
ligDB—Online Query Processing Without (almost) any
Storage⇤

Evica Milchevski

University of Kaiserslautern

Kaiserslautern, Germany

milchevski@cs.uni-kl.de

Sebastian Michel

University of Kaiserslautern

Kaiserslautern, Germany

smichel@cs.uni-kl.de

“By letting it go it all gets done.
The world is won by those who let it go.”

(Laozi)

ABSTRACT
In the big-data era data is arriving at such a high pace
and volume that data exploration and querying can only
be feasible if data loading and indexing happens reasonably
quick—if at all. Recent research on handling large scien-
tific data suggests ignoring any database indexing or even
data-loading processing steps but rather turns toward pro-
cessing raw data as it is handed in by scientists, manually
or by semi-automated means—if needed in multiple, itera-
tive steps. In this paper, we describe the anatomy and re-
search challenges of a system coined ligDB1 that is operat-
ing purely on incomplete database tables, JSON documents,
or sets of SPO triplets that are being filled over time. There
is no data stored per se; the only data stored is stemming
from previously posed queries over the stream of arriving
data; kept as long as it is used by forthcoming queries and
otherwise evicted. A key point is that velocity dimension of
“big data” allows queries being processed as they are posted,
with higher-level queries processed on historic query results
(views) and live data. Data that is not touched by any posted
query is immediately discarded.

1. INTRODUCTION
The big data challenge is about making sense of large

amounts of digital content, in a timely fashion, for busi-
ness intelligence or other forms of knowledge-seeking tasks.
Data is generated at various sites and continuously grow-
ing; for instance through crowdsourcing missing entries of a
database table, by contributing facts in Wikipedia pages, or

⇤This work has been partially supported by the German
Research Foundation in project MI 1794/1-1.
1The prefix lig in ligDB stands for “let it go” and to lig
can also mean to live on others; both meanings capturing
together the two corner stones of ligDB

c�2015, Copyright is with the authors. Published in Proc. 18th Interna-
tional Conference on Extending Database Technology (EDBT), March 23-
27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

by mentioning entity-centric properties in Tweets. The com-
mon problem dimensions imposed by the properties of what
is commonly referred to as “Big Data” are best sketched by
the “4Vs”, most prominently volume and velocity (and vari-
ety and veracity). Data too often arrives in big volumes at
high bandwidth, too much to apply traditional store-first,
process-later approaches. With the advance of technology
the volume and velocity of data will just keep growing, re-
quiring a drastic shift in the current ways of data storing and
processing. Recent works on handling scientific data [25, 4]
have already emphasized the huge overhead of (re-)indexing
for one-time queries over quickly changing data and propose
processing queries on raw input data, if required through
multiple iterations (parsings); or using access-driven data
fetching [1]. Other attempts aim at explorative data analy-
sis, with tools guiding the querying process and supporting
approximative query results with tunable time budgets [29].

ligDB represents a radically new approach to handling
the data deluge: it is designed to let go data (hence its name)
that is not required by any query and only the submission
of a query triggers data gathering and processing. No other
data is stored, unlike earlier works, like the ones mentioned
above, where the “entire” data is available and waiting to
be queried (if needed). In ligDB only the results of queries
are stored/cached, hence are treated as data by subsequent
queries, until replaced in the store if not used. Think of
queries that aim at finding restaurant ratings/critics or the
temperature in a certain city, information on who is the
fiancé of Angelina Jolie, the most promising stock to invest
in, or the hottest posts in Facebook. In the massive amount
of digital content that is created, commented-on, or simply
re-invented (i.e., replicated) at literally every second, why
should we store everything that has been produced thus far,
when those questions can potentially be answered on the fly.
That is, it appears possible that data is arriving at such a
volume and velocity that queries can actually wait for it.

Once fired, queries are getting filled with result tuples un-
til a user-specific quality or response-time criteria is met and
report back to users. Ultimately, queries and their results
can stay in the system and form a basis of further querying;
essentially forming, traditionally speaking, a purely view-
based database system over an update/data stream.

