workload patterns that can be leveraged for addressing
performance of query processing using the aggregate cache.
We contribute by presenting an approach to transport the
application object semantics into the database system, be-
coming object-aware, and optimize the query processing us-
ing the aggregate cache by applying partition pruning and
predicate pushdown in such general delta-main architecture.
Our experimental validation using customer data and work-
loads confirms that this type of optimizations enables e�-
cient usage of the aggregate cache for an even higher share
of aggregate queries as one mean to scale the system.

1. INTRODUCTION
The separation of enterprise applications into online trans-

actional processing (OLTP) and online analytical process-
ing (OLAP) induces drawbacks including stale and redun-
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dant data, and inflexible analytics due to pre-calculated data
cubes. A closer look reveals that this separation is mostly
artificial as both systems have the same number of inserts
– unless the OLAP system already abstracts from the base
data – and a high share of analytical queries with costly
aggregations. To deal with aggregate queries, both systems
employ di↵erent approaches. While OLAP systems make
extensive use of materialized views [29, 33], we see that the
handling of aggregates in OLTP systems is often done within
the application by maintaining predefined summary tables.
This leads to an increased application complexity with risks
for violating data consistency and to a limited throughput
of insert and update queries as the related summary tables
must be updated in the same transaction [14, 25].

With the ongoing trend of columnar in-memory databases
(IMDBs) such as Hyrise [11], SAP HANA [9], and Hyper [16],
this artificial separation is no longer necessary as they are
capable of handling mixed workloads, with transactional
and analytical queries, in a single system [24]. In columnar
IMDBs, the storage is separated into a highly compressed,
read-optimized main storage and a write-optimized delta
storage, both implemented as columnar data stores. New
records are inserted to the delta storage and periodically
merged to the main storage [17]. Having a single IMDB for
transactional and analytical workloads however imposes one
central challenge: While modern hardware enables the ex-
ecution of arbitrary complex computations in a short time
by parallelization, this means that one query can saturate
an arbitrary large machine [30]. Especially the execution of
expensive aggregations that may be done by many hundreds
of users in parallel is problematic and requires means to keep
the system scalable.

Despite the aggregation capabilities of columnar
IMDBs [24], access to tuples of a materialized aggre-
gate – which we define as a materialization of a query
which contains aggregate functions – is always faster
than aggregating on the fly. However, the overhead of
materialized view maintenance to ensure consistency for
modified base data has to be considered and involves
several challenges [12]. It turns out that the main-delta
architecture is well-suited for the aggregate cache, a novel
strategy of dynamically caching aggregate queries and
applying incremental view maintenance techniques [21] for
maintaining the cache and answering queries using the
aggregate cache. In the general main-delta architecture,
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only the delta storage is updated when data is modified,
for example, when new records are inserted. In our design
of the aggregate cache, the materialized aggregates are
only defined on records from the main storage. Hence,
the materialized aggregates do not have to be invalidated
when new records are inserted, updated, or deleted in the
delta storage. When a query result is computed using
the aggregate cache, the final, consistent query result is
delta-compensated, on the fly, by aggregating the newly
inserted records of the delta storage and combining them
with the previously cached aggregate of the main storage.

One challenge of the aggregate cache in the main-delta ar-
chitecture is to achieve high performance for relevant classes
of application queries which include aggregates based on
joins of multiple tables. These queries require expensive
delta-compensations based on subjoins of all permutations
of delta and main partitions of the involved tables, exclud-
ing the already cached join of the main partitions. For a
query joining two tables, three extra subjoins are required
for delta-compensation, and a query joining three tables al-
ready requires seven extra subjoins. This may result in very
little performance gains over not using the aggregate cache.
However, after analyzing the characteristics of several enter-
prise applications, we identified schema design and workload
patterns that can be leveraged to allow pruning certain sub-
joins and therefore optimize the overall performance of join
queries using the aggregate cache.

In this paper, we make the following contributions:

• We introduce the aggregate cache, a materialized ag-
gregate engine implemented in SAP HANA, leveraging
the main-delta architecture of columnar IMDBs, and
describe its current architecture (see Section 2.1).

• We discuss the query processing using the aggregate
cache and performance challenges related to main and
delta compensations which are metrics for admittance
in the aggregate cache (see Sections 2.2 and 2.3).

• We identify a class of join queries which normally do
not qualify to be admitted in the aggregate cache and
analyze their performance issues when using the aggre-
gate cache. We propose a novel solution for increas-
ing the performance for this class of queries exploit-
ing the main-delta architecture and the application ob-
ject semantics. These techniques are implemented as
a prototype which extends the aggregate cache for join
queries. The main contributions here are:

– We analyze enterprise applications which benefit
the most from the dynamic aggregate cache and
identify several schema design and workload pat-
terns imposed by the object semantics of these
applications (see Section 3).

– We give a formal definition of the join prun-
ing problem in the aggregate cache and define
matching dependencies among relations based on
join attributes and temporal relationships as one
possible design for e�ciently using the aggregate
cache for join queries (see Section 4).

– We discuss our implementation for transporting
application object semantics into the database to
become object-aware which allows join pruning
techniques to be applied for queries using the ag-
gregate cache (see Section 5).

• We use the CH-benCHmark [10], a benchmark based
on TPC-H and TPC-C, and a benchmark using real
customer workloads from a production Enterprise Re-
source Planning (ERP) system to show performance
results for (1) aggregate cache maintenance strategies;
(2) data update overhead for tables referenced in the
aggregate cache; (3) query processing using aggregate
cache with and without join pruning (see Section 6).

2. AGGREGATE CACHE
The aggregate cache leverages the concept of the main-

delta architecture in SAP HANA [9]. Separating a table into
a main and delta storage has one main benefit: it allows
to have a read-optimized main storage for faster scans and
a write-optimized delta storage for high insert throughput.
All records in the delta storage are periodically propagated
into the main storage in an operation called delta-merge [17].
The fact that new records are added to the main storage only
during a merge operation is leveraged by the aggregate cache
which is designed to cache only the results computed on the
main storage. For a current query using the aggregate cache,
the records from the delta storage are aggregated on-the-fly
which compensates the corresponding cache entry to build
the result set of the query, a process we refer to as delta com-
pensation. In the general main-delta architecture, records
are not updated in place. Instead, the updated record is
inserted in the delta partition whereas the old record in the
main (or delta) partition is invalidated. Other database im-
plementations with a delta storage or di↵erential bu↵er such
as C-Store, Sybase IQ, MonetDB/X100, Hyrise, or memory-
optimized tables in SQL Server handle updates very similarly
to the mechanism implemented in SAP HANA. During the

SAP HANA
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Figure 1: The architecture of the aggregate cache in SAP HANA.

next merge, all invalidated records can either be removed
from the main storage or kept so that temporal query pro-
cessing on historical data can be supported [15]. To handle
invalidations in the main partition, we apply a main com-
pensation process as described in Section 2.2.
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Figure 2: The structure of an aggregate cache entry, consisting of
an aggregate cache key, an aggregate cache value, and aggregate
cache metrics.

