
Demonstrating Transfer-Efficient

Sample Maintenance on Graphics Cards

Martin Kiefer
Technische Universität Berlin,

Germany
kiefer@campus.tu-

berlin.de

Max Heimel
Technische Universität Berlin,

Germany
max.heimel@tu-berlin.de

Volker Markl
Technische Universität Berlin,

Germany
volker.markl@tu-

berlin.de

ABSTRACT
Maintaining random data samples under database updates
is a fundamental operation in modern database engines.
While multiple algorithms exist for this problem, none is
tailored to the special case of maintaining data samples on
graphics cards. Due to the limited interconnect bandwidth
to main memory, any GPU-resident algorithm must try to
avoid data transfers across the PCI Express bus where pos-
sible – a property that we call transfer-e�cient. In this
demonstration, we present an approximate, transfer-e�cient
sample maintenance algorithm that piggybacks on a GPU-
accelerated selectivity estimator and utilizes query feedback
to selectively identify and replace outdated points. We pro-
vide an implementation of the algorithm and interactively
demonstrate its quality and its transfer performance in com-
parison to traditional maintenance algorithms.

Categories and Subject Descriptors
H.2 [Database Management]: Systems

1. INTRODUCTION & MOTIVATION
Collecting and maintaining data samples is a fundamen-

tal operation in a modern database engine. One of the main
advantages of algorithms that can operate on samples lies
in their ability to trade-o↵ performance against result ac-
curacy by reducing – or increasing – the sample size. This
property allows us to e�ciently mask limited resources, as
long as our application can tolerate the loss of result accu-
racy. Examples of such “tolerant” applications include selec-
tivity estimation [14, 15], approximate query processing [3,
4], data mining algorithms [17], interactive data exploration,
and data visualization.

One area where sampling-based methods are of particu-
lar interest are GPU-accelerated databases. The usability
of graphics cards for data-intensive operations is severely
limited by two bottlenecks: The scarce availability of on-
card device memory and the slow data transfer speeds from

c� 2015, Copyright is with the authors. Published in Proc. 18th
International Conference on Extending Database Technology (EDBT),
March 23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on
OpenProceedings.org. Distribution of this paper is permitted under the
terms of the Creative Commons license CC-by-nc-nd 4.0.

main memory across the PCI Express bus [6]. We can avoid
both bottlenecks by keeping a fixed number of sampled data
points on the device to quickly compute approximate results
from. As long as the underlying database remains static, this
approach works very well and does not require any further
transfers across the PCI Express bus.

Sadly, in the real world, datasets seldomly remain static.
In order to stay representative, all changes that are applied
to the underlying database have to be mirrored to the sam-
ple as well. This so-called sample maintenance problem is
well-known, and multiple algorithms exist for it [8, 9, 16,
18]. However, while maintenance algorithms guarantee to
keep the sample representative, they usually require us to
replay database updates. In case of a GPU-resident data
sample, this means that we need to copy all updates across
the PCI Express bus. These additional transfers restrict the
available PCI Express bandwidth, leading to performance
penalties for “actual” data processing applications running
on the GPU. Ideally, we want a transfer-e�cient mainte-
nance algorithm that only transfers data if it is absolutely
necessary. In this paper, we are discussing a possible sam-
ple maintenance algorithm that aims for this property. Our
primary contributions are:

1. We introduce an approximate, but transfer-e�cient
maintenance algorithm for samples on graphics cards.
Our algorithm piggybacks on a GPU-accelerated se-
lectivity estimator and utilizes query feedback to track
outdated points. This approach allows us to selectively
replace outdated points in the sample without having
to mirror all updates to the graphics card.

2. We provide an implementation of our algorithm inte-
grated into the open-source relational database engine
PostgreSQL1.

3. We interactively demonstrate the performance of our
algorithm in comparison to other replacement strate-
gies with regard to both sample quality and the re-
quired data transfers across the PCI Express bus.

