
Data Ingestion in AsterixDB

Raman Grover, Michael J. Carey

Department of Computer Science,
University of California- Irvine, CA, 92697

{ramang,mjcarey}@ics.uci.edu

ABSTRACT
In this paper we describe the support for data ingestion in Aster-
ixDB, an open-source Big Data Management System (BDMS) that
provides a platform for storage and analysis of large volumes of
semi-structured data. Data feeds are a new mechanism for hav-
ing continuous data arrive into a BDMS from external sources and
incrementally populate a persisted dataset and associated indexes.
We add a new BDMS architectural component, called a data feed,
that makes a Big Data system the caretaker for functionality that
used to live outside, and we show how it improves users’ lives and
system performance.

We show how to build the data feed component, architecturally,
and how an enhanced user model can enable sharing of ingested
data. We describe how to make this component fault-tolerant so
the system manages input in the presence of failures. We also show
how to make this component elastic so that variances in incom-
ing data rates can be handled gracefully without data loss if/when
desired. Results from initial experiments that evaluate scalability
and fault-tolerance of AsterixDB data feeds facility are reported.
We include an evaluation of built-in ingestion policies and study
their effect as well on throughput and latency. An evaluation and
comparison with a ‘glued’ together system formed from popular
engines — Storm (for streaming) and MongoDB (for persistence)
— is also included.

1. INTRODUCTION
A large volume of data is being generated on a “continuous” ba-

sis, be it in the form of click-streams, output from sensors or via
sharing on popular social websites [3]. Encouraged by low stor-
age costs, enterprises today are aiming to collect and persist the
available data and analyze it over time to extract useful informa-
tion. Marketing departments use Twitter feeds to conduct senti-
ment analysis to get end user feedback on their company’s prod-
ucts. As another example, utility companies have rolled out me-
ters that measure the consumption of water, gas, and electricity and
generate huge volumes of interval data that is analyzed over time.
Traditional data management systems require data to be loaded and
indexes to be created before data can be subjected to ad hoc ana-

c� 2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0
.

lytical queries. To keep pace with “fast-moving” data, a Big Data
Management System (BDMS) must be able to ingest and persist
data on a continuous basis. A flow of data from an external source
into persistent (indexed) storage inside a BDMS will be referred to
here as a data feed. The task of maintaining the continuous flow of
data is hereafter referred to as data feed management.

A simple way of having data being put into a Big Data man-
agement system on a continuous basis is to have a single program
(process) fetch data from an external data source, parse the data,
and then invoke an insert statement per record or batch of records.
This solution is limited to a single machine’s computing capacity.
Ingesting multiple data feeds would potentially require running and
managing many individual programs/processes. The task of con-
tinuously retrieving data from external source(s), applying some
pre-processing for cleansing, filtering data, and indexing the pro-
cessed data today amounts to ‘gluing’ together different systems
(e.g. [19]). It becomes hard to reason about the data consistency,
scalability and fault-tolerance offered by such an assembly. Tradi-
tional data management systems have evolved over time to provide
native support for services if the service offered by an external sys-
tem is inappropriate or may cause substantial overheads [18, 10].
Responding to the new need then, it is natural for a BDMS to pro-
vide “native” support for data feed management.

1.1 Challenges in Data Feed Management
Let us begin by enumerating the key challenges involved in build-

ing a data feed facility.
C1) Genericity and Extensibility: A feed ingestion facility must

be generic enough to work with a variety of data sources and high-
level applications. A plug-and-play model is desired to allow ex-
tension of the offered functionality.

C2) Fetch-Once, Compute-Many: Multiple applications may wish
to consume the ingested data and may wish the arriving data to be
processed/persisted differently. It is desirable to receive a single
flow of data from an external source and yet transform it in multi-
ple ways to drive different applications concurrently.

C3) Scalability and Elasticity: Multiple feeds with fluctuating
data arrival rates, coupled with ad hoc queries over the persisted
data, imply a varying demand for resources. The system should of-
fer scalability by being able to ingest increasingly large volumes of
data (possibly from multiple sources) via the addition of resources.
The system should demonstrate elasticity by auto-scaling in/out to
meet the demand for resources.

C4) Fault Tolerance: Data ingestion is expected to run on a large
cluster of commodity hardware that may be prone to hardware fail-
ures. It is desirable to offer the desired degree of robustness in
handling failures while minimizing data loss.

 

 

605 10.5441/002/edbt.2015.61

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2015.61


1.2 Contributions
In this paper, we describe the support for data feed management

in AsterixDB. AsterixDB provides a platform for the scalable stor-
age and analysis of very large volumes of semi-structured data.
The paper describes the approach adopted to address the afore-
mentioned challenges. This paper also demonstrates the efficien-
cy/flexibility achieved in having native support for feed ingestion
in AsterixDB in comparison to the popular approach of ‘gluing’ to-
gether popular systems (e.g. Storm[6] and MongoDB[5]), which is
the state of the art today. The paper offers the following contribu-
tions.

(1) Concepts involved in Data Feed Management: The paper in-
troduces the concepts involved in defining a data feed and manag-
ing the flow of data into a target dataset and/or to other dependent
feeds to form a cascade network. It details the design and imple-
mentation of the involved concepts in a complete system.

(2) Policies for Data Feed Management: We describe how a data
feed is managed by associating an ingestion policy that controls
the system’s runtime behavior in response to failures and resource
bottlenecks. Users may also opt to provide a custom policy to suit
special application requirements.

(3) Scalable/Elastic Data Feed Management: We describe a dataflow
approach that exploits partitioned-parallelism to scale and ingest
increasingly large amounts of data. The dataflow exhibits elastic-
ity by being able to monitor and dynamically re-structure itself to
adapt to the rate of arrival of data. The system is fault-tolerant and
provides at least once semantics as the strongest guarantee, if re-
quired.

(4) Contribution to Open-Source: AsterixDB is available as open
source software [2, 1]. The support for data ingestion in AsterixDB
is extensible to enable future contributors to provide custom imple-
mentations of different modules.

(5) Experimental Evaluation: We describe an experimental eval-
uation that studies the role of different ingestion policies in deter-
mining the behavioral aspects of the system including the achieved
throughput and latency. We also report on experiments to evaluate
scalability and our approach to fault-tolerance.

(6) Improvement over State-of-the-Art: We include an evaluation
of a system created by coupling Storm (a popular streaming engine)
and MongoDB (a popular persistence store) to draw a comparison
with AsterixDB in terms of flexibility and scalability achieved in
data feed management. We demonstrate and describe the inefficien-
cies involved in ‘gluing’ together such otherwise efficient systems;
doing so is a current common practice in open-source community.

The rest of the paper is organized as follows. We discuss related
work in Section 2 and provide an overview of AsterixDB in Sec-
tion 3. Section 4 describes how a feed is modeled and defined at
the language level in AsterixDB. The implementation details are
described in Section 5. Section 6 describes the support for han-
dling failures. Section 7 provides an experimental evaluation, and
we conclude in Section 8.

2. RELATED WORK
Data feeds may seem similar to streams from the data streams

literature (e.g. [7, 13]). There are important differences, however.
Data feeds are a “plumbing” concept; they are a mechanism for
having data flow from external sources that produce data continu-
ously to incrementally populate and persist the data in a data store.
Stream Processing Engines (SPEs) do not persist data; instead they
operate with a sliding window on data (e.g. a 5 minute view of
data), but the amount, or the time window, is usually limited by the
velocity of the data and the available memory. In a similar spirit,

Complex Event Processing (CEP) systems (Storm [6] and S4 [15])
can route, transform and analyze a stream of data. However, these
systems do not persist the data or provide support for ad hoc an-
alytical queries. These engines can be used in conjunction with a
database (e.g MySql or MongoDB), making it possible to persist
and run ad hoc queries.

