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ABSTRACT
Constrained skyline queries retrieve all points that optimize some
user’s preferences subject to orthogonal range constraints, but at
significant computational cost. This paper is the first to propose
caching to improve constrained skyline query response time. Be-
cause arbitrary range constraints are unlikely to match a cached
query exactly, our proposed method identifies and exploits similar
cached queries to reduce the computational overhead of subsequent
ones.

We consider interactive users posing a string of similar queries
and show how these can be classified into four cases based on how
they overlap cached queries. For each we present a specialized so-
lution. For the general case of independent users, we introduce the
Missing Points Region (MPR), that minimizes disk reads, and an
approximation of the MPR. An extensive experimental evaluation
reveals that the querying for an (approximate) MPR drastically re-
duces both fetch times and skyline computation.

1. INTRODUCTION
Constrainted Skyline A constrained skyline query [3] is an ef-
fective way of filtering a constrained dataset to points that express
all optimal trade-offs of the dataset’s attributes. For example, if
searching for cheap 3+ star hotels near a conference venue, one ho-
tel is said to dominate another if it is at least as highly rated, well
priced and near as the latter, yet strictly better than the other hotel
on at least one of these metrics. The constrained skyline is the set
of points that satisfy the given constraints and are not dominated by
any others that satisfy the constraints. In practice, the constraints
are critical in allowing users to determine the skyline on the data
relevant to them. E.g. average income earners may not be inter-
ested in luxury hotels nor backpacker hostels, so a non-constrained
skyline cannot capture their preferences. Constraints reduce the
input size, yet, paradoxically, makes computing the skyline quite
challenging, because, unlike an unconstrained skyline which can
simply be pre-materialized, the skyline points are unpredictable.

The naive approach, presented in [3], is to execute a range query
to fetch points satisfying the constraints, and then compute the sky-
line over those points using an efficient skyline algorithm (e.g., [7,
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8, 16, 23]). This has the advantage of simplicity, but the perfor-
mance is highly sensitive to the selectivity of the range query. The
best known technique is the I/O-optimal BBS algorithm [19], which
uses an R-tree index and a heap-based priority queue to guide the
search for skyline points, while pruning paths in an R-Tree if out-
side the constraints. In this paper, we outperform BBS by reusing
partial query solutions.
Caching A fair assumption is that many users will pose con-
strained skyline queries on the same dataset. Where users have
similar needs, the constraint regions likely overlap. For example,
young backpackers will all typically search with price constraints
that match a cheap budget, producing similar queries. Business
travellers, conversely, may be more concerned with location than
price; a distinct set of similar queries.
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Figure 1: Small constraint changes have large impacts on skylines

Additionally, an iterative, exploratory query-refine cycle is com-
mon in search tasks [18], where a user issues a query, observes
the results, and then adjusts constraints to manipulate the results.
Hence, even a single user can produce strings of highly similar
queries, each with distinct skylines [6, 17].

So, this paper addresses a natural question: how can the re-
sults of a constrained skyline query be reused to speed up subse-
quent, similar ones? In contrast to existing techniques (e.g., [3,
19]), we can obtain significant speed-up by decomposing a range
query into disjoint smaller ones, and discarding those that a pre-
vious cached query result implies are unnecessary, hence reading
fewer data points than the isolated query necessitates.
Challenges Despite the apparent simplicity of overlapping two
range queries to compare results, caching constrained skylines is
deceptively challenging. Unlike previous research on caching (sub-
space) skyline queries [2, 14, 20] where constraints are not consid-
ered, cache hits with exact matching constraints are quite unlikely,
especially for real-valued and high-dimensional data. Therefore,
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we investigate how to infer partial skyline solutions from overlap-
ping, rather than matching, query constraints, which would yield a
low cache hit rate.

This, however, introduces a new challenge, because small changes
to constraints can have a profound impact on the skyline [6]. For
example, Figure 1 shows an “old” (solid) and “new” (dashed) con-
strained skyline query on a toy hotel example, where the minor in-
crease to the Price-constraint from the “old” to the “new” query is
enough to eliminate a skyline point (minus), which promotes three
previously dominated points into the skyline (plus). To address this
challenge, we introduce the notion of stability which characterizes
when solution points will be shared among old and new queries.
Even in difficult, unstable cases, we show how a previous query’s
solution points, even when not satisfying the current constraints,
can prune the current search range.

Finally, dimensionality poses a natural challenge for caching con-
strained skylines by increasing the pruning complexity (as we show
in Section 5.3). Therefore, we present an effective approxima-
tion technique that balances the number and selectivity of small
range queries. As a result, we can outperform baseline and the I/O-
optimal BBS algorithms by several factors, and scale elegantly with
increasing workloads.
Contributions Despite the cost of constrained skylines, this pa-
per is the first to investigate how caching can drastically improve
their running time. After reviewing related work (Section 2) we
introduce the problem formally (Section 3) and make the follow-
ing novel contributions (Sections 4-6) before concluding the paper
(Section 8).

• For the exploratory use case, in which subsequent queries
differ only by one constraint, we present a case-by-case break-
down of the four possible overlap relationships, along with
how to compute the constrained skyline for each (Section 4);

• For the general case of arbitrary constraint overlap, we in-
troduce an algorithm to compute the Missing Points Region
(MPR), which is the minimal region that must be queried
from disk. We also introduce an Approximate MPR (aMPR),
sacrificing minimality for fewer independent range queries
(Section 5);

• We introduce a caching algorithm, Cache-Based Constrained
Skyline (CBCS) that handles cache searching, management
and use based on the earlier analysis (Section 6); and

• We conduct an extensive experimental evaluation of our method
to show when our caching yields superior efficiency for re-
lated queries relative to baselines and state-of-the-art (Sec-
tion 7).

2. RELATED WORK
Constrained skylines The skyline operator [3] was introduced
along with a straightforward extension to constrained skyline queries
that first retrieves all data satisfying the constraints, and then ap-
plies any skyline algorithm (e.g., [7,8,16,23]). Subsequently, the R-
tree-based method BBS [19] supports constraints by pruning paths
in the R-tree if they are outside the constraint region. BBS is I/O-
optimal and state-of-the-art when not using caching. We include it
in our empirical study (Sect. 7).

For arbitrary subsets of dimensions, known as subspaces, [10]
partitions data and queries vertically onto several low-dimensional
R-trees. Without subspaces, their approach is essentially a constraint-
based version of the NN method [15], shown in [19] to be in-
ferior to BBS for constrained skylines. [9] study distributed con-
strained skylines where distributed local skylines are merged into

a global result. Efficiency gains come from computing indepen-
dent local skylines at data sites in parallel, meaning that a non-
distributed application is equivalent to computing the constrained
skyline naively. [1] study constrained subspace skylines in a hori-
zontally partitioned P2P environment. Constrained subspace sky-
lines are computed in order of potential dominance on each node,
avoiding those pruned by earlier nodes. It suffers the same lim-
itations as [9]. [22] study continuous constrained skyline queries
for streams, determining areas that could influence the current sky-
line. The problem is different from ours, namely maintenance of
fixed constrained skylines for dynamic data, rather than dynamic
constraints. [11] study query optimization of Semi-skylines, which
use partial order preferences. If applied only to traditional con-
straints, the method corresponds to recomputation from scratch for
any change in constraints. [4] estimates the cardinality of (con-
strained) skylines in a DBMS and can be used to assess which sky-
line algorithm to apply in the naive approach.

