
Scaling Unbound-Property Queries on Big RDF Data
Warehouses using MapReduce∗

Padmashree Ravindra
Department of Computer Science

North Carolina State University
pravind2@ncsu.edu

Kemafor Anyanwu
Department of Computer Science

North Carolina State University
kogan@ncsu.edu

ABSTRACT
Semantic Web technologies are increasingly at the heart of many
integrated scientific and general purpose data warehouses. Flexible
querying of such diverse data collections with (partially) unknown
structures can be enabled using triple patterns with ‘unbound’ prop-
erties (edges with don’t care labels). When evaluating such queries
using relational joins, intermediate results contain redundancy due
to repeated combination of bound-property mappings with those of
the unbound properties. However, in distributed-processing con-
texts, the footprint of intermediate results directly impacts I/O and
communication costs. Given the popularity of MapReduce-based
platforms for periodic on-demand scaling using Cloud resources,
we propose an algebraic optimization technique that interprets unbound-
property queries on MapReduce, using a non-relational algebra based
on a TripleGroup data model. The approach enables shorter execu-
tion workflows and reduced costs for processing RDF queries on
MapReduce. This paper introduces new logical and physical oper-
ators, and query rewriting rules for interpreting unbound-property
queries using the TripleGroup-based data model and algebra. A
key optimization strategy is to concisely represent intermediate re-
sults as far along an execution workflow as possible, thus mini-
mizing the effects of redundancy. The proposed work is integrated
into Apache Pig. Experiments conducted on real-world and syn-
thetic benchmark datasets demonstrate their benefit over popular
relational-style MapReduce systems.

1. INTRODUCTION
The successful adoption of Semantic Web technologies to inter-

link diverse (related) datasets has led to large semantically-integrated
scientific (Uniprot [8], Bio2RDF [9]) and general purpose (DBpe-
dia [7], Billion Triple Challenge [1]) RDF data warehouses. The
heterogeneous and evolving nature of such data collections makes it
difficult for users to be familiar with different kinds of relationships
that exist in the data. Consequently, exploration of datasets in data-
integration [23] and data archival [36] scenarios require flexibility
in querying, i.e., the ability to use structural variables or “don’t
∗The work presented in this paper is partially funded by NSF grant
IIS-1218277.

(c) 2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

cares” in queries. SPARQL [28], the standard query language to
specify graph pattern queries on the Semantic Web, enables flexible
querying of datasets by allowing OPTIONAL substructures or sub-
structures with missing edge labels. The latter are called unbound-
property triple patterns and can be used to query unknown relation-
ships (“Scientists in some way associated to the same city”), rela-
tionships with partial knowledge (“Gene Ontology terms related to
a gene Rxr”), or to retrieve all available information about a re-
source (“What is known about the Hexokinase gene?”).

Consider an example SPARQL query Q1 on Bio2RDF, a Life
Sciences RDF dataset. Q1 is useful to analyse the Parkinson’s dis-
ease and involves two unbound-property triple patterns (1) and (5).

Query Q1 Description
SELECT ?s1, ?label1, ?s2, Retrieve gene ontology (GO) terms
?label2, ?o2 related to “rxr”, a gene of interest
WHERE { in analyzing Parkinson’s disease.

?s1 ?p1 ?o1 . (1) Q1 contains two star subpatterns,
FILTER regex(?o1, “rxr”) SJ1 (1-2) and SJ2 (3-5).
?s1 label ?label1 . (2) (1) matches triples whose object
?s2 xGO ?o2 . (3) contains string “rxr” (any property).
?s2 label ?label2 . (4) (5) specifies an unknown
?s2 ?p2 ?s1 . (5) relationship connecting the two

} star subpatterns in the query.

Other than querying scenarios in integrated data warehouses,
subqueries with unbound-property triple patterns are also generated
while optimizing ontological queries by rewriting them as a union
of conjunctive queries. Examples of unbound-property queries can
be found in real [23] and synthetic Semantic Web benchmarks [11],
as well as other studies [22, 36]. In fact, 84% of queries in [2] in-
volve unbound-property triple patterns.

Given a triple relation T and subset relations TxGO and Tlabel
with property types xGO and label, respectively, the subquery SJ2
can be evaluated using relational joins (TxGO 1 Tlabel 1 T). Fig-
ure 1 (right) shows the subrelations of T participating in SJ2 and
a snapshot of the star-join result. An issue with intermediate re-
sults in such cases is redundancy. For example, the result for SJ2
in Figure 1(top right) contains repeated occurrences for matches
of the bound properties – xGO and label, with each match of the
unbound-property triple pattern. The numbers of matches for the
unbound-property triple pattern could be large if properties in the
input dataset have high multiplicity (gene9 is associated with mul-
tiple xRef), further aggravating the issue of redundancy. High-
multiplicity properties are common in real-world social networks
as well as biological datasets such as Uniprot and Bio2RDF, e.g.,
some Uniprot properties have multiplicity as high as 13K.

For applications with periodic scale–up requirements, the grow-
ing trend is to employ cloud-processing platforms, e.g., Hadoop [10],
Dryad [16], Hive [37], Pig [26], that are based on the MapRe-
duce [12] computing model. However, any redundancy in interme-

169 10.5441/002/edbt.2015.16

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2015.16

Sub Prop Obj

hgnc1 label Thioredoxin
reductase

gene9 label retinoid X
receptor beta

… … …

Sub Prop Obj

gene9 synonym RCoR-1

gene9 xGenBan genbank1

gene9 xRef homo2

gene9 xRef hgnc2

… … …

Sub Prop Obj

gene9 xGO go1

gene9 xGO go9

mgi10 xGO go8

… … …

(Prop=label)T
(Prop=xGO)T T

⋈

(Obj LIKE ‘%rxr%’)T (Prop=label) T

⋈ MSJ1

RSJ1

MRead

RWrite

MRSh

MSJ2
MRead

RWrite

MRSh

MJ1

RJ1

MRead

RWrite

MRSh

Sub Prop Obj

mgi1 synonym Txrx2

homo2 gene_symbol rxrb

… … …

Sub Prop Obj

mgi1 label Retinoic acid
receptor

homo2 label HomoloGene

… … …

SJ2 = TxGO ⋈ Tlabel ⋈ T

⋈
Redundancy due to join involving unbound-property

Join J1 = SJ1 ⋈ SJ2

Join SJ1
Join SJ2

(1) (2) (5) (3)

(4)

Redundancy
due to

multi-valued
property xGO

RSJ2

t1

t2

t3

t4

t5

Sub1 Prop1 Obj1 Prop2 Obj2 Prop3 Obj3

gene9 xGO go1 label retinoid … synonym RCoR-1

gene9 xGO go1 label retinoid … xGenBank genbank1

gene9 xGO go1 label retinoid … xRef homo2

gene9 xGO go9 label retinoid … synonym RCoR-1

gene9 xGO go9 label retinoid … xGenBank genbank1

Figure 1: A MapReduce workflow for an unbound-property graph pattern query Q1 with two star subqueries SJ1 and SJ2; Join
result of unbound-property star subpattern SJ2 contains redundant information related to bound properties (xGO, label)

diate results impacts query processing costs, particularly for MapRe-
duce based distributed processing platforms that involve shipping
of intermediate results across the network. The intermediate re-
sult footprint also impacts additional costs associated with sorting
phases, materialization between the 2-steps of a MapReduce (MR)
execution cycle, and total disk space requirements to store all inter-
mediate states for fault-tolerance purposes. Hence, it is critical to
minimize the footprint of intermediate results.

1.1 Related Work
Optimizing Relational Query Plans on MapReduce: There have

been several efforts to shorten the length of MR workflows [6,
40, 15, 5, 27] to minimize the overall costs of MapReduce-based
processing, sharing scans [24, 25, 39] and computations [24, 13]
across MR workflows, cost-based and transformation-based MR
workflow optimizer [20], and data skew problems [19]. Multi-way
join algorithms [6, 40] cluster multiple joins into a single [6] or
few [40] MR cycles, but have not been applied to join-intensive
workloads. Amongst the MapReduce-based RDF processing sys-
tems, SHARD [32] uses initial MR cycles to cluster triples into star
subgraphs, followed by separate MR cycles to process each clause
in the SPARQL query. HadoopRDF [15] pre-processes triples us-
ing the vertical-partitioning (VP) [4] approach, and uses heuris-
tics to greedily group non-conflicting joins in a query to minimize
the required number of MR cycles. However, unbound-property
queries would require processing a union of all VP property rela-
tions. The HadoopDB-based extension [14] uses a hybrid database-
Hadoop architecture that exploits the partitioning scheme to push
part of the execution into the database/RDF-3X. Hash partitioning
on Subject can enable local evaluation of unbound-property star
subpatterns. However, once the execution is handed over to Hadoop
the redundancy in intermediate results impacts the disk I/O, sort-
ing, and communication costs for the rest of the execution work-
flow. In order to minimize the data shuffle costs, MRShare [24]
enables sharing of map output data across grouping operations on
a common input relation. Some other works proposed a value-

partitioning scheme [21] to manage reducer-unfriendly groups dur-
ing the cube computation process, and a reducer-routing strategy [38]
that groups intermediate keys to balance the data across reduc-
ers. The evaluation strategies proposed in this paper, i.e., lazy β-
unnesting strategies, are in similar spirit.

Optimizing unbound-property queries: Earlier studies [35, 34]
have shown that the vertical-partitioning (VP) [4] storage model
may be inefficient for unbound-property queries. Such queries re-
sult in multiple joins and large unions of VP relations, which gets
worse for data containing large number of property types. The
multi-indexing schemes in systems such as RDF-3x [22] could ben-
efit single-star unbound-property queries. However, such systems
may not scale well for large RDF graphs, particularly for queries
with low selectivity and unbound objects [15]. There have been
efforts [36] to optimize simple unbound-property queries to RDF
views over relational databases. Since naive translation of an unbound-
property query into SQL results in unions of multiple subqueries,
the proposed Group Common Term transformer [36] exploits com-
mon terms in complex disjunctive SQL queries and rewrites them
into a smaller number of queries. Our work proposes a scalable
solution for processing unbound-property queries on MapReduce-
based parallel processing platforms.

