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ABSTRACT
Skyline queries are a well-studied problem for multidimen-
sional data, wherein points are returned to the user i↵ no
other point is preferable across all attributes. This leaves
only the points most likely to appeal to an arbitrary user.
However, some dominated points may still be interesting,
and the skyline o↵ers little support for helping the user un-
derstand why some interesting points are omitted from the
results. In this paper, we introduce the Sky-not query. Given
a query point p, a dataset S, and constraints with bounding
corners qL and qU, the Sky-not query returns the alterna-
tive constraints q0L closest to qL for which p is in the skyline.
This equips the user with an understanding of not just that
a point was dominated, but also how severely. He can then
assess himself whether the point is competitive.

We first propose theoretical results that show how to dras-
tically reduce the input processed by a Sky-not query, inde-
pendent of any algorithm. We then o↵er a skyline-like and
an e�cient recursive algorithm for solving Sky-not queries,
which we evaluate in an extensive experimental evaluation.

1. INTRODUCTION
When exploring unfamiliar data, the skyline operator [3]

can identify balances among multiple (possibly conflicting)
attributes. It selects only those data points for which no
other point is preferable across all attributes. Consider the
canonical example of selecting a hotel, given the fictitious
ones in Table 1. Budget Sleepz (B) is both cheaper and
closer to the beach than Cozy Cabin (C); so, it is said to
dominate the latter. The skyline is exactly and only those
points not dominated by any others, in this case not includ-
ing Cozy Cabin, but including the remainder: {A,B,D,E}.
For a user, however, this indicates only that C is dominated
by some other point, not which, nor how severely. C may
be a reasonably competitive choice, even if it is dominated.

More generally, a (skyline) query typically includes range
constraints (i.e., a WHERE clause) for more sophisticated ex-
pression. The user searching for hotels may want the most
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ID Name Price/nt Distance
A Abode Abroad 45 2100m
B Budget Sleepz 30 4200m
C Cozy Cabin 40 4500m
D Diamond Harbour Inn 175 300m
E Extravagansium 325 100m

Table 1: A fictitious city’s hotel o↵erings.

a↵ordable option, but not something “cheap.” Or, he may
want a location remote from the city, but reachable within a
few hours. Setting these constraints perfectly can be a chal-
lenging and iterative process, since notions such as “cheap”
and “a few hours” are intentionally under-specified by the
user and data-dependent. Yet, the constraints can have
substantial impact on the query results, both adding and
removing skyline points [6]. For the user, there is no sup-
port for understanding why data points are dominated, nor
by how much. Especially when comparing several similar
queries, the di↵erences can be quite perplexing [18].

Furthermore, not all decision criteria are necessarily re-
flected in the data attributes. Other factors might con-
tribute to preferring a non-skyline point. For example, a
user may favour Cozy Cabin on recommendation from a
friend or because of a successful advertising campaign. In
such a case, the skyline may do a disservice by hiding results
that the user expects, ones that match the constraints of his
search and are valid options from his perspective. In this
paper, we introduce explanations for data points excluded
by skyline queries. The user can then appraise whether the
extra 10 euro per night and 7% from the beach is a tolerable
trade-o↵ and adjust his query accordingly, if he wants.

Figure 1 illustrates the technical problem. Given range
constraints (qL, qU), one retrieves a skyline of just hotels
A and B, yet C also satisfies the constraints. How does
one explain to the user C’s absence? In other words, why
is C dominated? Similarly to other questions of why-not
provenance [4, 11, 19, 24], we wish to report an alternative
query (i.e., new constraints) so that C is no longer omitted
from the results. We find a new position (one candidate is
denoted by a star in the figure) for the lower constraints,
qL, so that all points dominating C are eliminated. This
illuminates the relationship of point C to the rest of the
data and, furthermore, concretely recommends to the user
a potentially better-suited query.

However, finding the best explanation—the best new po-
sition for qL—is non-trivial: anywhere within the rectangle
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Figure 1: Hotels from Table 1 mapped to points in the plane,
shown with a constrained region (qL, qU), enclosed by dashed
lines. A Sky-not query for point C relocates qL to a position,
such as the star, after which C is in the skyline.

(qL,C) could potentially improve C’s query fate, since the
only things that are obvious (later in this paper) is that qL’s
old position should dominate its new position (so that every
change is an improvement) and that the new position must
still dominate C (so that C satisfies the constraints). The
best position is the one closest to the original position but
that promotes C to the skyline.

In this paper, we introduce and propose solutions for this
novel query, the Sky-not Query, which quantifies why a query
point p is not in a skyline. Algorithmically, we introduce
a recursive algorithm that prioritizes cases that favour our
pruning rules to e�ciently relocate qL. In comparison to a
baseline algorithm and an adaptation of ideas from [12, 14,
17, 21], we show in a detailed experimental evaluation that
the Sky-not query can be computed very e�ciently.

Contributions and Outline
In this paper, we make the following contributions:

• we introduce the Sky-not Query to improve the use-
ability of the skyline operator (Section 2);

• we derive theoretical properties of Sky-Not Queries,
including duality with the SkyDist problem studied
in [12,14], that lead to algorithm-independent improve-
ments in e�ciency (Section 4); and

• we give two novel algorithms, BRA and PrioReA, based
on theoretical analysis (Section 5) for achieving im-
pressive empirical performance (Section 6).

Additionally, we survey related literature in Section 3 and
conclude in Section 7.