The following are the signature characteristics of ligDB:

• No Storage: no data is stored per-se

• No Schema: data arrives in form of SPO triplets or
JSON documents

• Query-based: queries trigger data gathering to an-
swer the query

 

 

683 10.5441/002/edbt.2015.69

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2015.69


• Result Caching: query results are cached, statically
or dynamically (as views to be updated), and evicted
at some point

• Live or Historic Results: current queries can re-use,
entirely or partially, historic query results

• Query by Example: queries are semi-automatically
formulated, through ontological concepts and the query
by example paradigm. For instance by specifying pre-
viously obtained results and waiting for the updated
ones.

A system such as ligDB is ideally able to behave, from
a user perspective, like a traditional data management sys-
tem: it can serve ad-hoc explorative queries and analytical
queries. On the other hand, it is clear that due to the for-
getful data handling, it also puts natural limits on its appli-
cability to more traditional scenarios.

In order to build such a system, various core research areas
have to be integrated. In fact, there is work on almost all as-
pects of this system in separation. Like data integration, re-
sult caching, view maintenance, and processing queries over
data streams. Old concepts like query by example are re-
vived to allow users querying large amounts of very sparsely
(if at all) described data; a general problem for which also
ontologies can help. In this work, we sketch the overall idea
of ligDB, the characteristics of its core system components,
application cases, and challenges.

This paper is organized as follows. In Section 2, we re-
view recent work on processing data on raw files or in a lazy
fashion along with an overview of fundamental techniques.
In Section 3 the overall architecture and core components of
ligDB are presented; including a sketch of a possible imple-
mentation. In Section 4 we discuss challenges that need to be
addressed. We summarize the paper with a brief conclusion
in Section 5.

2. RELATED WORK
Kersten et al. [29] envision the next generation database

systems as systems that shift away from the goals of com-
pleteness and correctness, aiming towards explorative and
interactive data analysis. They propose several research di-
rections: a one-minute database kernel, producing query re-
sults within a limited time; multi-scale queries—breaking
the query into multiple smaller stages; post processing of
the result sets; query morphing—creating variations of the
issued query and finding their results as well; and providing
query suggestions for more e↵ective data exploration.

Lazy processing: Cheung et al. [15] present Sloth, a sys-
tem that extends lazy evaluation with the purpose of reduc-
ing network latency in web applications. Using dynamic pro-
gram analysis, they identify the queries to be issued by the
application, batch them, and postpone their processing un-
til it is absolutely necessary. Only then they execute batches
of queries, thus reducing network latency. Kargin et al. [28]
propose lazy ETL, a technique for extracting, transforming
and loading in a data warehouse only data that is neces-
sary to answer the issued query. Initially, only the metadata
from the queries are loaded into the warehouse. When the
user issues a query, the selection predicate is imposed on the
metadata to decide which files need to be loaded; the data
is transformed using relational views on the extracted data;
and stored into the internal data structure of the warehouse.

NoDB [25, 4] avoids data indexing and instead operates
on raw csv files, if required through multiple iterations. They

argue that the initial indexing in traditional DBMS poses a
huge overhead, too high for one-time queries over frequently
changing data. However, they still assume that data is re-
siding on disk or another storage container and waiting to
be queried. Similarly, modern SQL-on-HDFS engines like
Google Dremel [35] and Cloudera Impala [16] do not own
data, but execute queries over files stored on a distributed
file system. Abouzied et al. [1] propose to load data for pro-
cessing based on queries. While the query-driven nature is
similar to what we propose with ligDB, we do not assume
that data is stored anywhere and waiting to be accessed.
Instead, ligDB operates solely on live data, as handed in
by scientists or as otherwise generated. When data arrives
there is a one-time chance that it gets consumed—or it is
eliminated otherwise.

Approximate query processing: In [3] the authors
address the problem of overestimating or underestimating
the error in sampling-based approximate query processing
(S-AQP). They show that existing approximation methods
used by S-AQP can sometimes show errors which are overes-
timated or underestimated. They propose a diagnosis tech-
nique to estimate the failure of error estimation for the
query, while still providing an interactive mode of answer-
ing the queries. Using the diagnostics tool, the DB system
switches to non-approximate methods for answering queries,
when the diagnostic tool sees that the error estimation will
be unreliable.