A user study [17] uses existing constrained skyline algorithms
to investigate how users understand, issue and interact with con-
strained skylines. Finally, [6] study how dynamic changes of con-
straints and subspaces affect skyline membership. Neither [6] nor
[17] offer algorithmic contributions.
Caching skylines [12] and [5] study caching of subspace sky-
lines in a P2P setting using local caches with a superpeer network
and a centralized index, respectively. Neither support constrained
skylines. [2] study caching of subspace skylines, where results are
cached directly and used to answer queries in related subspaces.
[14] caches partial-order domain user preferences to process queries
with similar user preferences. [20] caches dynamic skylines, where
domination is based on the distance to a query. None of them
consider constraints and thus suffer from the same issues as [12]
and [5].

In conclusion, existing constrained skylines algorithms demand
recomputation from scratch if constraints differ even slightly. Also,
existing caching approaches only support identical constraints, which
is unlikely to occur in practice, especially when considering, e.g.,
exploratory search scenarios, real-valued data, multiple users and
several dimensions. In this work, we limit the number of points
read and dominance tests performed, by reusing cached results on
similar constraints.

3. PRELIMINARIES
Let S be a set of data points over an ordered set of numerical

dimensions D, where the value of s 2 S in dimension i 2 D is
denoted s[i]. A set of constraints, C =

⌦

C,C
↵

, is a pair of points
indicating the minimum value, C[i], and the maximum value, C[i],
for each dimension i 2 D. A constraint region, RC , is the set of
all possible points satisfying constraints C:

RC =
n

p 2 R|D| | 8i 2 D : C[i]  p[i]  C[i]
o

.

Observe that RC describes a |D|-dimensional hyper-rectangle, like
the rectangles in Figure 1. Similarly, the constrained data, SC , is
the set of data points that satisfy constraints C:

SC =
�

s 2 S | 8i 2 D : C[i]  s[i]  C[i]
 

.

We note the following properties relating constraint regions and
constrained data:

1. Given constraints C, the set of points SC satisfying con-
straints C form a (possibly empty) subset of the set of points
in the region RC described by C: SC ✓ RC .
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Data & space notation
S Dataset S
D Dimensions of S
R =

n

p 2 R|D|
o

Region of potential |D|-dimensional
points

SC Points in S limited by constraints C
RC Region R limited by constraints C
p, q Points in region R
s, u, t, v Points in dataset S.
p[i], s[i] Value in dimension i of point p, s, resp.

Query notation
C =

⌦

C,C
↵

Constraints consisting of low/high limits
C[i], C[i] Lower/upper constraint on dimension i
Sky(S,C) Skyline on S constr. by C
s � t Point s dominates point t
DR(s) Dominance region of point s
DR(s, C) Dominance region of point s constrained

by C
RQ(C) = (SC \RC) Range query on the region constrained by

C

Table 1: Notation

2. (Data determines space) s 2 SC =) s 2 RC .

3. (Space only contains constrained data) p 2 RC =) p 2
SC _ p /2 S.

In this paper we study how to efficiently answer constrained sky-
line queries (Def. 1) given S and C, if an in-memory cache (Def. 3)
is available. The skyline is defined through the concept of dom-
inance [3]: a point s 2 S (or, analogously, s 2 R) dominates
another point t 2 S, denoted s � t, iff 9i 2 D : s[i] < t[i] and
8j 2 D, s[j]  t[j].1 In order words, s is at least as small as t on
every attribute, and strictly smaller on at least one.

The conventional skyline of S, denoted Sky(S), is the subset of
points not dominated by any other points in S:

Sky(S) = {s 2 S | @t 2 S : t � s} .

These are exclusively those points that minimize some linear
function over the dataset’s dimensions. Figure 2 illustrates the sky-
line with black points for our running hotel example.

The constrained skyline is the set of points that satisfy the con-
straints while not being dominated by any other points that also
satisfy the constraints (Definition 1). Equivalently, it is the skyline
over input SC .

Definition 1 (Constrained skyline [3, 19]).
Given S,C, the constrained skyline, denoted Sky(S,C), is:

Sky(S,C) = Sky(SC) = {s 2 SC | @t 2 SC : t � s} .

Figure 2 also illustrates a constrained skyline as the set of gray
points in the rectangle spanned by constraints C =

⌦

C,C
↵

. Note
here again that the constrained skyline can be very different from
the conventional skyline (black points).

Every point s 2 S (or s 2 R) has a dominance region [10],
denoted DR(s), which is the hyper-rectangular region in which
any point p is dominated by s (Definition 2).
1Assumed without loss of generality: a preference for maximiza-
tion can be handled by multiplying an attribute by -1.
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Figure 2: Illustration of a skyline (black points) and constrained
skyline (grey points inside the rectangle) on our running example.
Also shown are dominance regions (solid gray rectangles).

Definition 2 (Dominance region [10]).
For point s 2 S, the dominance region is defined as:

DR(s) = {p 2 R | s � p} .

For any s 2 S, DR(s) \ Sky(S) = ;; so dominance regions
help detect subsets of points that need not be fetched from disk.
In the presence of constraints C, each point s also induces a con-
strained dominance region, denoted DR(s, C), which is the por-
tion of DR(s) that satisfies C. The gray rectangles in Figure 2
illustrate DR(t) for a conventional skyline point and DR(s, C)
for a constrained skyline point.

Lastly, our objective is to resolve constrained skyline queries
using in-memory constrained skyline cache items. A cache item
(Definition 3) is a 3-tuple consisting of an earlier queried set of
constraints, the resultant constrained skyline, and the skyline’s min-
imum bounding rectangle (MBR).

Definition 3 (Constrained skyline cache).
An in-memory cache holding n cache items {I1, . . . , In}, where
each cache item Ii is a 3-tuple:

Ii = hSky(S,C),MBR, Ci

Sky(S,C) is the skyline result on constraints C and MBR is the
minimum bounding rectangle of Sky(S,C).

With the notation in place (and summarized in Table 1), the prob-
lem studied in this paper can now be stated as follows:

Problem Statement (Cache-based constrained skyline).
Given S, C0, and an in-memory cache {I1, . . . , In}, utilize a cache
item Ii to compute Sky(S,C0) without fetching all of SC0 .

4. EXPLOITING RELATED QUERIES
Recall from Section 2 that existing caching techniques for sky-

lines require an exact match on constraints. A user who continu-
ally modifies, say, the price or distance constraints as he/she re-
fines his/her hotel search therefore produces a long string of cache
misses, despite having made only small, incremental changes to
his/her query.

