
Extracting Aggregate Answer Statistics for Integration

Zainab Zolaktaf

University of British Columbia

Vancouver, BC, Canada

zolaktaf@cs.ubc.ca

Jian Xu

Microsoft Corporation

Redmond, WA, USA

xujian@microsoft.com

Rachel Pottinger

University of British Columbia

Vancouver, BC, Canada

rap@cs.ubc.ca

ABSTRACT
Aggregate queries in integration contexts often do not have
one “true” answer; there can be multiple correct answers for
the same aggregate query. This is due to the existence of
duplicate or overlapping data points, possibly with di↵erent
values, across the data sources. Depending on the choice of
data source combinations that are used to answer the query,
di↵erent answers can be generated. Thus, representing the
answer to the aggregate query as an answer distribution in-
stead of a single scalar value, will allow the users to better
understand the range of possible answers.

This work provides a suite of methods for extracting statis-
tics that convey meaningful information about aggregate
query answers in heterogeneous integration settings. We
focus on the following challenges: 1. determining which statis-
tics best represent an answer’s distribution; and 2. e�ciently
computing the desired statistics.

Our solution includes the following answer statistics 1. a
set of point estimates with confidence intervals; 2. a high
coverage interval that unveils “hot areas” in a distribution;
and 3. a stability score that measures the impact of source
dynamics. We optimize the extraction of the above statisti-
cal information by minimizing the sampling load and apply-
ing fast approximate algorithms. We verify the e↵ectiveness
and e�ciency of our methods with empirical studies using
real-life and synthetic, scaled data sets.

1. INTRODUCTION
Aggregate queries are fundamental to relational databases.

They group sets of data values and calculate informative
statistics such as average, median, and sum. They are also
important in heterogeneous integration systems [1, 2, 9]
where the focus shifts from querying a single database to
querying multiple, independently managed, domain hetero-
geneous databases. The characteristics of heterogeneous in-
formation systems make the generation of meaningful ag-
gregate values for heterogeneous information systems sig-
nificantly more challenging than aggregations in a typical
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Location Avg Temp Date 
Burnaby 21 10-June-06 

Vancouver 19 11-June-06 
... ... ... 

D 1 

D 2 

D 3 

D 4 

City Temp Date ... Total Rain 
Burnaby 19 10-June-06 ... 0.2 

Vancouver 17 11-June-06 ... 0.0 
Surrey 15 11-June-06 ... 0.0 

Vancouver 20 12-June-06 ... 1.4 
... ... ... ... ... City Temp Date 

Burnaby 21 06/10/06 
Vancouver 22 06/11/06 
Richmond 18 06/12/06 
Richmond 18 06/13/06 

... ... ... 

Location Temp Date Total Snow Total Rain 
Surrey 15 06/11/06 0.0 0.0 
Surrey 19 06/12/06 0.0 1.2 

... ... ... ... ... 

Figure 1: Climate data from BC weather stations.

relational database.
Answering aggregate queries in a heterogeneous informa-

tion system often requires combining sets of data that are
segmented across multiple sources. These sources may vary
substantially with regard to their schemas and the instances
they hold, i.e., semantically related content may be stored
in di↵erent structures, at di↵erent levels of granularity, in
di↵erent representations, and multiple formats.

There are three levels of heterogeneity in heterogeneous
information systems [19]. The first is schema-level. This oc-
curs when there are di↵erent schema elements representing
the same concept, e.g., one schema may contain a “temp”
attribute, while another contains a “temperature” attribute.
The second is instance-level heterogeneity. This level re-
quires performing entity resolution to tell if two objects
are the same, e.g., that the data for “Vancouver Weather
2006/06/11” in one data source is the same as “Vancouver
Weather 06/11/2006” in another. The third is value-level
heterogeneity. Heterogeneity at this level deals with the
fact that because the sources are independently created and
maintained, a given data point can have multiple, inconsis-
tent values across the sources. For example, one source may
have the high temperature for Vancouver on 06/11/2006 as
17C, while another may list it as 19C. It is this value-level
heterogeneity with which we are concerned throughout this
paper. Particularly, we look at the problem of how to handle
value-level heterogeneity in aggregations.

To illustrate the problem, consider JIIRP [17], a real-
world disaster management project. In JIIRP, data from
various sources are combined to simulate the impact of nat-
ural disasters. For example, JIIRP assesses weather phe-
nomena and climate data to help plan emergency responses.
Figure 1 shows local data sources containing climate data for
cities located in British Columbia (BC, Canada). As shown
in the figure, the sources di↵er in terms of their coverage of
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the data instances and attributes. Additionally, data sources
D1, D2, and D3 hold di↵erent values for the same data point
Vancouver on 06/11/2006.

Next, consider the following query, in which the data
sources are queried to find the average temperature for months
with an average temperature above 20 degrees Celsius:

Select Average(Temp), Month(Date), Province(Location)
From SemIS
GROUP BY Province(Location), Month(Date)
HAVING Average(Temp) > 20

Applying standard aggregation, however, is incorrect. In
particular, standard aggregation would simply return the av-
erage of all the points. This is problematic for two reasons:
(1) There are some values which are present in more than
one source (e.g., Vancouver’s temperature on 06/11/2006 is
represented in all of sources D1, D2, and D3; taking the
simple average will cause Vancouver to be over-represented
in the average.) (2) The di↵erent sources may have di↵er-
ent values for the same conceptual answer (e.g., depending
on which source is used, the temperature for Vancouver on
06/11/2006 is either 17, 19, or 22).

The correct aggregation requires using only one value per
data point:

Average(t) =

|C
BC

|X

c=1

|D
m

|X

d=1

t

c,d

|C
BC

| ⇤ |D
m

|
(1.1)

where t is temperature, c represents city, |C
BC

| is the num-
ber of cities in BC, d represents day, |D

m

| is the number
of days in month m. The above aggregation requires 1470
data points (49 cities in BC * 30 days), each of which could
have several duplicates across the sources. Depending on
the choice of source and value combinations, there can be a
whole range of viable answers.

For such queries, enumerating all the possible value com-
binations, and generating the entire set of viable answers as
the answer to the aggregate, not only does not scale well
(due to combinatorial explosion with regard to the number
of data points and possible duplicates), but would still re-
quire the users to analyze the results and determine suitable
answers.

This problem is not unique to weather data or the JIIRP
scenario, for example, [19] examined inconsistency and re-
dundancy at the value-level, in the stock and flight domains
on the Deep Web. However, in [19] the authors assumed
that there was a single “true” answer, which we do not.

In this paper, we assume meta-information that describes
the mappings and bindings between data sources is avail-
able [25]. Similar to [19], we focus on value-level hetero-
geneity. Specifically, we propose a suite of methods for sum-
marizing aggregate query answers in integration settings.

Our previous work [25] created a system where one could
ask such aggregate queries. It defined what the possible
viable answers were, but then it randomly chose a viable
answer. This is inappropriate both since it does not explain
the choice, and the aggregate answer would fluctuate upon
reprocessing the query. Selecting a best guess answer or a
top-K answer set is also inadequate; there is often no global
mediator available to choose the value and source combina-
tion for the aggregation.

