
Flexible Analysis of Plant Genomes in a Database

Management System

Sebastian Dorok

Bayer Pharma AG

University of Magdeburg

Germany

sebastian.dorok@ovgu.de

Sebastian Breß

TU Dortmund University

Germany

sebastian.bress@tu-

dortmund.de

Jens Teubner

TU Dortmund University

Germany

jens.teubner@tu-

dortmund.de

Gunter Saake

University of Magdeburg

Germany

gunter.saake@ovgu.de

ABSTRACT
Analysis of genomes has a wide range of applications from
disease susceptibility studies to plant breeding research. For
example, di↵erent types of barley have di↵ering character-
istics regarding draught or salt tolerance. Thus, a typical
use case is comparing two plant genomes and try to deduce
which genes are responsible for a certain resistance. For
this, we need to find di↵erences in large volumes of aligned
genome data, which is already available in large genome
databases.

The challenge is to e�ciently retrieve the genotypes of a
certain range of the genome, and then, to determine variants
and their impact on the plant organism. State-of-the-art
tools are fixed pipelines with a fixed parametrization. How-
ever, in practice, users want to interactively analyse genome
data and need to customize the parametrization.

In this demonstration, we show how we can support flex-
ible ad-hoc analyses of arbitrary plant genomes using SQL
with a small set of user-defined aggregation functions and
dynamic parametrization. Furthermore, we demonstrate how
genome analysis workflows for variant calling can be applied
to our system and provide insights about the performance
of our system.

1. INTRODUCTION
The increasing world population also increases the de-

mand for food. Therefore, the harvest of food plants for hu-
mans as well as animals must be increased. Typically, plant
species are bred to increase harvest or resilience against
pests. Genome analysis allows us to determine di↵erences
in plant genomes and to determine which genes a↵ect cer-
tain traits. Using this knowledge, a more target-oriented
breeding is possible.

c� 2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

Genome analysis comprises sequencing of deoxyribonucleic
acid (DNA) molecules, alignment or assembly of sequenced
reads, and analysis of the reconstructed genomes. Typically,
a first analysis is variant calling, which determines di↵er-
ences between a sample genome and a reference genome.
Knowing the di↵erences of a sample genome provides the
starting points for further analyses. As plant genomes are
huge, e.g., the barley genome comprises 5 billion base pairs,
only a step by step analysis is feasible for scientists. Current
tools for variant calling allow to call variants on complete
genomes or only in specific regions. Thereby, scientists have
to know where to look for di↵erences such as the start and
end sites of a gene and use fixed tool pipelines that generate
the required results. The used tools are mostly command-
line driven and flat-file based and put together using scripts.
Such setups have the drawbacks that they miss flexibility
and are not interactive.
Missing Flexibility The exchange of analysis tools requires

knowledge about and adaptions to the scripts and also
requires that the tools are compatible regarding used
file formats and conventions.

Non-Interactivity When using a script that runs a de-
fined pipeline of tools, the scientist has to wait until
the analysis ends and has no opportunity to interrupt
the analysis to start another ad-hoc analysis based on
intermediate results.

In previous work, we suggested to use main-memory database
systems as future genome analysis platform [2]. Moreover,
we presented an approach to integrate variant calling into
a relational database system [3]. In this demonstration, we
present a system that allows users to interactively query and
analyse plant genomes using SQL extended with a small set
of genome-specfic aggregation functions.

The paper is structured as follows. In Section 2, we present
background information on variant calling and analysis meth-
ods on genome data. Then, in Section 3, we describe the ba-
sic building blocks of our system. The demonstration setup
is presented in Section 4. Finally, we conclude in Section 5.

2. BACKGROUND
In this section, we briefly present background information

about genome analysis and approaches to integrate genome
analysis steps into database management systems (DBMSs).

 

 

509 10.5441/002/edbt.2015.45

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2015.45


Figure 1: General genome analysis process.