2. GPU-BASED SAMPLE MAINTENANCE
Assume a d-dimensional relation R with cardinality |R|

that is stored within a “regular” relational database system.
From R, we collect a fixed-size random sample S ✓ R and
push it to the graphics card. The sample size |S| is fixed and
chosen in advance to a) provide su�cient confidence for the

1The source code is available at: goo.gl/aQSQNd.

 

 

513 10.5441/002/edbt.2015.46

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2015.46


approximated results, and to b) fit within the limited device
memory on the graphics card. Maintaining such a GPU-
resident sample when database updates occur on the host is
an interesting problem that, to the best of our knowledge,
has not been discussed in the literature so far.

The simplest maintenance scenario is an insertion-only
workload. In this case, Reservoir Sampling [18] is the ideal
choice: It pushes newly inserted points to the sample with
probability |S| / |R|, replacing a random sample point. From
a transfer-e�ciency perspective, Reservoir Sampling is opti-
mal: We only push exactly those data items to the graphics
card that end up in the sample.

The general case of mixed workloads containing insertions,
updates and deletions is more interesting: General mainte-
nance algorithms usually handle insertions similar to Reser-
voir Sampling, but have special rules to deal with updates
and deletions [8, 9, 16]. Take for example the Correlated Ac-
ceptance Rejection Sampling algorithm (CAR) [16]: When
a new point ~t is inserted into R, a random number n is
drawn from the binomial distribution BINOM(|S|, 1/|R|)
and n random sample points are replaced by an instance of
~t. When a deletion occurs, all instances of the deleted point
are removed from the sample and exchanged by points drawn
uniformly from R. Updates are handled by directly apply-
ing them on the sample. This means that, while insertions
incur maintenance costs of O(1), deletions and updates re-
quire additional costs of O(|S|).
A straightforward way to adjust algorithms like CAR for

GPU-resident samples would be to maintain a sample copy
on the host, apply the maintenance algorithm there, and
then mirror sample updates to the GPU memory. While
this approach would indeed be transfer-e�cient, we still had
to pay the O(|S|) maintenance costs for every update and
deletion. For large sample sizes, these additional costs can
become quite significant and slow down the system, which
is why we want to push as much of the maintenance work
as possible directly to the faster graphics card.
However, running existing sample maintenance algorithms

on the graphics card requires us to mirror every deletion and
update across the PCI Express bus, even if they do not ap-
ply to any points in the sample. For instance: Running
CAR on the graphics cards incurs a sequence of two manda-
tory transfers for each deletion: One to transfer the deleted
item, and one to reply with a list – or bitmap – identify-
ing all deleted tuples, so that the database can sample a
su�cient amount of tuples and transfer them to the correct
positions in the GPU memory. These additional transfers
across the limited PCI Express bus might easily become a
problem: Even if they do not fully block the bus, they will
take a significant chunk of the available bandwidth away
from other GPU-resident applications. This is especially
relevant when keeping in mind that transfers below a mini-
mum length (on the order of a few Kilobytes) do not achieve
maximum throughput [7].

3. BACKGROUND: CALCULATING KER-
NEL DENSITY ESTIMATORS ON GPUS

We investigated the sample maintenance problem in the
context of a GPU-accelerated selectivity estimator [11]. In
order to convey the necessary background knowledge, we
will now give a brief introduction into this topic.

Given a relation R with attributes (A1, ..., Ad) and an ar-
bitrary query region ⌦ ✓ D1⇥...⇥Dd, selectivity estimators

approximate the fraction
|�~x2⌦(R)|

|R| of tuples qualifying the
query. In our case, we assume that the attributes are from
the domain of real numbers.

Multiple authors have proposed using Kernel Density Es-
timators (KDEs) to approach this task [5, 10, 11]. The
principle idea behind KDEs is visualized in Figure 1: Based
on a sample (Figure 1b) drawn from R (Figure 1a), KDE
places local probability density functions – the so-called ker-
nels – around the sample points (Figure 1c). The probabil-
ity density function for the overall data is then estimated by
summing and averaging over those kernels (Figure 1d).