Prior Work. A previous work explored the use of a non-relational
data model and algebra, i.e., the Nested TripleGroup Data Model
and Algebra (NTGA) [30, 17], for efficient RDF query process-
ing on MapReduce. The NTGA allows an alternative interpretation
of queries in terms of a “grouping” operation and a set of triple-
groups, that enables shorter execution workflows when compared
to relational query plans in systems such as Hive and Pig. For ex-
ample, query Q1 requires 3 MR cycles altogether (two cycles for
computing star-joins SJ1, SJ2, and a third cycle to join the stars)
as shown in Figure 1, while the NTGA would compute both SJ1
and SJ2 in a single cycle using a “grouping” operation, followed
by a second cycle to compute the join between the stars.

Comparison with Redundancy due to Multi-valued Properties.
Unlike the normalized representation of intermediate results of re-

170

lational operations, the nested triplegroup data model can concisely
represent intermediate results with multi-valued properties, e.g.,

{ (gene9, xGO, {go1, go9}) // A single triplegroup representing
(gene9, label, retinoid...) // two n-tuples t1 and t4
(gene9, synonym, RCoR-1)} // by nesting object component

Though the “nested object” model and nesting-aware physical op-
erators [31, 29] reduce the I/O footprint of execution workflows,
a join involving an unbound-property triple pattern would still pro-
duce ‘n’ triplegroups (assuming n triples with subject gene9). More
importantly, all n triplegroups contain redundant bound-property
component. In this paper, we generalize the concept of triple-
group nesting to allow nesting of property-object components, to
implicitly represent intermediate results while evaluating unbound-
property queries. However, such an implicit representation involves
triples playing multiple roles, i.e., a triple may match the bound
and the unbound component of a query, which needs to be incor-
porated into the “unnest” process, referred here after as β-unnest.
Additionally, there are implications of when and what portion of a
triplegroup is β-unnested during the different phases of an execu-
tion workflow, resulting in choices for evaluation strategies. Specif-
ically, this paper makes the following contributions:

• We introduce new logical operators and query rewrite rules
that allow the translation of unbound-property queries into
NTGA-based logical plans. The correctness and sufficiency
of query rewrite rules is also presented.

• We introduce new physical operators that offer different eval-
uation strategies - eager vs. lazy β-unnesting of intermediate
results during query processing.

• Extensive evaluation using large RDF graphs, both Semantic
Web synthetic benchmark and real-world biological datasets,
demonstrates the efficiency of our approach over relational-
style processing of unbound-property queries in Pig and Hive.

2. PRELIMINARIES

2.1 MapReduce and Data Processing
In the MapReduce programming model, data processing tasks

are encoded as map and reduce functions, that are executed in par-
allel across a cluster of computing nodes. Relational operations
such as a join between two relations, maps to a processing cycle
consisting of two phases – the Map phase and the Reduce phase.
In the Map phase, a set of slave nodes (mappers) execute the map
function that tags each tuple based on the join key. Map output tu-
ples are partitioned on the join key and shuffled across the network
to another set of slave nodes (reducers). In the Reduce phase, each
reducer receives a collection of tuples with the same join key, and
computes the join. The output of the Reduce phase is written onto
the Hadoop Distributed File System (HDFS) and read back in a sub-
sequent cycle. Each MapReduce (MR) cycle involves costs associ-
ated with initial input data reads in the map phase (MRead), the data
shuffling costs between mappers and reducers that involve local
disk writes at the mappers (MWrite), sort-merge costs (MRSort)
as well as network transfer costs (MRTR), and finally the cost of
writing the reduce output to the HDFS (RWrite).

To evaluate graph pattern queries on MapReduce, one can ex-
ploit the fact that graph pattern queries often consist of multiple
star-structured subqueries e.g., SJ1 and SJ2 rooted at variables
?s1 and ?s2 in query Q1, that can be evaluated using a multi-way
join algorithm. For a graph pattern query with l star subpatterns,
the typical MapReduce execution plan generated by relational-like

platforms such as Hive and Pig consist of a sequence of MapReduce
cycles MR1,MR2, ..,MRn such that 1 ≤ n ≤ (l− 1) cycles are
used for executing the l star-joins, and (n − l) MapReduce cycles
for the remaining joins in the query. Our example query Q1 can
be evaluated in 3 MR cycles as shown in Figure 1: MRSJ1 and
MRSJ2 to compute star subpatterns SJ1 and SJ2 respectively,
followed by a third cycleMRJ1 to join the stars. Given such a MR
workflow W , the overall processing cost of W is:

Cost(W) = cost(MR1) + cost(MR2) + ... + cost(MRn)

where the I/O, sorting, and network transfer costs of each cycle
compound across multiple cycles of a lengthy workflow. Further-
more, the portion of redundant data in the intermediate results di-
rectly impacts the HDFS writes (RWrite) for the current MR cycle,
and the scan costs (MRead) and shuffle costs (MRSh) of subse-
quent MR cycles. Hence, the redundancy has a ripple effect on the
costs of reads, writes, sorting and the data transfer costs across a
workflow with multiple MR cycles. Thus, lengthy workflows lead
to performance inefficiency and an important optimization goal is
to minimize the length of an MR execution workflow [6, 15, 40].

However, grouping of joins based on star structures does not
necessarily result in the typical join order generated using tradi-
tional cost-based optimization. One challenge is that most cloud
processing platforms are used in an on-demand model, where pre-
computed statistics for cost-based optimization may not be avail-
able or take too long to compute, resulting in long lead times. More
importantly, ordering joins in terms of their costs may generate
some linear subplans requiring one input as the full triple relation,
which in the absence of an index is a full scan. Such plans may in-
cur larger overhead due to HDFS reads, which outweighs the sav-
ings achieved by pushing selective joins ahead.

Our previous work [30, 17] explored an algebraic optimization
technique that rewrites graph pattern queries using operators that
are more MapReduce-cognizant. It has been demonstrated that
the underlying data model and algebra called the Nested Triple-
Group Data Model and Algebra (NTGA), not only results in short
execution workflows [30, 17], but also enable scan-sharing [18]
across star subpatterns, while reducing the I/O footprint of inter-
mediate results [31, 29]. In the next section, we overview the data
model and algebraic operators in NTGA that enable nimble exe-
cution workflows while evaluating RDF graph pattern queries on
MapReduce.

2.2 TripleGroup-based Processing of Graph Pat-
tern Queries on MapReduce

The NTGA data model represents the RDF database as sets of
related “group of triples” or TripleGroups. For example, triples
in the database can be modeled as a set of Subject TripleGroups,
each consisting of triples that share a common subject. For ex-
ample, triplegroups tg1 and tg2 in Figure 2 represent subject triple-
groups corresponding to triples sharing common subjects gene9 and
homo2, respectively. Given such a data model, answering graph pat-
tern queries translates to manipulation of triplegroups. Some of the
most relevant triplegroup operators are summarized in Figure 2 and
discussed below.

Algebraic Operators. Consider a query Q′ with two star sub-
patterns St1={label, gene_symb} and St2={label, xGO, xRef}.
NTGA’s grouping operator (γ) computes a set of subject triple-
groups TG based on the subject column as shown in Figure 2.
Given such a set of triplegroups TG, a match to a star subpattern is
a selection operation (σγ) that extracts a subset of triplegroups that
match the required join structure, i.e., a valid triplegroup must con-
tain at least one triple corresponding to each of the property types

171

Consider a set of triplegroups TG = Sub(T) = { tg1, tg2 } such that

Notation Semantics

TripleGroup Filter

Pbnd

(TG)

Enforces structural constraints in a star subpattern
by matching the set of bound properties Pbnd and
eliminating triplegroups in TG that violate the
required join structure (structure-based validation)
e.g.,

{label, gene_symb}
(TG) = TG

{label, gene_symb}
 ={ tg1}

TripleGroup Join

⋈ (tp1:TG1, tp2: TG2)

Joins triplegroups tg1 εTG1 and tg2 εTG2, based on
the join conditions specified by triple patterns tp1
and tp2 respectively.
e.g., ⋈(?s1 label ?label1 :TG

{label, gene_symb}
 ,

 ?s2 xRef ?s1 :TG
{label, xGO, xRef}

) = { ntg }

 (gene9, (label, “retinoid…”),
 (xGO, go1),
 (xGO, go8),
 (xGO, go9),
 (xRef, {homo2, (label, “Homolog…”)
 (gene_symb, rxrb)}

ntg =

 (gene9, label, “retinoid..”),
 (gene9, xGO, go1),
 (gene9, xGO, go9),
 (gene9, xGO, go8),
 (gene9, xRef, homo2)

tg2= (gene9,)

(gene9, label, “retin…”, xGO, go1, xRef, homo2)
(gene9, label, “retin…”, xGO, go8, xRef, homo2)
(gene9, label, “retin…”, xGO, go9, xRef, homo2)

≅

tg1= (homo2,) ≅ (homo2, label, “Homol..”),
 (homo2, gene_symb, rxrb),

Sub=gene9 (Tlabel ⋈ TxGO ⋈ TxRef)

Sub=homo2 (Tlabel ⋈ Tgene_symbol)

(homo2, label, “Homol…”, gene_symb, rxrb)

Figure 2: Example NTGA Operators

in the star subpattern. Triplegroup tg1 is a valid match for St1 and
is said to belong to the equivalence class TG{label,gene_symb} that
defines its join structure. Further, matching multiple star subpat-
terns translates to a disjunctive selection based on the set of prop-
erties in each star subpattern. For example, the two star subpatterns
in Q′ can be computed as follows:

σγ({label,gene_symb}∨{label,xGO,xRef})(TG)

Joins between star subpatterns can be computed using the join oper-
ator (1γ) that is semantically equivalent to the relational join oper-
ator but is defined on triplegroups. The object-subject join between
triplegroups tg1 and tg2 results in a nested triplegroup ntg whose
root is the triplegroup tg1 and child triplegroup is tg2. Before pro-
ceeding, we review the notion of content-equivalence that enables
lossless translation between relational algebra and NTGA plans.

Relational Algebra↔NTGA Plans. Triplegroups are ‘content-
equivalent’ (represented as∼=) to the set of n-tuples computed using
a set of relational-style joins. Let Stp be a star subpattern compris-
ing of the set of bound properties {P1, P2, ..., Pk}, and TStp be the
join result of vertically partitioned subset relations TP1 , TP2 ,...,TPk .
Let TStp(s) represent the subset of TStp with subject Sub = s.