In this section, we focus on these incremental changes, where
old constraints C and new constraints C0 overlap in all but one

339



a c l
i

j
h

e

f

d

P
ric

e

Distance to conference venue

C
_

C_C_’

ΔC

g
k

m n

b

C’
_

=

(a) Decreasing lower constraint

ΔC

k

a c l
i

j
h

e

f

d

P
ric

e

Distance to conference venue

C’
_

C_

g

m n

b

C
_

C_’=

(b) Decreasing upper constraint

m n

ΔC

k

a c l
i

j
h

e

f

d

P
ric

e

Distance to conference venue

C’
_

C_

gb

C
_

C_’=

(c) Increasing upper constraint

g

m n

ΔC

k

a c l
i

j
h

e

f

d

P
ric

e

Distance to conference venue

C_

b

C
_

C_’

C’
_

=

(d) Increasing lower constraint

Figure 3: Cases (a)-(d) of incrementally changing one constraint at a time; our solutions fetch only the points in the gray regions.

dimension. In doing so, we both address the potential for large
computational savings in this principal case and build intuition for
the general methods presented in Section 5.

Specifically, we use Sky(S,C) to limit how much of SC0 that
must be fetched from disk to determine Sky(S,C0). We first in-
troduce the concept of stability to characterize when constrained
skylines share solution points (Section 4.1). Then, we identify the
four possible (and easily detectable) manners in which incremental
constraint changes may overlap, presenting specialized solutions
for each (Section 4.2).

4.1 Skyline stability
Clearly, a cache item for Sky(S,C) indicates which points from

S are in Sky(S,C). More importantly, it also implies which points
from SC are not in Sky(S,C). Stability (Definition 4) captures
this insight relative to new constraints, C0.

Definition 4 (Constrained skyline stability).
We say that Sky(S,C) is stable relative to C0 iff:

s 2 Sky(S,C0) =) (s /2 SC) _ (s 2 Sky(S,C))

In other words, Sky(S,C) is stable relative to C0 if points from
SC not in Sky(S,C) are also not in Sky(S,C0). Otherwise, we
call Sky(S,C) unstable relative to C0. We observe in Theorem 1
that stability is guaranteed when, for all i 2 D, C[i] � C0[i] (or,
trivally, when constraints do not overlap).

Theorem 1 (Guaranteed stability).
Sky(S,C) is guaranteed to be stable relative to C0 iff:

(8i 2 D : C0[i]  C[i]) _
(9i 2 D : C0[i] > C[i] _ C

0
[i] < C[i])

The full proof of Theorem 1 is in Appendix 9, but the intu-
ition is that new constraints can only invalidate the skyline if they
shrink the constraint region, removing skyline points and thereby
their dominance region influence on the skyline result. Stability is
gauranteed since no point s 2 SC dominated by removed point
t 2 Sky(S,C) can satisfy an upper constraint that t does not sat-
isfy.

From Definition 4 and Theorem 1 come two natural consequences.
First, for stable cases, we need only fetch points in the new part of
the constraint region that did not satisfy the old constraints (Corol-
lary 1). Second, a skyline result is unstable if and only if an “old”
skyline point s 2 Sky(S,C) is outside the “new” constraints C0,
and it dominated points that still satisfy the new constraints (Corol-
lary 2).

Corollary 1. If Sky(S,C) is stable relative to C0 then:

8s 2 Sky(S,C0) : (s 2 Sky(S,C)) _ (s 2 (SC0 \ SC))

Corollary 2. Sky(S,C) is unstable relative to C0 iff:

9t 2 Sky(S,C) : t /2 SC0 ^
9s 2 (SC \ SC0) : t � s ^
@u 2 (Sky(S,C) \ SC0) : u � s

4.2 Incremental constraint changes
With the theory of stability in place, we show how any incre-

mental change can be solved with minimum points read. For each
of four possible cases, we prove the correctness and minimality
(proofs in Appendix 9) of our solution and illustrate the intuition of
the ideas by example/illustration.

Figures 3a-3d show the four cases for incremental changes of
constraints C (the solid rectangle), one dimension at a time: (a)
decreasing a lower constraint, (b) decreasing an upper constraint,
(c) increasing an upper constraint and (d) increasing a lower con-
straint. Note that we always have only these four cases, regardless
of dimensionality. The initial constraints C = hC,Ci and new
constraints C0, as well as the change �C from C to C0 are dis-
played in each figure. For each case, the part of SC0 that we fetch
is enclosed in the gray region. Note that while the illustrated gray
regions are all rectangular, this only holds for |D| = 2 as we will
show in Section 5.3.
Case (a): Decreasing a lower constraint (Fig. 3a) From The-
orem 1, Sky(S,C) is stable relative to C0, and from Corollary 1
all new skyline points lie in �C. Instead of fetching all of SC0 ,
we can fetch just the points in (RC0 \ RC). Further pruning is not
possible: no points in Sky(S,C) dominate any part of �C.

Theorem 2 (Case (a) solution).
If C

0
= C, 9i : C0[i] < C[i], 8j 2 D \ {i} : C0[j] = C[j], then:

Sky(S,C0) = Sky(Sky(S,C) [ S�C , C
0)

In the example (Fig. 3a), a, b and c are fetched from the database
with a, c as new skyline points (illustrated by a plus sign), while
existing d, f are dominated by a and c under constraints C0 (illus-
trated by a minus sign). The final skyline is a, c, e, i. Without the
cached Sky(S,C), we must read 12 points, a-l, from disk.
Case (b): Decreasing an upper constraint (Fig. 3b) Again,
from Theorem 1, Sky(S,C) is stable wrt C0. From Corollary 1
the skyline points in Sky(S,C0) are in Sky(S,C) or in �C. Since
RC0 is enclosed in RC , we need simply remove the previous sky-
line points not satisfying the new constraints.
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Theorem 3 (Case (b) solution).
If C0 = C, 9i : C0

[i] < C[i], 8j 2 D \ {i} : C0
[j] = C[j], then:

Sky(S,C0) = Sky(S,C) \ SC0

In this example (Fig. 3b), only i falls outside the new constraints
and is simply removed to obtain the new skyline.
Case (c): Increasing an upper constraint (Fig. 3c) As before,
Sky(S,C) is stable relative to C0 (Theorem 1), and new skyline
points in Sky(S,C0) are in Sky(S,C) or in �C (Cor. 1). Un-
like before, however, we use the dominance regions of points in
Sky(S,C0) to further prune parts of �C:

Theorem 4 (Case (c) solution).
If C0 = C, 9i : C0

[i] > C[i], 8j 2 D \ {i} : C0
[j] = C[j], then:

Sky(S,C0) = Sky(Sky(S,C) [
{s 2 S�C | @t 2 Sky(S,C) : t � s}, C0)

We thus prune S�C such that we only read ((SC0 \ SC) \ {s 2
S�C | 9t 2 Sky(S,C) : t � s}). In the example (Fig. 3c), RC0

contains 18 points, the logic of Case (a) reduces it to 9 points, and
we eventually fetch only 2 points, m and n.
Case (d): Increasing a lower constraint (Fig. 3d) Unlike Cases
(a)-(c), Sky(S,C) is not stable relative to C0. Despite this insta-
bility, we can use the old skyline result by determining invalidated
parts of the cache item and reevaluate these under constraints C0.
Using what is left of Sky(S,C) within the queried constraints C0

we prune regions before reading from disk. Since no two sky-
line points dominate each other (Def. 1), the remaining part of
Sky(S,C) is not invalidated:

Theorem 5 (Case (d) solution).
If C

0
= C, 9i : C0[i] > C[i], 8j 2 D \ {i} : C0[j] = C[j], then:

Sky(S,C0) = Sky((Sky(S,C) \ SC0) [
{s 2 (SC \ SC0) |
9t 2 (Sky(S,C) \ S�C) : t � s ^
@u 2 (Sky(S,C) \ SC0) : u � s}, C0)

Thus, we avoid reading (SC \ SC0) fully, and retrieve only
((SC \SC0) \ {s 2 (SC \SC0) | @t 2 (Sky(S,C)\S�C) : t �
s _ 9u 2 (Sky(S,C) \ SC0) : u � s}).