Willis et al. [32] consider partial query results from a dif-
ferent perspective, i.e., partial-results generation in a case
of data-access failures. They provide a taxonomy of partial-
results, classifying them based on the cardinality and the
correctness of the partial result with respect to the true re-
sult. They further discuss how to assess the correctness and
cardinality class of partial results, and whether this can be
done at a finer granularity level (e.g., per row or per column).

Ge and Golab [20] propose a framework for maintain-
ing data structures in main-memory, sliding-window data
warehouses. The proposed framework aims at combining the
benefits of existing sliding-window maintenance techniques,
namely single data structure for all-time window partition,
and one data structure per partition.

Publish/subscribe is a widely used communication para-
digm for large-scale distributed systems. In the publish sub-
scribe interaction scheme, subscribers register for an event
and publishers publish events. Subscribers are asynchronously
notified when an event of interest is published. There are
many variants of this system. Eugster et al. [17] identify and
summarize the commonalities and di↵erences of di↵erent
publish-subscribe systems. Vargas et al. [43] propose an ar-
chitecture for integrating databases with a publish-subscribe
system. They integrate Hermes, a publish subscribe system,
with PostgreSQL, allowing users to subscribe to events de-
noted by changes that occur in the underlaying database

Data Streams and Continuous Queries: Data streams
have emerged as an answer to applications that do not fit
the traditional data model. Golab and Özsu [22] summa-
rize data-stream management systems from di↵erent per-
spectives, and further identify possible research challenges.
PSoup [13] is a system for streaming queries over streaming
data. PSoup treats data and queries symmetrically: when
new query is registered to the system, it is probed over the
historical data to find possible results. Similarly, when a new
streaming data tuple arrives to the system it is first probed
over the pending queries; the result is materialized; and
stored in the system. A result is returned only when a user
requires one, and then only the results belonging to a time

684



Figure 1: high level architecture

window are returned. PSoup supports joins over di↵erent
data streams as well, by storing each stream in a correspond-
ing data SteM. Bonet et al. [11, 12] discuss streaming data
and the kinds of queries that can be issued. They describe
types of queries over streaming data—snapshot and long-
running queries. Snapshot queries are defined as those over
a set of streaming sources but in a single point in time in the
past. On the other hand, they describe long-running queries
as queries that continually return answers as new data ar-
rives. ligDB is not meant to be a data-stream processing
system, rather it is supposed to act like a non-streaming,
traditional database system, from a user perspective; with
the di↵erence that no data is stored and only query results
are cached (treated as data or, better, materialized views)
and can be queried as normal “data”. Terry et al. [42] pro-
pose the concept of continuous queries; a permanent query
for which the user gets results whenever there is a matching
tuple. They further define monotone continuous queries as
queries which result is strictly non decreasing over time.

3. LIGDB ARCHITECTURE
The high-level architecture of ligDB is shown in Figure 1.

The system smoothly blends data processing on raw input
streams with traditional query processing on top of data
gathered in a query-driven way. We believe that the query-
driven data gathering and subsequent processing in ligDB
is very reasonable as data is not created by a “big bang” but
is being built up over time, for instance, crowdsourced [19],
measured by sensors, or created by user actions in social
networks or Wikipedia.

3.1 Core Components
ligDB has the following core components (cf., Figure 1):

• Enrich, Annotate, Fuse: We consider small data
fragments in form of sets of object-oriented (entity
centric) key-value pairs as the generic data format.
For instance, in form of JSON objects; however, ide-
ally in form of full-fledged relational tables with clear
schemas. In general, input data can be further annotat-
ed/enriched, e.g., through object/entity disambigua-
tion, cleaned or standardized to general concepts using
ontologies. This is very generic, and does not assume
any fixed schema with full-fledged relational tables and
foreign-key constraints to be present.

• Collect: As there is no data stored per se, initially
queries are purely data-gathering queries, i.e., they de-
fine materialized views, until the query is answered to

a satisfactory level. Subsequently, the query results are
returned. Results can be statically cached or the query
can remain in the system and needs to be continu-
ously updated. This forms a data basis in the otherwise
empty-storage ligDB.