In the past, ETL (Extract Transform Load) systems (e.g. [4])
have supported populating a Data Warehouse with data collected
from multiple data sources. However, such systems operate in a
“batchy” mode, with a “finite” amount of data transferred at pe-
riodic intervals coinciding with off-peak hours. Xu et al. in [19]
described a Map-Reduce based approach for populating a parallel
database system with an external feed. However, the system was
tightly-coupled with Map-Reduce and required data to be put into
HDFS, thus involving an additional copy.

With respect to providing fault-tolerance, stream processing sys-
tems also faced the challenge of providing highly available paral-
lel data-flows and have proposed several techniques [17, 8]. The
process-pairs approach, used in Flux and StreamBase, involves a
high overhead when the system needs to scale. These techniques
rely on replication; the state of an operator is replicated on multiple
servers or have multiple servers simultaneously process identical
input streams. Fault-tolerance is provided at a high cost, as the
number of nodes is thus at least doubled due to replication. It was
thus not considered for use in AsterixDB. Moreover, offering a sin-
gle strong strategy for fault-tolerance can be wasteful of resources
in scenarios where the offered degree of robustness exceeds the ap-
plication’s requirements.

Data ingestion and stream-processing data-flows are typically as-
sociated with fluctuating data arrival rates that cause a varying de-
mand for resources. An elastic behavior with the ability to scale
in/out in adaptation to the demand for resources is desirable. Such
mechanisms have been studied and evaluated before. Elastic re-
configuration in [16] is triggered when the data arrival rate exceeds
a pre-calculated saturation rate by some fraction (e.g., 5% in their
papers). It is not clear how an appropriate saturation rate would
be statically calculated in a dynamic environment with concurrent
feeds and queries over the ingested data. AsterixDB follows a dif-
ferent approach by dynamically monitoring the rate of flow of data
and the availability of resources across the participant nodes. This
allows detecting resource bottlenecks and triggering corrective ac-
tions in accordance with measured values.

We have explored the challenges involved in building a data in-
gestion facility. In doing so, we added a new BDMS architectural
component, called a data feed, that makes a Big Data system the
caretaker for functionality that used to live outside, and we show
how it improves users’ lives and system performance. In this paper,
we describe how to build this component, architecturally, so that it
provides continuous load-like performance (i.e., low overhead) -
and how an enhanced user model can enable sharing of ingested
data. We identify a number of different QoS options that users
might want, depending on the nature of their application, and we
show how to deliver them via dynamic monitoring of the system
state. We also show how to make this new data feed component
fault-tolerant so the system manages input (and the user doesn’t
have to) in the presence of failures. We show how to make this
component elastic so that variances in incoming data rates can be
handled gracefully without data loss if/when desired. We added
that functionality to AsterixDB, and we demonstrate that it works
(and how well).

3. BACKGROUND: ASTERIXDB
Initiated in 2009, the AsterixDB project has been developing

606



new technologies for ingesting, storing, indexing, querying, and
analyzing vast quantities of semi-structured data. It combines the
ideas from three distinct areas—semi-structured data, parallel databases,
and data-intensive computing—in order to create an open-source
software platform that scales by running on large, shared-nothing
commodity computing clusters.

3.1 AsterixDB Architecture

Figure 1: AsterixDB Architecture

Figure 1 provides an overview of how the various software com-
ponents of AsterixDB map to nodes in a shared-nothing cluster.
The topmost layer of AsterixDB is a parallel DBMS, with a full,
flexible AsterixDB Data Model (ADM) and AsterixDB Query Lan-
guage (AQL) for describing, querying, and analyzing data. ADM
and AQL support both native storage and indexing of data as well
as analysis of external data (e.g., data in HDFS). The bottom-most
layers from Figure 1 provide storage facilities for datasets, which
can be targets of ingestion. These datasets are stored and man-
aged by AsterixDB as partitioned LSM-based B+-trees with op-
tional LSM-based secondary indexes. A detailed description of As-
terixDB and results from experimental evaluation can be found in
[12].

AsterixDB uses Hyracks [11] as its execution layer. Hyracks
allows AsterixDB to express a computation as a DAG of data oper-
ators and connectors. Operators operate on partitions of input data
and produce partitions of output data, while connectors repartition
operators’ outputs to make the newly produced partitions available
at the consuming operators.

3.2 AsterixDB Data Model
AsterixDB defines its own data model (ADM) [9] designed to

support semi-structured data with support for bags/lists and nested
types. Figure 2 shows how ADM can be used to define a record
type for modeling a raw tweet. RawTweet type is an open type,
meaning that its instances will conform to its specification but can
contain extra fields that vary per instance. Figure 2 also defines a
ProcessedTweet type. A processed tweet replaces the nested user
field inside a raw tweet with a primitive userId value and adds a
nested collection of strings (referred topics) to each tweet. Derived
attributes about the tweet (e.g. sentiment and language) are also
included. The primitive location field types (location-lat, location-
long) and send-time are expressed as their respective spatial (point)
and temporal (datetime) datatypes. ADM also allows specifying
optional fields with known types (e.g. location).

Data in AsterixDB is stored in datasets. Each record in a dataset
conforms to the datatype associated with the dataset. Data is hash-
partitioned (primary key) across a set of nodes that form the node-
group for a dataset, which defaults to all nodes in an AsterixDB

create type RawTweet create type TwitterUser
as open { as open {

tweetId: string , screen�name: string ,
user: TwitterUser , lang: string ,
location� lat: double? , friends_count: int32 ,
location�long: double? , statuses_count: int32 ,
send�time: string , name: string ,
message�text: string followers_count: int32

}; };

create type ProcessedTweet as open {
tweetId: string ,
userId: string ,
locat ion: point? ,
send�time: datetime ,
message�text: string ,
referred�topics: {{string }} ,
sentiment: double ,
language: string

};

Figure 2: Defining datatypes

create dataset RawTweets(RawTweet) primary key tweetId ;

create dataset ProcessedTweets(ProcessedTweet )
primary key tweetId ;

create index locationIndex on
ProcessedTweets(location ) type rtree ;

Figure 3: Creating datasets and associated indexes

cluster. Figure 3 shows the AQL statements for creating a pair of
datasets—RawTweets and ProcessedTweets. We create a secondary
index on the location attribute of a processed tweet for more effi-
cient retrieval of tweets on the basis of spatial location.

4. DATA FEED BASICS
AQL has built-in support for data feeds. In this section, we de-

scribe how an end-user may model a data feed and have its data be
persisted/indexed into an AsterixDB dataset.

4.1 Collecting Data: Feed Adaptors
The functionality of establishing a connection with a data source

and receiving, parsing and translating its data into ADM records
(for storage inside AsterixDB) is contained in a feed adaptor. A
feed adaptor is an implementation of an interface and its details are
specific to a given data source. An adaptor may optionally be given
parameters to configure its runtime behavior. Depending upon the
data transfer protocol/APIs offered by the data source, a feed adap-
tor may operate in a push or a pull mode. Push mode involves just
one initial request by the adaptor to the data source for setting up
the connection. Once a connection is authorized, the data source
“pushes” data to the adaptor without any subsequent requests by
the adaptor. In contrast, when operating in a pull mode, the adaptor
makes a separate request each time to receive data.