In the example (Fig. 3d) instead of 7 points, we only fetch g.
Throughout all examples, we save the latency of fetching unnec-
essary points, and the cost of conducting dominance tests over an
otherwise larger input.

5. ARBITRARY CONSTRAINT CHANGES
In this section, we build on the intuition from Section 4 to handle

the general case where the number of constraint changes is arbi-
trary. We first generalize the gray regions of the previous section
into the Missing Points Region (MPR), the minimal area that must
be fetched (Section 5.1), and introduce an efficient algorithm to
compute it (Section 5.2). We then illustrate how the MPR grows ar-
bitrarily complex with dataset dimensionality (Section 5.3) and in-
troduce an effective approximation to reduce that complexity (Sec-
tion 5.3).

5.1 The Missing Points Region
Given constraints C and C0, the Missing Points Region (the gray

rectangles in Figure 3) is the minimum, possibly disjoint, region
of points for which neither C0 nor Sky(S,C) can be used to infer
said points’ inclusion/exclusion in Sky(S,C0). It is comprised of

those parts of RC0 that do not overlap the dominance region of
any point s 2 Sky(S,C), lies outside RC , or, in unstable cases,
where 9t 2 (Sky(S,C) \ (SC \ SC0)), s 2 (SC \ SC0) : t � s
(Definition 5).

Definition 5. (Missing Points Region)
Given Sky(S,C), C0, the Missing Points Region, MPR, is:

MPR = {p 2 RC0 | (p 2 (RC0 \ (RC \RC0)) _
9t 2 (Sky(S,C) \ (RC \RC0)) : p 2 DR(t, C)) ^
@u 2 (Sky(S,C) \RC0) : p 2 DR(u,C0)}

The MPR is both complete and minimal in the sense that, with
knowledge only of Sky(S,C) and C0, any point in MPR could be
in Sky(S,C0) (Theorems 6 and 7, respectively).

Theorem 6. (Completeness)
Given Sky(S,C), C0, where RC \RC0 6= ;, we have:

Sky(S,C0) = Sky((Sky(S,C) \ SC0) [ (MPR \ SC0), C0)

The full proof of Theorem 6 is in Appendix 9, but the intuition
is that there are only two ways in which points can be missing:
(1) Expansion of C and (2) Invalidation of C. All expanded and
invalidated areas are fetched unless guaranteed excluded by known
points from Sky(S,C). The remaining non-invalidated regions of
SC remain stable.

Theorem 7. (Minimality)
Given only Sky(S,C), C0, where SC \ SC0 6= ;, any point in
MPR \ SC0 could be in Sky(S,C0).

The full proof of Theorem 7 is also in Appendix 9, but the in-
tuition is that by definition no known point outside MPR can dom-
inate a point inside MPR, only points inside MPR can dominate
each other. Thus to minimize MPR further, we must know the con-
tents of MPR, which we cannot do without fetching the points in
MPR.

5.2 Computing the MPR
We present our algorithm to compute the MPR, which, per The-

orem 7 is used to minimize points fetched. Our general approach
is to start with the hyper-rectangle hC0, C

0i and continually split it
using C and Sky(S,C) into sub-hyper-rectangles such that many
of them can be immediately discarded. At the end, we are left with
a set H of disjoint, axis-orthogonal hyper-rectangles (i.e., range
queries) covering the exact region of the MPR.

The advantage of this approach is three-fold: 1) it calculates the
MPR in a form (set of range queries) that can be queried directly;
2) the primary operation, splitting axis-orthogonal hyper-rectangles
with axis-orthogonal hyperplanes, is simple and efficient; and 3)
the continual discarding of hyper-rectangles controls |H|, impor-
tant because the algorithm runs O(|H| · |Sky(S,C)| · |D|).

In general, the algorithm consists of three steps: taking regions
unknown to the cache; adding invalidated regions (in the unsta-
ble case); and removing the dominance regions of cached skyline
points. Algorithm 1 presents the pseudocode (with unstable case
handling omitted due to space constraints).

Lines 2–10 calculate the overlap region, o = ho, oi, the area sat-
isfying both C and C0, by splitting the space into sections based
on the boundary of the cache item for each dimension, eventually
yielding the overlap region and disjoint regions around it. In the
stable case o can simply be removed (Line 11); we discuss the un-
stable case later. Line 12 discards any hyper-rectangle h = hh, hi
for which h = o, since h is clearly in a dominance region. Af-
ter Line 12, the first of the three steps is complete, and H captures
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Algorithm 1 MPR - Stable Sky(S,C) relative to C0

Input: I = hSky(S,C),MBR,Ci, C0

Output: A set of range queries
1: H Set of hyperrectangles (Initially only RC0 )
2: for all dimensions i 2 D do
3: for all hyperrectangles r 2 H do
4: Copy r to r, r\, and r�
5: Add to r constraint p[i]  C[i]
6: Add to r\ constraints C[i]  p[i]  C[i]
7: Add to r� constraint C[i]  p[i]
8: Del r from H and, if satisfiable, add r, r\ and r�
9: end for

10: end for
11: Remove overlap region o = (RC \RC0) from H
12: Remove h 2 H where h = o.
13: for all skyline points u 2 Sky(S,C) do
14: for all dimensions i 2 D do
15: for all r 2 H not marked with u and DR(u)\ r 6= ; do
16: Copy r to r and r�
17: Add to r constraint p[i]  u[i]
18: Add to r� constraint p[i] � u[i]
19: Mark r with u and flag r� as dominated
20: if r and r� are satisfiable then
21: Remove r and add r and r� to H
22: end if
23: end for
24: end for
25: Discard all r 2 H flagged as dominated
26: end for
27: Return H as range queries

all regions outside the cache in which missing skyline points could
exist. Lines 13–26 conduct the third step, looping through each di-
mension of each skyline point to split the remaining h 2 H. With
each split we flag one part of h as processed by the current point and
the other as being dominated. The dominated part can be discarded
on Line 25, and the flagging of the other part avoids unnecessarily
resplitting it. For simplicity of presentation, we assumed no points
lie on a range query border. This assumption can be removed by
setting either inequality to be strict on Lines 5–7, 16–21. Finally,
the unstable case is solved similarly; we simply run a slight mod-
ification of Algorithm 1 as a preprocessing step to determine the
invalidated regions, and add those to the set H between Lines 11
and 12. The modification is an inversion of the logic: we want to
process (not discard) the overlap region, o, and discard (not keep)
the rest. We want to keep (not discard) that which overlaps dom-
inance regions and discard (not keep) the rest. This inverted logic
produces a quite small set H0 that exactly represents the unstable,
invalidated region. By adding H0 to H after Line 11, it is then
reduced exactly the same as the stable part of the MPR.