2.1 Architecture
As illustrated in Fig. 1, the aggregate cache is imple-

mented inside the column store engine of SAP HANA [9].
The aggregate cache manager is the core component of the
aggregate cache, managing aggregate cache entries.

An aggregate cache entry, depicted in Fig. 2, consists of
a key, a value, visibility vectors, and profit metrics. The
aggregate cache key is a unique identifier based on the query
definition including the table name, table id, the grouping
attributes, the aggregate functions, and the filter predicates
of the related aggregate query. The aggregate cache value,
the extent of the aggregate query, is a structure consisting of
the grouping combinations and the corresponding aggregate
functions: it contains the result set of the aggregate com-
puted only on the main storage. The aggregate cache entry
further contains dirty counters that indicates if records have
been invalidated in the main partitions, and the visibility
vectors of the main partitions at the time of last computa-
tion. The aggregate cache entry is first created during query
processing (Fig. 3) and it is maintained during the delta-
merge operations. Aggregate cache metrics are maintained
for each entry including the aggregate’s size, the number
of aggregated records, execution times for delta and main
compensations, maintenance times, and usage information.
The metrics are required to calculate the profit of an aggre-
gate cache entry to be used for dynamic cache admission,
eviction, and maintenance decisions [20].

Query execution using the aggregate cache is shown
in Fig. 3: the query executor delegates aggregate query
blocks that qualify for the aggregate cache to the aggregate
cache manager. The aggregate cache supports queries with
self-maintainable aggregate functions [22] including SUM,
COUNT, and AVG. When the aggregate cache matching pro-
cess is not successful, the aggregate cache manager attempts
to create a cache entry by executing the aggregate query on
the main partitions with the global record visibility which
is retrieved through the consistent view manager. If the ag-
gregate is profitable enough for cache admission, the result
is used to create an aggregate cache entry. In both cases,
when aggregate entry is retrieved from the cache or it is just
cached by the current transaction, the main compensation
and the delta compensation must be applied.

Cached

Execute 
Aggregate 

 Query Block q

Not Cached

Query Executor

   q qualifies for 
Aggregate Cacheelse

Aggregate Cache 
Matching

Execute q
w/o Cache

Execute q
on Main 
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Manager

Aggregate Cache 
Manager

Retrieve 
Aggregate 

Cache Entry
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Aggregate 

Cache Entry
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Compensation

Delta 
Compensation

Return Result

Get Global
 Visibility Vector 

for Main Partition

Get Current 
Transaction 

Visibility Vector 
for Main Partition

Get Current 
Transaction 

Visibility Vector 
for Delta Partition

Figure 3: Query processing with the aggregate cache: creation
and usage of aggregate cache entries including main and delta
compensation during query execution.

2.2 Main Compensation
While updates and deletes of records in the delta storage

are handled transparently and do not a↵ect our caching al-
gorithm, an aggregate cache entry can become inconsistent
with respect to a record invalidation in the main storage,
including deletes and updates of the current transaction.
Instead of recalculating an aggregate cache entry with every
record invalidation in the main storage, we employ an ap-
proach that uses bit vector comparison to e�ciently detect
invalidated records and apply them to aggregate cache en-
tries in a process called main compensation. As illustrated
in Fig. 3, we use the consistent view manager to retrieve cur-
rent record visibilities during aggregate cache entry usage.

The record invalidation is handled through the consistent
view manager (see Fig. 1) that creates a bit vector repre-
senting the visibility of records of a table for an incoming
query based on its transaction token. When an aggregate
query is cached, the current snapshot is captured using this
visibility vector. When a query is executed using an aggre-
gate cache entry, an e�cient bit vector comparison of the
current snapshot with the snapshot at the cache creation
time is used, thereby detect invalidated records, and apply
them for main compensation. The details of aggregate cache
main compensation can be found in [19] and are omitted in
this paper for simplification reasons.

2.3 Delta Compensation
As the last step in query execution (Fig. 3), any query

using the aggregate cache must apply delta compensation
operation which accounts for records in the delta storage
visible to the current transaction. When the aggregate cache
is based on multiple tables joins, the complexity of answering
a query using the aggregate cache increases as the aggregate
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cache is computed on the main partitions only, and the query
must be compensated with all subjoins on deltas and mains.
As a result, the profit of caching an aggregate query based
on many tables may be very low because their performance
using the aggregate cache is not superior to not using it.
The techniques proposed in this paper have the main goal
of extending the class of aggregate queries which qualify to
be admitted into the SAP HANA aggregate cache.

The classical aggregate query joining a header table H,
an item table I, and a dimension table D (see Section 3)
on the join conditions H[A] = I[A] and I[B] = D[B] is
Q(H, I,D) = H ./H[A]=I[A] I ./I[B]=D[B] D. In main-delta
architecture, each table X consists of at least two partitions
P(X) = {Xmain, Xdelta} which adds complexity when the
result of the query Q(H, I,D) is computed as the join pro-
cessing must consider all subjoin combinations among these
partitions. Theoretically, the subjoins on delta and main
partitions of the tables referenced in Q(H, I,D) are as de-
picted in Equation 1 and Fig. 4. The subscript numbers in
Equation 1 of the subjoins match the subjoin numbers in
Fig. 4. Based on the size of the involved table components,
the time to execute the subjoins varies. Typically, the ra-
tio between the sizes of main and delta partitions is 100:1.
In our example the subjoins #5 and #8 require the longest
time, since they involve matching the join condition of the
mains of two large tables.

Q(H, I,D) =
(Hdelta ./H[A]=I[A] Idelta ./I[B]=D[B] Dmain)1
. . . [ (Hmain ./H[A]=I[A] Imain ./I[B]=D[B] Ddelta)5
. . . [ (Hmain ./H[A]=I[A] Imain ./I[B]=D[B] Dmain)8

(1)

Figure 4: Caching strategies for a three table join query.