AsterixDB currently provides built-in adaptors for several pop-
ular data sources—Twitter, CNN, and RSS feeds. AsterixDB ad-
ditionally provides a generic socket-based adaptor that can be used
to ingest data that is directed at a prescribed socket. Figure 4 il-
lustrates the use of built-in adaptors in AsterixDB to define a pair
of feeds. The TwitterFeed contains tweets that contain the word
“Obama”. As configured, the adaptor will make a request for data

607



every minute. The CNNFeed will consist of news articles that are
related to any of the topics that are specified as part of the indicated
configuration.

create feed TwitterFeed using TwitterAdaptor
("api"="pull" , "query"="Obama", " interval" =60);

create feed CNNFeed using CNNAdaptor
("topics"="pol i t ics , sports" ) ;

Figure 4: Defining a feed using some of the built-in adaptors in
AsterixDB

The degree of parallelism in receiving data from an external
source is determined by the feed adaptor in accordance with the
data exchange protocol offered by the data source. The external
source may allow transfer of data in parallel across multiple chan-
nels. For example, CNN as a data source offers an RSS feed cor-
responding to each topic (politics, sports, etc). The CNNFeed can
thus employ a degree of parallelism as determined by the number of
topics that are passed as configuration. Multiple instances will then
run as parallel threads on a single machine or on multiple machines.
In contrast, the TwitterAdaptor uses a single degree of parallelism.

4.2 Pre-Processing Collected Data
A feed definition may optionally include the specification of a

user-defined function that is to be applied to each feed record prior
to persistence. Examples of pre-processing might include adding
attributes, filtering out records, sampling, sentiment analysis, fea-
ture extraction, etc. The pre-processing is expressed as a user-
defined function (UDF) that can be defined in AQL or in a pro-
gramming language like Java. An AQL UDF is a good fit when
pre-processing a record requires the result of a query (join or ag-
gregate) over data contained in AsterixDB datasets. More sophisti-
cated processing such as sentiment analysis of text is better handled
by providing a Java UDF. A Java UDF has an initialization phase
that allows the UDF to access any resources it may need to initial-
ize itself prior to being used in a data flow. It is assumed by the
AsterixDB compiler to be stateless and thus usable as an embarass-
ingly parallel black box. In constrast, the AsterixDB compiler can
reason about an AQL UDF and involve the use of indexes during
its invocation.

The tweets collected by the TwitterAdaptor (Figure 4) conform
to the RawTweet datatype (Figure 2). The processing required in
transforming a collected tweet to its lighter version (of type Pro-
cessedTweet) involves extracting the hash tags (if any) in a tweet
and collecting them in the referred-topics attribute for the tweet.
Attributes associated with a tweet (sentiment, language) are de-
rived from analyzing the text. In the case of the CNNFeed, the
CNNAdaptor (Figure 4) outputs records that each contain the fields
item, link and description. The link field provides the URL of
the news article on the CNN website. Parsing the HTML source
provides additional information such as tags, images and outgoing
links to other related articles. This information can then be added
to each record as additional fields prior to persistence. The pre-
processing function for a feed is specified using the apply function
clause at the time of creating the feed (Figure 5).

A feed adaptor and a UDF act as pluggable components. These
contribute towards providing a generic ‘plug-and-play‘ model where
custom implementations can be provided to cater to specific re-
quirements. This helps address challenge C1 from Section 1.1. By
providing implementation of the prescribed interfaces, the internal

create feed ProcessedTwitterFeed using TwitterAdaptor
("api"="pull" , "query"="Obama", " interval"=60)
apply function addFeatures ;

create feed ProcessedCNNFeed using CNNAdaptor
("topics"="pol i t ics , sports" )
apply function addInfoFromCNNWebsite ;

Figure 5: Defining a feed that involves pre-processing of col-
lected data

details of data feed management are abstracted from end users. A
feed adaptor or a Java UDF can be packaged and installed as part
of an AsterixDB library and subsequently be used in AQL state-
ments. A tutorial on building a custom feed adaptor or a UDF with
a description of the interfaces to be implement can be found at [1].

4.3 Building a Cascade Network of Feeds
Multiple high-level applications may wish to consume the data

ingested from a data feed. Each such application might perceive the
feed in a different way and require the arriving data to be processed
and/or persisted differently. Building a separate flow of data from
the external source for each application is wasteful of resources as
the pre-processing or transformations required by each application
might overlap and could be done together in an incremental fashion
to avoid redundancy. A single flow of data from the external source
could provide data for multiple applications. To achieve this, we
introduce the notion of primary and secondary feeds in AsterixDB
to address challenge C2 from Section 1.1.

A feed in AsterixDB is considered to be a primary feed if it gets
its data from an external data source. The records contained in a
feed (subsequent to any pre-processing) are directed to a designated
AsterixDB dataset. Alternatively or additionally, these records can
be used to derive other feeds known as secondary feeds. A sec-
ondary feed is similar to its parent feed in every other aspect; it can
have an associated UDF to allow for any subsequent processing,
can be persisted into a dataset, and/or can be made to derive other
secondary feeds to form a cascade network. A primary feed and a
dependent secondary feed form a hierarchy. As an example, Fig-
ure 6 shows the AQL statements that redefine the previous feeds—
ProcessedTwitterFeed and ProcessedCNNFeed—in terms of their
respective parent feeds from Figure 4.

create secondary feed ProcessedTwitterFeed from
feed TwitterFeed apply function addFeatures ;

create secondary feed ProcessedCNNFeed from
feed CNNFeed apply function addInfoFromCNNWebsite ;

Figure 6: Defining a secondary feed

4.4 Lifecycle of a Feed
A feed is a logical artifact that is brought to life (i.e. its data flow

is initiated) only when it is connected to a dataset using the con-
nect feed AQL statement (Figure 7). Subsequent to a connect feed
statement, the feed is said to be in the connected state. Multiple
feeds can simultaneously be connected to a dataset such that the
contents of the dataset represent the union of the connected feeds.
In a supported but unlikely scenario, one feed may also be simulta-
neously connected to different target datasets. Note that connecting
a secondary feed does not require the parent feed (or any ancestor

608



feed) to be in the connected state; the order in which feeds are con-
nected to their respective datasets is not important. Furthermore,
additional (secondary) feeds can be added to an existing hierarchy
and connected to a dataset at any time without impeding/interrupt-
ing the flow of data along a connected ancestor feed.

connect feed ProcessedTwitterFeed to
dataset ProcessedTweets ;

disconnect feed ProcessedTwitterFeed from
dataset ProcessedTweets ;

Figure 7: Managing the lifecycle of a feed

The connect feed statement in Figure 7 directs AsterixDB to per-
sist the ProcessedTwitterFeed feed in the ProcessedTweets dataset.
If it is required (by the high-level application) to also retain the raw
tweets obtained from Twitter, the end user may additionally choose
to connect TwitterFeed to a (different) dataset. Having a set of pri-
mary and secondary feeds offers the flexibility to do so. Let us
assume that the application needs to persist TwitterFeed and that,
to do so, the end user makes another use of the connect feed state-
ment. A logical view of the continuous flow of data established by
connecting the feeds to their respective target datasets is shown in
Figure 8. The flow of data from a feed into a dataset can be termi-
nated explicitly by use of the disconnect feed statement (Figure 7).
Disconnecting a feed from a particular dataset does not interrupt
the flow of data from the feed to any other dataset(s), nor does it
impact other connected feeds in the lineage.

Figure 8: Logical view of the flow of data from external data
source into AsterixDB datasets

4.5 Policies for Feed Ingestion
Multiple feeds may be concurrently operational on an AsterixDB

cluster, each competing for resources (CPU cycles, network band-
width, disk IO) to maintain pace with their respective data sources.
A data management system must be able to manage a set of concur-
rent feeds and make dynamic decisions related to the allocation of
resources, resolving resource bottlenecks and the handling of fail-
ures. Each feed has its own set of constraints, influenced largely
by the nature of its data source and the application(s) that intend
to consume and process the ingested data. Consider an application
that intends to discover the trending topics on Twitter by analyz-
ing the ProcessedTwitterFeed feed. Losing a few tweets may be
acceptable. In contrast, when ingesting from a data source that
provides a click-stream of ad clicks, losing data would translate to
a loss of revenue for an application that tracks revenue by charging
advertisers per click.