2.1 Genome Analysis
Genome analysis consists of at least four steps. We de-

pict these four steps in Figure 1. In the DNA sequenc-
ing step information encoded in DNA molecules is made
digitally readable by translating DNA macromolecules into
strings of A’s, C’s,’ G’s, and T’s that encode the nucleobases
Adenine, Cytosine, Guanine, and Thymine, respectively.
State-of-the-art DNA sequencers are capable to sequence bil-
lions of bases in short time, which increases the amount of
genome data to analyse dramatically. Unfortunately, DNA
sequencers are not capable to sequence complete DNA mole-
cules at once, but only in small, overlapping pieces. These
DNA pieces are called reads and have a short length of about
100 base pairs that is rather small compared to the size of
a complete genome such as the barley genome with 5 bil-
lion base pairs. In order to perform genome analyses, in a
second step, DNA molecules must be restored after DNA se-
quencing from the short reads. After alignment, analysis of
genomes starts. Because human or plant genomes are huge,
only interesting sites in the genome are analysed at first.
To identify such interesting sites, di↵erences between sam-
ple genomes and the used reference genome are determined
and a variant is called in case a di↵erence is reliable. Such
di↵erences can be base exchanges at single genome sites,
so called single nucleotide polymorphisms (SNPs), or inser-
tions and deletions (InDels) of bases regarding the reference
genome [6]. At variant sites, further downstream analysis
takes place that often requires further data sources to deter-
mine the e↵ect of a certain variant. For example, a mutation
in a certain barley gene influences the number of spikes of a
barley plant [4]. Often, downstream analysis is supported by
visualization tools such as IGV that allow scientists to visu-
ally inspect and navigate through the genome. In Figure 1,
a possible visualization of aligned and annotated genome
sequencing data is sketched below the single process steps.

2.2 Related Work
There are several approaches to support genome analysis

using database technology. Most of them concentrate on the
integration capabilities of DBMSs. For example, Atlas [9] or
BioWarehouse [5] integrate heterogeneous data sources using
relational database systems and provide specialized APIs to
load and access data.

Other approaches aim at integrating genome analysis steps
into the database system. Rheinländer et al. present a spe-
cial join operator that can be used to compute sequence
alignments [7]. Wandelt et al. present an approach to
perform similarity searches on thousands of genomes [11].
Therefore they use a special index structure that supports
fast similarity searches and further allows for impressive
compression ratios. In contrast, our approach aims at using

minimal-invasive extension mechanisms to provide genome
analysis functionality within a relational database system.
The approaches can complement each other.

An approach by Rhöm et al. also uses relational databases
to primarily store genome data [8]. Therefore, the authors
experiment with a special file wrapper functionality of SQL
Server 2008 to demonstrate how to access data stored in flat
files via a DBMS. Additionally, the authors introduce spe-
cial user-defined functions to manipulate tables and aggre-
gate data items that allow for genome analysis using SQL.
Thereby, the authors remark that the performance is prob-
lematic due to processing overhead and missing paralleliza-
tion of user-defined functions. In contrast, our approach is
based on main-memory database technology as platform to
provide high-performance genome data management. More-
over, we store data directly in the database and use a base-
centric database schema to e�ciently support genome analy-
sis tasks. Furthermore, we use only user-defined aggregation
functions to implement genome-specific analysis tasks.

3. SYSTEM OVERVIEW
In this section, we sketch the basic building blocks of our

demonstrator. First, we introduce the database schema used
to represent aligned genome data. Then, we present exten-
sions to support genome analysis tasks. Finally, we show
how to call SNPs using a custom-aggregation function and
how we support dynamic parametrization.

3.1 Database Schema for Aligned Genomes
We use an extended version of the database schema that

we presented in previous work for genomes where a reference
sequence consists of one contiguous region, such as a single
human chromosome or small bacteria genomes [3]. Nev-
ertheless, most animal and plant genomes consist of several
contiguous sequences (e.g., chromosomes). This significantly
complicates the schema, but is necessary to support variant
calling on genomes in general. In Figure 2, we depict the
extended entity-relationship schema. We introduced further
hierarchies to better represent reference_genomes. Not
for all genomes a complete reference sequence is known. For
example, the reference sequence of barley consists of thou-
sands of known contiguous sequences that have a known
order but unknown gaps between them. To represent these
contiguous sequences, we introduced the entity contig. More-
over, we integrated an entity to represent sample_genomes.

An aligned sample genome consists of millions of reads,
that are aligned to a certain site in a reference genome. In-
stead of storing the alignment information per read, we split
up every aligned read into its single bases and store each base
and its mapping to the reference genome separately. In our
base-centric database schema, these single bases are repre-
sented by the sample_base entity. The same idea is used
to store the reference_bases of a reference genome that
consists of contiguous regions instead of reads.

3.2 SQL Genome Extensions
To perform genome analysis tasks using SQL, we have

to extend our DBMSs with genome-specific functionality.
We use the concept of user-defined aggregation [12] to inte-
grate the required analysis extensions into the DBMS and
to make it available via SQL. In combination with our base-
centric database schema, we can perform read- or genome-
site-specific analyses by grouping and aggregating bases.