Our solution consists of first estimating the distribution
of the viable answers. However, instead of enumerating all

the viable answers and computing the full, accurate distri-
bution, we combine a variety of statistical estimations into
what we term the viable answer distribution. We then ef-
ficiently extract statistical summaries of the viable answer
distribution to allow the user to better interpret and under-
stand the viable answers. Thus, we contribute the following:

• We define aggregate answers in heterogeneous informa-
tion systems as a distribution of viable answers com-
puted from di↵erent data source and value combina-
tions.

• We provide three summary statistics for the viable an-
swer distribution, consisting of: 1. key point statistics
with user defined confidence intervals; 2. high coverage
intervals to convey distribution shape information and
3. a stability measure for the aggregation.

• We provide algorithms to e�ciently extract the above
statistics, including 1. estimating point statistics using
sampling and ways to reduce sampling overhead while
keeping the confident intervals tight; 2. a fast, greedy
algorithm to extract hot areas; and 3. using a proba-
bilistic model to calculate stability scores without sim-
ulating source removal. Overall, we can support online
extraction of aggregation statistics.

• We describe our empirical study using real-life and syn-
thetic data sets, further verifying our theoretical and
algorithmic claims on e↵ectiveness and e�ciency.

The paper is organized as follows. We describe prelimi-
nary statistical methods applied in our solution in Section 2
and formalize the problem in Section 3. We present the tech-
nical details of the distribution estimate process and opti-
mizations in Section 4, the empirical study in Section 5, and
review related work in Section 6. We conclude in Section 7.

2. PRELIMINARIES
In this work we use lower case letters for scalars (e.g., a)

and typeset the sets (e.g., A); all other variables, including
random variables, are denoted by capital letters (e.g., A).

2.1 Bootstrap sampling and bagging
Bootstrap sampling, or bootstrapping, is a resampling

technique which combined with Bootstrap aggregating (bag-
ging) [7], can be used to improve the quality of an esti-
mate. The bootstrapping starts with an initial (small) sam-
ple set S

alg

sampled according to some sampling algorithm
alg. This set is then resampled according to alg to obtain
a set of bootstrapped sample sets S

boot

= {Bi

boot

} where
i = 1, 2, . . . , |S

boot

|. Next, an estimator is applied to each
set to obtain an ensemble of bootstrapped estimates E

boot

=
{Ei

boot

}. Bagging then approximates a more accurate esti-
mate with tighter confidence intervals by combining (e.g.,
averaging) this ensemble of estimates. For example, the me-
dian value of E

boot

can be used as the estimate of the mean
of the distribution. We use the above methods to estimate
the density of the viable answer distribution.

2.2 Kernel density estimation
Kernel density estimation (KDE) estimates the probabil-

ity density function (pdf) of a distribution using a sam-
ple set drawn from the distribution. We use kernel rather
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than histogram density estimation due to properties such as
smoothness, independence of parameters like bin size, and
because KDE often converges to the true density faster. It
works as follows: Let the sample set be S

alg

= {x
i

}, where
i = 1, 2, . . . , |S

alg

|. A sample point x
i

’s contribution to the
pdf is measured using a kernel function K(x�x

i

h

), where h
is the bandwidth. After kernels are applied to all x

i

’s, the

pdf is estimated by f(x) = 1
|S

alg

|h
P|S

alg

|
1 K(x�x

i

h

).

Among the various possible kernel functions, typically Gaus-

sian kernels K(x) = 1p
2⇡

e�
x

2

2 , are used for convenience
of theoretical analysis. Note that using a Gaussian kernel
makes no assumption that the data adheres to a Gaussian
distribution. The bandwidth parameter h controls the lo-
calness of a point’s impact on the distribution. A large h
results in a smooth density function, but is likely to under-
fit, whereas a small h fits better on the sample points but
is likely to over-fit. Selecting an appropriate h value is chal-
lenging but there are automatic methods for choosing the
value of h [6]. We use KDE to estimate the viable answer
density distribution.

2.3 Distance measures for distributions
Several distance measures exist for comparing and quan-

tifying the di↵erence between two distributions p and q. For

example, d
L2(p, q) =

qR
[p(x)� q(x)]2 dx is the L2 norm.

Also, d
Bh

(p, q) =
R p

p(x) q(x) dx is the Bhattacharyya dis-
tance measure [4] that uses the integral of point-wise prod-
uct of the two distributions.

In Section 4.4, we quantify the changes of the viable an-
swer distribution under di↵erent data source settings. As
we will see, the complexity of computing a distance measure
largely depends on the mathematical properties of the mea-
sure. Our analysis shows that stability scores measured by
d
L2 and d

Bh

, as defined above, can be computed e�ciently.

3. PROBLEM FORMALIZATION
Data sources in a heterogeneous information system may

vary significantly in terms of coverage, quality, and accuracy.
Regarding coverage, often a single data source provides in-
formation about a subset of the instances and a subset of the
object attributes. Therefore, data values relevant to an ag-
gregate query can be segmented across multiple sources in a
heterogeneous information system. Furthermore, as in [19],
the data sources can contain heterogeneity at three levels:
schema-level, instance-level, and value-level. Heterogeneity
at the schema-level and instance-levels means semantically
related content can be stored using di↵erent schema ele-
ments and structures, and represented by di↵erent instances.
At the value-level, depending on the source quality and ac-
curacy, the sources can have inconsistent, or even conflicting
data values for the same data points. In this work, similar
to [19], we focus on value-level heterogeneity. We assume
meta-information that describes the mappings and bindings
between data sources is available [25].

Figure 1 demonstrated an example scenario with four data
sources D1, . . . , D4, and their corresponding data instances.
As shown in the figure, the sources held di↵erent values for
the same data point, e.g., Vancouver on 06/11/2006. As
a consequence of the data value overlaps and inconsisten-
cies, the answer to aggregate queries, such as “Sum(Temp)”
for specific date ranges and locations, depends on the com-
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Figure 2: Two distributions with the same mean
(5.0) and variance (5.0), but di↵erent shapes.

bination of data sources and instances that are selected.
Therefore, the answer to the aggregation is a distribution
of values, rather than a single scalar value. In order to show
which values are under consideration as answers, we use the
term “viable answer”. While the work in this paper does
not depend on the definition, for concreteness, we adopt the
definition from [25]:

Definition 1. [Viable answer]
Let D denote a set of data sources answering an aggre-

gation, and let v = agg(Z) be the aggregated value com-
puted from some Z ✓ D. Let V = {v

i

} be the set of aggre-
gated values from all possible source combinations. A viable
answer to an aggregation is a value in the interval W =
[inf(V), sup(V)] that adheres to type restrictions (e.g., inte-
ger) where inf and sup are infimum (greatest lower bound)
and supremum (smallest upper bound), respectively. 2

Note that this definition allows any value in the defined in-
terval, even if it does not correspond to the value produced
by any source combination [25]. Furthermore, we assume
prior knowledge regarding the coverage, quality and accu-
racy of the data sources is not available. Therefore, the
data sources selected for inclusion have equal importance,
but their contribution to the aggregate answer may not be
of equal amount. As a reminder, in [25] we randomly chose a
viable answer, which is inappropriate, both because it does
not explain the choice and the aggregate answer would fluc-
tuate upon reprocessing the query.