• Cache: The cache is responsible to handle the pre-
viously mentioned results of historic queries. It has
space, time, and runtime constraints. That is, it has
limited (in-memory) storage, evicts too-old-to-be-useful
query results, and limits the amount of views to be con-
tinuously maintained [9, 30] and not frequently used.

• Process: Once queries are present in the system, ei-
ther running or cached, newly posted queries can (fully
or partially) reuse previous query results. When the
query cannot be fully answered by historic results,
the entire query or parts of it are posted in the data-
collector component over the data stream.

• Explain:Querying heterogeneous, schema-free (or not
well understood ones) data requires mechanisms that
guide the query-phrasing process. We believe that the
querying process should be driven by either examples
and/or be guided by general-purpose and specialized
ontologies (that can be uploaded in the system).

• API/UI: Users can assemble queries using the above
Explain component and push them to the system. If
they can solely be answered based on cached data, the
result is returned instantaneous. Otherwise, the query
is registered and necessary data is gathered. The user is
notified if the query is answered to a satisfiable degree.

3.2 Object/Entity-Centric Input Fragments
As input, we specifically consider data represented as generic

JSON objects, i.e., a bag of possibly nested key-value pairs.
These might or might not come with globally unique iden-
tifiers that allows to gather data specifically related to one
unique object. If ids are not given directly, to accumulate
key-value pairs for the same object (entity), methods for de-
termining the correct entity based on the data context are
required. Consider for instance the JSON object in Figure 2
that gives details on a business in Phoenix, AZ, as given
by the Yelp academic dataset [45]. Portals like Yelp that
harness crowd input are an excellent example why data is
not created in one time point, but evolves. For instance,
business categories, here “Food” and “Grocery” might be
added later on, review counts grow over time, and the field
“open” can change over time, too. Other information such as
“city” and “state” in this example are redundant, here with
“full address”, but might be useful for querying. To extract
such information and to bring their naming to a common
ground is part of the Enrich, Annotate, Fuse component.
There has been many recent works on understanding Web
tables [33, 44] and on matching and disambiguating named
entities [31, 24] that can be harnessed in ligDB.

3.3 Query Types and Query Publishing
Per se, there is no restriction on the kind of queries that

should be processed in ligDB. Apparantly, however, in a
scenario like the one addressed, where it is reasonable to
throw away any historic, unused data, queries will likely be
mostly of analytical, explorative nature.

The most basic query in ligDB are so called data gath-
ering queries that extract information out of the underly-
ing data stream. Since it is not reasonable to assume a
fixed schema, as described, one way to work is with exam-
ples/templates, for instance,

685



1 {
2 “business id”: “usAsSV36QmUej8–yvN-dg”,
3 “full address”: “845 W SouthernAve Phoenix,

AZ 85041”,
4 “open”: true,
5 “categories”:[“Food”, “Grocery”],
6 “city” :“Phoenix”,
7 “review count”: 5,
8 “name”: “Food City”.
9 “state”: ”AZ”,
10 “type”: “business”
11}

Figure 2: Excerpt of a JSON object of the Yelp dataset

1 {
2 “business id”: ?
3 “name” :?,
4 “city” :“Chicago”,
5 }
that are simple selection&projection queries with predi-

cates. Users can also re-use existing query results to gather
additional information, or to refresh/enrich previous results.

It is clear that the above samples and the focus on JSON in
this work is not a restriction; likewise, we could also consider
RDF Subject-Predicate-Object (SPO) triples and queries
expressed in SPARQL, or even data integration/fusion into
relational tables and querying with SQL. Still, it is hard to
phrase meaningful queries. Below, we review some works on
query advisors and ontologies [41, 7].