(a) Points in data set (b) Sampled points

(c) Kernels (d) Estimated distri-

bution

Figure 1: A Kernel Density Estimator approximates the
underlying distribution of a given dataset (a) by picking a
random sample (b), centering local probability distributions
(kernels) around them (c), and averaging the local distribu-
tions (d).

Formally, given a sample S = {~t (1),~t (2), ...,~t (s)} ✓ R, the
Kernel density Estimator p̂H(~x) : Rd ! R is defined as:

p̂H(~x) = 1
s

Ps
i=1 KH(~t (i) � ~x)

= 1
s·|H|

Ps
i=1 K(H�1[~t (i) � ~x])

(1)

Here, K : Rd ! R denotes the kernel function, which de-
fines the shape of the local probability density functions.
Typical choices are Gaussian – a multivariate standard nor-
mal distribution –, or Epanechnikov, which is a truncated
second-degree polynomial. H 2 Rd⇥d is the bandwidth ma-
trix, which controls the spread of the kernel function. Pick-
ing the optimal bandwidth is a di�cult problem that is out
of the scope of this demonstration. We assume that it is
selected by a data-driven bandwidth optimizer [1].

We can now predict the selectivity for a (rectangular)
query region ⌦ by integrating p̂H(~x) over all points in the
region:

p̂H(⌦) =

Z

⌦

p̂H(~x)d~x =
1
s

sX

i=1

Z

⌦

K(H�1[~t (i) � ~x])
|H|

| {z }
p̂
(i)
H

(⌦)

(2)

514



This equation can be e�ciently evaluated in parallel: First,
each thread independently computes the individual proba-
bility contribution p̂(i)H (⌦) for a single sample point ~t (i). The
estimate is then computed as the averaged sum over all indi-
vidual contributions – which can be e�ciently computed via
a parallelized binary reduction scheme [13]. For further de-
tails on KDEs, and on how we designed a GPU-accelerated
selectivity estimator based on them, we kindly refer to our
publication [11].

4. INTRODUCING THE KARMA METRIC
We now introduce a novel approach for sample mainte-

nance in the context of a GPU-based Kernel Density Esti-
mator that is used for selectivity estimation. Our approach
is based on query feedback : After the execution of a query
covering region ⌦, the true selectivity p(⌦) of the region is
known. The principle idea behind query feedback methods
is to utilize this additional information to incrementally ad-
just the estimation model [2].

In particular, we can compute for each sample point ~t (i)

the impact of its probability contribution p̂(i)H (⌦) on the (ab-
solute) estimation error Labs (p (⌦) , p̂H (⌦)). For this, we

first calculate the adjusted estimate p̂�(i)
H (⌦) by removing

the point’s contribution from the estimate p̂H(⌦):

p̂�(i)
H (⌦) =

p̂H(⌦) · s� p̂(i)H (⌦)

s� 1
(3)

Now, p̂�(i)
H (⌦) is simply the selectivity that our estimator

would have predicted if point ~t (i) had not been part of
the sample. Based on this, we can compute the adjusted

estimation error Labs

⇣
p (⌦) , p̂�(i)

H (⌦)
⌘
, which is the esti-

mation error if ~t (i) had been removed. The principle idea
behind our maintenance algorithm is then simple: A sam-
ple point that significantly reduces the estimation error by
its absence is likely misrepresenting the distribution in the
data set and should be replaced. Accordingly, we define the
Karma K(i)(⌦) for sample point ~t (i) as its impact on the
estimation error:

K(i)(⌦) = s·
⇣
Labs(p (⌦) , p̂H(⌦))� Labs

⇣
p (⌦) , p̂�(i)

H (⌦)
⌘⌘

(4)
We multiply by the sample size s to normalize the values
to [�1, 1]: Karma values close to one correspond to sam-
ple points that significantly improved the estimation qual-
ity for query region ⌦, while negative values are associated
with points that had a negative impact. If the selectivity
is overestimated, points contributing to the overestimation
will be penalized, while points outside of the query region –
or those without significant contributions – will be rewarded,
vice-versa for underestimated selectivities.