Definition 2. [Viable answer distribution] Let the ran-
dom variable X be the answer to an aggregate query whose
pdf is fD

X

(x) : W ! R. In this notation, the superscript D
denotes the source set used to compute the viable answer set.
We refer to fD

X

as the viable answer distribution.
2

Our objective, in this work, is to e�ciently sample the set
of viable answers, estimate a viable answer distribution, and
report informative statistical summaries that allow the user
to better understand the range of viable answers. Typi-
cally, the range of possible query answers are conveyed using
point estimates such as mean and variance. However, such
statistics are not informative when the shape of the density
function is unknown; distributions with di↵erent shapes can
have the same mean and variance but deliver very di↵erent
information (depicted in Figure 2).

We propose to use the following three statistics as sum-
maries of the viable answer distribution, and the answer
to aggregate queries in heterogeneous information systems:

1. Key point statistics: Include mean, variance, and skew-
ness of the viable answer distribution. These help users to
identify appropriate scalar values for aggregate answers.

2. High coverage intervals: Tell where the majority of
viable answers can be found. This is particularly useful
when the distribution is multi-modal (i.e., the distribu-
tion has a pdf with two or more significant peaks.)
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3. A stability measure: Tells how much the viable answer
distribution would change when updates happen or some
data sources become unavailable. It helps the heteroge-
neous information system to decide if a re-processing of
an aggregate query is necessary.

The above three statistics communicate semantic informa-
tion that enable the user to easily interpret and understand
the distribution. Specifically, the mean, variance and skew-
ness are standard measures most often desired in describing
a distribution. High coverage intervals fill the gap that the
point statistics are incapable of providing: “shape” informa-
tion about a distribution, which is especially useful when the
distribution is multi-modal. While the static behavior of the
answer distribution is described by the first two statistics,
the stability measure captures the update behavior of the
distribution.

Furthermore, to focus our work, we assume that the queries
that are being asked are aggregate queries. Specifically, we
consider sum, average, median, variance, and standard de-
viation. While our methods may work on other aggregate
functions, they were not our focus. We leave removing this
restriction as future work.

Algorithm 1: Overall algorithm for extracting statistics

input : (User specified) Query Q, Data sources D,
Confidence level 1� ↵, Desired coverage ✓.

input : (System parameters) Query processor QP ,
Initial sample size |S

uniS

| (400), #bootstrap
sample sets |S

boot

| (50), Bootstrap sample size
|Bi

boot

|(400), Distance measure d (d
L2).

output: Mean, variance, skewness point estimates
(µ,�2, �1), confidence intervals
(CI

µ

, CI
�

2 , CI
�1);

output: High coverage intervals (I, L, C);
output: Stability score for D Stab

d

.
begin1

// Unbiased sampling on viable answers.
S
uniS

= UniS(QP (Q),D, |S
uniS

|);2

// Bootstrap Sampling.

S
boot

= BootstrapSampling(S
uniS

, |S
boot

|, |Bi

boot

|);3

// Estimate point statistics.

(µ,�2, �1) = EstPointStatistics(S
boot

);4

// Estimate confidence intervals.

(CI
µ

, CI
�

2 , CI
�1) = EstCI(S

boot

, (µ,�2, �1),↵);5

// Estimate density function using KDE.

fD
X

= EstDensityFunction(S
boot

);6

// Obtain high coverage intervals.

(I, L, C)= GreedyAlgorithmCIO(fD
X

, ✓);7

// Obtain stability score.

Stab
d

= Stab(fD
X

, d);8

return Obtained viable answer statistics.9

end10

4. EXTRACTING ANSWER STATISTICS

4.1 Overview
Algorithm 1 describes the overall procedure for extracting

statistical summaries of the viable answer distribution. The
extraction of all three statistics share the uniS sampling and

bootstrap sampling steps. In the uniS sampling step (line 2)
a set of viable answers are sampled by processing the aggre-
gate query using values from di↵erent data sources. This is
the most expensive step. The answer set is then bootstrap
resampled (line 3). This enables the computation of point
statistics such as mean, variance and skewness (line 4) with
confidence intervals (line 5). The density estimation process
(line 6) is used for finding high coverage intervals (line 7)
and for stability analysis (line 8). We perform density es-
timation on sample sets rather than the entire data set to
ensure that the statistics extraction scales well.

Figure 3 shows the application of Algorithm 1 to obtain
answer statistics for the aggregation “Sum(Temp)” over the
data sources in Figure 1. Ideally we would prefer to have the
exact target viable answer distribution (shown in the top left
corner of the figure), however it does not scale well to get
this exact distribution. Instead we approximate using the
inputs, consisting of the query, data sources, and the map-
pings between the sources. The algorithm works as follows:
UniS sampling samples the data sources to obtain S

uniS

,
a set of viable answer samples, where |S

uniS

| = 400. Next,
this set is resampled to obtain a set of bootstrap sample sets
S
boot

= {Bi

boot

}, where |S
boot

| = 50 and |Bi

boot

| = 400, which
are then used to help obtain the 90% and 85% confidence in-
tervals for mean and standard deviation (stddev). After the
density function is estimated, Greedy algorithm CIO (Algo-
rithm 2) is used to obtain 3 intervals covering 34% of the
range of values, and approximately 90% of the estimated
probability distribution. Finally, a stability score of 6.6442
is computed for the query. The outputs of the algorithm are
shaded in grey.

In summary, the proposed methods e�ciently provide the
user with answer statistics that simplify the interpretation of
the range of viable answers. This is in contrast to ine�cient
methods that not only do not scale well, but also require the
user to examine and interpret the answers. Sections 4.2 –
4.4 , describe how the three statistics are extracted in detail.

4.2 Sampling and point statistics
We use the term component to indicate a data point that

an aggregate requires, e.g., in the climate data example in
the introduction, a component would be the temperature for
Vancouver on 06/11/2006. The process of sampling a viable
answer is: (1) find an assignment that determines the use of
values from data sources and (2) compute the answer using
the chosen assignments. We do not assume prior knowledge
regarding the quality, reliability, accuracy, and coverage of
the sources. In this context, to ensure correctness, the sam-
pling procedure must select the data sources uniformly and
independently to contribute to the aggregate.