AsterixDB allows a data feed to have an associated ingestion

policy that is expressed as a collection of parameters and associ-
ated values. An ingestion policy dictates the runtime behavior of
the feed in response to resource bottlenecks and failures. Note that
during push-based feed ingestion, data continues to arrive from the
data source at its regular rate. In a resource-constrained environ-
ment, a feed ingestion framework may not be able to process and
persist the arriving data at the rate of its arrival. AsterixDB pro-
vides a list of policy parameters (Table 1) that help customize the
system’s runtime behavior when handling excess records. Aster-
ixDB provides a set of built-in policies, each constructed by setting
appropriate value(s) for the policy parameter(s) from Table 1.

The handling of excess records by the built-in ingestion poli-
cies of AsterixDB is summarized in Table 2. Buffering of excess
records in memory under the ‘Basic’ policy has clear limitations
given that memory is bounded and may result in a termination
of the feed if the available memory or the allocated budget is ex-
hausted. The ‘Spill’ policy resorts to spilling the excess records to
the local disk for deferred processing until resources become avail-
able again. Spilling is done intermittently during ingestion when
required, and the spillage is processed as soon as resources (mem-
ory) are available. In contrast, the ‘Discard’ policy causes the ex-
cess records to be discarded altogether until the existing backlog is
cleared. However, this results in periods of discontinuity when no
records received from the data source are persisted. This behavior
may not be acceptable to an application wishing to consume the in-
gested data. A best-effort alternative is provided by the ‘Throttling’
policy, wherein records are randomly filtered out (sampled) to ef-
fectively reduce their rate of arrival. In addition, AsterixDB also
provides the ‘Elastic’ policy, which attempts to scale-out/in by in-
creasing/decreasing the degree of parallelism involved in process-
ing of records. We will discuss the built-in policies to Section 5.3,
where we cover the physical aspects and their implementation de-
tails.

Note that the end user may choose to form a custom policy. E.g.
it is possible in AsterixDB to create a custom policy that spills ex-
cess records to disk and subsequently resorts to throttling if the
spillage crosses a configured threshold. In all cases, the desired
ingestion policy is specified as part of the connect feed statement
(Figure 9) or else the ‘Basic’ policy will be chosen as the default.
It is worth noting that a feed can be connected to a dataset at any
time, which is independent from other related feeds in the hierar-
chy. As such the connect feed statements shown in Figure 9 are not
required to be executed together.

The ability to form a custom policy allows the runtime behavior
to customized as per the specific needs of the high-level applica-
tion(s) and helps address challenge C1 from Section 1.1.

connect feed TwitterFeed to dataset RawTweets
using policy Basic ;

connect feed ProcessedTwitterFeed to
dataset ProcessedTweets using policy Basic ;

Figure 9: Specifying the ingestion policy for a feed

5. RUNTIME FOR FEED INGESTION
So far we have described, at a logical level, the user model and

built-in support in AQL that enables the end user to define a feed,

609



Table 1: A Few Important Policy Parameters
Policy Parameter Description Default
excess.records.spill Set to true if records that

cannot be processed by
an operator for lack of
resources (referred to as
excess records hereafter)
should be persisted to the
local disk for deferred pro-
cessing.

false

excess.records.discard Set to true if excess records
should be discarded.

false

excess.records.throttle Set to true if rate of arrival
of records is required to be
reduced in an adaptive man-
ner to prevent having any
excess records.

false

excess.records.elastic Set to true if the system
should attempt to re-
solve resource bottlenecks
by re-structuring and/or
rescheduling the feed
ingestion pipeline.

false

recover.soft.failure Set to true if the feed must
attempt to survive any run-
time exception. A false
value permits an early ter-
mination of a feed in such
an event.

true

recover.hard.failure Set to true if the feed must
attempt to survive a hard-
ware failures (loss of As-
terixDB node(s)). A false
value permits the early ter-
mination of a feed in the
event of a hardware failure.

true

manage its lifecycle, and dictate its runtime behavior by selecting
a policy. Next, we discuss the physical aspects and implementation
details involved in building and managing the flow of data when a
feed is connected to a dataset.

5.1 Runtime Components
In processing a connect feed statement, the AQL compiler re-

trieves the definitions of the involved components—feed, adap-
tor, function, policy, and the target dataset from the AsterixDB
Metadata. The compiler translates a connect feed statement into a
Hyracks job that is subsequently scheduled to run on an AsterixDB
cluster. The resulting dataflow is referred to as a feed ingestion
pipeline. A Hyracks data operator forms a major building block
of an ingestion pipeline and is useful in executing custom logic
on partitions of input data to produce partitions of output data. It
may employ parallelism in consuming input by having multiple in-
stances that run in parallel across a set of nodes in an AsterixDB
cluster. Data connectors repartition operators’ outputs to make the
newly produced partitions available at the consuming operator in-
stances. In addition, an ingestion pipeline provides feed joints at
specific locations. A feed joint is like a network tap and provides
access to the data flowing along an ingestion pipeline. It helps in
building a cascade network of feeds by allowing data from an in-
gestion pipeline to be simultaneously routed along multiple paths.

A feed ingestion pipeline involves 3 stages—intake, compute and
store. The intake stage involves creating an instance of the associ-
ated feed adaptor, using it to initiate the transfer of data and trans-
forming it into ADM records. If the feed has an associated pre-
processing function, it is applied to each feed record as part of the

Table 2: Policies for handling of excess records
Policy Approach to handling of excess records
Basic Buffer excess records in memory
Spill Spill excess records to disk for deferred pro-

cessing
Discard Discard excess records altogether
Throttle Randomly filter out records to regulate the rate

of arrival
Elastic Scale out/in to adapt to the rate of arrival

compute stage. Subsequently, as part of the store stage, the output
records from the preceding intake or a compute stage are put into
the target dataset and its secondary indexes1 (if any) are updated ac-
cordingly. Each stage is handled by a specific data-operator, here-
after referred to as an intake, compute, and store operator respec-
tively. Next, we describe how operators, connectors and joints are
assembled together to construct a feed ingestion pipeline.

Figure 10 contains some example AQL statements that define
and connect a pair of feeds to respective target datasets. The sec-
ond statement in Figure 10 connects the primary feed, CNNFeed.
As determined by the number of topics specified in its configura-
tion, the feed involves the use of a pair of instances of the CN-
NFeedAdaptor. Each adaptor instance is managed by an instance
of the intake data operator. As CNNFeed does not involve any pre-
processing, the output records from each adaptor instance thus con-
stitute the feed. These are then partitioned across a set of store op-
erator instances using the hash-partitioning data-connector. In the
constructed pipeline, a feed joint is located at the output of each
intake operator instance. In general, a feed joint is placed at the
output side of an operator instance that produces records that form
a feed. In the case where a feed involves pre-processing, a feed
joint is placed at the output of its compute operator instances.

The last statement in Figure 10 connects the secondary feed,
ProcessedCNNFeed. By definition, this feed can be obtained by
subjecting each record from the CNNFeed to the associated UDF
(addInfoFromCNNWebsite). In general, if feed

m+1 denotes the
immediate child of feed

m

, a child feed feed

i

can be obtained
from an ancestor feed feed

k

(k < i) by subjecting each record
from feed

k

to the sequence of UDFs associated with each child
feed feed

j

(j = k + 1, ..., i). i � k denotes the ‘distance’ from
feed

k

to feed

i

and is indicative of the additional processing steps
(UDFs) required to produce feed

i

from feed

k

. To minimize the
processing involved in forming a feed, it is desired to source the
feed from its nearest ancestor feed that is in the connected state.
The feed joint(s) available along the ingestion pipeline of an an-
cestor feed are then used to access the flowing data and subject it
to the additional processing to form the desired feed. AsterixDB
keeps track of the available feed joints and uses them in preference
over creating a new feed adaptor instance in sourcing a feed.