TStp(s) = σSub=s(TP1 1 TP2 1 ... 1 TPk)

Each tuple in TStp(s) is of 3k arity (each property in Stp is asso-
ciated with 3 columns). Let πPi denote the projection of the (Sub,
Prop, Obj) columns corresponding to the parent relation TPi with
bound-propertyPi. Let tgs represent the set union of triples formed
by the 3 columns, i.e.

tgs = πP1(TStp(s)) ∪ πP2(TStp(s)) ∪...∪ πPk (TStp(s))
In summary, the tuples in TStp(s) can be vertically partitioned into
‘triples’ whose union is equivalent to a subject triplegroup tgs in
the NTGA data model. For our example data in Figure 2,

tg1 ∼= σSub=homo2(Tlabel 1 Tgene_symb)
tg2 ∼= σSub=gene9(Tlabel 1 TxGO 1 TxRef)

Benefits of NTGA Query Plans. For a query with ‘n’ star sub-
patterns, NTGA can compute ALL star subpatterns concurrently
using a single ‘grouping’ operation, by first ‘grouping’ the triples

0

500

1000

1500

2000

2500

Q1a Q1b Q2a Q2b Q3a Q3b

Ex
ec

u
ti

o
n

 T
im

e
 (

in
 s

e
cs

)

BSBM-500K: 43GB, 10-node

SJ-per-cycle Sel-SJ-first NTGA

2MR:1FS

2MR:2FS

3MR:2FS
3MR:2FS

2MR:1FS

2MR:2FS
2MR:1FS

3MR:3FS

3MR:2FS

Figure 3: Evaluation of different groupings of star-joins (MR:
No. of MapReduce cycles, FS: No. of Full Scans)

into subject triplegroups and then applying a disjunctive selection
based on the multiple star subpatterns. This is in contrast to the
relational-style approach where each star subpattern is evaluated
as a relational-style join. The grouping-based star-join computa-
tion naturally fits the map-group-reduce theme in MapReduce, and
translates to just one MR cycle for computing all star-joins in the
query (as opposed to ‘n’ MR cycles using relational-style plans).
In addition to the reduction in the number of required MR cycles,
NTGA also results in reduced size of intermediate results. Multi-
ple related n-tuples resulting from relational-style joins involving a
multi-valued property are implicitly represented as a single triple-
group in NTGA. For example, the 3 n-tuples corresponding to Stp2
containing a multi-valued property xGO are implicitly represented
using a single triplegroup tg2 as shown in Figure 2. This is specifi-
cally important in minimizing the I/O footprint of long MapReduce
execution workflows while processing RDF graph pattern queries.

Consider a case study using 6 test queries (each with two star
subpatterns) using the BSBM synthetic benchmark dataset (43GB)
on a 10-node Hadoop cluster, as shown in Figure 3. The test queries
have varying join structures with Object-Subject join (Q1a, Q1b,
Q2a, Q2b) and Object-Object join (Q3a, Q3b) between star pat-
terns. Queries Q1b, Q2b, Q3b are variations of Q1a, Q2a, Q3a
respectively, where one of the two star-joins is highly selective
due to an additional filter on the object column. Additional de-
tails about the evaluated queries are available on the project web-
site [3]. We evaluated three different groupings of star subpat-
terns in a query, (i) a star-join per cycle approach (SJ-per-cycle),
(ii) most selective grouping of joins first but preserving star struc-
ture as much as possible to minimize MR cycles (Sel-SJ-first), and
(iii) concurrent evaluation of star-joins using the grouping-based
approach in NTGA. SJ-per-cycle approach requires 3 MR cycles
for all queries (2 of 3 cycles require full scan of triple relation).
For Object-Subject joins, Sel-SJ-first approach can group joins into
just 2 MR cycles (both cycles scan entire triple relation). For the
Object-Object join (Q3a, Q3b), Sel-SJ-first still requires 3 MR cy-
cles, but more importantly has very high HDFS reads due to full
scan of triple relation in all 3 cycles. In contrast, the NTGA ap-
proach is able to minimize the number of MR cycles (2 cycles for
all queries), as well as minimize the required number of full scans
of the triple relation, thus outperforming the other two approaches
for all test queries.

Earlier work on NTGA captures basic graph patterns. In this
work, we build on the advantages of the TripleGroup data model
and algebra for efficient evaluation of unbound-property graph pat-
tern queries on MapReduce. Specifically, the semantics of the group-
filter operator (σγ) requires all properties in the query structure to
be bound. However, to capture more complex patterns, the algebra
and the set of rewrite rules need to be extended. The following sec-
tion introduces a number of extensions which allow us to relax the
above constraint to provide an extended group-filter semantics for

172

TSt1(S1)
= Sub=S1 (TP1 ⋈ TP2⋈ T)

 =

S1 P1 O1 S1 P2 O2 S1 P1 O1

S1 P1 O1 S1 P2 O2 S1 P2 O2

S1 P1 O1 S1 P2 O2 S1 P3 O3

S1 P1 O1 S1 P2 O2 S1 P4 O4

S1 P1 O1

S1 P2 O2

S1 P3 O3

S1 P4 o4

 tgS1 = P1(TSt1(S1)
) P2(TSt1(S1)

) Pu(TSt1(S1)
)

 =

 =

S1 P1 O1

S1 P1 O1

S1 P1 O1

S1 P1 O1

S1 P2 O2

S1 P2 O2

S1 P2 O2

S1 P2 O2

S1 P1 O1

S1 P2 O2

S1 P3 O3

S1 P4 O4

tgP1

tgP2 tgPu

Figure 4: Transformation: n-tuples to a triplegroup

evaluating unbound-property queries.

3. REWRITING UNBOUND-PROPERTY
QUERIES USING NTGA

Consider an unbound-property star pattern Stu = {Pbnd, Punbnd}
such that Pbnd = {P1, P2, ..., Pk} represents the set of bound prop-
erties and Punbnd represents an unbound property. Let TStu be the
star-join result of relation T (Sub, Prop,Obj) with vertically par-
titioned subset relations TP1 , TP2 ,...,TPk , and let TStu(s) represent
a subset of TStu with subject Sub = s.

TStu(s) = σSub=s(TP1 1 TP2 1 ... 1 TPk 1 T)

The tuples in TStu(s) have arity 3(k+1), where each property in
Stu is associated with 3 columns in TStu(s). Figure 4 represents
the tuples in TSt1(S1) for a star-pattern St1 with bound proper-
ties P1, P2 and an unbound property. To determine how Stu will
be evaluated using NTGA, it will be useful to develop some cor-
respondence between TStu(s) and a subject triplegroup in NTGA.
Note that a single triple may play multiple roles (occur multiple
times) in the result of an unbound-property star pattern – one as a
match for the bound property and the other as a match for the un-
bound property. For example, (S1, P1, O1) in Figure 4 occurs once
for the join with TP1 and once for the join with T . In the NTGA
data model, such multiple occurrences are implicitly represented
once, which must be accounted for in the transformation process.

Continuing with the transformation process, let πPi and πPu de-
note the projection of the (Sub, Prop, Obj) columns corresponding
to parent relation TPi with bound property Pi, and unbound prop-
erty Punbnd respectively. Let tgs represent the set union of triples
formed by the 3 columns, i.e.

tgs = πP1(TStu(s)) ∪...∪ πPk (TStu(s)) ∪ πPu(TStu(s))

Figure 4 denotes the triples in tgS1 for our example star-pattern
St1, formed by the set union of the partitions πP1 , πP2 , and πPu .
tgs has the following properties:

(i) ∀ti, tj ∈ tgs, the triples ti, tj agree on the subject column s.

(ii) ∃ non-empty subset of triples tgPi ⊆ tgs such that tgPi =
πPi(TStu(s)), for each bound property Pi ∈ Pbnd.

(iii) ∃ a non-empty subset of triples tgPu ⊆ tgs such that tgPu =
πPu(TStu(s)) and tgPu ∩ (tgP1 ∪ ... ∪ tgPk) may be non-
empty.

Essentially, the tuples in TStu can be horizontally partitioned into
sets of tuples with the same Subject column, and each element in
the partition can be vertically partitioned into ‘triples’ whose union
is equivalent to a subject triplegroup tgs in the NTGA data model.
The use of set union instead of bag union ensures that we have
a triplegroup. Further, subsets of triples in tgs represent matches
to the bound and unbound-property triple patterns in Stu. This
process basically describes a sequence of translation steps from the
relational algebra to NTGA. In other words,

TStu(s) = σSub=s(TP1) 1 ... 1 σSub=s(TPk) 1 σSub=s(TPu)
= tgP1 1 ... 1 tgPk 1 tgPu

Conversely, for our example star-pattern St1 in Figure 4, tuples in
TSt1(S1) are implicitly represented in tgS1 and can be produced by
(tgP1 1 tgP2 1 tgPu). A useful property is to distribute the join
with the unbound-property triple pattern across a union of subset
relations of T . In other words, if the triple relation T can be parti-
tioned into two subset relations, i.e., T = {TP ′u ∪ TP ′′u }. Then by
the distributivity of join over union, we have:

TPbnd 1 (TP ′u ∪ TP ′′u) ≡ (TPbnd 1 TP ′u) ∪ (TPbnd 1 TP ′′u)

Evaluating Stu using NTGA requires applying group filter (σγ)
to match the required query structures. Recall that σγ is defined in
terms of a set of bound properties. One might consider evaluating
an unbound-property star-pattern query using σγ with a disjunction
of concrete pattern combinations. Each such combination will con-
sist of the set of bound properties Pbnd with each property in the
database. For example, if Pbnd = {P1, P2} is the set of bound-
properties in the star pattern and P = {P1, P2, ..., P10} represents
the set of all properties in the database. Then, the σγ expression is:

σγ({P1,P2,P1}∨{P1,P2,P2}∨...∨{P1,P2,P10})(TG)

This would filter out triplegroups that do not match any of the re-
quired pattern combinations. However, the approach of enumerat-
ing all possible pattern combinations may be inefficient depending
on the number of properties in the database. Additionally, the sub-
ject triplegroup tgs may contain additional triples relevant to other
patterns, and hence may not exactly match a single pattern combi-
nation. Hence, there is a need to relax the σγ to restrict the match-
ing of structural constraints to the bound properties of the unbound-
property star pattern. This means that triplegroups that contain all
the bound properties (may contain additional properties), should
be produced as part of the result for σγ . Once this is done, we
need to extract subsets of triples in tgs that are exact matches for
any of the required pattern combinations. This is achieved by ex-
tracting the subset of triples corresponding to Pbnd and generating
their union with each triple in the unbound-property subset tgPu .
In the following section, we provide the formal definitions for a
specialized group-filter operator (σβγ) and the unnest operator (β-
unnest) that extracts the perfect matches to the unbound-property
star-pattern. From here on, we assume the convenience function
tg.props() (st.props()) to retrieve the set of properties in a triple-
group tg (star pattern st).