We designed a sampling scheme called uniS that satis-
fies the above requirements. Let D = {D

i

} where i =
1, 2, . . . , |D| denote the data sources, C

i

be the set of com-
ponents on D

i

, and C be the set of all components needed
by the aggregate. UniS starts with an empty component
set T0 and an initial partial aggregate p0. Step i of uniS
uniformly selects one data source D

k

, and attempts to add
as many components in C

k

to the aggregate, i.e., it updates
T
i

= T
i�1 [ Ck

and p
i

with partial aggregate computed over
component set A

i

= {c | c 2 C
k

, c /2 T
i�1}. This process is

repeated until T = C or all n data sources have been vis-
ited. It then computes a final aggregate from the partial
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Statistics Value 

mean 8617.02 

stddev 1.84*10 
3 

skewness 2.02 

Confidence Interval 

0.9 mean: [8513, 8712] 

0.85 mean:[8521, 8710] 

0.9 stddev:[1.7, 1.97]*10 
3 

0.85 stddev:[1.77, 1.95]*10 
3 

(I = {intervals}, 
 L = 33.65%, 
C = 90.11%) 

Start 

UniS Sampling 

Bootstrap 
Sampling 

Estimate 
Density 

Function 
Stability 
Analysis 

Greedy 
Algorithm 

CIO 

Approximate by: 
Query, 

Data Sources, 
Source Mappings 

Stability Measure 
= 6.6442 

Ideal: viable answer distribution, 
prohibitively expensive to obtain 

Figure 3: Application of Algorithm 1 to extract statistics for “Sum(Temp)” over data sources in Figure 1.

aggregate and uses it as a viable answer sample. 1

Figure 4 shows an example scenario where uniS sampling
is applied to the sources in Figure 1 for an avg() aggregate
over C = {c1, . . . , c5}. It shows two di↵erent selection paths,
path(D1, D2, D4) and path(D2, D1, D4). Ti

is the set of cov-
ered components, p

i

is the incrementally maintained partial
aggregate. The arrows show the di↵erent selection paths for
T
i

and p
i

. For path(D1, D2, D4), the algorithm begins at
node D1 and uses all the components in D1. The remain-
ing two components c4 and c5 are sampled from sources D2

and D4, respectively. Note that same component, e.g, c1,
can have di↵erent values on di↵erent data sources. Hence,
using an alternative path, path(D2, D1, D4), yields a di↵er-
ent viable answer; since D2 is visited first, uniS takes both
components, c1 and c4, from D2.

D1 D2

D4D3

Node   Components
D1        {c1, c2, c3}
D2             {c1, c4}
D4                   {c1, c5}

Node  path(D1, D2, D4)
D1       T1={c1, c2, c3} p1=g(T1)
D2       T2=T1�{c1, c4} p2=g(p1, {c4})
D4           T3=T2�{c1, c5} p3=g(p2,{c5})
Node  path(D2, D1, D4)
D1       T1={c1, c4} p1=g(T1)
D2       T2=T1�{c1,c2,c3} p2=g(p1, {c2,c3})
D4           T3=T2�{c1, c5} p3=g(p2,{c5})

Figure 4: UniS sampling for selection paths of
{D1,D2,D4} and {D2,D1,D4}, where g = sum(), and
pi is the incrementally maintained partial aggregate.

Drawing a sample from possibly distributed data sources
involves processing an aggregate query with a randomly se-
lected value assignment. Although partial-final aggregates
helps to distribute the computational load of each aggrega-
tion, applying uniS to draw samples is still a costly oper-
ation. Thus, it is desirable to minimize |S

uniS

|. To this
end, we apply bootstrap resampling on the sampled viable

1As an example for partial-final aggregate, for final aggre-
gate avg(), the partial aggregate is sum().

answers to improve the confidence for point statistics such
as mean and variance. The three parameters: confidence
level 1 � ↵, confidence interval length denoted by len(CI),
and the sampling size |S

uniS

| are correlated to a↵ect the
computation of confidence intervals. Basically, the larger
the samples in the initial set, the higher the accuracy of
the point estimates and the confidence intervals. However,
to reduce computational costs, we start with a fixed initial
sample set and incrementally increase the size of this set
(i.e., perform uniS sampling). With each increment, we per-
form bootstrap resampling and assess the value of len(CI)
with the specified ↵. The procedure ends when the values
are satisfactory. Our implementation of bootstrapping uses
the standard BC

a

[13] method to obtain good quality con-
fidence intervals using small amount of initial samples.

4.3 High coverage intervals and optimization
To better understand how viable answers are distributed,

we estimate the viable answer distribution (Definition 2)
using KDE (Section 2.2). Specifically, we perform density
estimation for each bootstrap sample set and use the nor-
malized point-wise mean of all the estimates as the viable
answer distribution. Furthermore, we use two methods in
addition to standard KDE. The adaptive method described
in [6] automatically chooses the value of the bandwidth h de-
pending on the sample set. Bagging (Section 2.1) makes use
of the resampled set from bootstrapping. These methods
help obtain a density estimation that is both smooth and
stable, which is required to extract high coverage intervals
and compute stability scores.

We now describe an algorithm for extracting statistics
that convey shape information for fD

X

, the pdf estimated
by KDE.

Definition 3. [High coverage interval]
Given an estimated viable answer distribution fD

X

, and the
viable answer range W , a high coverage interval is a triple
(I, L, C), where I = {(I

i

, C
i

) : C
i

=
R
I

i

fD
X

(x)dx and

I
i

✓W}; C
i

is the coverage of I
i

. L =
P

i

|I
i

|
|W | is the fraction
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of the intervals’ total length to the viable answer range, and
C =

P
i

C
i

is the total coverage. 2

Definition 4. [Coverage interval optimization (CIO)]
Given a density function fD

X

for a distribution defined on a
finite range, a coverage threshold 0  ✓  1, and a constant
t representing the number of modes, the CIO problem finds
k intervals I1, I2, . . . , Ik where k  t, to minimize

P
k

i=1 |Ii|
subject to

P
k

i=1

R
I

i

fD
X

(x)dx � ✓. 2

We further note the following: First, the criterion of min-
imizing the total interval makes intuitive sense, e.g., the re-
ported high coverage intervals, whether in the weather, the
flight, or the stock exchange domain, should be as small as
possible. For example, in the flight domain, it is preferable
to have shorter rather than larger intervals for the departure
time of a certain flight. Second, the coverage threshold ✓,
conveys the percentage of information covered by the data
sources. The desired level can be defined by the user. Third,
for single mode distributions (e.g., a Gaussian), the optimal
solution is the classical 100% ⇤ ✓ confidence interval around
the mode. The coverage intervals are more useful and deliver
important information for multi-modal distributions.

Furthermore, note that k is not a given variable; the CIO
problem finds k intervals to minimize the total length of
the intervals returned, such that their coverage is above a
threshold. Larger coverage is obtained by selecting higher
modes. Motivated by this, we propose Algorithm 2 for the
extraction of high coverage intervals. The inputs to the al-
gorithm are the pdf fD

X

, the desired coverage ✓, and t modes
of fD

X

. 2 The algorithm works by greedily picking up new
intervals around the modes (lines 5–7) or extending previ-
ously picked intervals (lines 9–11) for the highest t�1 modes.
For the last mode, the interval is set to cover the average
amount of the additional coverage needed (lines 17,18). The
algorithm returns the obtained high coverage intervals if the
desired coverage is met or it has finished searching all the t
modes. Our formal analysis of the greedy algorithm relies
on the following theorem.

Theorem 4.1 (CIO mode containment property).
If the probability density function fD

X

of a distribution (1)
has t modes and (2) is second-order di↵erentiable every-
where on its range, and the optimal solution for CIO has
k  t intervals, then the largest k modes are contained by
the k intervals in the optimal solution.