The cascade network for ingestion of CNNFeed and ProcessedC-
NNFeed is shown in Figure 11. Note that disconnecting a feed from
a dataset does not necessarily remove the set of feed joints located
along the ingestion pipeline. Referring to Figure 11, disconnecting
CNNFeed at this stage removes the tail of the pipeline that includes
the compute and store operator instances but will retain the intake
operator instances. This is because the feed joints (labeled as ‘A’)
at the output of the intake operator instances each have an existing
1Secondary indexes in AsterixDB are partitioned and co-located
with the corresponding primary index partition. Inserting a record
into the primary and any secondary indexes uses write-ahead log-
ging and offers ACID semantics.

610



path (ingestion pipeline for ProcessedCNNFeed) that requires the
output records to keep flowing in an uninterrupted manner.

create feed CNNFeed using CNNAdaptor
("topics"="pol i t ics , sports" ) ;

connect feed CNNFeed to dataset RawArticles ;

create secondary feed ProcessedCNNFeed from
feed CNNFeed apply function addInfoFromCNNWebsite ;

connect feed ProcessedCNNFeed to
dataset ProcessedArticles ;

Figure 10: Example AQL statements

Figure 11: An example of a feed cascade network. The cascade
network provides two sets of feed joints - labeled as ‘A’ & ‘B’
- that provide access to CNNFeed and CNNProcessedFeed re-
spectively. If at this stage, the end-user creates (and connects)
a secondary feed that derives from ProcessedCNNFeed, then its
intake stage would involve receiving records from each of the 4
feed joints (kind B) provided by the ingestion pipeline for Pro-

cessedCNNFeed.

5.2 Scheduling a Feed Ingestion Pipeline
Scheduling a feed ingestion pipeline on a cluster requires de-

termining the desired degree of parallelism of each operator and
mapping each instance of an operator to an AsterixDB node. An
AsterixDB cluster consists of a manager node and a set of worker
nodes. Scheduling decisions for a feed ingestion pipeline are taken
by the Central Feed Manager (CFM) that is hosted by the man-
ager node. Each worker node hosts a Feed Manager (FM). The
CFM keeps track of the load distribution across the cluster from
the periodic reports sent by each FM. These reports contain vital
statistics including CPU usage. Each feed pipeline operator may
define a cardinality constraint (degree of parallelism) and/or a lo-
cation constraint at the Hyracks job level. The location and cardi-
nality constraints for the intake operator are determined by the feed
adaptor. If no constraints are specified, the Central Feed Manager
will choose to run a single instance of the operator on a node of its
choice. The constraints for the store operator are pre-determined
and derived from the nodegroup associated with the target dataset.
Recall that the nodegroup of a dataset refers to the set of nodes that
hold the partitions of the dataset.

The compute operator in a feed pipeline doesn’t offer any con-
straints. Instead, the level of parallelism for a compute operator
is determined as described below. The partitioned parallelism em-
ployed at the compute and store stages helps the system ingest in-
creasingly large volumes of data. Additional resources (physical

machines) can be added at the compute and/or store stage to scale
out the system. This helps address challenge C5 from Section 1.1.
The appropriate degree of parallelism is therefore dependent on the
rate of arrival of data and on the complexity associated with the
UDF. To begin with, the cardinality at the compute stage is matched
with that of the store stage to offer the same degree of parallelism.
However, as we describe in the following section, a feed ingestion
pipeline, as dictated by the ingestion policy, may be re-structured
in accordance with the demand for resources.

5.3 Managing Congestion
An expensive UDF and/or an increased rate of arrival of data

may lead to an excessive demand for resources leading to delays
in the processing of records. Left unchecked, the created back-
pressure at an operator can cascade upstream to completely ‘lock’
the flow of data along the pipeline. A ‘locked’ state creates exces-
sive demand for resources to buffer the data that is arriving at its
regular rate from the data source(s). At a feed joint located on a
‘locked’ pipeline, insufficient resources can also impede the flow
of data along other pipelines originating from the joint. To avoid
such an undesirable situation, AsterixDB takes a different approach
by resolving back-pressure at its originating operator and prevent-
ing it from escalating upstream. This isolates other operators in
the pipeline/cascade network from the created congestion. In this
sub-section, we describe the methodology adopted for detecting re-
source bottlenecks and taking corrective action (challenge C3 from
Section 1.1).

The records arriving at an operator are buffered in memory; this
functionality is provided by a MetaFeed operator that wraps around
the actual operator (referred to as the core operator hereafter). Hav-
ing a MetaFeed operator as a wrapper ensures that the core opera-
tors remain simple, generic and reusable elsewhere as part of other
(non-feed) jobs. In addition to buffering, the MetaFeed operator
periodically measures the size of the input buffer, the rate of arrival
of records R

A

(records/sec), and the rate of processing of records
R

P

(records/sec) by the core operator. Note that R
P

varies with the
availability of resources at the operator location and the size of the
records that need to be processed. If R

A

exceeds R
P

, the buffer is
expanded to accommodate for the deficit. The total available mem-
ory (JVM heap size) is bounded and is shared by operators serving
multiple concurrent feeds or queries. To ensure sufficient resources
for concurrent queries, a fixed (configurable) limit is imposed on
the total memory allocated for feed input buffers at each worker
node.

Table 1 from Section 4.5 described buffering, spilling, discard-
ing or throttling as mechanisms for dealing with congestion. These
mechanisms constitute ‘local’ resolution and remain hidden from
the upstream operators that continue to send data seamlessly. The
mechanisms’ downside is delayed processing of records (buffer-
ing/spilling) or losing some of them altogether (discarding/throt-
tling).

Congestion that occurs due to a compute operator (i.e., due to
use of an expensive UDF) can be cleared in yet another way –
via ‘global’ resolution. Global resolution exploits the stateless and
therefore embarrassingly parallel nature of the UDF. The MetaFeed
operator reports a congested state of a compute operator to the lo-
cal Feed Manager (FM) together with the last measured values for
R

A

and R

P

. Congested states occurring across the cluster are re-
ported to the Central Feed Manager (CFM) by each FM. Using
mechanisms similar to those detailed later for handling failures dur-
ing ingestion, the CFM re-structures the pipeline to have increased
parallelism at the compute tier. In doing so, the additional com-
pute operator instances may run on idle nodes from the cluster or

611



be scheduled on the current set of nodes to utilize additional cores.
Contrary to dynamically scaling out an operator, AsterixDB also
provides for auto-scaling-in if the current degree of parallelism is
greater than that required to handle the flow of data. The required
increase/decrease is derived from the reported values of R

A

and
R

P

from the compute operator instances running across the clus-
ter.

5.4 At Least Once Semantics
An application may demand stronger guarantees on the process-

ing of records by requiring each arriving record to be processed
at least once through the ingestion pipeline, despite any failures.
Such a requirement is expressed through the at.least.once.enabled
policy parameter. To provide at least once semantics, each record
arriving from the data source is augmented with a tracking id at
the intake stage. Once the record has been persisted (log record
on disk), an ack message with the tracking id is constructed. Over
a fixed-width time-window, the ack messages for all records that
were sourced from a given feed adaptor instance (identified from
the tracking id) are grouped and encoded together as a single mes-
sage. A record that has been output by the intake stage is held at
its intake node until an ack message for the record is received from
the store stage. When an ack is received, the record is dropped and
memory is reclaimed. On a timeout, the records without an ack are
replayed. At least once semantics are not guaranteed if throttling or
discarding of records is enabled by the policy.