DEFINITION 1. (β Group-filter) Given a set of subject triple-
groups TG and a star pattern Stu = {Pbnd, Punbnd} contaning
an unbound property, the β group-filter operator σβγ returns the
subset of triplegroups in TG that contain a non-empty subset of
triples matching all bound properties Pbnd. Specifically,

σβγ(Pbnd,Punbnd)(TG) := { tgi ∈ TG | Pbnd ⊆ tgi.props()}

Essentially, σβγ ensures that triplegroups contain a matching triple
for each of the bound properties in Pbnd. Additionally, triplegroups

173

 (gene9, label, “retinoid...”),
 (gene9, xGO, go1),
 (gene9, xGO, go1),

ftg1 = (gene9, label, “retinoid…”),
 (gene9, xGO, go1),
 (gene9, synonym, “RCoR-1”),
 (gene9, xGenBank, genbank1),
 (gene9, xRef, homologene9)

tgPbnd

(a) -Group Filter: ({label, xGO}, {?p})(TG)

 =

 = TG’

(b) -Unnest: ({label, xGO}, {?p})(TG’)

= (gene9, label, “retinoid...”),

 (gene9, xGO, go1),
 (gene9, label, “retinoid...”)

ftg2 = (go:id2, label, “thiored..”),
 (go:id2, symb, “Txrx-1”),
 (go:id2, xRef, hgnc:id1)}

Incomplete
tgPbnd (gene9, label, “retinoid...”),

 (gene9, xGO, go1),
 (gene9, synonym, “RCoR-1”)

 (gene9, label, “retinoid...”),
 (gene9, xGO, go1),
 (gene9, xGenBank, genbank1)

 (gene9, label, “retinoid...”),
 (gene9, xGO, go1),
 (gene9, xRef, homologene1)

tgPbnd

tgPbnd

tgPbnd

tgPbnd

tgPbnd

Figure 5: NTGA logical operators to evaluate unbound-property star-patterns

may also contain triples containing other property types. For ex-
ample, given Pbnd = {label, xGO}, triplegroup ftg1 forms a
valid result for the σβγ expression in Figure 5(a). However, ftg2
does not contain a matching triple for the bound property xGO and
hence gets filtered out.

DEFINITION 2. (β unnest) Given a set of triplegroups TG and
an unbound-property star pattern Stu = {Pbnd, Punbnd}, the unnest
operator µβ creates a set of triplegroups that are exact matches to
Stu. Specifically,

µβ(Pbnd,Punbnd)(TG):= { tgi = {tgPbnd ∪ ti} | tgPbnd , ti ⊆ tg,
tgPbnd .props() = Pbnd, tg ∈ TG }

In other words, the β-unnest operator extracts subsets of triples in a
triplegroup tg that match the different pattern combinations corre-
sponding to the unbound-property star-pattern. Figure 5(b) shows
the 5 perfect triplegroups that are produced by β-unnesting the
triplegroup ftg in Figure 5(a), each containing a subset of triples
tgPbnd matching the set of bound properties Pbnd, and a triple ti
that matches the unbound-property triple pattern.

LEMMA 1. Given a triple relation T and an unbound-property
star pattern Stu = {Pbnd, Punbnd} such that the set of bound
properties Pbnd = {P1, P2, ..., Pk} and Punbnd represents a sin-
gle unbound property, the following equivalence holds:

(TP1 1 ... 1 TPk 1 T) ∼= µβPbnd(σ
βγ
(Pbnd,Punbnd)

(γs(T)))

Proof: Let TStu and TGStu represent the set of tuples and
triplegroups produced by evaluating an unbound-property star-pattern
Stu using relational joins and NTGA respectively. We need to
prove that all tuples in TStu are produced using NTGA. We prove
by contradiction. Let us assume that there exists a tuple tups ∈
TStu with subject s that cannot be produced using triples in tgs.
This can happen only if ∃ a triple ti ∈ tups such that ti /∈ tgs.
Firstly, since ti ∈ tups, we know that the subject of ti is s. If
ti.props() ∈ Pbnd, since ti’s subject is s, the σβγ ensures that
ti ∈ tgs. If ti.props() /∈ Pbnd, then σβγ still retains ti since its
subject is s. Hence, ti ∈ tgs. The only other case is when a triple
ti plays multiples roles (matches both bound and unbound parts)
which are implicitly represented in our data model. We rely on the
correctness of the µβ operator (illustrated earlier but proof omitted
for brevity) to complete the proof.

Generalization to Multiple Unbound Properties. The β-unnest
operator can be generalized to star-patterns containing multiple unbound-
property triple patterns. Let Pα, Pβ ,...,Pm represent the m un-
bound properties in a star-pattern. Then the β-unnest operator re-

sults in a set of triplegroups {tgαβ...m} each containing the bound-
property subset tgPbnd and m triples, one each matching the un-
bound properties Pα, Pβ ,...,Pm.

µβ(Pbnd,{Pα,Pβ ,..,Pm})(TG) := { {tgPbnd ∪ tα ∪ tβ ∪...∪ tm} }

such that tgPbnd ⊆ tg is the bound-property subset, i.e., tgPbnd .props()
= Pbnd, and triples tα, tβ , ...tm ⊆ tg ∈ TG.

4. TRANSLATION TO MAPREDUCE PLANS
The logical operators proposed in the previous section are inte-

grated into RAPID+ [17] (an NTGA-based extension of Apache
Pig). The query compilation process in RAPID+ begins with plans
of logical operators, which are compiled to plans of physical op-
erators, which could either be a single function or a function pair
corresponding to the map and reduce phases of the logical operator.
The MR plan is an assignment of physical operators to MR cycles.

The MR plan for an unbound-property query, executes the β-
group-filtering using the TG_UnbGrpFilter (σβγ) operator in the
reduce of the TG_GroupBy. This is followed by the β-unnest (µβ)
operator that produces a set of perfect triplegroups. Thus, both
TG_UnbGrpFilter and unnest can be executed in the reduce of
TG_GroupBy in a single MR cycle (MR1). We call this as eager
β-unnesting of triplegroups, represented in Figure 6(a). The joins
between the triplegroups matching the different subpatterns can be
computed using NTGA’s TG_Join operator in the subsequentMR
cycles. At the end of MR1 for this strategy, we have intermedi-
ate results (perfect triplegroups for the star pattern subqueries) that
contain redundancy with respect to the bound-properties. This in-
creases the cost of MR1.RWrite and HDFS read (MRi.MRead)
and shuffle costs (MRi.MRShuffle) for subsequent cycles MRi
that process the output of MR1. Therefore, optimization strate-
gies to minimize the redundancy in intermediate results of the star-
join computation phase would be useful to generate cost-effective
MapReduce workflows.

4.1 Optimization using β-Unnesting Strategies
The intuition is to concisely represent the result of an unbound-

property star-pattern as far along the MR workflow as possible.
Unbound-property query structures such as B4 in Figure 8 do not
involve further joins based on the bindings of the unbound-property
triple pattern, and thus can remain in its (nested) implicit represen-
tation till the end of the MR workflow. Query structures such as
our example query Q1 participate in joins based on the Object col-
umn of the unbound-property triple pattern. Hence, the star-join
results for such star subpatterns need to be β-unnested before the
join, since the map phase of TG_Join tags the triplegroups based
on the join key and partitions them to different reducers. We pro-
pose evaluation strategies to delay the β-unnesting of triplegroups.

174

Map1

Reduce1

Mapn

Reducen

MRSJ1

…

R
ED

U
N

D
A

N
C

Y

MR Execution Workflow

MRJ1

RWrites

MReads

RWrites

MRShuffle

a) Eager -Unnesting
 (reduce-side full -unnest)

b) Lazy Full -Unnesting
 (map-side full -unnest)

c) Lazy Partial -Unnesting
 (map-side partial -unnest)

Figure 6: (a) eager β-unnest of a triplegroup during star-join,
(b) lazy full and (c) lazy partial β-unnest in later join phase

Lazy Map-side β-Unnest: The β-unnesting of triplegroups can
be delayed to a MR cycle that requires join on an unbound-property
triple pattern, such as cycle MRJ1 in Figure 6(b). Specifically, we
push the β-unnest operator to the map phase of the correspond-
ing TG_Join operator. We refer to the new physical operator as
TG_UnbJoin (reduce phase remains same as TG_Join). By de-
laying the β-unnesting of triplegroups, we can minimize the re-
dundancy in results of the star-join computation phase, and hence
avoid unnecessary writes, reads, and shuffle costs for all subse-
quent intermediate MR phases. However, the β-unnest operator
expands the map output of TG_UnbJoin, which impacts the shuf-
fling costs. Assuming that TG_UnbJoin is assigned to the kth MR
cycle MRk in the workflow, then the redundancy in map output
impacts (MRk.MWrite +MRi.MRSort +MRi.MRTR).