By aggregating Karma values over a sequence of query
regions [⌦1, ...,⌦n], we obtain an indicator for the contribu-
tion of sample points over multiple queries. Accordingly, we
recursively define our notion of cumulative Karma via the
following recursion:

K(i)([⌦1, ...,⌦n]) =

8
><

>:

↵ ·K(i)(⌦n)+

(1� ↵) ·K(i)([⌦1, ...,⌦n�1]) n > 1

↵ ·K(i)(⌦n) n = 1
(5)

In this equation, ↵ 2 (0, 1] is a constant factor for apply-
ing exponential smoothing to limit the influence of historic
Karma values. This approach helps us to achieve faster reac-
tivity on changing data, as well as to improve the method’s
robustness with respect to outliers.

The cumulative Karma is used as the foundation for our
heuristic sample maintenance with focus on reestablishing
good estimation results. This is done by resampling points
with large negative Karma values as they are likely to mis-
represent the true data distribution. This approach relieves
us from mirroring all changes to the sample. K (i) can be
computed easily on top of our KDE-based estimator: The
calculation can be performed by executing one additional
embarrassingly parallel computation on the GPU and allo-
cating an additional field for the most recent values of K(i)

for all points in the sample.
Note that this algorithm does not provide true sample

uniformity, but instead aims at maintaining a sample that
fits the underlying distribution in the queried regions.

5. DEMONSTRATION
In our demonstration, we first introduce our implemen-

tation in PostgreSQL and give an overview of the modifi-
cations that were applied. Afterwards we provide an inter-
active graphical evaluation of several sample maintenance
algorithms under variable parameters and workload charac-
teristics.

5.1 System Overview
All presented algorithms were integrated into the open-

source database PostgreSQL 9.3.1. The GPU-accelerated
algorithms were implemented in a hardware-oblivious way
using OpenCL, which allows us to operate on all devices sup-
porting the standard – including graphics cards, and multi-
core CPUs [12]. We provide PostgreSQL control variables to
control the KDE-based selectivity estimation for selected ta-
bles and to select the sample maintenance method. Besides
integrating the use of KDEs in the estimator for qualifying
queries, we added hooks after query executions, insertions
and deletions, which are used to call the selected sample
maintenance algorithms.

5.2 Compared Methods
We compare the following sample maintenance algorithms

during our interactive presentation:

No maintenance (NONE) is our first baseline. In this
method, we do not perform any sample maintenance,
demonstrating the severity of estimation error degra-
dation as updates are applied to the database.

Correlated Acceptance Rejection Sampling (CAR)
is used as a baseline for existing maintenance algo-
rithms and is implemented as explained in Section 2.

Periodic Random Replacement (PRR) is our third base-
line. It replaces a random item from the sample with a
newly sampled item every n changes to the base data.

Triggered Karma Replacement (TKR) replaces sample
points when their cumulative Karma goes below a given
threshold �. A bitmap identifying points that will be
resampled has to be calculated after Karma calculation
and is transferred to the CPU to trigger resampling.

515



Periodic Karma Replacement (PKR) periodically re-
places the sample point with the worst cumulative
Karma everym queries. The sample point ~t (i) with the
minimum Karma is e�ciently identified on the graph-
ics card via a parallel reduction scheme [13].

5.3 Demonstration Overview
At the beginning of the demonstration, the user can choose

from pre-selected dataset choices, each with di↵erent proper-
ties and sizes. We then collect and transfer a new sample for
the selected dataset to the graphics. Afterwards, the user is
prompted to select and configure a maintenance algorithm,
and to specify characteristics of the query workload (e.g. the
probability of insertions and deletions).

After starting the experiment, we continuously run ran-
dom selection queries, plotting the average selectivity esti-
mation error, as well as the number of transfered tuples that
were required for the maintenance algorithms. This allows
the user to inspect in real-time how the sample quality, and
the required data transfers develop. The presentation will
be delivered with an interface similar to Figure 2.