5.3 Approximating the MPR
In 2D cases (such as Figures 3 and 4a), the MPR (gray region)

of the changed constraints (the dashed lines) relative to the old sky-
line (solid black points) is a simple rectangle. However, each new
dimension adds complexity. By considering a third dimension (Fig-
ure 4b), the same 8 points and set of constraints produces an MPR
consisting of 8 rectangular regions (the hollow part on top). This
complexity grows for each distinct z-coordinate because the dom-
inance region of each skyline point is (logically) subtracted from
the MPR.

(a) 2D projection (b) 3D projection

Figure 4: More dimensions = more complex dominance regions

Therefore, we introduce the Approximate MPR (aMPR). The
aMPR is a conservative approximation of the MPR which produces
no false negatives by simplifying the structure of MPR, thus creat-
ing a structure that decomposes into fewer, but larger, disjoint range
queries. This in turn produces a superset of the points in MPR, thus
guaranteeing completeness at a lower processing cost. The aMPR
represents a middle ground approach between the minimum reads
of the MPR and the maximum points read of the naive approach
in [3].

The aMPR arises from a simple observation. As mentioned ear-
lier, the complexity of the MPR comes from pruning with many
multidimensional dominance regions at once. However, of all sky-
lines points, those nearest to C0 are likely to prune the most points.
(This is the same intuition as for sort-based skyline algorithms [8].)
So, we use only the dominance region of a small set of k near-
est neighbors (NN) to C0, rather than all skyline points. Algo-
rithmically, the loop on Line 13 is replaced with the assignment,
u {NN1, . . . ,NNk}. The optimal number of nearest neighbors
to use and the trade-off presented by the approximation is evaluated
experimentally in Section 7.

6. CACHE-BASED CONSTRAINED SKYLINE
With the components introduced in Sections 4-5, our Cache-

Based Constrained Skyline (CBCS) method works as follows. We
assume an in-memory cache with n cache items {I1, . . . , In}, or-
ganized by an R⇤-tree indexing the MBR of each cached skyline.
Upon receiving a query Sky(S,C0), we perform a search on the
R⇤-tree fetching all cache items where RC0 \MBR 6= ;. If none
exist, Sky(S,C0) is computed naively. If more than one cache item
is returned, we select the most efficient based on a cache search
strategy (Section 6.1). We then compute the MPR as per Sec-
tion 5. Finally we fetch the points in the MPR, merge them with
the cached Sky(S,C), and compute Sky(S,C0).

6.1 Cache search strategies
A cache search strategy takes m query-overlapping cache items

{I1, . . . , Im} as input and aims to return the cache item most ef-
ficient for computation of the query. We suggest several cache
search strategies, which we will compare experimentally in Sec-
tion 7. Random chooses a cache item uniformly at random among
the m overlapping ones. MaxOverlap chooses the cache item with
the highest degree of overlap with the query region. MaxOverlapSP
functions as MaxOverlap, except it prefers cache items whose sky-
line Sky(S,C) is stable relative to C0 even if there is an unstable
option with a higher degree of overlap. Prioritized1D gives prefer-
ence to simple cases of single changes (as in Sect. 4.2) as follows:
Case 2, Case 3, Case 1, General case stable (i.e. not 1D), Case
4 and General case unstable. Ties are broken using MaxOverlap.
The case prioritizes were chosen by experimental evaluation. Pri-
oritizednD(C1,C2,C3,C4) generalizes this case-prioritization idea,
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by independently scoring the four cases (i.e., C1 . . . C4) and penal-
izing cache items for each dimension where constraints differ from
the queried. Initial experiments have shown PrioritizednD(10,0,5,20)
performs well, thus we use it as PrioritizednD (Std). To demon-
strate the importance of proper priorities, we also include a variant
PrioritizednD(10,50,30,0) denoted PrioritizednD (Bad). Finally
OptimumDistance chooses the cache item whose lower constraint
corner is closest to the lower corner of the queried constraints, to
give priority to likely dominating regions.

6.2 Cache replacement & dynamic data
Common cache replacement strategies (i.e., LRU, LCU) are sup-

ported by insertion and use counters on the R⇤ tree. Dynamic data
can be supported by viewing each cache item as a separate dataset
with a continuous skyline query maintained by any existing method
(e.g. [13, 19, 21]). Due to space constraints, evaluation of cache re-
placement strategies and dynamic data are omitted from Section 7
and left for future work.

6.3 Multiple cache items
As an extension to the work presented in this paper, one might

consider exploiting more than one overlapping cache item during
processing. Such a strategy could be beneficial given the increased
pruning ability from two cache items. However due to the added
complexity, more range queries would be generated, cache search
strategies would become more complicated and the number of dif-
ferent overlap cases would require elaborate specialized processing
methods. These added complexities merit a separate research effort
into such a method and thus we leave this for future work.

7. EXPERIMENTAL EVALUATION
In this section, we provide an extensive experimental evaluation

of our CBCS method, investigating scalability, the effectiveness of
the approximate MPR, and the cache search strategies. We exper-
imentally compare CBCS to the existing BBS method for comput-
ing constrained skylines, as well as a Baseline method that fetches
all points in SC with a range query and applies a standard sky-
line algorithm (as suggested in [3]). We use the Sort-Filter Skyline
(SFS) [8] algorithm in both the Baseline method and our own CBCS
method. While more complex skyline algorithms, e.g., BSkyTree
[16], might produce faster overall runtimes, our contribution is or-
thogonal in that the benefit of our CBCS method is independent of
the skyline algorithm used, as we show in Section 7.3.

Experiments are performed on Linux with kernel 3.2.0-61-generic,
an Intel Core 2 Quad Q8400 2.66 Ghz CPU and 8 GB memory.
All algorithms are implemented in Java, using a publicly avail-
able Java-based R-tree implementation 2. Data is stored in Post-
greSQL 9.1.13 with each dimension indexed by a standard B-tree.
The cache is implemented as a simple in-memory cache, organized
through an R⇤-tree that indexes the MBR for each cache item.

All methods are evaluated in separation with the DBMS restarted
between runs for fair comparison. In preliminary experiments, we
also tested a baseline using sequential scan, but it was consistently
slower than the baseline using the indexes; so, we omit it for space.

We evaluate with synthetic data by generating independent, cor-
related and anti-correlated data using the standard generator from
[3]. For real data we use a Danish real estate dataset covering al-
most 4.2 million properties in Denmark as of 2005. The full 2005
dataset is not publicly available but the current 2013 version can be
browsed online 3.
2http://libspatialindex.github.com
3https://www.ois.dk/

7.1 Query workload generation
Existing constrained skyline work does not study sets of queries,

but only single queries. We therefore construct a query generator
mimicking interactive search patterns as studied also in relation to
constrained skyline queries earlier [6, 17]. The generator chooses
an initial set of constraints for each i 2 D with C[i] and C[i]
set randomly between 0 and 3 standard deviations from the mean
of dimension i, modeling that, for example, average-sized houses
are most likely to be searched. Subsequent constraint changes are
modeled as follows: 1) The dimension to vary is chosen randomly;
2) whether to increase/decrease lower/upper constraints is chosen
at random; and 3) a new query is generated from the old, with a
5% � 10% change in the chosen dimension and direction. Step 3)
is repeated 1� 10 times to mimic an interactive scenario with one
user posing several similar queries. All steps are repeated until the
desired number of queries has been generated.