Mapper 1

AnnTG
{o1, o2, o3, o4, o5}

gene9

AnnTG
{o1, o3, o5}
 gene9 AnnTG

{o2, o4}
 gene9

partial-unpack(2)

Reducer 1 (Key k1*)

AnnTG
{o1, o3, o5}
gene9

AnnTG
{o1}
 gene9

AnnTG
{o3}
 gene9

AnnTG
{o5}
 gene9

 k1* k2*

Full unpack

Property Object
label o1
xGO o2
synonym o3
xGenbank o4
xRef o5

AnnTG
{o1, o2, o3, o4, o5}

gene9

(o1,o3,o5) k1*

AnnTG
{o1, o3, o5}
 gene9

AnnTG
{o2, o4}
 gene9

AnnTG
{o1}
 gene9

AnnTG
{o3}
 gene9

AnnTG
{o5}
 gene9

AnnTG
{o1, o3, o5}
 gene9

M
ap

-s
id

e
 L

az
y

P
ar

ti
al

-

U
n

n
e

st
 (

2
)

Reducer(k1*) Reducer(k2*)

AnnTG
{o2, o4}
 gene9

AnnTG
{o2}
 gene9
AnnTG

{o4}
 gene9

R
ed

u
ce

-s
id

e

Fu
ll

-
U

n
n

e
st

Sh
u

ff
le

o

n
 k

ey
 k

*

(Perform triplegroup join assigned to current MR cycle)

(o2,o4) k2*

Figure 7: Lazy partial β-unnesting (φ2)

Lazy Map-side Partial β-Unnest: We illustrate this strategy us-
ing Figure 7 . In order to support efficient look-up of (Property, Ob-
ject) pairs in a triplegroup, we use an optimized internal represen-
tation scheme (extended multi-map) represented here as AnnTG,
that concisely represents annotated triplegroups. Example anno-
tated triplegroup AnnTG{o1,o2,o3,o4,o5}

gene9 in Figure 7 represents the
subject triplegroup ftg1 (Figure 5(a)) which is a valid match for
the unbound-property star subpattern SJ2 in query Q1. Anno-
tated TG AnnTG

{o1,o2,o3,o4,o5}
gene9 contains 2 bound-property triples

(matching label and xGO) and 5 triples matching the unbound-
property triple pattern. A β-unnest operation produces 5 triple-
groups (all containing the same bound-property component) that
form a part of the map output for MRk. The default partitioning
scheme in Hadoop assigns the map output tuples to a reducer r
based on the hash value of the join key, i.e., hash(joinKey)%r.
In the case that we have just 2 reducers, it is possible that triple-
groups containing redundant bound-property component are parti-
tioned and assigned to the same reducer based on the join keys (ob-
ject of triples in the unbound-property component). For example,
AnnTG

{o1}
gene9 and AnnTG{o3}

gene9, may be assigned to the same Re-
ducer, e.g., Reducer1. The redundancy in the map output of MRk
can be minimized if triplegroups that are eventually assigned to the
same reducer are concisely represented during the shuffle phase,
i.e., they are not β-unnested completely. By avoiding a part of
the β-unnesting, we can reduce the size of map output, and hence
reduce the shuffling costs. We propose a partial β-unnesting strat-
egy that creates a set of triplegroups that each contain the bound-
property component tgPbnd , and a subset of the unbound-property
component tgPunbnd .

DEFINITION 3. (partial β-unnest) Given a set of triplegroups
TG, an unbound-property star-pattern Stu={Pbnd, Punbnd}, and
a partition function φm that partitions the triples in tgPunbnd into
m partitions, the partial-β-unnest operator µβ

′
produces a set of

triplegroups such that:

µβ
′

(Pbnd,φm)(TG) := { tgi = {tgPbnd ∪ partitioni} }

where
• ∀ tg ∈ TG, the bound-property subset tgPbnd ⊆ tg such

that tgPbnd .props() = Pbnd.

• A function φm assigns a triple tj ∈ tgPu ⊆ tg to partitioni,
i.e., φm : tj → partitioni, where i ∈ {1, 2, ...,m}.

The function φ partitions the triples in tgPunbnd into m buckets
based on the value of the join key. Essentially, µβ

′
produces a max-

imum of m triplegroups for each triplegroup tg ∈ TG. For exam-
ple, a partial β-unnest on AnnTG{o1,o2,o3,o4,o5}

gene9 in Figure 7 using
the partition function φ2 produces 2 triplegroups -AnnTG{o1,o3,o5}

gene9

andAnnTG{o2,o4}
gene9 respectively. This implies that φ2(o1) = φ2(o3) =

φ2(o5) = k1*. Similarly, AnnTG{o2}
gene9 and AnnTG

{o4}
gene9 are

assigned to the same partition and hence remain implicitly repre-
sented as a single triplegroup. The redundant content in the map
output is now a function of the partition range m. The partially β-
unnested triplegroups are tagged and assigned to the reducers based
on the partition key k*. Triplegroup join with lazy partial β-unnest
is implemented as a new physical operator, TG_OptUnbJoin. Fig-
ure 6(c) represents how the I/O footprint can be reduced by partial
and delayed β-unnesting at map phase of MRJ1.

4.1.1 Algorithms For Physical Operators:
Algorithm 1 gives an overview of the job workflow for two key

phases in the NTGA plan – Job1, that computes ‘matching’ triple-
group equivalence classes that match all star subpatterns in the
query, and Jobi, that computes the join between the triplegroup
equivalence classes.
Job1: Compute ‘matching’ TG equivalence classes. The input

to this job is a set of 3-tuples (triples) in the RDF database, and
the output is a set of annotated triplegroups AnnTG that match
the star subpatterns in the query. In the map phase, each tuple is
tagged based on the Subject component. In the reduce phase, all

175

Algorithm 1: MR job workflow for NTGA plan
Job1: Compute ‘matching’ triplegroup equivalence classes

Map:
TG_GroupBy.Map(Tuples T);

Reduce:
TG← TG_GroupBy.Reduce(Sub, List<Tuples>);
TG′←TG_UnbGrpFilter(TG,<EC, {Pbnd, Punbnd}>);

Jobi: Join between triplegroup equivalence classes
Map:
TG_OptUnbJoin.Map(TG′) //partial β-unnest

or TG_UnbJoin.Map(TG′) //β-unnest
Reduce:
TG′′←TG_OptUnbJoin.Reduce(TG′);
or TG′′←TG_UnbJoin.Reduce(TG′);

tuples corresponding to the same Subject component Sub are pro-
cessed in the same reduce(), producing subject triplegroups. This is
followed by a group-filtering phase to filter out triplegroups that vi-
olate the structural constraints in the query. Algorithm 2 shows the
pseudocode for the β group-filtering operator, TG_UnbGrpFilter.
The (Property, Object) pairs in a triplegroup (tempMap in line 1),
are matched with all equivalence classes (star subpatterns) in the
query (line 2). For each matching equivalence classEC, the bound
properties Pbnd are extracted (line 4). The tuples in the group
are considered relevant to the query only if they contain all bound
properties (lines 5-9). If the matched equivalence class contains an
unbound-property, the resultantAnnTG contains all the (Property,
Object) pairs for subject Sub (lines 6-7). If the matched equiva-
lence class does not contain any unbound-property, only the rele-
vant (Property, Object) pairs that match the bound properties are
retrieved into the resultant triplegroup (line 8). Essentially, a group
of tuples that does not contain the required set of bound properties
for any of the star subpatterns in the query is filtered out.

Algorithm 2: TG_UnbGrpFilter
β-GrpFilter (tg,ECList:<EC,{Pbnd, Punbnd}>);

1 tempMap← extract triples in tg;
2 matchedECList←match(tempMap,ECList);
3 foreach EC ∈ matchedECList do
4 Pbnd← extract bound properties inEC;
5 if Pbnd ⊆ tempMap.keySet then
6 ifEC contains unbound property then

//β group filtering
7 propMap← tempMap ;

else
//Extract only bound properties in EC

8 propMap← extract Pbnd entries from tempMap;

9 emit 〈AnnTG(Sub,EC, propMap)〉;

Jobi: Join between TG equivalence classes. The input to this
phase is a set of annotated triplegroups, belonging to the two equiv-
alence classes whose join is to be computed. The output is a set of
annotated triplegroups, representing the joined result between the
two equivalence classes. Based on the amount of redundancy in
intermediate results due to the unbound-property star subpattern, a
decision is made to either enable a partial or full β-unnest of the
map output. Star subpatterns where the unbound-property is asso-
ciated with a (partially) bound object, are not likely to cause redun-
dancy, and hence a full β-unnest is enabled (TG_UnbJoin opera-
tor). For all other cases, the TG_OptUnbJoin operator is used.

Algorithm 3 shows the map-reduce functions for the operator
TG_OptUnbJoin that integrates lazy partial-β-unnest operation. In
the map phase, the annotated triplegroups that join on Subject are
tagged using the Subject’s partition key k* computed using φm
(lines 1-3). For joins on Object, the AnnTG is partially β-unnested

Algorithm 3: TG_OptUnbJoin
Map (key:null, val: AnnTG atg) ;

1 if join on Sub then
2 k*← φm(atg.Sub);
3 emit 〈 k*, atg〉 ;

else if join onObj then
//Partially β-unnest atg using φm(Obj)

4 atgList← partial-β-unnest (atg, φm) ;
5 foreach partialMap ∈ atgList do
6 k*← extract k* for partialMap ;
7 emit 〈 k*, partialMap〉 ;

Reduce (key:k∗, val:List of AnnTGs TG′) ;
8 leftList← β-unnest leftEC AnnTGs from TG′;
9 rightHash← β-unnest rightEC AnnTGs from TG′;

10 foreach leftAnnTG ∈ leftList do
11 foreach prop ∈ leftAnnTG.propMap do

//Handle multi-valued property
12 objList← extract prop’s objects from leftAnnTG ;
13 foreach joinKey ∈ objList do
14 rightAnnTG← rightHash.get(joinKey) ;
15 emit 〈 joinTGs(leftAnnTG, rightAnnTG)〉;

using the partial-β-unnest operation. The partial-β-unnest
operator splits the (Property, Object) pairs in the triplegroup atg
based on the Object’s partition key resulting in a list of partially-
unnested AnnTGs (atgList in line 4). A map output tuple is gen-
erated for each partially-unnested AnnTG, tagged by its partition
key k*(lines 5-7). The replication factor Rep is now a function of
φm. In the reduce phase, all AnnTGs corresponding to the same
group key k* but different join keys are processed in the same re-
duce(). In order to selectively join them based on the original join
key, the AnnTGs corresponding to the right relation (rightEC)
are β-unnested into perfect triplegroups and hashed based on the
join key (rightHash in line 9). The algorithm iterates through
each AnnTG in the left relation (leftEC in line 8), and probes the
hashed relation (rightHash) based on the Object value (join key)
for each property (lines 10-14). Multi-valued properties have mul-
tiple Object values and the probing is done for each value (lines
12-13). When a match is found, the two AnnTGs are joined (line
15) as per the definition of TG_Join. The partition factor used by
φ depends on the size of input, potential redundancy factor, and
average number of tuples that can be processed by a reducer.

5. EVALUATION
We evaluated the proposed algebraic optimization techniques on

both real-world and synthetic datasets, and compared it with two
popular relational-style MapReduce systems, Apache Pig and Hive.
For NTGA, we evaluated two approaches for processing unbound-
property graph pattern queries – EagerUnnest (Section 4), and the
optimized LazyUnnest with map-side lazy β-unnesting. Experi-
ments were conducted on NCSU’s VCL [33], where each node in
the cluster was a dual core Intel X86 machine with 2.33 GHz pro-
cessor speed, 4G memory and running Red Hat Linux. 60 and
80-node Hadoop clusters (block size set to 256MB, 1GB heap-size
for child jvms) were used with Pig release 0.11.1, Hive 0.10.0 and
Hadoop 0.20.2. Only 20GB disk space was available per node, re-
quiring large clusters to support large scale data, i.e., the 80-node
Hadoop cluster made available ∼1.6TB HDFS disk space. Results
recorded were averaged over three trials.