2.3.1 Join without Aggregate Cache

Join queries referencing partitioned tables are of the form
Q(R1, . . . , Rt) = R1 ./c1(R1,R2) · · · ./ct�1(Rt�1,Rt) Rt, where
each table Ri has the partitioning P(Ri) = {Ri,1, . . . , Ri,ki},
for all i 2 {1, . . . , t}. Without caching some of the subjoins,
the database engine needs to compute all possible join com-
binations of the involved number of tables t and partitions
P(Ri) to build a complete result set. The result of Q is
a union of all k1 ⇥ . . . ⇥ kt subjoins i.e., Q(R1, . . . , Rt) =S

(j1,j2,...,jt)2JnoCache(Q)
R1,j1 ./c1(R1,R2) · · · ./ct�1(Rt�1,Rt)

Rt,jt , with JnoCache(Q) = {1, . . . , k1}⇥ · · ·⇥ {1, . . . , kt}.
To evaluate Q(H, I,D) from Equation 1, joining three

tables with two partitions each, that adds up to a to-
tal of 23 = 8 subjoins to be unified: Q(H, I,D) =S

(j1,j2,j3)2JnoCache(3)
(Hj1 ./H[A]=I[A] Ij2 ./I[B]=D[B] Dj3),

where JnoCache(3) = {delta,main} ⇥ {delta,main} ⇥
{delta,main}.

2.3.2 Join with Aggregate Cache

When using the aggregate cache, the result set from join-
ing all main partitions is already cached (i.e., R1,main ./
· · · ./ Rt,main) and the total number of subjoins computed
for delta compensation is reduced to 2t � 1: JwithCache(t) =
JnoCache(t) \ {main}t. For our example from Fig. 4, the
subjoin #8 does not need to be recomputed as it is cached.
However, all other subjoins in Equation 1 are evaluated dur-
ing delta compensation.

3. ENTERPRISE APPLICATION
CHARACTERISTICS

In this section, we give an overview of enterprise applica-
tion characteristics, that can be utilized to speedup process-
ing of join queries in the aggregate cache. We have analyzed
several enterprise applications including financial and man-
agerial accounting, materials management, and customer re-
lationship management and found out that they all share
schema design and workload patterns.

3.1 Schema Design Patterns
In all analyzed application domains, we identified tables

with similar design patterns, namely header, item, dimen-
sion, text, and configuration tables.

A header table describes common attributes of a single
business object. In a financial accounting application, for
example, this includes attributes such as the fiscal year and
the type of the particular business transaction. In materials
management the header tuple stores attributes such as the
warehouse origin and destination, and the date and time of
a goods movement.

To each header tuple, there are a number of correspond-
ing tuples in an item table. Item tuples represent entities
that are involved in a business transaction. For instance, all
products and the corresponding amount for a sale or mate-
rials and their amount for a goods movement are stored in
the items table. A header tuple and all corresponding item
tuples are also referred to as a business object since they are
modeled as part of a business transaction.

Additionally, attributes of the header and item tables re-
fer to keys of a number of smaller tables. Based on their
use case we categorize them into dimension, text, and con-
figuration tables. Dimension tables manage the existence
of entities, such as accounts and materials. Especially com-
panies based in multiple countries have text tables to store
strings for dimension table entities in di↵erent languages
(e.g., product names). Configuration tables enable system
adoption to customer specific needs and business processes.

3.2 Application Workload Patterns
According to the table classifications, di↵erent workload

patterns occur. Not surprisingly, there is a high insert load
on tables that contain transactional data (i.e., header and
item) compared to dimension, text, and configuration tables.

In many domains, entire static business objects are per-
sisted in the context of a single transaction. Therefore, the
header and corresponding item tuples are inserted within the
same transaction and never changed thereafter. In financial
applications, it is even required from a legal perspective that
booked transaction cannot be deleted, but only changed with
the insertion of a counter booking transaction.

In some domains such as customer relationship manage-
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ment and sales, items may be added to a header at a later
point in time. This could be the case when a customer adds
products to an order. As [24] analyzed a number of enter-
prise systems, there is only a small amount of updates and
deletes compared to inserts and selects on the header and
item tables.

Analyzing aggregate queries of the examined applications,
a join between header and their corresponding item tuples
is very common. Additionally, the analytical queries extract
item properties, text strings, and calculation rules from di-
mension, text, and configuration tables. Those three table
categories do have a number of properties in common: There
are rarely inserts, updates, or deletes and they contain only
a few entries compared to header and item tables.

In the next section, we briefly discuss partition pruning
techniques and introduce matching dependencies, and then,
in Section 5, we describe how each mentioned enterprise ap-
plication characteristic can be captured in the application
design to allow very e�cient query processing with aggregate
cache by leveraging the join partition pruning techniques.

4. PARTITION PRUNING AND
MATCHING DEPENDENCIES

In this section, we first formally define join pruning for
partitioned tables, discuss how these techniques can be ap-
plied to columnar tables, and then introduce the concept of
matching dependencies which can be leveraged to model and
enforce object-aware, temporal relationships.

Each column of a table in SAP HANA is dynamically par-
titioned into main and delta storages, both columnar stores,
hence the columnar tables have a natural mix of vertical
partitioning (i.e., columns) and horizontal partitioning (i.e.,
delta and main). Traditional techniques for partition prun-
ing could be applied to this type of tables during query
processing [13, 26]. Formally, horizontal partitioning of a
table R is a set of disjoint subsets {R1, ..., Rn} of R such
that R = R1

S
R2

S
...

S
Rn. A table partitioned based on

a specified partitioning scheme, must be processed during
query execution by accessing each of its partitions based on
the query semantics [23]. As some of the partitions may
not be relevant to the query, partition pruning methods can
be applied to avoid accessing irrelevant data. Logical parti-
tion pruning refers to methods of pruning based on the def-
initions of the partitioning scheme (usually applied during
query optimization), while dynamic partition pruning is a
method of pruning based on runtime properties of the data
not on the static partitioning scheme (usually applied at
query execution time). For dynamic partition pruning, the
execution plan can be built with extra physical operators
which will allow partition pruning during query execution
based on properties which hold for the current instance of
the database.

Definition 1. Join Pair-Wise Partition Pruning by a
join operator ./q. Let {R1, ..., Rn} be a horizontal parti-
tioning for a table R. Let {S1, ..., Sm} be a horizontal par-
titioning for a table S. We say that the pair (Rj , Sk) is
logically pruned by the join operator ./q(R,S) if and only if
Rj ./q(R,S) Sk = ; for any instances of the tables R and S.
Let {Ri

1, ..., R
i
n} be an instance of the table R, Ri, and

{Si
1, ..., S

i
m} be an instance of the table S, Si. We say that

the pair of instances (Ri
j , S

i
k) is dynamically pruned by the

join operator ./q(R,S) if and only if Ri
j ./q(R,S) S

i
k = ;.