Figure 2: Overview of the demonstration interface: The
user can select the desired sample maintenance method
and specify algorithm and workload properties. When the
user starts the configured experiment, we plot the aver-
age estimation-error from the sample, the required transfers
across the PCI Express bus, and the cumulative updates to
the database.

6. REFERENCES
[1] Multivariate Density Estimation - Theory, Practice

and Visualization. John Wiley & Sons, Inc., 1992.
[2] A. Aboulnaga and S. Chaudhuri. Self-tuning

histograms: Building histograms without looking at
data. In ACM SIGMOD Record, volume 28, pages
181–192. ACM, 1999.

[3] S. Agarwal, B. Mozafari, A. Panda, H. Milner,
S. Madden, and I. Stoica. Blinkdb: queries with
bounded errors and bounded response times on very
large data. In Proceedings of the 8th ACM European
Conference on Computer Systems, pages 29–42. ACM,
2013.

[4] B. Babcock, S. Chaudhuri, and G. Das. Dynamic
sample selection for approximate query processing. In
Proceedings of the 2003 ACM SIGMOD international
conference on Management of data, pages 539–550.
ACM, 2003.

[5] B. Blohsfeld, D. Korus, and B. Seeger. A comparison
of selectivity estimators for range queries on metric
attributes. In Proceedings of the 1999 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’99, pages 239–250, New York, NY, USA,
1999. ACM.

[6] S. Breß, M. Heimel, N. Siegmund, L. Bellatreche, and
G. Saake. Gpu-accelerated database systems: Survey
and open challenges. In Transactions on Large-Scale
Data-and Knowledge-Centered Systems XV, pages
1–35. Springer, 2014.

[7] Y. Fujii, T. Azumi, N. Nishio, S. Kato, and
M. Edahiro. Data transfer matters for gpu computing.
In Parallel and Distributed Systems (ICPADS), 2013
International Conference on, pages 275–282, Dec 2013.

[8] R. Gemulla, W. Lehner, and P. J. Haas. A dip in the
reservoir: Maintaining sample synopses of evolving
datasets. In Proceedings of the 32nd international
conference on Very large data bases, pages 595–606.
VLDB Endowment, 2006.

[9] P. B. Gibbons, Y. Matias, and V. Poosala.
Maintaining a random sample of a relation in a
database in the presence of updates to the relation,
Jan. 4 2000. US Patent 6,012,064.

[10] D. Gunopulos, G. Kollios, J. Tsotras, and
C. Domeniconi. Selectivity estimators for
multidimensional range queries over real attributes.
The VLDB Journal, 14(2):137–154, Apr. 2005.

[11] M. Heimel and V. Markl. A first step towards
gpu-assisted query optimization. In ADMS@ VLDB,
pages 33–44. Citeseer, 2012.

[12] M. Heimel, M. Saecker, H. Pirk, S. Manegold, and
V. Markl. Hardware-oblivious parallelism for
in-memory column-stores. Proceedings of the VLDB
Endowment, 6(9):709–720, 2013.

[13] D. Horn. Stream reduction operations for gpgpu
applications. Gpu gems, 2:573–589, 2005.

[14] P.-A. Larson, W. Lehner, J. Zhou, and P. Zabback.
Cardinality estimation using sample views with
quality assurance. In Proceedings of the 2007 ACM
SIGMOD international conference on Management of
data, pages 175–186. ACM, 2007.

[15] R. J. Lipton, J. F. Naughton, and D. A. Schneider.
Practical selectivity estimation through adaptive
sampling, volume 19. ACM, 1990.

[16] F. Olken and D. Rotem. Maintenance of materialized
views of sampling queries. In Data Engineering, 1992.
Proceedings. Eighth International Conference on,
pages 632–641, Feb 1992.

[17] H. Toivonen et al. Sampling large databases for
association rules. In VLDB, volume 96, pages 134–145,
1996.

[18] J. S. Vitter. Random sampling with a reservoir. ACM
Transactions on Mathematical Software (TOMS),
11(1):37–57, 1985.

516