More advanced queries can be in a form of (top-k) ag-
gregation queries [27], arbitrary join queries (particularly
semi-join–based data pruning appears very useful), queries
that gather/compute data statistics, such as our recent work
on computing correlation values for entity or tag occur-
rences [5], up to “scientific queries” like interpolations that
act as input to visualization, or data cleaning/predication
on the moving data using methods such as Kalman filters;
and any other queries that are traditionally processed over
data streams such as running sums or quantiles. We do not
explicitly rule out sliding windows to be used in ligDB, but
this, rather traditional and also orthogonal (to query-drive
data gathering) concept, is not the focus in this proposal.
Obviously, the selectivity of the query can impair the per-
formance, and, in case of a select *, turn ligDB into a tra-
ditional store. It is the job of the below described query
advisor to guide the user, considering the selectivity of the
queries.

3.4 Query Processing
When considering query processing techniques, there are

two important aspects of ligDB that need to be considered.
First, queries are not guaranteed to be executed within mil-
liseconds as data is per se not given. That is, queries can run
for seconds, which calls for grouping queries and sharing the
load [21, 34, 14]. Second, the workload and the underly-
ing database is very dynamic, the streaming and “historic”
data as well as schemas are constantly changing. Thus, adap-
tive on-the-fly query optimization techniques need to be ap-
plied. Due to the dynamic nature of data streams, adaptive
query processing has been addressed in [34, 8], but also for
queries executed over raw data [4]. Adaptive indexing tech-

niques [23, 26] should also be applied since, first of all, ligDB
has no fixed schemas, and second, the query workload is con-
stantly changing—rendering fixed indexing schemes ine↵ec-
tive. Acosta et al. [2] discuss adaptive query processing with
respect to SPARQL endpoints. Their main idea is adapting
the query to the availability of the SPARQL endpoints, thus
getting results even when some sources are not available, or
parts of the query cannot be answered. In ligDB, as there
is no guarantee that the query can be answered as a whole,
such adaptive techniques can be applied to gather answers
for parts of the query.

3.5 Query Advisor
ligDB aims at handling large amounts of heterogeneous

content, not tailored to a specific, narrow application case
with well designed and understood schemas. The trouble
with this generic setup is that it is hard if not impossible
to phrase meaningful queries without guidance. Thus, the
query advisor is a key component of ligDB. Statistics, con-
stantly gathered from the incoming data stream (after the
Enrich, Annotate, Fuse component), together with generic
and domain specific ontologies, can serve as the base of the
advisor. Blunschi et al. [10] employed ontologies to help
keyword-based querying of complex-schema databases, for
the case of business analysts in banking environments. They
propose methods to find the most promising SQL-query can-
didates, based on input keywords. Clearly, in an arbitrary-
data management system like ligDB, this is of even higher
importance.

Once a query base has been formed, and data is resid-
ing in the cache, collected data can trigger further query
proposals. Sellam and Kersten propose a query advisor [39]
that allows users to explore data and its statistics by posing
queries that can be refined, gathering statistics and expla-
nations of possible results. Another practical solution ap-
pears to be the application of the generic query-by-example
paradigm [47] and reverse engineering of queries based on
data samples [37, 46]; in addition to handing in object/en-
tity centric (former) query results and waiting for ligDB
to refresh them. However, since all these existing techniques
are designed over static data, and the nature of ligDB im-
plies that the data residing in the cache is dynamic, new
challenges arise for adapting existing techniques to the con-
stantly changing data.

3.6 Implementation
The input layer to ligDB is formed by a cluster of ma-

chines that run systems such as Storm [40] or S4 [36] that
aim at fault-tolerant realtime handling of big, high velocity
streams of data; similar to what MapReduce is for batch pro-
cessing. Such systems can scale to big loads of data by adding
more machines for individual processing tasks running in
parallel. Application developers have to provide the imple-
mentation of stream sources and operators, following the
provided API. At that entry point, data is matched against
registered queries and data not touched by at least a single
query is immediately discarded. The Enrich, Annotate, Fuse
and the Collect component is directly implemented in this
streaming environment. Useful data and posted queries are
indexed in an underlying key-value store by entity/object
ids, including attributes and values. In the naive way, this
would generate redundancy, there might be more advanced
ways to store/index that information in an accessible way;
such as by forming clusters or related information (e.g., in
the sense of what is being done for RDF graphs). Ideally,
though, a full-fledged database management system can be

686



employed to harness standard SQL and the research e↵orts
of the past decades (query optimization, query advisors, in-
dices, etc.).