A simple example of dynamic partition pruning for a join
R ./ S is pruning all subjoins of the form Rj ./ Sk if the
partition Rj is empty at the query execution time.

One type of dynamic join partition pruning is based on
the range values of the join attributes in each partition (see
Example 1). This type of partition pruning is relevant to our
solution for addressing performance problems of join queries
using the aggregate cache. Note that successful pruning is
achieved when the value ranges of the join attributes do not
overlap among partitions.

Example 1. Dynamic join partition pruning based on

range values. Let {R1, R2} be a horizontal partitioning of
R(A). Let {S1, S2} be a horizontal partitioning of S(A). A
pair (R1, S2) is pruned by the join operator ./R[A]=S[A] if it
can be determined that the instances Si and Ri are such that
Ri

1 ./R[A]=S[A] S
i
2 = ;.

One runtime criteria for determining that the pair (Ri
1, S

i
2)

is pruned by ./R[A]=S[A] could be based on the current range
values of the attribute A in the relations R and S. Note that
the tuples with NULL value on A will not participate in the
join.
Let max(Ri

1[A]) = max{t[A]|t 2 Ri
1},

min(Ri
1[A]) = min{t[A]|t 2 Ri

1},
max(Si

2[A]) = max{t[A]|t 2 Si
2},

min(Si
2[A]) = min{t[A]|t 2 Si

2}.
If max(Ri

1[A]) < min(Si
2[A]) or

max(Si
2[A]) < min(Ri

1[A]) then Ri
1 ./R[A]=S[A] S

i
2 = ;.

Proof: If max(Ri
1[A]) and min(Ri

1[A]) are defined as above,
then Ri

1 = �min(Ri
1[A])R[A]max(Ri

1[A])(R).

Similarly, Si
2 = �min(Si

2[A])S[A]max(Si
2[A])(S).

Then Ri
1 ./R[A]=S[A] S

i
2 =

Ri
1 ./q(R,S) S

i
2 = ; with q(R,S) = (R[A] = S[A]^

min(Ri
1[A])  R[A]  max(Ri

1[A])^
min(Si

2[A])  S[A]  max(Si
2[A]))

because the join predicate q(R,S) is a contradiction if
max(Ri

1[A]) < min(Si
2[A]) or max(Si

2[A]) < min(Ri
1[A]).

4.1 Matching Dependencies
Matching dependencies are well studied in the litera-

ture, for example in [8], and can be used for defining ex-
tra relationships between matching tuples of two relations.
The matching dependencies extend functional dependencies
and were originally introduced with the purpose of specify-
ing matching rules for object identifications [7]. However,
matching dependencies can be defined as well in a database
system, and can be used to extend functional or inclusion
dependencies supported in RDBMSs. They can be used to
impose certain constraints on the data, or they can be dy-
namically determine for a query; they can be used for se-
mantic transformations (i.e, query rewrite), and optimiza-
tion of the query execution. We adopt here a variant of the
definition for matching dependencies introduced in [8].

Definition 2. A matching dependency MD on two re-
lations (R,S) is defined as follows: The matching depen-
dency MD = (R,S, (q1(R,S), q2(R,S)), where q1 and q2
are two predicates, is defined as a constraint of the form:

8r 2 R ^ 8s 2 S : q1(r[A], s[A]) =) q2(r[B], s[B]) (2)

Note that if a matching dependency MD =
(R,S, (q1(R,S), q2(R,S)) holds, it can be used for query
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optimization, e.g., join pruning, semantic transformations,
as the following equality holds for any instance of R and S.

R ./q1(R,S) S = R ./q1(R,S)^q2(R,S) S

Section 5 details specific matching dependencies defined
to model object-aware semantic constraints among tables,
and how they can be used for dynamic join pruning for par-
titioned tables in this context.

5. OBJECT-AWARE JOINS
We discuss in this section some practical design problems

of how matching dependencies can be defined, enforced, and
used for dynamic join partition pruning as well as join pred-
icate push downs in a RDBMSs. We also discuss how specific
semantic constraints among relations can be defined using
MDs. While object-awareness can refer to various semantic
constraints, we focus on temporal locality with regards to
record insertion in this paper.

Matching dependencies can be used to impose constraints
on two relations which are usually joined together in queries:
if two tuples agree on some attributes, then they must agree
on some other attributes as well [8]. An example: if two
tuples agree on the product attribute, then they must agree
on the product category attribute as well. By adding a tem-
poral attribute such as an auto-incremented transaction id,
we can use this type of constraint to model temporal locality
semantics among relations.

As discussed in Section 3, specific application scenarios
have naturally the following semantic constraints among
pairs of tables: if a tuple r is inserted in the table R, then
a matching tuple s (where r[A] = s[A], A ✓ attr(R) and
A ✓ attr(S)) is inserted in the table S in the same transac-
tion as r is inserted, or within a small range of transactions
from r. To model this type of semantic constraints, MDs
can be used. The MDs themselves, as defined here, are
strong constraints which are enforced in the database. The
constraint that records in related tables are inserted in trans-
actions close to each other, is a temporal soft-constraint.
When this temporal constraint holds, using the proposed
MDs will guarantee dynamic pruning as matching tuples
reside all in delta store or all in main store. If the temporal
soft-constraint doesn’t hold, the dynamic pruning will not
be possible. In both cases, the join pruning using theseMDs
will be correct. An interesting future work is to model (and
dynamically discover) this type of soft-constraints without
using strong MDs which require extra storage.

The following design can be imposed to define the MDs
between two tables R and S which will allow dynamic par-
tition pruning for join queries using the aggregate cache.

A new column R[tidR] is added which records the tempo-
ral property of the tuples in R as they are inserted into R.
We set r[tidR] to the auto-incremented transaction identifier
(generally available in an IMDB) during which the new tuple
r is inserted, a value larger than any existing value already
in the column R[tidR]. For the table S, which is joined with
the table R on the matching predicate R[A] = S[A], a new
column S[tidR] is added which is set, at the insert time, to
the value of R[tidR] of the unique matching tuple in R, if
at most one matching tuple exists, e.g. R[A] is the primary
key of R. While this does not constrain s to be inserted
at a later time than r, the MD captures the temporal re-
lation between matching tuples in r and s. This scenario is
used for our benchmarks described in Section 6 for which

the corresponding MD defined in Equation 3 holds.