Choice of Systems: Both Pig and Hive evaluate star-joins in a
single MR cycle (one-star-join-per-cycle), resulting in same length
workflows for all queries. Hive enables shared-scan of input re-
lations within an MR cycle, thus minimizing the overall HDFS

176

X X X X

0

1000

2000

3000

4000

5000

6000

B0 B1 B2 B3 B4
BSBM-2M: 60-node (Rep 1)

11000

(a) (b) (c)

X X X X X X X X X X X X

0

1000

2000

3000

4000

5000

B0 B1 B2 B3 B4

Ex
ec

u
ti

o
n

 T
im

e
 (

in
 s

ec
s)

BSBM-2M: 60-node (Rep 2)

Pig Hive EagerUnnest LazyUnnest
 X X X

0

1000

2000

3000

4000

5000

B1-3bnd B1-4bnd B1-5bnd B1-6bnd

Ex
ec

u
ti

o
n

 T
im

e
 (

in
 s

ec
s)

BSBM-2M: 60-node (Rep 2)

Pig Hive EagerUnnest LazyUnnest

X X X X X X X X X

0

1000

2000

3000

4000

5000

B0 B1 B2 B3 B4 B5 B6

Ex
ec

u
ti

o
n

 T
Im

e
 (

in
 s

ec
s)

BSBM-1M: 60-node (Rep 2)

Pig
Hive
EagerUnnest
LazyUnnest

0

200

400

600

800

1000

1200

B1-3bnd B1-4bnd B1-5bnd B1-6bnd
H

D
FS

 W
ri

te
s

(i
n

 G
B

)

BSBM-2M: 60-node (Rep 1)

Pig/Hive EagerUnnest LazyUnnest

Figure 9: Performance with varying unbound-property star patterns with (a) replication factor 2 (b) replication factor 1 (c) Perfor-
mance with varying size of bound-property component (BSBM-2M, 172GB, 60-node)

?p
?p

Q2-0unb Q2-1unb Q2-3bnd

?p

Q2-4bnd

?p

Q2-5bnd

?p

Q2-6bnd

Q1-Offer

?p
OFFER

type

Q1-Review

?p
REVIEW

type

Q1-Product

?p
PRODUCT

type

Q1-Product

?p
Product1

prod

?p

Q2-2unb

?p
?p

Q3

Dbp1-unsel

?p
SCIENTIST

type

Dbp1-sel

?p
Sopranos series

?p

Dbp2

?p

Dbp3

?p

?p
?p

“nur77”

?p ?p “rxr” ?p ?p

“rxr”

A5

?p
“hexokinase”

A3 A4

A6

A1

?p
“hexokinase”

A2

?p “HK1”

?p

?p

B0

B4

B1

?p

B2

“Product”
?p

B3

?p “date”

?p

B1-5bnd

?p

B1-6bnd

?p

B5

?p ?p

B6

?p

B1-4bnd

C1

?p
SCIENTIST

type

C2

?p
Sopranos series

?p

C3

?p

C4

?p

Figure 8: Testbed unbound-property RDF queries

reads. Pig can execute independent MR cycles concurrently, which
is beneficial while evaluating multiple star subpatterns. NTGA ap-
proaches produce shorter workflows (all-star-joins in single MR
cycle) when compared to Hive/Pig for queries with multiple star
subpatterns. A triple relation is loaded as a 3-column table in
Hive, where as Pig (and NTGA) process them as flat files. In
Pig, the SPLIT operator is used to generate vertically-partitioning
relations. HadoopRDF [15] does not currently support unbound-
property queries and is not included for evaluation. Systems such
as HadoopDB [14] scale well but rely on a heavy pre-processing
phase that is more suitable for private clusters and less-evolving
data. We focus on on-demand and pay-as-you-go workloads that
involve quick exploration of datasets to get a sense of the data.

Testbed - Dataset and Queries: Real-world life sciences data
from Bio2RDF [9] was used for evaluation. The queried biological
data warehouse integrated 24 datasets, consisting of a total of∼4.7
billion triples (615GB in n-triple format). Two other real-world
datasets, DBPedia Infobox (DbInfobox) [7] dataset of size 4.4GB
(33.74M triples: 20.5M properties, 13.23M types) and the Billion
Triple Challenge 2009 dataset (BTC-09) [1] of size 193GB (1.5B
triples), were also used for evaluation. More than 45% of prop-
erties in both datasets are multi-valued with varying multiplicity.
Two synthetic datasets generated by the BSBM [11] data genera-
tor tool – BSBM-1M (85GB dataset with 1 million Products, total
∼370 million triples) and BSBM-2M (172GB dataset with 2 mil-
lion Products, total ∼700 million triples) were used for scalability
study. The evaluation tested unbound-property queries with vary-
ing selectivity, varying join structures (single join to more com-
plex structures with multiple star subpatterns) that are represented

in Figure 8. Graph patterns in queries A1-A6 have been extracted
from Bio2RDF demo queries [2]. Additional details about the eval-
uated queries, along with the Pig / Hive scripts, are available on the
project website [3].

Varying join structures (B1-B6): Scalability experiments were
conducted to evaluate different join structures with varying num-
ber of unbound-property triple patterns, and varying arity of star
subgraphs. Figures 9(a) and (b) show a performance compari-
son of Pig, Hive, and the NTGA approaches for two-star queries
with no unbound properties (B0), one unbound-property triple pat-
tern with join on unbound object (B1), one unbound property as-
sociated with a partially-bound object (B2), two unbound-property
triple patterns in the same star with one partially-bound object (B3),
and an unbound-property triple pattern (B4). Pig / Hive evaluate all
three queries using 3 MR jobs (one per star-join), while NTGA
evaluates them in 2 MR jobs. The queries involve a multi-valued
property prodFeature that impacts redundancy.

In order to avoid data loss during node failure, fault-tolerant sys-
tems such as Hadoop rely on replication of data blocks on multiple
nodes using a configurable parameter (dfs.replication). Initial set of
experiments were conducted using a replication factor of 2 for the
larger dataset BSBM-2M on a 60-node cluster (1.6TB disk space,
20GB per node). The results, shown in Figure 9(a), demonstrate
how critical it is to concisely represent intermediate results and
eliminate redundancy when possible. Missing bars marked with
‘X’ represent failed execution. Pig / Hive approaches failed during
the last job (join between stars) for all 5 queries due to shortage
of disk space. While EagerUnnest successfully executed for B0,
B1, and B2 by concisely representing subgraphs involving multi-
valued properties, it failed for queries B3 and B4. This is because
the double unbound-property triple patterns in B3 result in materi-
alization of large intermediate results during the star-join compu-
tation phase, and we see the benefit of pushing the β-unnesting to
a later phase (LazyUnnest) in executing this query. Similarly, for
query B4, LazyUnnest successfully executes by materializing con-
cise intermediate results, while other approaches fail.

In order to analyze the performance of the different approaches
on the larger dataset, the same set of queries were repeated after
reducing the HDFS replication factor to 1. Figure 9(b) shows the
results comparing the performance of the approaches for BSBM-
2M on the same 60-node cluster. In general, we see the bene-
fit of the NTGA approaches for all queries. Query B0 shows a
baseline case with all bound properties where Hive and NTGA ap-
proaches outperform Pig due to scan-sharing. Further, NTGA ap-
proaches concisely represent results containing multi-valued prop-
erty which leads to I/O savings. For query B1 (join on unbound-
property triple pattern), lazy partial β-unnesting reduces the shuffle

177

X X X X

0

1000

2000

3000

4000

5000

6000

B0 B1 B2 B3 B4
BSBM-2M: 60-node (Rep 1)

11000

(a) (b) (c)

X X X X X X X X X X X X

0

1000

2000

3000

4000

5000

B0 B1 B2 B3 B4

Ex
ec

u
ti

o
n

 T
im

e
 (

in
 s

ec
s)

BSBM-2M: 60-node (Rep 2)

Pig Hive EagerUnnest LazyUnnest
 X X X

0

1000

2000

3000

4000

5000

B1-3bnd B1-4bnd B1-5bnd B1-6bnd

Ex
ec

u
ti

o
n

 T
im

e
 (

in
 s

e
cs

)

BSBM-2M: 60-node (Rep 2)

Pig Hive EagerUnnest LazyUnnest

X X X X X X X X X

0

1000

2000

3000

4000

5000

B0 B1 B2 B3 B4 B5 B6

Ex
ec

u
ti

o
n

 T
Im

e
 (

in
 s

e
cs

)

BSBM-1M: 60-node (Rep 2)

Pig
Hive
EagerUnnest
LazyUnnest

0

200

400

600

800

1000

1200

B1-3bnd B1-4bnd B1-5bnd B1-6bnd

H
D

FS
 W

ri
te

s
(i

n
 G

B
)

BSBM-2M: 60-node (Rep 1)

Pig/Hive EagerUnnest LazyUnnest

Figure 10: Total HDFS writes with varying size of bound-
property component (BSBM-2M, 60-node)

costs and is 21% faster than eager β-unnesting (27% faster than Pig
and 26% faster than Hive). For query B2, all approaches evaluate
the filter on the partially-bound object associated with the unbound-
property triple pattern in the initial map phase, and from there on,
the execution is similar to the baseline query B0. As in the case
of replication factor 2, Hive and Pig failed again for B3 and B4.
The star subpattern with double unbound-property triple patterns
(one with partially-bound object) in B3, is concisely represented
in LazyUnnest with 80% less HDFS writes than EagerUnnest. In
queries, such as B4, where the unbound-property triple pattern does
not participate in join between stars, the lazy β-unnesting strategy
keeps the result compact till the end, thus saving on intermediate
disk reads / writes as well as final writes. Lazy β-unnesting using
LazyUnnest results in 61% less HDFS writes than EagerUnnest,
and overall has a 68% gain in performance times over the eager
β-unnesting approach.