We evaluate all methods with two different query workloads:
(1) the aforementioned Interactive exploratory search and (2) In-
dependent queries in a multi-user system. Workload (1) assumes
an empty cache and uses the generator to create 5 independent sets
of 100 queries mimicking 5 ⇥ 100 actions in an interactive ex-
ploratory search. Workload (2) assumes a preloaded cache with
2000 queries, where we receive a number of new independent sin-
gle queries each generated like the initial query in the generator.

Unless stated otherwise locally, the cache search strategies used
are MaxOverlapSP for interactive exploratory search queries and
PrioritizednD (Std) for independent queries.

7.2 Interactive Search - Dataset size & Dimen-
sionality

Figures 5a-5c show the average running time of our CBCS using
aMPR compared to BBS and Baseline, for increasing dataset size
on 5D data. Initial experiments showed using 1 NN for aMPR gave
the most consistently good results for interactive search scenarios.
CBCS average performance is labeled aMPR, further broken down
into aMPR (Stable) and aMPR (Unstable) for performance on sta-
ble/unstable cases respectively. Results are averaged over the same
5⇥100 interactive exploratory search queries. For distributions we
see that all methods scale approximately linearly. This is expected
since the same range query will require a linear amount of extra
processing for each increase in dataset size, regardless of the result-
ing constrained skyline. By comparing Baseline to the CBCS meth-
ods, we also see that we scale significantly better than the Baseline
on average for all distributions, especially when the cached skyline
is stable relative to the queried constraints in aMPR (Stable). In
these cases, a partial skyline result requires fetching only a small
subset of what Baseline fetches. Thus we both read fewer points
and conduct fewer dominance tests. However, while aMPR scales
well on average and the stable cases in aMPR (Stable) scale very
well, the unstable cases in aMPR (Unstable) fare less well. As
discussed in Section 4.2, instability can cause recomputation if a
cached skyline point falls outside of the new constraints. Still, the
only case in which the aMPR (Unstable) does not outscale Baseline
is on independent data with � 2M points.

Interestingly, BBS performs worse than Baseline in several cases
and consistently for independent data. This is most likely due to
the overhead in R-tree queries when few entire regions are pruned
or included in the skyline. As a final note, observe the scales
in Figures 5a-5c differ and that, perhaps surprisingly, correlated
data is more of a challenge for the methods than independent data.
Broadly speaking independent data is evenly distributed and corre-
lated data is grouped in sections of the dataspace. The same queries
that returned a given number of datapoints for the independent data
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Figure 5: Scalability with increasing dataset size for interactive exploratory search queries (|D| = 5)
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Figure 6: Scalability with increasing dataset size for interactive
exploratory search queries (Independent, |D| = 3)
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Figure 7: Efficiency with increasing dimensionality (|S| =
1M , |D| > 5)

can thus return significantly more for correlated data, if the queries
happen to cover where the data is most concentrated. This is ex-
actly what we see here, since the average number of points read is
7 times higher for correlated data than for independent data. Note
that despite this, the performance of each method is not reduced 7
times, because the computation of the skyline on corrrelated data
points is much faster.

Figure 6 shows the same experiment as in Figures 5a-5c but for
a 3-, rather than 5-, dimensional independent dataset. We include
the exact MPR with a stable/unstable split as with aMPR. Just as in
Figure 5a, we see that BBS, Baseline and aMPR all scale linearly.
However while BBS performs better, the Baseline is still faster for
independent data, since the increased efficiency of the R-tree in
|D| = 3 is equally matched by the benefit of simpler dominance
tests in the Baseline. The aMPR method remains superior to the
Baseline as in Figure 5a, but due to the decreased dimensionality
even unstable cached skylines in aMPR (Unstable) are scaling well.
Finally the use of the exact MPR rather than the aMPR means sta-
ble cache items yield superior results since MPR prunes more of
the search space than aMPR. However while the same superior
pruning applies to unstable cache items, the MPR method is sig-
nificantly slower than the aMPR, since cache invalidation yields a
prohibitive amount of range queries with subsequent random ac-
cess latency for MPR. We will discuss a further breakdown of these
performance factors for aMPR and MPR in Section 7.3. Finally
we observe scalability with regard to |D| in Figure 7. Note that,

unlike unconstrained skyline queries, fixing the dimensionality in
constrained skylines has some important implications. Depending
on the constraints, adding a dimension may in fact increase the ef-
ficiency of a constrained skyline query by reducing the input size.
In order to avoid such arbitrary effects, we expand the queries from
Figures 5a-5c by adding an unconstrained dimension to each query
for each dimension over 5. The dimensionality results for |D| = 8
are thus constrained on 5 dimensions and unconstrained on 3.

As expected, all methods deteriorate exponentially with |D| as
the skyline size increases. For BBS, the performance of the un-
derlying R-tree degrades and for the aMPR, the number of range
queries generated increases (see Section 7.3).

7.3 CBCS performance breakdown
We further analyze CBCS by investigating 3 key factors: the

number of points fetched, the number of range queries issued, and
the types of constraint changes.

7.3.1 Number of points read from disk
Figure 8a shows points read by Baseline and aMPR for the exper-

iment from Figure 5a. The number of points read by Baseline in-
creases significantly with dataset size, while the increase for aMPR
is limited except for the unstable cases in aMPR (Unstable). This is
key to the performance of aMPR since the number of points read is
primarily influenced by the difference in cardinality between sets
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Figure 8: Avg. number of points read (Independent, |S| = 1M )
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Figure 9: Avg. number of range queries generated (Indepen-
dent, |S| = 5k)

SC and SC0 , rather than the actual size of each set. The larger
increase for aMPR (Unstable) arises both from the likelihood of
cached skyline points being outside the queried constraints and in-
creasing the number of new points included due to invalidation in-
side the cache item.

Figure 8b which shows the average number of points read from
disk for Baseline, aMPR and MPR in comparison, corresponding to
Figure 6. The same pattern as in Figure 8a can be seen for Baseline
relative to aMPR, while MPR consistently reads fewer points than
aMPR from disk, since it is the minimal set. While an unstable
cached skyline yields relatively many reads for aMPR, the exact
opposite is the case for MPR. This illustrates that while computing
the exact invalidation of a cache item is computationally expensive,
the extent of invalidation is limited.