MDR,S = (R[A, tidR], S[A, tidR], (R[A] = S[A]),
(R[tidR] = S[tidR]))

(3)

In the current prototypical implementation which extends
the class of aggregate queries supported by the SAP HANA
aggregate cache with join aggregates, MDs are enforced on
the application level during record insertion. Theoretically,
MDs can be implemented in the database if the database
supports general MDs as new type of constraints as pro-
posed in [8]. Then, our specific MDs can be defined as part
of the meta data and can be enforced similarly to other con-
straints such as checking for referential integrity.

5.1 Join Pruning
The matching dependency MDR,S from Equation 3

can be used to perform dynamic pruning for the joins
R ./R[A]=S[A] S. Let’s assume that the tables R and S
are partitioned as described in Example 1: R = (R1, R2)
and S = (S1, S2), with S1 and R1 containing the most re-
cent tuples of R and S, respectively. Also, the matching
dependency from Equation 3 holds. The dynamic pruning
described in Example 1 can be attempted. Equation 4 shows
the derived join predicate which must evaluate to false for
pruning a subjoin.

R1 ./R[A]=S[A] S2

using MDR,S from Eq. 3
= R1 ./R1[A]=S2[A]^R1[tidR]=S2[tidR] S2

= R1 ./q(R1,S2) S2

where q(R1, S2) uses min()/max() as in Example 1
q(R1, S2) =
R1[A] = S2[A] ^R1[tidR] = S2[tidR]^
min(R1[tidR])  R1[tidR]  max(R1[tidR])^
min(S2[tidR])  S2[tidR]  max(S2[tidR])

(4)

If q(R1, S2) can be proven to be a contradiction then
R1 ./R[A]=S[A] S2 = ;. The above technique for dynamic
pruning must be done during runtime and it will be al-
ways correct as long as MDR,S holds. For example, a
prefilter condition defined as in Equation 5, if true, as-
sures that q(R1, S2) is a contradiction hence the subjoin
R1 ./R[A]=S[A] S2 = ; can be dynamically pruned.

max(R1[tidR]) < min(S2[tidR])_
min(R1[tidR]) > max(S2[tidR])

(5)

In the case of tables in a columnar IMDB, min() and max()
can be obtained from current dictionaries of the respective
partitions. The pruning will succeed if the prefilter from
Equation 5 is true. Otherwise, the pruning will correctly
fail if, for example, MDR,S holds but S2 contains matching
tuples from R1 i.e., the prefilter is false in his case. For an
empty partition Rj , we define min() and max() such that
the prefilter is true for all join pairs (Rj , Sk).

When the database is aware of the enterprise application
characteristics (Section 3) based on their object semantics,
join partition pruning can be used to e�ciently execute join
queries with or without the aggregate cache. We refer to
this type of joins as semantic or object-aware joins.

Let us consider the join query as discussed in Section 2.3
Q(H, I) = H ./H[PK]=I[FK] I joining a header table H
and item table I on the join condition, that the primary
key H[PK] matches the foreign key I[FK]. The match-
ing dependency defined in Equation 6 captures this object-
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Figure 5: Join pruning example between a header and item table
with main and delta partitions.

aware semantic constraint, where the attributes H[tidH ] and
I[tidH ] are new attributes especially added for the MD:

MDH,I = (H, I, (H[PK] = I[FK]), (H[tidH ] = I[tidH ]))
(6)

The MD is enforced during record insertion in the item
table I by setting the attribute I[tidH ] to H[tidH ] of the
matching tuple in the header table H. As illustrated in
Fig. 5, the item table I has two temporal attributes: I[tidH ]
is used to capture the MD with the header table H and
I[tidI ] can be used for MDs with other tables that join on
the primary key of I.

After an insert into H and I, if there was no merge op-
eration yet, all new matching tuples are in the delta par-
titions. Therefore, for a delta compensation, we only need
to compute the subjoin Hdelta ./ Idelta and unify the re-
sults with the cached aggregate (Hmain ./ Imain). Dy-
namic pruning for the remaining subjoins Hmain ./ Idelta
and Hdelta ./ Imain can be performed if the prefilter condi-
tion as defined in Equation 5 holds:

max(Hmain[tidH ]) < min(Idelta[tidH ]) �! Hmain ./ Idelta = ;
max(Imain[tidH ]) < min(Hdelta[tidH ]) �! Hdelta ./ Imain = ;

Fig. 5 depicts an example of join dynamic pruning for
the subjoin Hmain ./H[PK]=I[FK] Idelta = ; as the prefilter
min(Idelta[tidH ]) > max(Hmain[tidH) (i.e., 8 > 4) is true.
However, the subjoin Hdelta ./H[PK]=I[FK] Imain cannot be
pruned: the prefilter max(Imain[tidH ]) < min(Hdelta[tidH ])
(i.e., 5 < 5) is false. Fig. 5 highlights the matching tu-
ples in Hdelta and Imain which prevent the join pruning for
Hdelta ./H[PK]=I[FK] Imain.

5.2 Delta Merge Operation
The incremental maintenance of the aggregate cache takes

place during the online merge process which propagates the
changes of the delta storage to the main storage [17]. When
employing an object-aware join between a header and an
item table, if the timing of the delta merge processes could
be adjusted for the two tables then the join pruning suc-
cess rate for delta-compensation and maintenance opera-
tions could be maximized. While the dynamic join pruning
will always be correct, join pruning is more likely to succeed
when the merge processes of related transactional tables are
synchronized, rather than when the tables are merged in-
dependently, because there is little overlap between delta

and main partitions. The example from Fig. 5 shows the
case when one of joins Hdelta ./H[PK]=I[FK] Imain cannot
be pruned because table I has been merged before H while
the join Hmain ./H[PK]=I[FK] Idelta is pruned successfully.

5.3 Join Predicate Pushdown
In case the join pruning does not succeed, we can still

leverage the temporal information through the enforced
matching dependencies to optimize join processing. Con-
sider the example depicted in Fig. 5, with an overlap of
matching tuples in the Hdelta and Imain partitions, which
in turn implies that join pruning between Hdelta and Imain

cannot succeed.
Based on the matching dependencies, a query optimizer

should be able to infer new predicates that can then be
pushed down as local filter predicates to the respective par-
titions, Hdelta and Imain, before evaluating the subjoin. In
our example, the subjoin Hdelta ./H[PK]=I[FK] Imain can
be rewritten using MDH,I from Eq. 6 and using the run-
time domain properties of the attributes H[PK, tidH ] and
I[FK, tidH ] follows:
(�f(H)Hdelta) ./H[PK]=I[FK]^H[tidH ]=I[tidH ]) (�f(I)Imain)
with local predicates defined as:
f(I) = (I[tidH ] >= min(Hdelta[tidH ])) and
f(H) = (H[tidH ] <= max(Imain[tidH ])).