4. CHALLENGES
Arguably the most characteristic facet of ligDB is its for-

getful or simply ignorant way to handle data. Only posed
queries trigger the collection of query-relevant data and,
hence, enables their processing. This is in strict contrast to
traditional data management that collects large amounts of
data, indexes it, and is able to process ad-hoc queries very
e�ciently; assuming data is not changing frequently. This
characteristic of ligDB is unique and poses several impor-
tant research challenges that need to be addressed.

4.1 Incomplete and Time-Varying Results
Terry et al. [42] define monotone continuous queries as

queries whose result is non-decreasing at any point of time.
However, they consider queries over append-only databases,
meaning current tuples do not get updated or deleted. In
ligDB this is not the case: The same query issued only
seconds later may return completely di↵erent results due to
the constantly changing flow of data. One way to solve this
issue is to define truth over time, meaning that results are
true only for a specific time point or time frame, depending
on the query. This is di↵erent to queries over time windows,
as queries do not get attached a time window, but rather
results. It is not clear whether old, cached information (even
though updated) and new streaming data should always be
mixed together, or if it is better to start an entirely new
query. Consider for instance the case of query results that
are, despite being kept fresh, capturing a larger time span; it
might not be semantically correct (or advised) to join/merge
its results with a new query that has seen only very recent
data.

In ligDB, we are also facing the problem of (almost) never
having the complete query answer. With exception of some
type of queries, results in ligDB are never complete, by de-
sign of the system. For instance, a query asking for cities
with hotel prices below some value cannot be complete as
new hotel o↵ers may always arrive to the system. The ques-
tion is when query results are complete enough to be re-
turned to users, considering a benefit/cost tradeo↵ between
runtime and completeness/quality. One approach could in-
vestigate the level of convergence of the query result to a
specific value or size, or if the tuples of the result become
“stable” enough.

4.2 Scale Independence
Queries in ligDB trigger the data collection for their

processing and the amount of data they “subscribe” to is,
thus, performance critical. In the sense of the concept of
scale independence [6, 18], ideally, queries in ligDB can
be answered with consumption of a bounded number of in-
put data, produce only bounded intermediate results and
have also size-bounded output. Without additional knowl-
edge and constraints imposed by the application logic, as in
PIQL [6], this is not possible, and it is unclear to what ex-
tent this can be implemented “in the wild” over schema-free,
heterogeneous data. In addition, queries in ligDB should
behave well in the time dimension, that is, the time required
for gathering data to allow a satisfactory query answering
should be ideally bounded, too. Knowing the rough output
cardinality of a query helps in so far, as the degree of com-
pletion or the full completion is known. Still, this does not

immediately tell when exactly data arrives that would be
required to finalize the results. In fact, it might happen that
a query never gets answered within reasonable time. This
needs to be determined as soon as possible to return to the
query initiator. The system should also be interactive in the
sense that it periodically returns incremental results or time-
to-completion information.

4.3 Cold-Start Problem
In recommender systems, a cold-start problem (cf., [38])

occurs when a new item (user) is added to the system which
cannot be recommended as no one has rated the item so
far. In ligDB there is a cold-start problem when a query
is posted for which only few or no data at all is present in
the system, as in the recent past no related query has been
issued. With changing data and user interests this problem
is expected to occur virtually at any time. In that case, all
query-related data need to be first gathered from scratch
and no previously cached query result is useful to answer
the query at least partially. After this cold-start phase it is
assumed that most queries can be answered at least par-
tially by harnessing cached query results. Partially answer-
able means that previous queries allow finding a subset of
the true query answers (objects) with potentially missing
key-values pairs in the individual result entries. It is to be
decided in this case if it is reasonable to postpone the re-
sult delivery to the query initiator in order to gather addi-
tional results and attributes, to already report the incom-
plete results, and/or to start data gathering to aim at more
complete results. Another issue which rises with the cold-
start problem is how and which queries to phrase: Phras-
ing queries when there is no schema available or some pre-
vious knowledge of the streaming data is not trivial. This
could make the user resort to posing general data-gathering
queries. Thus the ligDB query advisor, ideally, by using
the gathered statistics and/or ontologies, should be able to
suggest queries in this case as well.