7.3.2 Number of range queries generated
Figure 9 shows the average number of range queries for MPR and

aMPR with 1,3,6 and 10 NNs on interactive (Figure 9a) and inde-
pendent (Figure 9b) workloads. Both graphs use logarithmic scales
and the dataset is limited to 5k points so that we can scale MPR to
higher dimensions. Figure 9a reveals that the exact MPR rapidly
generates extra queries as |D| increases, e.g., a 6D query/cache
item pair generates almost 50k disjoint range queries to cover the
MPR. This number would be even higher for > 5K points. For the

aMPR, the reduced hyperplane splitting, while increasing the num-
ber of points read, greatly decreases the amount of queries gen-
erated dependent on the amount of NNs used. Note that we did
not include results for MPR for dimensionalities 8,9 and 10, since
just generating the range queries here took several hours for each
query. Thus the approximation really improves scalability as |D|
increases.

Figure 9b confirms these trends for independent queries as well,
but both methods generate more queries and the increase is more
rapid, because the queries generated overlap less in higher dimen-
sions. Observe that the number of NNs can be used to manipulate
the tradeoff between reading few points from disk and decreasing
random access. While large quantities of range queries seem prob-
lematic, they do not necessarily deteriorate the performance of the
method. Considering e.g. Figure 9b for |D| = 4 and #NN = 10,
on average ⇡ 61 queries were generated for aMPR, but the num-
ber actually reading data only averaged 33. The remaining queries
were discarded by the DBMS without any disk seeks because the
B-trees detect the empty queries. For |D| = 10 and #NN = 10
these numbers increase to 13353 queries generated of which only
114 read data from disk.

Note that with only 5K, no stable cases were generated for |D|>4.
From Theorem 1, this is not surprising, since just one dimension i
where C0[i] > C[i] causes instability of Sky(S,C) relative to C0.
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Figure 10: Avg. ms per stage (Independent, |S| = 1M , |D| = 3)

So, for independent queries, CBCS methods work best for lower di-
mensional settings, and shows most benefit for exploratory queries.

7.3.3 Types of constraint changes
Figure 10 breaks down computation for 1M points (settings as in

Figure 6) into 3 stages: processing, fetching, and skyline computa-
tion, corresponding to the main-memory selection of range queries,
the latency to read points from disk, and the running of SFS, respec-
tively. Baseline has no processing stage, but suffers long fetching.
Conversely, aMPR has light processing, which reduces fetching
and then, having fewer input points, skyline computation. Con-
sidering specific types of changes, aMPR Case 2 has no fetching
stage or computation stage, since this is a simple case which only
requires removing cached skyline points. aMPR Case 3 shows a
slight processing stage followed by a significantly smaller fetching
stage than both Baseline and aMPR Case 1 since we are able to
prune the search space significantly using cached skyline points.
Note that while the relative gains of the fetching stage from aMPR
Case 1 to aMPR Case 3 are only half, a larger portion of points is
pruned, with random access being more time consuming.

To conclude, we see that the superior performance of aMPR and
MPR arises primarily from the reduced reads from disk, which re-
duces both fetching and skyline computation. Also, the perfor-
mance is independent of the skyline algorithm used, since this is
anyway not a bottleneck. Finally we see that the MPR requires
too many range queries for mid- to high-dimensional data, but the
aMPR generates a small, stable number of range queries indepen-
dent of the dataset size.

7.4 Cache search strategies
Our last synthetic experiment shows the distribution of response

times for each proposed cache search strategy from Section 6.1,
using aMPR on 5 ⇥ 100 interactive queries (Figure 11a) and 500
independent queries (Figure 11b).

Compared to the Random strategy we can see there is a clear
benefit in using overlap as a guiding factor (observe MaxOverlap,
MaxOverlapSP and in part Prioritized1D which uses MaxOverlap
to settle ties). High overlap yields smaller MPRs, especially in
stable cases. On the other hand, prioritizing only stable cases is
not a good strategy for independent queries, as is clear from Max-
OverlapSP: such queries are likely to vary in several dimensions
such that choosing solely on stability may select an item with poor
overlap or many changed dimensions. Instead a balanced ranking-
based approach like PrioritizednD (Std) is most promising, since it
not only considers stability but also case complexity. PrioritizednD
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Figure 11: Cache search strategies (|S| = 1M , |D| = 5)

(Bad) shows poor performance demonstrating that the case-based
scoring is important for performance. Finally, OptimumDistance
performs poorly: considering only closeness in terms of dominance
fails to capture the complexity of cases and overlap.

7.5 Real data
We study real data covering ⇠ 4.2 million properties in Den-

mark as of 2005 using 4-dimensions suitable for constrained sky-
line computation: year (year of construction), sqrm (size in m2),
valuation (property tax valuation) and price (actual sales price).
The final dataset size is 1.28M records after removing records with
missing data. Figures 12a and 12b respectively show the distribu-
tion of response times for 10⇥ 100 exploratory search queries and
50 independent queries. Figure 12a shows our aMPR method is
superior to both Baseline and BBS, with BBS managing about 2.2
seconds on average per query and Baseline performingly signif-
icantly better at about 0.45 seconds. Note the average response
time of aMPR (Unstable) is actually low due to limited invalida-
tion, while the worst case invalidation yields response times above
the average for Baseline. Figure 12b shows a set of independently
generated queries. Here Baseline varies heavily in performance due
to varying query selectivities, while BBS is stable with the chang-
ing constraints. The remaining 3 plots show aMPR with varying
numbers of NNs. The number of NNs chosen in this case has a
large impact on performance, since using only 1 as with the ex-
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Figure 12: Performance on Danish property data (|S| = 1.28M ,
|D| = 4)

ploratory queries yields poorer results than BBS, while 5 NNs or 10
NNs greatly outperforms it. Using more than 10 NNs however did
not provide any significant further benefit in this case.

In conclusion, the major performance factors are the number of
disk reads performed and the degree of random access due to mul-
tiple range queries. We have shown that CBCS performs substan-
tially better on related queries than existing methods. The perfor-
mance benefit remains stable for increasing dataset size and di-
mensionality, when using approximate aMPR. The cache search
strategy is a clear determinator of the resulting performance with
the main factors being average overlap, stability and case distribu-
tions.

8. CONCLUSION
In this paper we introduced a novel method for computing con-

strained skylines using an in-memory cache. Our method was en-
visioned under two common types of query workloads with re-
lated queries, namely interactive search and multi-user systems.
We determined four possibilities for incremental query/cache over-
lap, analyzed them and presented specialized techniques for each.
For general query/cache overlap, we introduced the Missing Points
Region, which minimizes points read from disk by exploiting the
cache item’s relation to the query. To increase the practical per-
formance of this general method, we introduced a conservative ap-

proximation of the MPR, called aMPR, to balance the trade-off be-
tween resultant range queries and points read from disk. Finally we
introduced a set of heuristics to choose the most efficient overlap-
ping cache item for a query. Our extensive experimental evaluation
revealed, among other things, that the choice of cache item to use
for processing has a big impact on performance and that our method
significantly outperforms existing approaches when related queries
are present.
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APPENDIX
Proof of Theorem 1. Consider left [L] and right [R] sides of the
OR expression. From [R] we have (9i 2 D : C0[i] > C[i] _
C

0
[i] < C[i]) =) RC\RC0 = ;, thus Sky(S,C) is stable in this

case. For [L] we prove (8i 2 D : C0[i]  C[i]) implies stability,
by contradiction. Assume 9s 2 Sky(S,C0) : (s 2 SC) ^ (s /2
Sky(S,C)). From Def 1, this implies 9t 2 SC : t � s. This in
turn means s 2 Sky(S,C0) =) t /2 SC0 =) 9i 2 D : C

0
[i] <

t[i]  s[i]  C[i], i.e. t and s both do not satisfy constraints C0

and thus s /2 Sky(S,C0) contradicting the assumption. Observe
that [L] and [R] are the only situations with guaranteed stability,
since cases not satisfying Thm 1 must have RC \ RC0 6= ; and
9i 2 D : C[i] < C0[i]  C[i]. Thus for u 2 Sky(S,C), C[i] 
u[i] < C0[i]  C[i] we could have v 2 SC , u � v and C[i] 
u[i] < C0[i]  v[i]  C[i]. Since u /2 SC0 we might then have
v 2 Sky(S,C0), making Sky(S,C) unstable relative to C0.