Proof If an optimal solution for CIO has k intervals, but
the i-th largest mode (x

i

, fD
X

(x
i

)), i  k is not in the optimal
solution, then there must exist an interval I

j

for which any
point x 2 I

j

satisfies fD
X

(x) < fD
X

(x
i

); therefore we can
construct a new interval around x

i

and improve the previous
result. 2

If the conditions in Theorem 4.1 are satisfied, then the
algorithm returns an optimal CIO solution. Otherwise, the
greedy algorithm returns an approximation. There are two
scenarios for an approximation: (1) the returned intervals
may not reach the desired coverage, and (2) optimally choos-
ing the next interval to extend coverage requires picking the
I
j

that has the minimal |fD
X

0
(x+/�

t

)| (i.e., the largest incre-
mental on coverage).
2Because fD

X

is one-dimensional, the modes are easily com-
puted numerically. We omit details on mode seeking.

Algorithm 2: Greedy algorithm CIO

input : Estimated density function fD
X

over range W
input : Desired coverage ✓
input : A set M = {(x

i

,m
i

)} containing t modes of
fD
X

output: High coverage intervals (I, L, C)
begin1

C  0.0; i 1; array s; ⌦ ;;2

Sort M by m
i

in descending order;3

while C < ✓, i  (t� 1) do4

x�
i

 largest x s.t. x < x
i

, fD
X

(x) = m
i+1;5

x+
i

 smallest x s.t. x > x
i

, fD
X

(x) = m
i+1;6

s[i] (x�
i

, x+
i

); ⌦ ⌦ [ s[i]; C  
R
⌦
fD
X

(x)dx;7

j  1;
while C  ✓ do8

x�
j

 largest x s.t. x < x
j

, fD
X

(x) = m
i+1;9

x+
j

 smallest x s.t. x > x
j

, fD
X

(x) = m
i+1;10

s[j] (x�
j

, x+
j

); ⌦ ⌦ [ s[j];11

C  
R
⌦
fD
X

(x)dx;
j  j + 1;12

end13

i i+ 1;14

end15

if C  ✓ then16

Find (x�
t

, x+
t

) s.t. x�
t

< x
t

< x+
t

,17
R

x

+
t

x

�
t

fD
X

(x)dx = 1
t

(✓ � C);

s[t] (x�
t

, x+
t

); ⌦ ⌦ [ s[t]; C  
R
⌦
fD
X

(x)dx;18

end19

Let !1..!k

be disjoint intervals s.t.
S

k

1 !i

= ⌦;20

foreach !
i

do21

C
i

=
R
!

i

fD
X

(x)dx;22

end23

I  {(!
i

, C
i

)}; L 
P

k

1 |!i

|/|W |;24

return (I, L, C);25

end26

Obtaining an optimal solution in the above cases requires
knowing the first derivative of the density function every-
where, which will bring a substantial cost to the computa-
tional overhead. Therefore, we decided to use an approxi-
mate answer. Another reason for not pursuing the full op-
timal solution is that the density function itself is an esti-
mation, and thus has a built-in error. Our empirical study
suggests that the greedy algorithm gives a good approxima-
tion, and more importantly for query processing, it is fast
and scalable.

While the above CIO setting is useful in many situations,
the dual of CIO is desired when we are constrained to a
pre-determined interval length and asked to return the best
possible coverage.

Definition 5. [Dual of CIO]
The dual problem of CIO optimizes the selection of inter-

vals to maximize the coverage. The optimization maximizesP
k

i=1

R
I

i

fD
X

(x)dx subject to
P

k

i=1 |Ii| = �, where � is a
user-specified parameter. 2

The greedy algorithm can be easily modified for the dual
of CIO by modifying the termination criteria to check if the
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(a) (b) (c)

Figure 5: Finding high coverage intervals (Algo-
rithm 2).

total length of the current set of intervals exceeds length �
and return the size of the covered region.

Figure 5 shows how the high coverage intervals are found
for a pdf with 3 modes: the greedy algorithm starts from the
highest mode and extends the coverage to lower modes until
the coverage of the currently discovered intervals meets the
coverage requirement. Eventually 3 intervals are reported.

The returned intervals deliver important information about
the aggregation answers. For a fixed coverage ✓ (e.g., 0.9)
and a single mode distribution, if the returned interval length
is small, it means that di↵erent combinations of sources re-
sult in similar aggregation answers. It often indicates that
the user can be quite confident of the returned answer. How-
ever, we still need to be careful to correctly interpret the
result. A small interval length does not necessarily mean
that all sources are holding the same value for the same
component. It can be the case that the values of some com-
ponents dominate others. For example, some components
are significantly larger than others in a sum aggregation.

Additionally, high coverage intervals can be applied in un-
certain and probabilistic databases [22]. Such databases rep-
resent an attribute as a set of value and probability pairs,
att = {(A,Pr(A))}, where A represents the range of possi-
ble values and Pr(A) the probability. High coverage inter-
vals can be used to produce normalized probability measures
att = (I

i

, C

i

C

), or simply att = (I
i

, C
i

), for these databases.

4.4 The stability score for query answers
The point statistics and high coverage intervals provide

static information on how viable answers are distributed.
However, most heterogeneous information systems, such as
PDMSs, are dynamic and data sources may freely leave. One
natural question is how to keep aggregate answer statistics
up-to-date given that the departure of data sources will af-
fect the aggregate answer distribution. To answer this ques-
tion, we define the stability of the aggregate query.

Stability measures the amount of change caused in the
viable answer distribution when some of the sources are re-
moved. It can be quantified as the distance measure be-
tween the viable answer distribution without and with some
sources removed. Given a number of data sources to be
removed r, we randomly remove a set Q of size r from D
and denote the resulting viable answer distribution by f

D\Q
X

.
We use the distance measures introduced in Section 2.3 to
quantify the di↵erence between the two distributions. Let
S
uniS

= {x
i

}, be the sampled viable set, with regard to all
the sources D, and uniS sampling.

Definition 6. [Stability score of an aggregation] Let G
be the set of all possible choices for removing r sources from
D, and Pr(Q) be the probability of choosing (a particular) Q
with size r. Given S

uniS

, we define the stability score of the

aggregation as

Stab

d

(S
uniS

)
.

= � log
⇣
E[d(fD

X

, f

D\Q
X

)]
⌘

= � log

0

@
X

Q2G
Pr(Q)d(fD

X

, f

D\Q
X

)

1

A
(4.1)

where E denotes expectation and d is a distance measure. 2

Note that fD
X

is a constant distribution; however, random
removal of r sources results in random distributions f

D\Q
X

,

and subsequently random values for d(fD
X

, f
D\Q
X

). We use
the expectation of the di↵erence between the two distribu-
tions, E[d(fD

X

, f
D\Q
X

)], as the stability measure for the an-
swer distribution. We use the negative logarithmic over the
expected distribution di↵erence as the stability score so that
a higher value indicates a higher stability score, i.e., that the
viable answer distribution is expected to change less against
data source changes.

Furthermore, note that we do not need to enumerate or
choose Q, and explicitly compute fD\Q

X

; this is just for anal-
ysis. The computation of the L2

2 stability score does not rely
on it (Section 2.3).