6. FAULT TOLERANT FEED INGESTION
Feed ingestion is a long running task running on a commodity

cluster, so it is eventually bound to encounter hardware failure(s).
Also, portions of a feed ingestion pipeline include pluggable user-
provided modules (feed adaptor and a pre-processing function) that
may cause soft failures (runtime exceptions). Sources of such an
exception may include unexpected data format/values or simply in-
herent bugs in the user-provided source code. Next, we describe
how a feed may recover from software and hardware failures and
thereby address the challenge C4 from Section 1.1.

6.1 Handling Software Failures
A runtime exception encountered by an operator in processing

an input record in a normal AsterixDB insert setting carries non-
resumable semantics and causes the insert operation’s dataflow to
cease. It is essential to guard feed pipelines from such exceptions
by executing each of their operators in a sandbox-like environment.
The MetaFeed operator (introduced in Section 5.3) acts as a shell
around each operator to provide such an environment. Recall that
the operator that is wrapped is referred to as the core operator.
The runtime of a core operator receives input data as a sequence
of frames containing one ore more records. An exception thrown
by the core operator in processing an input record is caught by the
wrapping MetaFeed operator. The MetaFeed operator slices the
original input frame to form a subset frame that includes the un-
processed records minus the exception generating record. The sub-
set frame is then passed to the core-operator which continues to
process input frames and has, in effect, skipped past the exception-
generating record.

6.2 Handling Hardware Failures
We next describe the mechanism that handles the loss of one or

more of the AsterixDB nodes involved in a feed ingestion pipeline.
Corresponding to the operation being performed, a node is referred
to as an Intake, Compute or a Store node. An AsterixDB clus-

ter node may simultaneously act as an intake, compute or a store
node for one or more feeds. To illustrate a failure scenario, we use
an example ingestion pipeline (Figure 12(a)) that executes on a 10
member AsterixDB cluster (nodes A-I). In this particular data flow,
node I is not used initially. To be considered alive, each node is re-
quired to send periodic heartbeats to the master node (not shown in
the figure). We assume a concurrent failure of an intake node (node
A) and a compute node (node D). A node failure is detected by the
master node through the heartbeat mechanism. Each operator in-
stance in the ingestion pipeline is notified of the pipeline failure.
On being notified, the operator instance saves the contents of its in-
put buffer with the local Feed Manager. The operator instance also
has an option to save state information that may help in resuming
operation once the pipeline is rescheduled. The operator instance
then notifies the Central Feed Manager (CFM) and terminates it-
self. An intake operator instance behaves differently; it begins to
buffer/spill the arriving records and not forward them downstream.

A revised feed ingestion pipeline is constructed with identical
operators and feed joints. An operator instance is co-located with
its respective instance from the previous failed execution if the node
is still available. An intake operator instance is co-located with the
corresponding live instance from the previous execution. Each op-
erator then enters a ‘hand-off’ stage where it retrieves the input
buffer and any state saved with the local Feed Manager by the cor-
responding instance from the failed pipeline. The functionality of
registering with the Feed Manager and saving/retrieving any state
across failures is provided by the MetaFeed operator that wraps
around each core operator. An operator instance that has a dead
instance from the previous execution can be scheduled to run at an
AsterixDB node chosen by the CFM.

(a) An example dataflow for describing the fault tolerance proto-
col: Node A and Node D fail

(b) Restructured pipeline post recovery: Node I takes over Node
A operations; Node F takes over Node D operations

Figure 12: Recovering from compute node failure.

When substituting a failed node, the CFM considers the load dis-
tribution across the cluster. Recall that the FMs periodically report
vital statistics (including CPU usage) about a worker node to the

612



CFM. Figure 12(b) shows the revised pipeline with node I (which
was idle) substituted for node A while Node F substituted for node
D and thereafter acted as a compute and a store node. A more
detailed description of the handling of different failure scenarios
during feed ingestion can be found in [14]. Essentially the same
machinery is used to handle the scaling-in or out of a feed pipeline
when an elastic policy is chosen for handling data congestion (or
decongestion) and that CFM determines that a scaling action is re-
quired.

A store node failure translates to the loss of a partition of the
dataset that is receiving the feed. AsterixDB does not (yet!) support
data replication. In the absence of replica(s), a store node failure
will result in an early termination of an associated feed. When the
failed store node later re-joins the cluster, it will undergo a log-
based recovery to ensure that all of its hosted dataset partitions are
in a consistent state. Subsequently, the feed ingestion pipeline will
be rescheduled to involve the joined node.

7. EXPERIMENTAL EVALUATION
In this section, we provide an initial experimental evaluation of

the scalability and fault-tolerance offered by the AsterixDB feed
ingestion facility. We include a study of the impact of the inges-
tion policy (parameters) on the runtime behavior (throughput and
latency) under different workload conditions. We also include a
comparison with a custom built ‘glued’ system using Storm (as a
processing engine) and MongoDB (as a persistence engine) and
discuss the tradeoffs.

Experimental Setup: We ran experiments on a 10-node IBM
x3650 cluster. Each node had one Intel 2.26GHz processor with
four cores, 8GB of RAM, and a 300GB hard disk. We wrote a cus-
tom stand-alone tweet generator (TweetGen) that can output syn-
thetic (JSON) tweets at a rate (tweets per second - twps) that fol-
lows a configurable pattern. The RawTweet datatype created in Fig-
ure 2 showed the equivalent ADM representation for a tweet output
by TweetGen. Next, we wrote a custom socket-based adaptor—
TweetGenAdaptor. The adaptor is configured with the location(s)
(socket address) where instance(s) of TweetGen is/are running. Each
instance of TweetGen receives a request for data from a correspond-
ing instance of TweetGenAdaptor, thus enabling ingestion of data
in parallel. We used the AQL statements shown in Figure 3 (from
Section 3.2) to create the target datasets (and indexes) for persisting
the feed. The definition for the set of two feeds used in our exper-
iment is shown in Figure 13. In this example, a pair of instances
of TweetGen are running and listening on a specific for request to
initiate (push-based) transfer of data.
create feed TweetGenFeed using TweetGenAdaptor
("datasource"="10 .1 .0 .1 :9000 , 10.1.0.2 :9000" ) ) ;

create secondary feed ProcessedTweetGenFeed from
feed TweetGenFeed apply function addFeatures ;

Figure 13: Feed definitions for experimental evaluation

7.1 Scalability
We evaluated the ability of the AsterixDB feed ingestion support

to scale and ingest an increasingly large volume of data when addi-
tional resources are added. If the data arrival rate exceeds the rate
at which it can be ingested in AsterixDB, the excess records are
either buffered in memory, spilled to disk or discarded altogether.
The precise behavior is chosen by the associated ingestion policy.
By design, we chose to discard data here and not defer its process-
ing (via spilling/buffering). This helped in evaluating the ability to
successfully ingest data as a function of available resources.

In this experiment, we chose the amount of data loss as our per-
formance metric. A total of 6 instances of TweetGen were run on
machines outside the test cluster and were configured to generate
tweets at a constant rate (20k twps) for a duration of 20 minutes.
We measured the total number of ingested (persisted and indexed)
tweets and repeated the experiment by varying the size of our test
cluster. We increased the hardware till there is no data loss (the
ideal behavior). The experimental results are shown in Figure 14.
A significant proportion of records were discarded for lack of re-
sources on a small size cluster of 1–4 nodes. On a bigger cluster, the
proportion of discarded tweets declines, indicating that the system
that can indeed ingest an increasingly high volume of data when
additional resources (nodes) are added.