Proof of Theorem 2. Since Sky(S,C) is stable relative to C0 given
Thm 1, equality follows from Cor 1. Minimality holds since @s 2
Sky(S,C), t 2 S�C : s � t.

Proof of Theorem 3. Observe SC0 ⇢ SC and that Sky(S,C) is
stable relative to C0 given Thm 1. Thus we must have Sky(S,C0) ✓
Sky(S,C) and Sky(S,C0) = Sky(S,C) \ SC0 follows. Mini-
mality holds since the reduction simply removes cached skyline
points and no further reads are necessary.

Proof of Theorem 4. Observe Sky(S,C) is stable relative to C0

given Thm 1. Thus equality follows from Cor 1 since for s 2
Sky(S,C0) we either have s 2 Sky(S,C) or s 2 S�C , where
@t 2 Sky(S,C) : t � s.

Minimality holds since 8u 2 Sky(S,C), v 2 (Sky(S,C) [
{s 2 S�C | @t 2 Sky(S,C) : t � s} : u ⌥ v), i.e. we have no
further known points to prune S�C with.

Proof of Theorem 5. Given Thm 1, Sky(S,C) may be unstable
relative to C0 and we observe SC0 ⇢ SC . At this point we have two
possibilities given Cor 2: [St] Sky(S,C) is stable relative to C0, or
[Ust] Sky(S,C) is unstable relative to C0. If case [St] holds, then
Sky(S,C0) = Sky(S,C) \ SC0 since there is no invalidation.
If case [Ust] holds, then from Cor 2 we have 9t 2 Sky(S,C) :
t 2 S�C ^ 9s 2 (SC \ SC0) : t � s ^ @u 2 (Sky(S,C) \

SC0) : u � s, i.e. there exists a removed skyline point which has
invalidated part of the cache. Since [St] and [Ust] correspond to the
two unioned skyline inputs in Thm 5, completeness holds by virtue
of Def 1.

To observe that minimality holds, we first note that from Def 1
we must have @s 2 Sky(S,C), t 2 (Sky(S,C) \ S�C) : s � t
=) 8s 2 (Sky(S,C) \ SC0) : s 2 Sky(S,C0), i.e. a removed
skyline point cannot dominate a remaining skyline point. Thus
minimality holds since only {s 2 (SC\SC0) | 9t 2 (Sky(S,C)\
S�C) : t � s} is affected by instability given Cor 2 and only
Sky(S,C) \ SC0 is available for pruning.

Proof of Theorem 6. We prove equality in right [R] and left [L] di-
rections. For [R] we assume w 2 Sky(S,C0). We then have two
cases: [1] w 2 (RC \ RC0) and [2] w 2 (RC0 \ (RC \ RC0)),
i.e. w is either in the overlapping region between cache and query
([1]) or outside the cache ([2]).

If we have case [1], then given Cor 2 we have w 2 (Sky(S,C)\
RC0)_ (9t 2 (Sky(S,C)\ (RC \RC0)) : w 2 DR(t, C)^@u 2
(Sky(S,C) \ RC0) : w 2 DR(u,C0)), i.e. w is a cached skyline
point or a point included due to invalidation. If instead case [2]
holds, then we simply have @u 2 SC0 : u � w due to Def 1.

Combined we thus have (w 2 (Sky(S,C) \ RC0)) _ (w 2
{p 2 RC0 | (p 2 (RC0 \ (RC \ RC0)) _ 9t 2 (Sky(S,C) \
(RC \ RC0)) : p 2 DR(t, C)) ^ @u 2 (Sky(S,C) \ RC0) : p 2
DR(u,C0)}) which is equivalent to w 2 Sky((Sky(S,C)\SC0)[
(MPR \ SC0), C0) by virtue of Def 1.

For the opposite direction, [L], we assume w 2 Sky((Sky(S,C)\
SC0)[(MPR\SC0), C0). We again have two cases: [St] Sky(S,C)
is stable relative to C0, and [Ust] Sky(S,C) is unstable relative to
C0.

If we have case [St], then given Cor 1 we have (w 2 (Sky(S,C)\
SC0)) _ (w 2 (RC0 \RC)), i.e. w is either a cached skyline point
or outside the cache.

If instead we have case [Ust], then given Cor 1 and 2, we have
((w 2 (Sky(S,C)\SC0)) _ (w 2 (RC0 \RC)))_ (w 2 (RC \
RC0)^(9t 2 (Sky(S,C)\(RC\RC0)) : w 2 DR(t, C))^(@u 2
(Sky(S,C) \ RC0)) : w 2 DR(u,C0)), i.e. w is either a cached
skyline point, a point outside the cache or a point included due to
invalidation.

Now observe that the region RC0 can be expressed as RC0 =
(RC \ RC0) [ (RC0 \ (RC \ RC0)). We now prove by contra-
diction that any w satisfying the right hand side of Thm 6 must
also be in Sky(S,C0). So we assume w /2 Sky(S,C0) =) 9v 2
Sky(S,C0) : w 2 DR(v, C0) given Def 1. We then have two cases
[I] v 2 (RC \RC0) and [O] v 2 (RC0 \ (RC \RC0)).

If [I] then v 2 Sky(S,C)_9t 2 (Sky(S,C)\(RC\RC0)) : v 2
DR(t, C)) which implies w /2 Sky((Sky(S,C)\SC0)[(MPR\
SC0), C0) given Def 1 yielding a contradiction.

If [O] then v /2 (RC \RC0) =) v /2 (Sky(S,C) \RC0) =)
@u 2 (Sky(S,C) \ RC0) : u � v =) v 2 MPR given Def 5,
also yielding a contradiction. Hence w 2 Sky(S,C0).

Proof of Theorem 7. Proof by contradiction. Assume p 2 MPR
and p /2 Sky(S,C0) can be guaranteed. From Def 1, p /2 Sky(S,C0)
=) 9t 2 Sky(S,C0) : t � p. Observe that t must be known
before fetching for us to prune with it, thus t � p =) t 2
(Sky(S,C) \ RC0) =) t 2 Sky(S,C), i.e. t is part of the
cached skyline. By the definition of MPR (Def 5), this contradicts
our assumption since all p 2 RC0 where 9u 2 (Sky(S,C) \
RC0) : p 2 DR(u,C0) are excluded from MPR. Thus the MPR is
minimal.
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