When additional knowledge regarding the likelihood of
the departure of sources is not available, we apply an equal
chance assumption on data source removals, where Pr(Q) =

1/(|D|
r

) is constant given r. Another assumption needed for
stability analysis is that the number of data sources to be
removed is small i.e., r ⌧ |D|. This assumption is viable, be-
cause when the number is large, the system will re-evaluate
all the queries regardless of the stability scores. A key ben-
efit to the stability analysis is that it helps prioritize which
queries need updating when sources are updated with new
values.

Now we describe how to compute the stability score. Given
S
uniS

= {x
i

}, the sampled viable set, the answer distri-

bution is estimated by fD
X

(x) = 1
|S

uniS

|h
P|S

uniS

|
i=1 K(x�x

i

h

)

(Section 4.2). LetRQ be the set of sample points that belong
to the removed sources Q. To estimate the new distribution,
we need to exclude the points in RQ

f

D\Q
X

(x) =
1

(n� |RQ|)h
X

x

i

/2RQ

K(
x� x

i

h

)

=
n

n� |RQ|
f

D
X

(x)�
1

(n� |RQ|)h
X

x

i

2RQ

K(
x� x

i

h

)

(4.2)

where n = |S
uniS

|. The first term with fD
X

(x) is constant
given a query, but the second term changes with di↵erent
choices of RQ.

We show in Theorem 4.2 that under the equal chance as-
sumption for source removals, stability score can be obtained
analytically for the L2 distance measure.

Theorem 4.2 (L2 stability score). Given S
uniS

, its
L2

2 stability score

Stab

L2 (SuniS

) = �
1

2
log

✓
1

2nh
p
⇡

⇤
c

r

1� c

r

(1�
2

n(n� 1)
 )

◆

(4.3)
where n = |S

uniS

|, h is the bandwidth parameter of the
Gaussian kernel, the change ratio is estimated by c

r

= 1 �
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(1 � y

|D| )
r, with y defined as the average number of sources

needed for an answer, and the mutual impact factor is  =P
i,j

e�(x
i

�x

j

)2/4h2
.

The proof to Theorem 4.2 is in Appendix A. This greatly
reduces the computational overhead for the stability score.
It eliminates the need of simulating source removal in order
to compute a stability score.

We treat the change of viable answers due to data source
removals as a random variable. The L2 stability score is an
estimator of the expectation of this random variable. We
can also assess its 2nd moment, which gives the variance.
To do this, we use the Bhattacharyya distance d

Bh

, as the
distribution di↵erence measure and compute the stability

score for the square of the viable answer distribution
�
fD
X

�2
.

Corollary 4.1 shows that this score can also be computed
without source removal simulation.

Corollary 4.1. Given S
uniS

, with n, h, and  as de-
fined in Theorem 4.2, the Bh (Bhattacharyya distance) sta-
bility score over the square of the viable answer distribution,
is

Stab

Bh

(S
uniS

) = � log(
1

2nh
p
⇡

+
1

n

2
h

p
⇡

 ) (4.4)

Proving the corollary requires the same technique for The-
orem 4.2 (in Appendix A). Since the expectation of the

density f
D\Q
X

is just fD
X

, simple calculation by changing the
order of expectation and summation, the result follows.

The stability score measures the likelihood of changes to
query answers along with data source availability and up-
dates. It can be used to prioritize the re-evaluation and
update of queries, especially in a scenario where multiple
continuous queries are managed. Note that the system needs
to maintain neither the sampled viable answers nor the den-
sity estimation. A priority queue of the stability scores for
the continuous queries is su�cient for maintenance.

5. EMPIRICAL STUDY
Dataset: We empirically tested the extraction of aggre-

gate statistics using synthetic and real-life datasets. The
synthetic tests allowed us to scale various parameters to
verify the observations and predictions made in the anal-
ysis. For the real-life data, we experimented with Canadian
climate data [8]. This archive contains o�cial weather obser-
vations from stations located across Canada. The stations
report hourly, daily, and monthly data measurements for
attributes including, but not limited to: mean temperature,
maximum temperature, total rainfall, total snow, direction
of maximum gust, and total precipitation. Not all of the
data is quality controlled. Furthermore, the sources may
have missing values for some attributes, which typically im-
plies the data had not been observed. In addition to the web
interface, the data can be downloaded in XML or CSV for-
mat. We used the monthly climate data for the year 2006,
from 1672 stations measuring climate data for 104 districts.
Tables 1 and 2 summarize our data sets.

Aggregate Query: The query we use in all experiments
sums temperature climate data over 500 components from
the di↵erent data sets in Table 1 (|C| = 500).

Settings: The algorithms were implemented in Matlab
version 7.6.0 and the experiments were run on a PC with
2.5GHz Intel Core 2 duo CPU.

Data Notes Parameters
D2 A mixture of four Gaus-

sians
µ 2 [10, 20], [25, 35],
[40, 50], [55, 65], � = 0.5,
weight = 12 : 5 : 2 : 1

D3 A mixture of Gaussians,
Cauchy and Gamma

µ 2 [10, 20],
� = 1,1, 1

C (Real-life) Monthly cli-
mate data 2006

1672 stations, 104 mea-
suring districts

Table 1: Data set details

Parameter Symbol Default
#Data sources |D| 100
Aggregation size |C| 500
uniS sample size |S

uniS

| 400
#Bootstrap sample sets |S

boot

| 50
Bootstrap sample size |Bi

boot

| |S
uniS

|
Confidence level 1� ↵ 90%

Table 2: Parameters in empirical study

5.1 Sampling and bootstrap improvements
Table 3 shows the improvements that are obtained by us-

ing the bootstrap method compared to direct inference. In
particular, we report improvements in deriving tight con-
fidence intervals for point statistics, and on savings of the
required sample size. These experiments were conducted on
dataset D2.

In Table 3, the confidence interval length from direct in-
ference denoted by len(CI

di

), is used as the baseline for
each individual sampling. We report the maximal and av-
erage improvements using an improvement ratio defined as
i
r

= len(CI

di

)
len(CI

boot

) , where len(CI
boot

) is the confidence inter-
val length from bootstrapping. Smaller confidence intervals
represent more reliable estimates; thus, greater values of i

r

show bootstrapping achieves better performance. We can
see that by using bootstrap sampling (with BC

a

) with sam-
ple sizes of 200 and 400, the average improvement ratio is
approximately 2, which shows confidence intervals returned
by bootstrapping are half of that guaranteed by direct infer-
ence method. They are 3 to 4 times tighter when the sample
size is small (200).

Table 3 also shows the savings on the required sample size
in order to reach the confidence interval achieved by using
the bootstrap method. Similar to the improvement ratio
for Table 3, the tighter confidence intervals are translated
to the savings on the required size of samples if the same
confidence interval length that bootstrapping reports needs
to be achieved with direct inference. Hence the saving ra-
tio is defined as s

r

= |S
di

|
|S

uniS

| where |S
di

| is the sample size

that direct inference needs, and |S
uniS

| is the initial sam-
ple size that bootstrapping uses. We can see from Table 3
that the average savings on the sample size is about a factor
of 4. The results indicate that the confidence interval re-
ported with bootstrap sampling is much tighter than using
direct inference especially when the theoretical upper-bound
of variance is large.