Especially the evaluation of f(I) on the Imain partition
seems to be promising since we do not have to do a full
table scan for every potential join partner of Hdelta but can
limit the partition to only consider the relevant records. In
the example from Fig. 5, we would only need to check all
records for which f(I) = (tidH >= 5) is true, since 5 =
min(Hdelta)[tidH ]. Similarly, f(H) = (tidH <= 5), as 5 =
max(Imain[tidH ].

5.4 Applying Join Pruning to Multi Partitions
Up to this point, we have only considered a table to be

partitioned into delta and main storage as it is the case in
the general main-delta architecture. However, tables can be
further partitioned using specific partitioning schemes, for
example, as proposed in [25], for data aging or archiving.
We consider a scenario where the columnar tables H and
I are partitioned based on the age of the tuples into one
hot and one cold partition. Given the case, that the hot and
cold partitioning is static, we can employ a mix of logical and
dynamic partition pruning. Thus, the tables H and I each
have four partitions Xc

main, X
c
delta, X

h
main, X

h
delta, where X

is any of the tables H or I. There are several interesting
properties in this scenario:

• The cold partition Xc
delta contains only the updated

tuples from Xc
main if any. Xc

delta is empty in general.

• New tuples are inserted in the hot delta partition
Xh

delta only.

• The delta-merge operation a↵ects only the hot parti-
tionXh

main which is much smaller thanXh
main[Xc

main.

• The subjoins on cold and hot partitions of the form
Icv ./ Hh

w with v, w 2 {main, delta}, are always empty,
given a consistent aging definition on related tables.
These subjoins can be logically pruned. Dynamic
pruning can also be applied, almost always, for sub-
joins between any cold and hot partitions Xc

v ./ Y h
w

with v, w 2 {main, delta}.
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• There are two aggregate caches defined for subjoins on
cold and hot partitions, respectively: Hc

main ./ Icmain,
and Hh

main ./ Ihmain. The delta-merge operation exe-
cuted most often a↵ects only the aggregate cache built
on hot partitions Hh

main ./ Ihmain, hence this is the one
which needs to be rebuilt after each merge. The aggre-
gate cache built on cold partitions will be rebuilt very
rarely, when tuples are aged into the cold partitions.

To evaluate a query using these aggregate caches, many
of the subjoins used for the main-main and delta-main com-
pensation can be pruned. In particular, the subjoins refer-
encing both cold and hot partitions can be partially pruned
logically, given a consistent aging definition.

6. EXPERIMENTAL EVALUATION
We first present experimental results for aggregate cache

maintenance (in Section 6.1) on the current SAP HANA im-
plementation, performed in a mixed workload of updates
and aggregate queries.

Secondly, we assess the performance of query execution
without and with aggregate cache for the class of join aggre-
gate queries for which dynamic pruning is performed during
delta-compensation. The experimental results are obtained
on a prototype implementation which extends the aggregate
cache for join queries. For these experiments, we use two
benchmarks, the CH-benCHmark [10] based on TPC-H1 and
TPC-C2, and a benchmark built based on data and work-
loads from a financial and managerial accounting applica-
tion of a production ERP system. Opposed to standardized
benchmarks such as TPC-C or TPC-H, the second benchmark
especially reflects the characteristics of enterprise applica-
tions, generating mixed workloads. For this benchmark, the
schema contains three tables: a header table Header with
35 million tuples, an item table Item with 330 million tu-
ples, and a dimension table ProductCategory with less than
2000 tuples.

SELECT D.Name AS Category , SUM( I . Pr i ce ) AS
Pro f i t

FROM Header AS H,
Item AS I ,
ProductCategory AS D

WHERE I . HeaderID = H. HeaderID
AND I . CategoryID = D. CategoryID
AND D. Language = ’ENG’
AND H. Fi sca lYear = 2013

GROUPBY I . CategoryID

Listing 1: Benchmark sample query

We modeled a mixed OLTP/OLAP workload, based on in-
put from interviews and workload traces with an industry
customer. The analytical queries simulate multiple users, us-
ing a profit and loss statement analysis tool. The SQL state-
ments calculate the profitability for di↵erent dimensions in-
cluding the product category (as mentioned in Section 3)
by aggregating debit and credit entries. Listing 1 shows a
simplified sample query that calculates how much profit the
company made with each of its product categories. The
inserts were replayed by using the timestamps in the base
data. Deletes and updates were not part of our evaluation
workload because they only had a relative low presence in

1http://www.tpc.org/tpch/
2http://www.tpc.org/tpcc/

the analyzed ERP production system workloads. All bench-
marks were run on a server with 64 Intel Xeon X7560 pro-
cessor cores and 1 TB of main memory.

6.1 Maintenance Strategies
We first discuss how our aggregate cache (defined on the

main partitions) performs in a mixed workload of inserts
and aggregate queries compared to using materialized views
with classical maintenance strategies. The statements in
this workload reference a single table. Materialized views
are defined on main and delta partitions and must be main-
tained for any delta store changes. Traditional maintenance
strategies ensure that a materialized view is always up-to-
date when used during query execution: eager incremental
strategy maintains the materialized views with every insert
operation [2], while lazy incremental strategy keeps a log of
insert operations and maintains the materialized views be-
fore it is used [32]. The aggregate cache is defined on the
main partition only as presented in this work - and delta-
compensation is done at the query time (as shown in Fig. 3).
In this experiment, the delta-merge operation is not per-
formed. The insert rates in this experiment bear upon an
individual materialized aggregate. In other words, they re-
flect the number of base data inserts a↵ecting this particular
materialized aggregate in relation to the number of times
this aggregate is used by read-only queries.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90  95  100N
or

m
al

iz
ed

 W
or

kl
oa

d 
Ex

ec
ut

io
n 

Ti
m

e

Percentage of Insert Queries

Eager Incremental
Lazy Incremental
Aggregate Cache

Figure 6: Mixed workload performance using the SAP HANA ag-
gregate cache compared to using materialized views with classical
maintenance strategies with varying insert ratios.