510



Figure 2: Database schema for aligned genomes

showing the association between reference and sam-

ple genomes.

In order to call SNPs, we first need to call genotypes.
Therefore, we implemented an aggregation function geno-
type, which consumes all bases of a sample genome at a
certain position in the genome and determines which geno-
type is the likeliest at that position. For example, adenine,
thymine, cytosine, guanine, or a combination of these bases
in case of heterozygous genotypes. We use a frequency based
genotype calling algorithm, which is the quasi standard for
high coverage genome data [6].

For manual investigation or post processing, it is often
necessary that specific reads or the computed genotypes
in a certain region can be constructed from the database.
Therefore, we propose a user-defined aggregation function
concat bases, which concatenates the (computed) bases to
reconstruct the sequence, e.g., for the same read_id.

Especially, for the analysis of InDels, it is relevant to con-
sider the bases around potential InDels. DNA sequencers
have problems reading sequences of bases of the same kind.
InDels in such homopolymer regions are more likely to be
sequencing errors than real variations in the genome. To
detect such regions, we integrated a new aggregation func-
tion that identifies homopolymer regions.

3.3 SNP Calling
In this section, we explain how to use our database schema

and our genome extensions for SQL to call SNPs in a specific
genome region.

The goal of SNP calling is to find di↵erences in a sample
genome compared to a reference genome, often in coding
regions that contain genes. For this, the SNP caller needs to
compute the genotype on each position of the aligned sample
genome. Our database schema provides simple base-wise
access to sample and reference genomes. Therefore, we only
have to join the sample base table with the reference base
table on the reference id, contig id, and the position in the
reference genome. In order to avoid wrong SNP calls, we

exclude reads where the alignment algorithm detected an
insertion by filtering sample bases with an insert o↵set > 0.
Then, we group the sample bases by their position and their
respective reference base nd aggregate the sample bases with
our aggregation function genotype. Finally, we retrieve the
variants by comparing the reference base with the computed
sample genotype (the called genotype). We illustrate this
procedure in an example query in Listing 1.

1 SELECT r.position, r.base as reference_base,

2 genotype(s.base) as sample_genotype

3 FROM sample_base s JOIN reference_base r ON
4 r.reference_genome_id = s.reference_genome_id AND
5 r.contig_id = s.contig_id AND
6 r.position = s.alignment_position

7 WHERE s.insert_offset = 0

8 GROUP BY r.position, r.base

9 HAVING reference_base <> sample_genotype;

Listing 1: Query for SNP calling

Based on this query, further analysis queries can be de-
rived. For example, the analyst could reconstruct certain
reads in a region of interest, which was discovered by the
first query, using our concat bases function. In order to con-
cat bases in a sensible way, we have to guarantee the correct
order of bases within a group. Therefore, we use a sort-based
grouping approach with the knowledge that all bases within
one read reside in the correct order in main memory.

3.4 Dynamic Parametrization
Variant callers typically have many parameters, which

customize their behaviour. We support dynamic customiza-
tion in two ways. First, we can express some parameters
(e.g., the consideration of InDels) as simple filter conditions
in SQL. Second, the user can set environment variables (e.g.,
the frequency threshold for the genotype function). For re-
sult reproducibility, we include the parametrization as meta
data in the query result.

3.5 Putting it all together
With the previously introduced building blocks, users have

the ability to analyse genome data in a flexible and inter-
active way using SQL statements. For example, users can
call SNPs using the SQL query presented in Listing 1 and
apply additional filter criteria to limit the SNP calling to
a genome region of interest. Afterwards, users can check
the sequencing coverage in the considered genome region or
extract some genotype statistics to validate the variant call-
ing result. Additionally, users can extract the sequences of
reads in the genome region of interest. We depict an excerpt
of possible analysis tasks and their possible combinations in
Figure 3.

4. DEMONSTRATION SETUP
During the demonstration, we will remotely access a server,

which runs our system. The server has two Intel Xeon CPUs
(E5-2609 v2) @ 2.50GHz and 256GB of main memory @1333
MHz. We implemented our flexible variant calling on plant
genomes by integrating our database schema and our aggre-
gation functions in CoGaDB, a column-oriented, GPU ac-
celerated, main-memory DBMS [1]. As evaluation database,
we use Harrington barley genome data. We will demonstrate
the following aspects in our setup:

Minimal Invasive Extensions and Flexibility: We
show the audience how database technology can support

511



Figure 3: Toolbox for flexible and interactive anal-

ysis of genomes.

genome analysis steps such as variant calling. Our intention
is to demonstrate that only small extensions of the SQL di-
alect are su�cient to allow exploration of genome data. We
show the flexibility of our system by preparing a list of anal-
ysis queries the user can choose from. We assist the user in
understanding the analysis queries by annotating each query
with information about purpose of the analysis and interpre-
tation of the query result. Additionally, we allow the user
to formulate own ad-hoc queries on our database schema.