5. CONCLUSION
In this work, we sketched the core ideas and research chal-

lenges behind ligDB, a data-management architecture that
makes the case for storing only data for which a related query
is posted to the system. This is in strong contrast to common
data management systems, that follow an index-first-query-
later paradigm or are running continuous queries (often of
statistical nature) on data streams. ligDB is designed to
ideally act as a traditional data management system, serv-
ing ad-hoc queries in acceptable response times but can also
harness long-running data stream analytics. The forgetful
data handling and the pay-as-you-go building up of a data
repository to be reused render ligDB appealing for handling
explorative and analytical queries over large input data. The
price to pay for such a data processing principle is its suscep-
tibility to data-to-query discrepancy and a not su�ciently
large data input rate.

6. REFERENCES
[1] A. Abouzied, D. J. Abadi, and A. Silberschatz.

Invisible loading: access-driven data transfer from raw
files into database systems. EDBT, 2013.

[2] M. Acosta, M.-E. Vidal, T. Lampo, J. Castillo, and
E. Ruckhaus. Anapsid: An adaptive query processing
engine for sparql endpoints. ISWC, 2011.

[3] S. Agarwal, H. Milner, A. Kleiner, A. Talwalkar, M. I.
Jordan, S. Madden, B. Mozafari, and I. Stoica.

687



Knowing when you’re wrong: building fast and reliable
approximate query processing systems. SIGMOD,
2014.

[4] I. Alagiannis, R. Borovica, M. Branco, S. Idreos, and
A. Ailamaki. Nodb: e�cient query execution on raw
data files. SIGMOD, pages 241–252, 2012.

[5] F. Alvanaki and S. Michel. Tracking set correlations at
large scale. In SIGMOD, 2014.

[6] M. Armbrust, K. Curtis, T. Kraska, A. Fox, M. J.
Franklin, and D. A. Patterson. Piql: Success-tolerant
query processing in the cloud. PVLDB, 5(3), 2011.

[7] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann,
R. Cyganiak, and Z. G. Ives. Dbpedia: A nucleus for a
web of open data. ISWC/ASWC, 2007.

[8] S. Babu and J. Widom. Streamon: An adaptive engine
for stream query processing. SIGMOD, 2004.

[9] J. A. Blakeley, P.-Å. Larson, and F. W. Tompa.
E�ciently updating materialized views. SIGMOD,
1986.

[10] L. Blunschi, C. Jossen, D. Kossmann, M. Mori, and
K. Stockinger. Soda: Generating sql for business users.
PVLDB, 5(10), 2012.

[11] P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor
database systems. MDM, 2001.

[12] P. Bonnet and P. Seshadri. Device database systems.
ICDE, 2000.

[13] S. Chandrasekaran and M. J. Franklin. Psoup: A
system for streaming queries over streaming data. The
VLDB Journal, 12(2), 2003.

[14] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang.
Niagaracq: A scalable continuous query system for
internet databases. SIGMOD, 2000.

[15] A. Cheung, S. Madden, and A. Solar-Lezama. Sloth:
being lazy is a virtue (when issuing database queries).
SIGMOD, 2014.

[16] Cloudera Impala.
https://github.com/cloudera/impala.

[17] P. T. Eugster, P. Felber, R. Guerraoui, and A.-M.
Kermarrec. The many faces of publish/subscribe.
ACM Comput. Surv., 35(2), 2003.

[18] W. Fan, F. Geerts, and L. Libkin. On scale
independence for querying big data. PODS, 2014.

[19] A. Feng, M. J. Franklin, D. Kossmann, T. Kraska,
S. Madden, S. Ramesh, A. Wang, and R. Xin.
Crowddb: Query processing with the vldb crowd.
PVLDB, 4(12), 2011.

[20] C. Ge and L. Golab. Lazy data structure maintenance
for main-memory analytics over sliding windows.
DOLAP, 2013.

[21] G. Giannikis, D. Makreshanski, G. Alonso, and
D. Kossmann. Shared workload optimization. PVLDB,
7(6), 2014.