The results are depicted in Fig. 6 and reveal that in write-
heavy scenarios, the materialized view maintenance over-
head is very high because materialized views are maintained
for any delta changes, either by maintaining the materialized
view with every base data modification (eager), or before a
read-only query (lazy). Read-only queries using the aggre-
gate cache have an overhead for delta-compensation which
is much smaller, in this scenario, compared to the main-
tenance overhead of materialized views. In a read-mostly
workload, the materialized view maintenance overhead is
marginal as changes do occur very infrequent and the ma-
terialized view can directly be used without maintenance
by the read-only queries. With an increasing insert ratio
however, their maintenance costs increase while our aggre-
gate cache delivers nearly constant execution times due to
the fact that the aggregate cache is defined on main stores.
Yet, read-only queries using the aggregate cache have an
overhead for delta-compensation even if delta store is very
small. For insert ratios above 15 percent, this compensation
overhead is outweighed by the maintenance overhead by the
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classical strategies, with the aggregate cache being superior.
The shift to a read-mostly overall workload, as described
in [25], is not based on number of statements, but on the
high percentage of the read-only statements’ execution time
out of the total workload execution time, which does not
necessarily contradict with this experiment.

6.2 Memory Consumption Overhead
In our scenario, we have three tables (header, item, and

one dimension table) that need to be extended with the tem-
poral information in order to prune the subjoins. In total,
this adds up to the following five additional attributes:

• Header table: Header[tidHeader]

• Item table: Item[tidItem, tidHeader, tidProductCategory]

• Dimension table: ProductCategory[tidProductCategory]

The measured memory consumption, for delta stores, with
2.7 thousand header tuples, 270 thousand item tuples was
78,553 KB compared to 69,507 KB without the temporal in-
formation. This is an overhead of 13 percent only for the
delta partitions. In main partitions, based on our dataset
with 35 million header and 330 million item records, this
results in an overhead of 10 percent because of better com-
pression applied to main stores only.

6.3 Insert Overhead
To ensure the matching dependencies of records with for-

eign keys, every insert operation involving a foreign key at-
tribute needs to find the related temporal attribute of the
matching tuple. To quantify this overhead, we have mea-
sured the time for the look-up of the Header[tidHeader] at-
tribute for every insert of a record in the Item table.

The results show that the record insertion in the Item
table without the tidHeader lookup, and without any refer-
ential integrity checks takes about 50 percent of the record
insertion time with referential integrity checks. The lookup-
up of the matching tidHeader value in theHeader table takes
20 percent of the time of referential integrity checks. When
the number of records in the Header table increase, the
look-up slightly increases up to 30 percent. However, this
look-up can be combined with the required integrity check
for newly inserted records with foreign keys that must find
the existing primary key record. Also, we argue that with
a shift to a read-mostly workload in enterprise systems [25],
the impact of the insert overhead can be regarded as negli-
gible compared to resource-intensive aggregate queries.

6.4 Join Pruning Benefit
To measure the benefit of our proposed join pruning ap-

proach, we have created three experiments in which we com-
pare the following four di↵erent join query execution strate-
gies:

• Uncached aggregate query : this executes an aggregate
query without using the aggregate cache as described
in Section 2.3.1,

• Cached aggregate query without pruning: while the
main partition is cached, all remaining subjoins in-
cluding any delta partitions must be computed for the
delta-compensation as described in Section 2.3.2,

• Cached aggregate query with empty delta pruning: as
an optimization to the previous strategy, we omit sub-
joins with empty delta partitions as it is the case with
the ProductCategory dimension table, and

• Cached aggregate query with full pruning : this strat-
egy uses the dynamic pruning concept as described in
Section 5.
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Figure 7: Join performance with di↵erent join query execu-
tion strategies based on di↵erent delta sizes of Itemdelta and
Headerdelta.

The first experiment as illustrated in Fig. 7 measures the
execution times of the four di↵erent join approaches based
on five di↵erent delta sizes of the Item table ranging from
300 thousand to 3 million records. The delta partition
of the Header table contains approximately one tenth of
the Itemdelta table records and the delta partition of the
ProductCategory table is empty. The workload for this
benchmark contains 100 aggregate join queries similar to
the query in Listing 1. Fig. 7 shows the average normal-
ized execution times of these queries. We see that for small
delta sizes, a query using the cached aggregate can be an-
swered by an order of magnitude faster than when not using
the aggregate cache. With an increasing number of records
in Itemdelta and Headerdelta the query execution time in-
creases regardless of the applied join pruning strategy be-
cause the newly inserted records in the delta partitions have
to be aggregated during the delta-compensation to compute
the query results. While the empty delta pruning delivers
performance improvements of around 10 percent, the exe-
cution times using the full pruning approach is, on average,
four times faster than using the cached aggregates without
any dynamic join pruning.

In the second experiment, whose results are illustrated
in Fig. 8, we have created a mixed workload consisting of
insertions of records into Header and Item tables and the
execution of aggregate join queries. The starting point is an
empty delta partition of both the Header and Item tables.
The benchmark then starts the insertion of records in both
tables including the look-ups of tid attributes. At the same
time, we monitor the execution times for aggregate queries
executed with the four di↵erent strategies. The benchmark
has varying frequencies of aggregate queries with respect
to the number of inserts which is realistic in an enterprise
application context. For example, we can see that there are
many aggregate queries at the point of time when Itemdelta

contains around 1 million records.
The results in Fig. 8 show that while the empty delta

pruning has minor performance advantages over not pruning
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at all, our proposed join pruning approach outperforms both
when the delta partitions have non-trivial sizes. We also see
that the runtime variance of queries with or without the
aggregate cache but without any pruning is very high. This
can be explained by a high concurrent system load which,
due to the complexity of the monitored aggregate queries,
results in variable execution times.
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Figure 9: Join performance with di↵erent join query execution
strategies of TPC-H queries based on CH-benCHmark [10].

As a third experiment for the join pruning benefit,
we have taken four analytical TPC-H queries of the CH-
benCHmark [10] and analyzed their performance with the
four join approaches. The four queries (Q3, Q5, Q9, and
Q10) were selected because they are fully supported by the
aggregate cache and join more than three tables as in our
previous benchmarks. We chose the scale factor 200 for this
experiment, which yields 60 million records in the orderline,
20 million records in the orders table and less records in the
remaining tables according to Funke et al. [10]. As proposed
in the CH-benCHmark setup, we have populated the delta
partitions of the orders, neworder, orderline, and stock ta-
bles with five percent of total records per table (i.e., the
orderline table contains 3 million records in the delta and
57 million records in the main), reflecting a mixed workload.