Simulated Genome Analysis Workflow: The core of
the demonstration is to show a typical analysis workflow
such as variant calling (c.f. Section 2) that can be performed
using our demonstrator. Moreover, the user can experi-
ment with the system on their own to explore the barley
genome interactively via SQL. Thereby, our system presents
the query results on a SQL commandline interface, but can
also function as a backend for other analysis and visualiza-
tion tools (c.f. Section 2).

Performance of Query Processing: During the in-
teractive analysis, the user can view generated query plans
and run-times of single operators, including the specialized
genome operators to assess the performance of query pro-
cessing.

5. CONCLUSION
In this demo, we show how to store aligned genome data

in a relational database system and how we can apply real
world workflows to our system. Integrating analysis steps
into a DBMS and, thus, pushing code to data brings perfor-
mance advantages due to reduced transfer costs. Moreover,
extending SQL with bioinformatics operators combined with
improved query performance allows for interactive and ad-

hoc querying supporting scientists to prove or disprove hy-
potheses. This will be demonstrated in the sample workload
that we prepare for the demo.

In future work, we want to improve the storage capabilities
of our system by applying standard light-weight compression
techniques known from database systems such as run-length
encoding or dictionary encoding. Moreover, we investigate
compression schemes specific for genome data such as refer-
ential compression [10] and how to integrate them e�ciently
into a relational database system. Additionally, we allow the
integration of further information such as annotation infor-
mation.

6. ACKNOWLEDGMENTS
We thank Matthias Lange and Uwe Scholz and their team

at the IPK Gatersleben in Germany for fruitful discussions
and providing aligned high coverage barley genome data for
our experiments.

7. REFERENCES
[1] S. Breß. The Design and Implementation of CoGaDB:

A Column-oriented GPU-accelerated DBMS.
Datenbank-Spektrum, pages 1–11, 2014.

[2] S. Dorok, S. Breß, H. Läpple, and G. Saake. Toward
e�cient and reliable genome analysis using
main-memory database systems. In SSDBM, pages
34:1–34:4, 2014.

[3] S. Dorok, S. Breß, and G. Saake. Toward e�cient
variant calling inside main-memory database systems.
In BIOKDD-DEXA, 2014.

[4] T. Komatsuda et al. Six-rowed barley originated from
a mutation in a homeodomain-leucine zipper I-class
homeobox gene. PNAS, 104(4):1424–1429, Jan. 2007.

[5] T. J. Lee, Y. Pouliot, V. Wagner, P. Gupta, D. W. J.
Stringer-Calvert, J. D. Tenenbaum, and P. D. Karp.
BioWarehouse: a bioinformatics database warehouse
toolkit. BMC Bioinformatics, 7(1):170, 2006.

[6] R. Nielsen, J. S. Paul, A. Albrechtsen, and Y. S. Song.
Genotype and SNP calling from next-generation
sequencing data. Nat. Rev. Genet., 12(6):443–51, 2011.

[7] A. Rheinländer, M. Knobloch, N. Hochmuth, and
U. Leser. Prefix tree indexing for similarity search and
similarity joins on genomic data. In SSDBM, pages
519–536, 2010.

[8] U. Röhm and J. A. Blakeley. Data management for
high-throughput genomics. In CIDR, 2009.

[9] S. P. Shah, Y. Huang, T. Xu, M. M. S. Yuen, J. Ling,
and B. F. F. Ouellette. Atlas - a data warehouse for
integrative bioinformatics. BMC Bioinformatics, 6:34,
2005.

[10] S. Wandelt and others. Data Management Challenges
in Next Generation Sequencing. Datenbank-Spektrum,
12(3):161–171, 2012.

[11] S. Wandelt, J. Starlinger, M. Bux, and U. Leser.
RCSI: Scalable Similarity Search in Thousand(s) of
Genomes. PVLDB, 6(13):1534–1545, 2013.

[12] H. Wang and C. Zaniolo. Using SQL to Build New
Aggregates and Extenders for Object- Relational
Systems. In VLDB, pages 166–175, 2000.

512