5.2 High coverage intervals
We present the results of high coverage intervals detected

for 4 sum aggregations S1 to S4 where S1, and S2 sum cli-
mate data in C and S3 and S4 sum values generated in
D3. Figure 7 shows that the viable answer distributions for
the 4 aggregates are multi-modal, and when components in
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|SuniS| 1�↵ max ir avg ir max sr avg sr
200 0.8 4.248 2.556 18.1 7.36
200 0.9 3.309 2.119 10.96 4.84
400 0.8 2.896 2.001 8.39 4.28
400 0.9 2.293 1.655 5.26 2.82

Table 3: Bootstrapping improves confidence inter-
vals and the savings on required sample size.

Fig Greedy Optimal Cover Greedy/Optimal
a 0.2272 0.2272 85.72% 1.0
b 0.2475 0.2475 85.44% 1.0
c 0.3764 0.2724 73.82% 1.38
d 0.5552 0.5150 92.12% 1.08

Table 4: Approximation ratio of the CIO algorithm

the aggregation are di↵erently distributed, the viable an-
swer distribution has di↵erent modes (7 modes in Figure 7.c
compared to 8 in Figure 7.d).

By returning intervals in “dense” areas, the intervals cover
a small percentage of the range of data (under 25% for S1, S2

with 2 modes, 37% for S3 with 7 modes) to cover the major-
ity of the distribution. The mean of all 4 is in the central flat
area; expanding confidence intervals centering at the distri-
bution’s mean will result in very large confidence intervals.

Table 4 compares the performance of the greedy algorithm
with an optimal method that slices the range of the density
function uniformly into 4096 pieces and sums the top t slices
that cover the desired probability measure. The greedy ap-
proximation is better if the“Greedy/Optimal”value is closer
to 1.0 (it is always � 1.0). Note that although the optimal
method is more likely to return “tighter’ intervals , it does
not guarantee the continuity of the returned intervals; thus
we used the greedy method in our solution.

5.3 Stability
We designed a simulation process to test the e↵ectiveness

and sensitivity of the L2 stability score. We used the same
aggregations as Section 5.2. The simulation worked as fol-
lows: we deleted one data source from the 100 sources and
drew samples from viable answers that are computable from
the remaining 99 sources (e.g., for climate data set, it is 1
out of 104 reporting districts). We recorded the means of the
viable answers computed from 99 data sources (103 sources
for climate data set). The deviation maps in Figure 8 corre-
spond to the four distributions in Figure 7. They show the
changes on the sample means when di↵erent data sources are
disabled. For each circular graph, the center is the mean µD

of the viable distribution when no data source is removed;
the points represent the means µD\Q of the viable answer
distribution when di↵erent data sources are removed. The
distance between the data points and the center is defined

as d = |µD\Q�µ

D|
µ

D .
Comparing the four deviation maps in Figure 8, we can see

that answer distributions that have a higher stability score
are more “stable”, as demonstrated by the fact that the vi-
able distribution means are more densely populated around
the center. Note that the L2 stability does not directly as-
sess the change of distribution means. For example, Fig-
ure 2 suggests that two distributions with large di↵erences
may have the same mean. We observed this as a consis-
tent trend in our empirical study. While we can confirm

that queries with higher L2 stability scores are more sta-
ble, we are not yet able to answer questions like “Will the
mean of viable answers shift for more than 10% for a query
with score 6.3?” Our suggested use of the stability score is
for prioritizing updating of queries by re-evaluating queries
with lower stability scores. We plan to focus our future work
on deeper evaluation of similarity scores and stability scores
when more than one source is removed.

5.4 Processing overhead of operations
Figure 6 reports the execution times of three of the main

operations consisting of bootstrap re-sampling, KDE, and
greedy CIO algorithm. The time for computing stability
scores is negligible and has been discarded (200 iterations re-
quired less than a millisecond). Networking overhead times
have also been ignored.

As indicated by Figure 6, KDE dominates the processing
overhead of the operations. In the experiments, we use 50
bootstrap sample sets with di↵erent sizes. The bootstrap-
ping time increases with the sample size but takes less than
3/50 = 60ms per run. KDE takes about 5 seconds on 50
sample sets of size 800. The greedy CIO algorithm running
time is constant as the sample size increases, since a density
function with constant number of 4096 points, is used. We
estimate the time needed for computing one viable answer
to be 200ms, which is optimistic since sampling over a dis-
tributed hierarchy usually takes up to several seconds when
the networking overhead is considered. Therefore, sampling
the viable answers dominates the overall time needed for
sampling and extracting statistics (e.g., 80 seconds in sam-
pling and 5 seconds to extract statistics). This suggests that
our technique is fast and further optimizations should focus
on more e�cient aggregate computation.

Figure 6: Time breakdown of operations.

6. RELATED WORK
Data integration is concerned with increasing the coverage

of data, and with representing it concisely and accurately [5,
11]. The first objective is typically realized by adding more
sources. However, it is argued in [12] that“the more the bet-
ter” is not always true for integration; obtaining, cleaning,
and integrating data can be costly. Furthermore, adding
low-quality sources can deteriorate integration quality. In-
stead, [12] proposes to balance integration cost and gain by
selecting a subset of the sources wisely. Our sampling algo-
rithm can be extended with similar ideas.

To realize the second objective, concise and accurate data
representation, heterogeneity across data sources must be
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Figure 7: Multi-modal distributions and high coverage intervals

  0.02

  0.04

  0.06

  0.08

(a) S1 L2 score=6.5882

  0.02

  0.04

  0.06

  0.08

(b) S2 L2 score=6.4139

  0.02

  0.04

  0.06

  0.08

(c) S3 L2 score=6.4217

  0.02

  0.04

  0.06

  0.08

(d) S4 L2 score=6.3204

Figure 8: Deviations of empirical means when a single data source is disabled. Numbers indicate the rel-
ative distance (0.02 = 2%) from the center. Higher stability scores correspond to figures that have denser
distributions around the center.

resolved. As previously mentioned, [19] divides heterogene-
ity in heterogeneous information systems in three levels:
schema (determining which schema elements correspond to
each other), instance (determining which data instances cor-
respond to each other), and value (given conflicting values
for corresponding instances, choose which one to use). Our
work focuses on the third objective. Data fusion [5, 11],
also works on the third objective. It assumes a single true
value for each component in a data set, and attempts to re-
solve value conflicts among the sources. In [18] information
conflicts are resolved by estimating the reliability of sources
and truth values in a joint inference on data with heteroge-
neous types. In our work, however, do not assume a single
true value for components; instead we report a range of pos-
sible answers and aim to increase the users understanding
and confidence in the reported results. In [19] the truthful-
ness of data on the Deep web, in particular, the flight and
stock domain, is studied. In both domains, large amounts
of redundancy and inconsistency at the data value level are
observed. Furthermore, state of the art data fusion meth-
ods are also compared to resolve conflicts and estimate true
values. Semantic ambiguity, out-of-date data, and pure er-
rors are identified as reasons for inconsistent values across
the sources. Semantic ambiguity, one the major reasons for
value inconsistency, results from di↵erent semantics applied
by the sources for the attributes they store. For example,
one source may compute a statistic of the data over a year-
long period, another may compute the same statistic over
a half-year period. Both computations are correct with re-
gard to the semantics applied; hence multiple true values
are possible [19].