The results are illustrated in Fig. 9 and reveal that for ag-
gregate queries joining more than three tables, the benefit of
the aggregate cache is only marginal if delta-compensation
during the query execution doesn’t use dynamic join prun-
ing. Pruning empty delta partitions yields a minor improve-
ment while the full join pruning approach can accelerate

query execution by up to an order of magnitude compared
to an uncached aggregate query.

6.5 Join Predicate Pushdown Benefit
In cases when the join pruning is not successful, we can

still leverage the temporal relation between the partitions
modeled using the MD constraints. In this experiment,
we measure the execution time of the subjoins between
Headerdelta and Itemmain partitions by using the predicate
pushdown explained in Section 5.3. We have three di↵erent
setups with a varying total number of records in Itemmain,
while Headerdelta has a constant number of 100 thousand
records. The results as illustrated in Fig. 10 show that with
an increasing number of records participating in the join
(i.e., matching the join conditions), the performance of the
delta-compensation decreases. By using our predicate push-
down concept, we can see that it can accelerate the join
query execution up to a factor of four, especially if the num-
ber of matching records is low compared to the overall table
size.

6.6 Applying Join Pruning to Multi Partitions
To benchmark the performance of the join pruning ap-

proach in the presence of multiple partitioned tables as out-
lined in Section 5.4, we have created an experiment with the
Header and Item tables, partitioned in a hot-cold ratio of
1:3 as proposed in [25]. We execute five di↵erent aggregate
queries with di↵erent selectivities, aggregating 100 thousand
to 25 million records in the hot partition and measure their
performance with di↵erent join strategies.

The results are illustrated in Fig. 11 and reveal several in-
sights. First of all, we see that an uncached aggregate query
is slightly faster in a partitioned environment, because the
scan e↵ort can be reduced. Second, we see that the perfor-
mance of using a cached aggregate query without pruning is
worse in a partitioned environment because of the additional
subjoins that are required for delta-compensation. The per-
formance of the full join pruning approach is superior in
both partitioning scenarios, speeding up query execution by
an order of magnitude.

7. RELATED WORK
Materialized views have received significant attention in

academia [1, 2, 12, 32], especially in data warehousing envi-
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strategies with unpartitioned and hot/cold partitioned tables.
The underlying aggregate queries vary in the number of aggre-
gated records.

ronments [33, 1, 22]. Our techniques for using materialized
views are di↵erent along multiple dimensions.

First of all, the maintenance timing is not bound to an
update of the base data [2], nor it is deferred no later than
querying the materialized view [32, 28, 27, 5]. Instead, we
maintain the materialized view during the online merge pro-
cess [17] as our aggregate cache is defined on main partitions.
This enables high insert rates and does not imply a main-
tenance downtime which is not tolerable in mixed workload
environments as opposed to data warehouses [4]. Secondly,
we do not rely on redundant storage of base data changes,
as others do with auxiliary tables or summary tables [18,
31, 22, 32]. Our delta storage is the primary storage for
all inserts and updates performed between two delta merge
processes. Our algorithm to calculate the consistent query
result of queries using the aggregate cache is similar to the
summary-delta tables method introduced in [22], but we do
not distinguish between a refresh and propagate phase.

For partitioned tables, several join optimization tech-
niques have been proposed. One of them is to dynamically
partition the relations based on workload [26] for improved
performance. Another approach is to do logical pruning
for horizontally partitioned tables [13]. However, the lat-
ter approach is limited to the scenario when the horizontal
partitioning attribute matches the join attributes used in
the query whereas our implementation supports, by leverag-
ing matching dependency methods, arbitrary join attributes.
Also, this approach does not apply to the dynamic partition-
ing in the general main-delta architecture which we address

through dynamic join partition pruning.
While there is an emergence of application-specific

databases such as Amazon Dynamo [6] or Google
Bigtable [3], we are not aware of a materialized view mainte-
nance and query compensation approach for a general pur-
pose DBMS that leverages the semantics of an enterprise
application to increase the performance of aggregate queries
using materialized views.

8. CONCLUSIONS AND FUTURE WORK
With the growing requirements of enterprise applications,

combining transactional and analytical workloads on a sin-
gle system, the aggregate cache, a dynamic materialized ag-
gregate engine implemented in SAP HANA, enables the han-
dling of an even higher throughput of aggregate queries gen-
erated by multiple parallel users as one mean to scale the
system. As admittance in the aggregate cache is directly
dependent on the performance of the query execution us-
ing the cache, we analyze a special class of aggregate join
queries which can be very expensive to compensate. Joins of
partitioned tables are challenging in general, but slow down
the incremental materialized view maintenance and query
compensation of the aggregate cache in particular.

Our analysis of enterprise applications revealed several
patterns for their schema design and usage. Most impor-
tantly among them, business objects are persisted using a
header and item table with additional rather static dimen-
sion tables. Moreover, our application workload analysis
showed that related header and item records are often in-
serted within a single transaction or at least within a small
time window.

To transport these enterprise application object semantics
characteristics into the database, becoming object-aware,
and optimize the join processing in the aggregate cache,
we exploit the concepts of matching dependencies and join
pruning that potentially eliminate expensive joins of par-
titioned tables. This is achieved by adding temporal at-
tributes at insertion time and use them during run time to
dynamically prune subjoins with an empty result set. In ad-
dition, we use techniques for join predicate pushdown, also
based on matching dependencies, that can further optimize
join processing with aggregate cache when join pruning does
not succeed.

The experimental results show that while our approach
induces a small overhead for record insertion, the query pro-
cessing with the aggregate cache using the pruning approach
outperforms the non-pruning approach by an average factor
of four in the case of three joined tables, and up to an order
of magnitude when joining more than three tables or us-
ing additional hot and cold partitioning. The join predicate
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pushdown can optimize a join, in case the pruning does not
succeed, up to a factor of four.

One direction of future work includes improving the per-
formance of delta-compensation process for join queries
when invalidations are detected in the main storage in case
of updates. While the presented join pruning techniques will
always deliver correct results, and deletes do not negatively
impact the performance of our solution, we are investigating
ways to improve the pruning success rate for data updates
by keeping track of updates in the delta storage in a sep-
arate negative-delta partition. To this end, another inter-
esting future work is to model (and dynamically discover)
the temporal soft-constraints among relations without using
strong matching dependencies which require extra storage.
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