Choice of Lazy β-Unnesting Strategies: Testbed queries con-
sist of varying structure of unbound-property triple patterns. For
example, unbound-property triple patterns in queries B2 and B3

have partially-bound objects, i.e., the user does not know the ex-
act property relationship but knows something about the object.
In such cases, it is likely that the number of triples matching the
unbound-property triple pattern are reduced and hence the asso-
ciated star-join is more selective, i.e., results in less number of
pattern combinations when compared to same triple pattern with
an unbound object. Other queries such as B1 consist of unbound-
property triple pattern with an unbound object. Though lazy β-
unnesting is beneficial for all cases, we wanted to study benefits
and overhead of lazy full and lazy partial β-unnest strategies. Fig-
ure 11 shows execution times for the last MR cycle (MRJ1) where
the join involving the unbound-property triple pattern is computed.
Since the size of input for MRJ1 is same for both approaches,
this analysis allows us to zoom into the map-side overhead for
full and partial β-unnest, savings in shuffle costs, and analysis of
reduce-side overhead in the case of partial-β-unnest. Our experi-
ments show that a lazy full β-unnest may be sufficient for unbound-
property queries with partially bound objects (queries B2 and B3).
However, unbound-property queries with an unbound object (B1
series), benefit from partial-β-unnest. Other experiments were cor-
roborative to these findings, and hence the LazyUnnest approach
reported in this section evaluate lazy full-β-unnest for unbound-
property queries with partially-bound-object patterns, and lazy partial-
β-unnest for those with unbound-object patterns.

Varying number of bound-property edges: Unbound-property
queries with bound-property triple patterns varying from 3 (B1-3bnd)
to 6 (B1-6bnd) were evaluated. Figure 10 shows the total amount
of HDFS writes for Pig, Hive and the NTGA approaches for the test
queries evaluated on a 60-node cluster with BSBM-2M. In general,

0

2000

4000

6000

8000

C1 C2 C3 C4
BTC-09: 193GB, 40-node

0

200

400

600

800

C1 C2 C3 C4

Ex
ec

u
ti

o
n

 T
im

e
(i

n
 s

e
cs

)

DBInfobox: 4.3GB, 5-node

Pig

Hive

LazyUnnest

0

1000

2000

3000

4000

B0 B1 B2 B3 B1-3bnd B1-4bnd B1-5bnd B1-6bnd

Ex
e

cu
ti

o
n

 T
im

e
 (

in
 s

e
cs

)

BSBM-2M: 60-node (Rep 2)

LazyFullUnnest

LazyPartialUnnest

X

0

1000

2000

3000

4000

5000

6000

7000

A1 A2 A3 A4 A5 A6

Ex
ec

u
ti

o
n

 T
Im

e
 (

in
 s

ec
s)

Bio2RDF: 615GB, 80-node

Pig

Hive

EagerUnnest

LazyUnnest

Figure 11: Lazy Full vs. Lazy Partial Unnesting: A compara-
tive study of savings and overhead in MR cycle MRJ1

X X X X

0

1000

2000

3000

4000

5000

6000

B0 B1 B2 B3 B4
BSBM-2M: 60-node (Rep 1)

11000

(a) (b) (c)

X X X X X X X X X X X X

0

1000

2000

3000

4000

5000

B0 B1 B2 B3 B4

Ex
ec

u
ti

o
n

 T
im

e
 (

in
 s

ec
s)

BSBM-2M: 60-node (Rep 2)

Pig Hive EagerUnnest LazyUnnest
 X X X

0

1000

2000

3000

4000

5000

B1-3bnd B1-4bnd B1-5bnd B1-6bnd

Ex
ec

u
ti

o
n

 T
im

e
 (

in
 s

ec
s)

BSBM-2M: 60-node (Rep 2)

Pig Hive EagerUnnest LazyUnnest

X X X X X X X X X

0

1000

2000

3000

4000

5000

B0 B1 B2 B3 B4 B5 B6

Ex
ec

u
ti

o
n

 T
Im

e
 (

in
 s

ec
s)

BSBM-1M: 60-node (Rep 2)

Pig
Hive
EagerUnnest
LazyUnnest

0

200

400

600

800

1000

1200

B1-3bnd B1-4bnd B1-5bnd B1-6bnd

H
D

FS
 W

ri
te

s
(i

n
 G

B
)

BSBM-2M: 60-node (Rep 1)

Pig/Hive EagerUnnest LazyUnnest

Figure 12: Performance comparison (BSBM-1M, 85GB)

the increase in the number of bound-property components results
in a gradual increase in the size of reduce output for Pig and Hive,
while lazy β-unnesting keeps the result concise till the end of map
phase of the last MR job (Job2). The relational approaches pro-
duce 10 combinations of the bound component for the test queries
since the relational arity of the subgraph that matches the unbound-
property subpattern is 10. However, LazyUnnest compactly cap-
tures all the required combinations, resulting in approx. 80 to 86%
less HDFS writes than Hive / Pig for queries B1-3bnd to B1-6bnd,
respectively. Additionally, the reduce output for the NTGA ap-
proaches remain almost constant for such query patterns, which al-
lows more flexible exploration of large datasets. Figure 9(c) shows
a comparion of the execution times for all approaches. Note that
Pig failed for all queries beyond three bound-property subpatterns.
LazyUnnest (φ1K) consistently outperformed the other approaches,
running about 25% faster than Hive.

Varying size of RDF graphs: Figure 12 shows the evaluation of
the BSBM queries using BSBM-1M (85GB) on the 60-node clus-
ter (HDFS replication factor 2). NTGA approaches successfully
executed for all datasets, with up to 80% less HDFS writes after
the star-join computation phase for query B1 when compared to
Hive. Once again it was observed that both Pig and Hive failed for
queries B3 and B4 due to insufficient disk space. This is due to the
high redundancy in star-join result that ripples into the next MR
job, impacting the scan and I/O costs. For query B2, LazyUnnest
outperforms all other approaches, executing about 75% faster than
both Pig and Hive. LazyUnnest reduces the redundancy in inter-
mediate results, and thus improves the execution time of the eager
β-unnesting approach (EagerUnnest) by 54% (65%) for query B3

(B4). Hive / Pig failed to execute for more complex queries such
as B5 and B6. These sets of experiments demonstrate the benefit
of the proposed strategies in mitigating the effect of redundancy on
MapReduce processing costs.

Real-world Unbound-property Queries (A1-A6): Figure 13

178

0

2000

4000

6000

8000

C1 C2 C3 C4
BTC-09: 193GB, 40-node

0

200

400

600

800

C1 C2 C3 C4

Ex
ec

u
ti

o
n

 T
im

e
(i

n
 s

e
cs

)
DBInfobox: 4.3GB, 5-node

Pig

Hive

LazyUnnest

0

1000

2000

3000

4000

B0 B1 B2 B3 B1-3bnd B1-4bnd B1-5bnd B1-6bnd

Ex
e

cu
ti

o
n

 T
im

e
 (

in
 s

e
cs

)

BSBM-2M: 60-node (Rep 2)

LazyFullUnnest

LazyPartialUnnest

X

0

1000

2000

3000

4000

5000

6000

7000

A1 A2 A3 A4 A5 A6

Ex
ec

u
ti

o
n

 T
Im

e
 (

in
 s

ec
s)

Bio2RDF: 615GB, 80-node

Pig

Hive

EagerUnnest

LazyUnnest

Figure 13: Evaluation of real-world unbound-property queries
(Bio2RDF Life Sciences Dataset)

shows a performance comparison of Pig, Hive, and the two NTGA
approaches for Bio2RDF queries A1-A6 on a 80-node Hadoop clus-
ter. Queries A1 and A2 have one star subpattern with one unbound-
property triple pattern associated with partially-bound objects. For
query A1, while Hive / Pig approaches produce all combinations
of subtuples matching the bound property with triples matching
the unbound property (∼63K tuples), EagerUnnest produces ∼7K
triplegroups that concisely represent subtuples with multi-valued
properties. LazyUnnest achieves more concise representation of all
combinations corresponding to the unbound-property star pattern
and produces only ∼3K triplegroups. The impact of the savings
in HDFS writes due to elimination of redundancy in intermediate
results, becomes more clear with the two-star queries (A3-A6).

Queries A3 and A4 contain an unbound-property in each of the
two star subpatterns (one with partially-bound object). While Pig
/ Hive materialize 26GB of intermediate results in the star-join
computation phase for query A3, the NTGA approaches write only
about 1.3GB of data to the HDFS, contributing to the 32% perfor-
mance gain over Hive while computing the star subpatterns. The
LazyUnnest results in reduced HDFS writes in MR1, and reduced
scan costs and shuffling costs in MR2, resulting in additional 18%
performance gain over EagerUnnest in MR2. For query A4, Pig
initiates 4 MR jobs (initial map-only job to read entire input and
compress it, 2nd and 3rd MR jobs to compute the two star patterns,
and the 4th job to join the stars). However, Pig approach failed
(marked as ‘X’) due to lack of HDFS space while executing the last
job. Again, there is a huge savings in terms of HDFS writes, with
EagerUnnest and LazyUnnest producing only 1.8GB and 0.6GB of
intermediate results, respectively, after the initial star-join phase,
as opposed to 152GB of writes in Hive. An important factor that
results in large intermediate results with relational-style process-
ing, is the redundancy due to the presence of large number of high
multiplicity properties in biological datasets (representative of real-
world datasets). For A4, EagerUnnest and LazyUnnest approaches
are 48% and 53% faster than Hive, respectively.

Query A5 contains a star pattern with two unbound-property triple
patterns – one whose object matches a gene “nurr77”, and the other
with an unbound object, connecting the star to a single edge retriev-
ing the label property type. Hive executes A5 using 2 MR jobs,
with both jobs requiring a full-table scan. NTGA approaches also
execute using 2 MR jobs but with one full-table scan, resulting in
overall savings of about 1400s (22% gain) over Hive. The single
unbound-property triple pattern in query A6 partially binds the ob-
ject to “hexokinase”. While Hive uses 3 MR jobs, including 2 for
the star-join computation, Pig uses an extra map-only job to com-
press the input (total 4 jobs). NTGA’s LazyUnnest approach shows
a benefit of up to 48% over Hive.