Figure 14: Scalability: Number of records (tweets) successfully
ingested (persisted and indexed) as the cluster size is increased.

7.2 Fault Tolerance
We next evaluated the ability of the system to recover from sin-

gle/multiple hardware failures while continuing to ingest data. This
experiment involved a pair of TweetGen instances (twps=5000),
each running on a separate machine outside the AsterixDB cluster.
We connected the feeds—TweetGenFeed and ProcessedTweetGen-
Feed–to their respective target dataset and used the built-in policy
Fault-Tolerant (Figure 15). The nodegroup associated with each
dataset included a pair of nodes each. To make things interest-
ing and show that the order of connecting related feeds is not im-
portant, we connected ProcessedTweetGenFeed prior to connect-
ing its parent feed TweetGenFeed. In the absence of an available
feed joint, the ingestion pipeline for ProcessedTweetGenFeed is
constructed using the feed adaptor (Figure 16). The physical lay-
out of the dataflow as scheduled on our AsterixDB cluster during
this experiment is shown in Figure 16. The ingestion pipeline for
TweetGenFeed is sourced from the feed joints (kind A) provided by
ProcessedTweetGenFeed.

connect feed ProcessedTweetGenFeed to
dataset ProcessedTweets using policy FaultTolerant ;

connect feed TweetGenFeed to
dataset RawTweets using policy FaultTolerant ;

Figure 15: Connected feeds to respective dataset

We measured the number of records inserted into each target
dataset during consecutive 2 second intervals to obtain the instan-
taneous ingestion throughput for the associated feed. We caused a
compute node failure (node C in Figure 16) at t=70 seconds. This
was followed by a concurrent failure of both an intake node (node

613



Figure 16: Feed cascade network for fault tolerance experi-
ment: Node C fails at t=70 seconds; Node A and Node D fail
at t=140 seconds

(a) TweetGenFeed (b) ProcessedTweetGenFeed

Figure 17: Instantaneous ingestion throughput with interim
hardware failures: in Figure 16 Node C fails at t=70 seconds;
Node A and Node D fail at t=140 seconds

A) and a compute node (node D) at t=140 seconds. The instanta-
neous ingestion throughput for each feed as plotted on a timeline is
shown in Figure 17. Following are the noteworthy observations.
(i) Recovery Time: The failures are reflected as a drop in the in-
stantaneous ingestion throughput at the respective times. Each fail-
ure was followed by a recovery phase that reconstructed the inges-
tion pipeline and resumed the flow of data into the target dataset
(within 2-4 seconds).
(i) Fault Isolation: Data continues to arrive from the external source
at the regular rate, irrespective of any failures in an AsterixDB clus-
ter. During the recovery phase for ProcessedTweetGenFeed, the
feed joint(s) buffer the records until the pipeline is resurrected but
allow the records to flow (at their regular rate) into any other in-
gestion pipeline that does not involve a failed node. This helps in
“localizing" the impact of a pipeline failure and is a desirable fea-
ture of the system. As shown in Figure 17(a), TweetGenFeed is not
impacted by the failure of node C at t = 70 seconds.

7.3 Throughput and Latency: Impact of
Ingestion Policy

We evaluated the impact of the ingestion policy on the runtime
behavior and performance characteristics of interest — throughput
and ingestion latency — under different conditions of rate of ar-
rival of data. We configured two instances of TweetGen to generate
tweets at a rate that followed the pattern shown in Figure 18(a).
The pattern involves equi-width workload-phases with mid, high
and low activity in terms of the rate of arrival of tweets. These
workload-phases are referred to as WMID, WHIGH and WLOW re-
spectively and the corresponding rate (tweets/second or twps) is
denoted by RMID, RHIGH and RLOW. The pre-processing of tweets
involved a UDF that simply executed a busy spin loop to consume
CPU cycles and cause a compute delay of about 3ms per tweet.

We used our 10 node AsterixDB cluster. Table 3 lists the sym-
bols and metrics we use when describing this experiment and its
results. The intake stage involved a pair of feed adaptor instances
each receiving records from a separate TweetGen instance located
outside the AsterixDB cluster. Each TweetGen instance pushed
data for a continuous duration of 1200 seconds (T

start

� T

stop

).
We measured the instantaneous throughput as the number of tweets
persisted in each 2 second interval over the duration of the experi-
ment. We also measured the ingestion latency (Table 3(b)) for each
tweet received by the feed adaptor during each workload-phase
(WMID, WHIGH and WLOW). The target dataset had a partition on
a disk at each node. The store stage thus involved a store operator
instance on each node. The compute stage (as constructed by the
AsterixDB compiler) offered a similar degree of parallelism and
involved a compute operator instance on each node. Application
of the UDF (with its ⇠3ms execution time ) by a compute operator
instance gave each one a maximum processing capacity of ⇠300
tweets/sec. The aggregate capacity from 10 parallel instances was
thus limited to 3000 twps (referred to as ComputeLIMIT). In the
workload (Figure 18(a)), we have RHIGH > ComputeLIMIT during
WHIGH. This leads to congestion, a situation where records cannot
be processed at their rate of their arrival. We repeated the exper-
iment using each of the built-in ingestion policies (Table 2, Sec-
tion 4.5).

Figure 18 shows the instantaneous throughput plotted on a time-
line for each policy. Each figure also cites the average ingestion
latency (LAvg) during each workload-phase. It is desirable to maxi-
mize the ingestion coverage (Table 3(b)), minimize the average in-
gestion latency for each workload-phase and have TDONE ⇠ TSTOP.
The Basic and Spill policies were able to ingest all records (inges-
tion coverage = 1.0). However, TDONE exceeded TSTOP due to the
excess records created during WHIGH. The Discard and Throttle
policies had TDONE ⇠ TSTOP, provided low ingestion latency but at
the cost of reduced ingestion coverage (⇠0.66). During WHIGH,
Throttle policy reduced the effective tweet arrival rate at each com-
pute node from ⇠600 tweets/second to ⇠300 tweets/second (50%
sampling rate)2. The Elastic policy acted differently by restructur-
ing the pipeline to involve 20 compute operator instances during
WHIGH as the tweet arrival rate doubled. Each node then had two
compute operator instances that provided a better utilization of the
cores (4) on each node, effectively increasing the ComputeLIMIT
of the cluster. This helped provide a complete ingestion cover-
age (1.0), a minimum average ingestion latency for each workload-
phase and had TDONE ⇠ TSTOP. Recall that the MetaFeed opera-
tor dynamically evaluates the record arrival and processing rate at
each core operator. Throttle and Elastic policies make use this peri-
odic evaluation to derive the ComputeLIMIT and adapt the sampling
rate/degree of parallelism respectively.

7.4 Comparison with Storm + MongoDB
An alternative way of supporting data ingestion today is to ‘glue’

together a streaming engine (e.g., Storm) with a persistent store
(e.g., MongoDB) that supports queries over indexed semi-structured
data. We used our 10 node cluster to host Storm and MongoDB. A
Storm dataflow offers spouts (that act as sources of data) and bolts
(that act as operators) that can be connected to form a dataflow. A
spout implements a method, nextTuple() that is invoked by Storm
in a ‘pull-based’ manner for obtaining the next record from a data
2Records arrive in fixed-size frames that contain varying number
of records. Each frame is sampled to randomly select a subset of
records for processing.