[22] L. Golab and M. T. Özsu. Issues in data stream
management. SIGMOD Record, 32(2), 2003.

[23] G. Graefe and H. A. Kuno. Self-selecting, self-tuning,
incrementally optimized indexes. EDBT, 2010.

[24] J. Ho↵art, Y. Altun, and G. Weikum. Discovering
emerging entities with ambiguous names. WWW,
2014.

[25] S. Idreos, I. Alagiannis, R. Johnson, and A. Ailamaki.
Here are my data files. here are my queries. where are
my results? CIDR, 2011.

[26] S. Idreos, S. Manegold, H. A. Kuno, and G. Graefe.
Merging what’s cracked, cracking what’s merged:
Adaptive indexing in main-memory column-stores.
PVLDB, 4(9), 2011.

[27] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey
of top-k query processing techniques in relational
database systems. ACM Comput. Surv., 40(4), 2008.

[28] Y. Karǵın, M. Ivanova, Y. Zhang, S. Manegold, and
M. Kersten. Lazy etl in action: Etl technology dates
scientific data. PVLDB, 6(12), 2013.

[29] M. L. Kersten, S. Idreos, S. Manegold, and E. Liarou.
The researcher’s guide to the data deluge: Querying a
scientific database in just a few seconds. PVLDB,
4(12), 2011.

[30] C. Koch, Y. Ahmad, O. Kennedy, M. Nikolic,
A. Nötzli, D. Lupei, and A. Shaikhha. Dbtoaster:
higher-order delta processing for dynamic, frequently
fresh views. VLDB J., 23(2), 2014.

[31] H. Köpcke, A. Thor, and E. Rahm. Evaluation of
entity resolution approaches on real-world match
problems. PVLDB, 3(1), 2010.

[32] W. Lang, R. V. Nehme, E. Robinson, and J. F.
Naughton. Partial results in database systems.
SIGMOD, 2014.

[33] G. Limaye, S. Sarawagi, and S. Chakrabarti.
Annotating and searching web tables using entities,
types and relationships. PVLDB, 3(1), 2010.

[34] S. Madden, M. A. Shah, J. M. Hellerstein, and
V. Raman. Continuously adaptive continuous queries
over streams. SIGMOD, 2002.

[35] S. Melnik, A. Gubarev, J. J. Long, G. Romer,
S. Shivakumar, M. Tolton, and T. Vassilakis. Dremel:
interactive analysis of web-scale datasets. Commun.
ACM, 54(6), 2011.

[36] S4: Distributed stream computing platform.
http://incubator.apache.org/s4/.

[37] A. D. Sarma, A. G. Parameswaran, H. Garcia-Molina,
and J. Widom. Synthesizing view definitions from
data. ICDT, 2010.

[38] A. I. Schein, A. Popescul, L. H. Ungar, and D. M.
Pennock. Methods and metrics for cold-start
recommendations. SIGIR, 2002.

[39] T. Sellam and M. L. Kersten. Meet charles, big data
query advisor. CIDR, 2013.

[40] Storm: Distributed and fault-tolerant realtime
computation. http://storm-project.net/.

[41] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a
core of semantic knowledge. WWW, 2007.

[42] D. Terry, D. Goldberg, D. Nichols, and B. Oki.
Continuous queries over append-only databases.
SIGMOD, 1992.

[43] L. Vargas, J. Bacon, and K. Moody. Integrating
databases with publish/subscribe. DEBS, 2005.

[44] P. Venetis, A. Y. Halevy, J. Madhavan, M. Pasca,
W. Shen, F. Wu, G. Miao, and C. Wu. Recovering
semantics of tables on the web. PVLDB, 4(9), 2011.

[45] Yelp Academic Dataset.
https://www.yelp.com/academic_dataset.

[46] M. Zhang, H. Elmeleegy, C. M. Procopiuc, and
D. Srivastava. Reverse engineering complex join
queries. SIGMOD, 2013.

[47] M. M. Zloof. Query-by-example: the invocation and
definition of tables and forms. VLDB, 1975.

688