DBPedia Queries (C1-C4): Additional experiments were con-

0

2000

4000

6000

8000

C1 C2 C3 C4
BTC-09: 193GB, 40-node

0

200

400

600

800

C1 C2 C3 C4

Ex
ec

u
ti

o
n

 T
im

e
(i

n
 s

e
cs

)

DBInfobox: 4.3GB, 5-node

Pig

Hive

LazyUnnest

0

1000

2000

3000

4000

B0 B1 B2 B3 B1-3bnd B1-4bnd B1-5bnd B1-6bnd

Ex
e

cu
ti

o
n

 T
im

e
 (

in
 s

e
cs

)

BSBM-2M: 60-node (Rep 2)

LazyFullUnnest

LazyPartialUnnest

X

0

1000

2000

3000

4000

5000

6000

7000

A1 A2 A3 A4 A5 A6

Ex
ec

u
ti

o
n

 T
Im

e
 (

in
 s

ec
s)

Bio2RDF: 615GB, 80-node

Pig

Hive

EagerUnnest

LazyUnnest

Figure 14: Evaluation of real-world unbound-property queries
(DBInfobox and Billion Triple Challenge’09)

ducted on varying sizes of real-world datasets, 4.3GB DBInfobox
dataset (5-node cluster) and 193GB BTC-09 dataset (40-node clus-
ter) as shown in Figure 14. Four different query structures were
used. C1 and C2 are simple queries with single join that retrieve all
information about Scientists (unselective) and Sopranos TV series
(selective). In the case of DBInfobox dataset, since the data pro-
cessed is quite small, the benefit of the NTGA approach is not seen
for the first two queries. However, Pig does better than Hive since
it processes two copies of the input relation, and hence initiates
double the number of mappers and reducers. C3 and C4 represent
real-world scenarios during exploration where the relationship be-
tween entities (star subpatterns) is unknown. NTGA approaches
showed a performance gain of 20-22% and 50% over Hive and Pig
respectively for query C3, and resulted in approx. 80% less HDFS
writes than Hive. All four queries had redundancy factor greater
than 0.6. In particular, C4 which involved an unbound-property in
each of the two star patterns showed a redundancy factor close to
0.89, and hence showed major improvement (50% gain over both
Pig and Hive) with the lazy β-unnesting strategy.

Unbound-property queries on the BTC-09 dataset resulted in very
large HDFS reads which negatively impacted Pig the most, due
to its multiple scans per star-join. The scan-sharing across star
patterns in NTGA resulted in 50% less HDFS reads for the two
star queries. NTGA approaches resulted in 54% (25%) gains over
Pig (Hive) for query C3 with 1 unbound-property. The result of
the star-join phase for C4 (2 unbound properties) has redundancy
factor of 0.93 (0.75GB) and increases to 0.98 (14GB) in the final
output for Pig/Hive. The lazy β-unnesting strategy results in 98%
less HDFS writes, and have 70% (55%) performance gain over Pig
(Hive) for C4. In general, real-world data contained multiple multi-
valued properties with varying multiplicity, and highly benefited by
the generalized nested representation of triplegroups and lazy β-
unnesting strategies while processing unbound-property queries.

6. CONCLUSION
We propose a scalable solution for processing unbound-property

graph pattern queries on MapReduce, by minimizing the redun-
dancy in intermediate results that adds avoidable costs while pro-
cessing long execution workflows. The proposed approach uses a
nested triplegroup model to implicitly represent the intermediate
results and lazily ‘unnest’ them only when necessary. A combina-
tion of the two result in significant savings in intermediate HDFS
reads and writes, which form a major portion of query process-
ing costs on MapReduce. Additional savings in intermediate map-
reduce data shuffling costs can be achieved by delaying a portion
of the ‘unnest’ to the reduce phase. Experiments show promising
results for different query join structures with varying selectivities.
Future directions include exploring more complex structures with
multiple unbound-property patterns as well as unbound-property
queries with aggregation constraints.

179

7. REFERENCES
[1] Billion triple challenge. http://challenge.semanticweb.org/.
[2] Bio2RDF Demo Queries.

http://sourceforge.net/apps/mediawiki/
bio2rdf/index.php?title=Demo_queries.

[3] Scaling Unbound-Property Queries using MapReduce.
http://research.csc.ncsu.edu/coul/RAPID/

UnboundPropQueries.
[4] D. Abadi, A. Marcus, S. Madden, and K. Hollenbach.

Scalable semantic web data management using vertical
partitioning. In VLDB, 2007.

[5] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi,
A. Silberschatz, and A. Rasin. Hadoopdb: an architectural
hybrid of mapreduce and dbms technologies for analytical
workloads. VLDB, 2009.

[6] F. Afrati and J. Ullman. Optimizing joins in a map-reduce
environment. In EDBT, 2010.

[7] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak,
and Z. Ives. Dbpedia: A nucleus for a web of open data.
ISWC/ASWC, 2007.

[8] A. Bairoch, L. Bougueleret, S. Altairac, V. Amendolia,
A. Auchincloss, G. A. Puy, K. Axelsen, D. Baratin, M.-C.
Blatter, B. Boeckmann, et al. The universal protein resource
(uniprot). Nucleic Acids Research, 36:D190–D195, 2008.

[9] F. Belleau, M.-A. Nolin, N. Tourigny, P. Rigault, and
J. Morissette. Bio2rdf: towards a mashup to build
bioinformatics knowledge systems. Journal of biomedical
informatics, 41(5):706–716, 2008.

[10] A. Bialecki, M. Cafarella, D. Cutting, and O. O’MALLEY.
Hadoop: a framework for running applications on large
clusters built of commodity hardware. Wiki at
http://lucene.apache.org/hadoop, 11, 2005.

[11] C. Bizer and A. Schultz. The berlin sparql benchmark.
IJSWIS, 2009.

[12] J. Dean and S. Ghemawat. Mapreduce: simplified data
processing on large clusters. Comm. ACM, 2008.

[13] I. Elghandour and A. Aboulnaga. Restore: Reusing results of
mapreduce jobs. VLDB, 2012.

[14] J. Huang, D. Abadi, and K. Ren. Scalable sparql querying of
large rdf graphs. VLDB, 4(11), 2011.

[15] M. Husain, J. McGlothlin, M. Masud, L. Khan, and
B. Thuraisingham. Heuristics-based query processing for
large rdf graphs using cloud computing. TKDE, 23(9), 2011.

[16] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
distributed data-parallel programs from sequential building
blocks. EuroSys, 2007.

[17] H. Kim, P. Ravindra, and K. Anyanwu. From sparql to
mapreduce: The journey using a nested triplegroup algebra.
VLDB, 4(12), 2011.

[18] H. Kim, P. Ravindra, and K. Anyanwu. Scan-sharing for
optimizing rdf graph pattern matching on mapreduce. In
CLOUD, 2012.

[19] S. Kotoulas, J. Urbani, P. Boncz, and P. Mika. Robust
runtime optimization and skew-resistant execution of
analytical sparql queries on pig. In The Semantic Web–ISWC.
2012.

[20] H. Lim, H. Herodotou, and S. Babu. Stubby: a
transformation-based optimizer for mapreduce workflows.
VLDB, 2012.

[21] A. Nandi, C. Yu, P. Bohannon, and R. Ramakrishnan.
Distributed cube materialization on holistic measures. In

ICDE, 2011.
[22] T. Neumann and G. Weikum. The rdf-3x engine for scalable

management of rdf data. VLDB, 2010.
[23] M.-A. Nolin, P. Ansell, F. Belleau, K. Idehen, P. Rigault,

N. Tourigny, P. Roe, J. M. Hogan, and M. Dumontier.
Bio2rdf network of linked data. In Semantic Web Challenge;
ISWC, 2008.

[24] T. Nykiel, M. Potamias, C. Mishra, G. Kollios, and
N. Koudas. Mrshare: Sharing across multiple queries in
mapreduce. VLDB, 2010.

[25] C. Olston, G. Chiou, L. Chitnis, F. Liu, Y. Han, M. Larsson,
A. Neumann, V. Rao, V. Sankarasubramanian, S. Seth, et al.
Nova: continuous pig/hadoop workflows. In SIGMOD, 2011.

[26] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: a not-so-foreign language for data
processing. In SIGMOD, 2008.

[27] N. Papailiou, I. Konstantinou, D. Tsoumakos, and N. Koziris.
H2rdf: adaptive query processing on rdf data in the cloud. In
WWW. ACM, 2012.

[28] E. Prud’hommeaux and A. Seaborne. Sparql query language
for rdf, W3C Recommendation, 2008. URL
http://www.w3.org/TR/rdf-sparql-query, 2010.

[29] P. Ravindra and P. Anyanwu. Nesting strategies for enabling
nimble mapreduce dataflows for large rdf data. Int. J.
Semantic Web Inf. Syst., 10(1), 2014.

[30] P. Ravindra, H. Kim, and K. Anyanwu. An intermediate
algebra for optimizing rdf graph pattern matching on
mapreduce. The Semantic Web: Research and Applications,
2011.

[31] P. Ravindra, H. Kim, and K. Anyanwu. To nest or not to nest,
when and how much: representing intermediate results of
graph pattern queries in mapreduce based processing. In
SWIM, 2012.

[32] K. Rohloff and R. Schantz. High-performance, massively
scalable distributed systems using the mapreduce software
framework: The shard triple-store. In PSI EtA, page 4, 2010.

[33] H. Schaffer, S. Averitt, M. Hoit, A. Peeler, E. Sills, and
M. Vouk. Ncsu’s virtual computing lab: a cloud computing
solution. Computer, 42(7), 2009.

[34] M. Schmidt, T. Hornung, N. Küchlin, G. Lausen, and
C. Pinkel. An experimental comparison of rdf data
management approaches in a sparql benchmark scenario.
ISWC, 2008.

[35] L. Sidirourgos, R. Goncalves, M. Kersten, N. Nes, and
S. Manegold. Column-store support for rdf data
management: not all swans are white. VLDB, 2008.

[36] S. Stefanova and T. Risch. Optimizing unbound-property
queries to rdf views of relational databases. In SSWS, 2011.

[37] A. Thusoo, J. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wyckoff, and R. Murthy. Hive: a
warehousing solution over a map-reduce framework. VLDB,
2(2), 2009.

[38] R. Vernica, M. Carey, and C. Li. Efficient parallel
set-similarity joins using mapreduce. In SIGMOD, 2010.

[39] X. Wang, C. Olston, A. Sarma, and R. Burns. Coscan:
cooperative scan sharing in the cloud. In SOCC, 2011.

[40] S. Wu, F. Li, S. Mehrotra, and B. Ooi. Query optimization
for massively parallel data processing. In SOCC, 2011.

180