614



(a) Rate of Arrival of Data (b) Basic Policy (c) Spill Policy

(d) Discard Policy (e) Throttle Policy (f) Elastic Policy

Figure 18: Impact of Ingestion Policy on Runtime Behavior

Table 3: Symbols and Metrics
(a) Symbol Definitions

Symbol Definition
T

start

, T

stop

Time when data source starts/stops pushing data
T

intake

(i) Time when Tweet(i) is received by the feed adaptor
T

indexed(i) Time when Tweet(i) is indexed in storage
N

total

Total number of tweets received by feed adaptor
N

indexed

Total number of tweets indexed
T

done

Time when ingestion activity completes.

(b) Metric Definitions
Metric Definition
Instantaneous Throughput
(t)

(N
indexed

(t)�N

indexed

(t�w))/w,
w = 2 seconds

Ingestion Latency (i) T

indexed

(i)� T

intake

(i)
Ingestion Coverage N

indexed

/N

total

source. This method is not compatible with the common scenario
of a ‘push-based’ ingestion where data continues to arrive from the
data source at its natural rate. To support push-based ingestion, it
is necessary to buffer the arriving records from the data source and
then forward them to Storm on each invocation of the nextTuple()
method. Another strategy commonly used by the community is to
use yet another system — Redis, Thrift, or Kafka — as services
(more ‘gluing’!) so that records can be pushed to them and then a
spout can pull them.

In contrast to our declarative support for defining/managing feeds,
where the AsterixDB compiler constructs the dataflow, a Storm +
MongoDB user must programmatically connect together spouts and
bolts and statically specify the degree of parallelism for each. Storm
does not offer elasticity, nor does it allow associating ingestion poli-
cies to customize the handling of congestion and failures. Interfac-

ing with MongoDB requires the bolts to be parameterized with the
locations of MongoDB Query Routers, which are processes run-
ning on specific nodes in a MongoDB cluster that accept insert
statements/queries. The end user is thus required to understand
the layout of the cluster and include specific information in the
source code. Our ‘glued’ solution emulates the stages from an As-
terixDB ingestion pipeline. The constructed dataflow involves a
pair of spouts, each receiving records from a separate TweetGen
instance. Each spout’s output is randomly partitioned across a set
of 10 bolts, one on each node. Each node also hosted a MongoDB
Query Router to allow the co-located bolt to submit an insert state-
ment to the local Query Router. Each node also hosted a MongoDB
partition server. The MongoDB collection (dataset) was sharded
(hashed by primary key) across the partition servers.

MongoDB provides a varying level of durability for writes. The
lowest level (non-durable) allow submitting records for insertion
asynchronously with no guarantees or notification of success. The
Storm+MongoDB coupling then acts as a pure streaming engine
with minimal overhead from (de)serialization of records. However,
it becomes hard to reason about the consistency and durability of-
fered by the system. The durable-write mode in MongoDB is a
fair comparison with AsterixDB, as it provides ACID semantics for
data ingestion. However, to provide a complete picture, we ran the
workload of Figure 18(a) using both kinds of writes for MongoDB.
The durable-write mode (Figure 19(a)) in the Storm+MongoDB
coupling provides complete ingestion coverage. However, when
compared to Basic, Spill and Elastic policies from AsterixDB (with
similar ingestion coverage), the time taken for the ingestion activ-
ity to complete (TDONE - TSTART) increased by a factor of ten —
meaning that Storm+MongoDB coupling was unable to keep up
with the workload. The average ingestion latency observed in each
workload-phase for Storm+MongoDB compared with the Elastic
policy was worse by two orders of magnitude. To isolate the cause,

615



(a) Durable Write

(b) Non-Durable Write

Figure 19: Instantaneous Throughput for Storm+MongoDB.

we switched to using non-durable writes (Figure 19(b)) wherein the
system behaves like a pure streaming engine with a de-coupled un-
reliable persistent store (asynchronous writes). We then obtained
TDONE ⇠ TSTOP. This ruled out inefficient streaming of records
within Storm as a possible reason for the low throughput.

To better understand the results, we must consider the process-
ing strategy used by MongoDB. MongoDB optimized for max-
imum single-record throughput and write-concurrency but at the
cost of an increased wait time (⇠50ms) per write when full durabil-
ity is requested. This created congestion at the output of the com-
pute stage of our Storm+MongoDB combination and contributed
to the high latency and low ingestion throughput. The situation is
expected to worsen when ‘at least once semantics’ are required.
Storm achieves such semantics by replaying a record if it does not
traverse the dataflow within a specified time threshold. Owing to an
increased wait time per write, additional failures would be assumed
and records would begin to be replayed; this cycle can repeat end-
lessly, leading to system instability.

8. CONCLUSION
We have described the support for data feed management in As-

terixDB (an open-source BDMS) and how it addresses the chal-
lenges involved in building a fault-tolerant data ingestion facil-
ity that scales through partitioned parallelism. We described how
a feed may be defined and managed using a high-level language
(AQL). A generic plug-and-play model helps AsterixDB cater to
a wide variety of data sources and applications. We described the
system’s internal architecture and also provided a preliminary eval-
uation of the system, emphasizing its ability to scale to ingest in-
creasingly large volumes of data and to handle failures during in-
gestion. A custom-built solution formed by ‘gluing’ together Storm
and MongoDB was evaluated but did not compare well with the

ingestion support provided by AsterixDB, neither in terms of user-
experience nor its performance characteristics.

9. ACKNOWLEDGEMENTS
AsterixDB work has been supported by a UC Discovery grant

and NSF IIS awards 0910989, 0910859, 0910820, and 0844574
and CNS awards 1305430, 1059436, and 1305253. Industrial sup-
porters have included Amazon, eBay, Facebook, Google, HTC, Mi-
crosoft, Oracle Labs, and Yahoo!.

10. REFERENCES
[1] Asterixdb http://asterix.ics.uci.edu.
[2] “AsterixDB source," https://code.google.com/p/asterixdb.
[3] “Data on Big Data,"

http://marciaconner.com/blog/data-on-big-data/.
[4] “Informatica PowerCenter”

http://www.informatica.com/in/etl/.
[5] “MongoDB," http://www.mongodb.org/.
[6] “Twitter’s Storm," http://storm-project.net.
[7] D. Abadi et al. Aurora: A Data Stream Management System.

Proc. SIGMOD Conf., 2003.
[8] M. Balazinska et al. Fault-Tolerance in the Borealis

Distributed Stream Processing System. In Proc. SIGMOD
Conf., 2005.

[9] A. Behm et al. ASTERIX: Towards a Scalable,
Semi-structured Data Platform for Evolving-World Models.
Proc. DAPD, 29, 2011.

[10] P. Bonnet et al. Towards Sensor Database Systems. Mobile
Data Management, 2001.

[11] V. R. Borkar et al. Hyracks: A Flexible and Extensible
Foundation for Data-Intensive Computing. Proc. ICDE
Conf., 2011.

[12] M. Carey et al. AsterixDB: A Scalable, Open Source BDMS.
Proc. VLDB Endow., 7(14), 2014.

[13] B. Gedik et al. SPADE: The System S Declarative Stream
Processing Engine. Proc. SIGMOD Conf., 2008.

[14] R. Grover and M. J. Carey. Scalable Fault-Tolerant Data
Feeds in AsterixDB. arXiv:1405.1705, CoRR, 2014.

[15] L. Neumeyer et al. S4: Distributed Stream Computing
Platform. ICDM Workshops, 2010.

[16] Z. Qian, Y. He, et al. Timestream: Reliable Stream
Computation in the Cloud. ACM EuroSys, 2013.

[17] M. A. Shah et al. Highly Available, Fault-Tolerant, Parallel
Dataflows. Proc. SIGMOD Conf., 2004.

[18] M. Stonebraker. Operating System Support for Database
Management. Communication. ACM, 24, 1981.

[19] Y. Xu et al. A Hadoop Based Distributed Loading Approach
to Parallel Data Warehouses. Proc. ICDE Conf., 2011.

616