Substantial previous work on combining conflicting data
values from multiple sources comes from wireless sensor net-
work research [10, 15, 20, 21]. In a sensor network, sensor
motes form an ad-hoc network and collaborate to transmit

their sensor probe readings to a centralized repository that
is usually beyond the range of a single mote. This is per-
formed by transmitting data in a hierarchical aggregate net-
work rooted at the central repository. Although the hier-
archical aggregate network in our case has a lot in common
with sensor networks, the operations are essentially di↵erent.
The aggregate queries we process usually request a (small)
part of data maintained in the distributed data sources; in
the sensor network case, sensor motes have to upload all
their data to the central repository. This results in di↵erent
optimizations. We face the source combinatorial explosion
and use sampling to make estimations, while a sensor net-
work optimizes routing, transmission cost and seeks load
balancing among battery powered sensor motes. In [23], the
authors described a protocol to adaptively request data from
remote sensors over time so as to control the error of approx-
imate answers, while our work focuses on the snapshots of
answer distributions when an aggregation is processed. The
stability score helps maintain continuous queries but is not
a direct approximation measure for a query.

In [14] a method to e�ciently compute probability dis-
tribution functions in probabilistic databases, is proposed.
While using such techniques could eliminate the need for
sampling in many cases, in our scenario one of the goals is
to reduce the need for data to be gathered from the dis-
tributed sources. Since we do not assume that we control
the individual sources, we cannot ensure that they have the
capabilities proposed in [14].

Research in databases with uncertainty, like our work,
covers contexts that do not have one true answer. Vari-
ous models exist, including uncertain databases [22], pos-
sibilistic [24] and probabilistic [16] databases, inconsistent
databases [3]. Similarly, in data exchange, aggregate seman-
tics with possible worlds [2] is discussed — there are many
possible values that must be considered to find“the answer”.
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Among the various models, the uncertain database [22] is
closest to our setting: it also uses the relational model and
the value of an attribute is a discrete distribution with pos-
itive probability on a finite set of values. This is similar
to our setting, where the values from di↵erent data sources
are transformed into values in a distribution. In [22] the
authors discussed processing aggregate queries on uncertain
databases where aggregates uses expectations of values in
computation. Their work avoids the combinatorial explo-
sion simply by disallowing exhaustive aggregates and does
not give information about the viable answer distribution.
In our semantic integration setting, computing the expec-
tation of all component values is impractical as it requires
collecting all single values from all data sources. Also, in
our stability model, removal of one source will result in in-
validating all components’ values on that source. Therefore,
these techniques cannot be applied to processing aggregates
and providing distribution information.

7. CONCLUSION AND FUTURE WORK
This paper proposed our solution for estimating the distri-

bution statistics for viable answers to aggregate queries in
integration settings. Our technique extracts essential dis-
tribution statistics, returns intervals where aggregate an-
swers have a high chance to be covered, and provides nu-
merical stability scores for aggregate queries. We optimized
the computation of the desired statistics using sampling and
bootstrapping to minimize the sampling overhead and im-
proved the confidence interval for point estimates of mean
and variance. The greedy algorithm computes high coverage
intervals quickly and provides good approximations. Our
analysis enables the computation of stability scores without
simulating source removal. All the optimizations allow the
answer distribution estimation techniques described in this
paper to be used with a query processing engine.

The stability analysis is the beginning of our investigation
on monitoring query answers against changes in the data
sources. We will try to establish links between the actual
changes on aggregate answers and the stability score values
as future work. In addition, the current uniS sampling algo-
rithm assumes equal importance for the sources and samples
them uniformly and independently. However, the sources
may have di↵erent levels of quality and coverage. Future
work should consider some notion of provenance. Further-
more, uniS is greedy. While this means that the sampling
is not uniform on all viable answers, its speed may be an
advantage. In addition, uniS can be fully parallelized as
samples are obtained independently. Future work should
examine how the algorithm scales when parallelized.

Another future direction, is to make inferences regard-
ing the data and the sources based on the non-normality
of the estimated viable answer distribution. In particular,
the viable answer distribution can be used to diagnose pos-
sible errors in the data. Multi-modal distributions can in-
dicate possible mapping problems in data integration. For
example, the second high coverage interval in Figure 7 (a)
is caused by combining supposedly cleaned data sets that
incorrectly had values in both Fahrenheit and Celsius. Our
work can be extended to help automatically detect such er-
rors. Furthermore, using data stratification we can identify
homogeneous data sources that apply similar semantics in
their computations.
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APPENDIX
A. PROOF OF THEOREM 4.2

Proving Theorem 4.2 requires first some background discussion
on the product of two Gaussians (Section A.1) and then comput-
ing the integral of the square of the density estimation function
(Section A.2)

A.1 The product of two Gaussians
Let f1(x) ⇠ N (µ1,�

2) and f2(x) ⇠ N (µ2,�
2):
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A.2 The integral of the square of the density
function:

With the preparation in Appendix A.1, we can compute the
summation of the square of the density estimation function. Re-
call in KDE using Gaussian kernel, the density function is es-
timated as f(x) = 1
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P
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), where n is the size of the
sample set. We now expand the integral on the square of the
density, let ↵ =
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The kernel function is Gaussian K(x�x
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Switching the integral and summation in Equation (A.4), it is

is simplified to
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We can see that the integral (↵) is a function over all the data
points.

Now recall the stability analysis using the square d
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and thus the stability score formula in Theorem 4.2 follows.
We can see that the distance is related to the viable answer

distribution, f

D
X

, and the average fraction of a↵ected answers
when some sources are removed. Also it is easy to verify that
when all the data points coincide, the distance is 0, i.e., most
stable (the corresponding stability score is 1).

Now we assess how many answers are likely to be a↵ected when
r sources are removed from a total of |D| data sources. This
number relates to the number of data sources required for an
answer. Suppose on average we need y (also called the weight) out
of |D| data sources for a viable answer; then an estimate for the

fraction that got a↵ected is c

r

=
(
|D|
y

)�(
|D|�r

y

)

(
|D|
y

)
. We acknowledge

that not all y combinations are answers to the query but this is
still a good estimate when information regarding the coverage of
the sources is not available. Moreover, the weight itself includes
some of this information. The larger the average source coverage
for components, the smaller the value of y.

Another way is to estimate the expected number of samples
that become invalid when r sources are randomly removed This
can be done by simulation with the sample set or using c

r

= 1�
(1� y

|D| )
r which assumes that data sources uniformly contribute

to aggregate answers. This completes the proof of Theorem 4.2.
In the proof we use the property of Gaussian distributions

which limits the choice of kernel in KDE to Gaussian kernels.
We note here that from the perspective of convergence, when the
sample sizes increases, using any kernel will converge to the true
distribution; thus the expectation of the changes computed here
should also converge. Therefore if using any other kernels would
make any di↵erence, the divergence is from KDE, but it does not
impact the stability analysis.
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