2. THE SKY-NOT QUERY
In this section, we introduce the novel Sky-not query for

explaining the absence of a given point in a skyline result.
We first recall some general concepts from literature about
skylines (Definitions 1-4), before presenting the problem def-
inition (Definition 5).

Generally, we assume a dataset of records represented by
a set of Euclidean points, S. For example, the hotels from
Table 1 are represented as points in Figure 1. Given S, we
denote the dimensionality of the Euclidean space by d and
the i’th attribute of a point s 2 S by s[i]. Without loss of
generality and for the sake of simplifying prose, we assume

all attribute values are in the range [0,M), for some positive
real, M , and that smaller values are preferable.1

2.1 Constrained Skylines
To define the skyline formally, we first define dominance

(Definition 1). One point dominates another if it is at least
as desirable in every dimension, and strictly more desirable
in at least one. Formally:

Definition 1 (Dominance [3]).
Point s dominates point t, denoted s � t, i↵

8i 2 [0, d), s[i]  t[i] and 9j 2 [0, d) such that (s.t.) s[i] < t[i].

If neither s dominates t nor t dominates s, then s and t are
incomparable, denoted s �� t. The relation s � t denotes
that either s � t or 8i 2 [0, d), s[i] = t[i].

For example, from Table 1, Hotel B dominates Hotel C
because it is both cheaper and nearer (B is to the lower-
left of C in Figure 1). A stronger case is strict dominance
(Definition 2), in which strict equalities are used:

Definition 2 (Strict dominance).
Point p strictly dominates point q, denoted p �� q, i↵ 8i 2
[0, d), p[i] < q[i].

Given range constraints, where qL denotes the lower bound
(0 if unspecified) on every attribute and qU denotes the up-
per bound on every attribute (M if unspecified), we call the
subset of points satisfying the constraints the constrained
dataset (Definition 3):

Definition 3 (Constrained Dataset).
Given a set of points, S and a constraint region (qL, qU), the
constrained dataset, denoted S(qL,qU), is the set of points
{s 2 S : qL �� s �� qU}. We say that each point s 2 S(qL,qU)

is inside the constraint region.

For example, given the constraints in Figure 1, only A, B,
C are in the constraint region. The skyline (Definition 4)
is the set of points inside the constraint region that are not
dominated by any other points inside the constraint region:

Definition 4 ((Constrained) Skyline Query(S) [3]).
Given a set of points, S, and a constraint region, (qL, qU), a
skyline query returns the set:

SKY(S, (qL, qU)) = {s 2 S(qL,qU) : 6 9t 2 S(qL,qU), t � s}.
The set SKY(S, (qL, qU)) is called the skyline of S(qL,qU).

For example, in Table 1, with qL = (0, 0) and qU =
(350, 5000), Hotel C is dominated by Hotel B, but all other
hotels are incomparable to each other. Therefore, the sky-
line is {A,B,D,E}. On the other hand, with constraints
qL = (35, 1000) and qU = (250, 5000), as shown with the
outer, dotted rectangle in Figure 1, only A and C satisfy the
constraints and neither dominate each other; so, they are
both in the skyline: {A,C}.
2.2 Problem Definition

We now define the Sky-not query (Definition 5). Infor-
mally, given a constrained skyline instance and a query point
p, a Sky-not query, denoted SN(S, p, (qL, qU) ,�) determines
the minimum cost change to qL after which p would be in
the skyline. Formally:
1The first assumption is justified by normalization and the
second assumption can hold by multiplying values by �1
where maximization is instead preferred.
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Definition 5 (Sky-not Query, SN(S, p, (qL, qU) ,�)).
Given S, p 2 S, (qL, qU), s.t. qL �� p �� qU, distance func-
tion, � : Rd ⇥ Rd ! R+, 2a Sky-not Query returns point:

q

0
L = argmin

q2(qL,qU),p2SKY(S,(q0L,qU)�(qL, q).

Again considering Figure 1, we could move qL to the
starred position, and then C is in the skyline (i.e., the starred
position solves the Sky-not query). However, this is not the
optimal solution: q

0
L = (30, 1000) also solves the Sky-not

query, but is closer to qL than the starred position.
By learning the Sky-not query result, q0L, a user can im-

mediately understand how competitive p is relative to the
skyline and evolve his subsequent queries accordingly.

3. RELATED WORK
The Sky-not Query (Section 2) ties together a couple of

active research topics, which we survey in this section.

Skyline The skyline operator was introduced [3] with two
disk-based algorithms, a block-nested loop (BNL) and a
partitioning-based (D&C) approach. Since, BNL has been
improved with the use of pre-sorting [8] and early termi-
nation conditions [1]. The D&C algorithm has been im-
proved with progressively better partitioning schemes [15,
27]. Also, new index-based algorithms based on B-Trees [23]
and R-Trees [20] have been proposed. Of these algorithms,
BSkyTree [15] reports the best performance; although, this
can be improved using multiple processing cores [7].

Although the skyline was proposed in the context of a gen-
eral SQL query with a WHERE clause [3], Papadias et al. [20]
were the first to propose algorithms specifically for handling
constraints, a problem they term the constrained skyline and
the subject of study here. The presence of constraints makes
the skyline operator much more flexible and practical, be-
cause most real queries involve a WHERE clause.

Although the skyline is considered as a tool for interac-
tivity, say in discovering user preferences, little research has
considered this aspect. Literature on “interactive skylines”
(e.g., [16]) seeks to learn user preferences. Our perspective
on interactivity here is in helping the user understand the
data, not their preferences over the attribute domains. To
this end, existing work is quite limited. Magnani et al. [18]
conducted a user study that showed users are perplexed
when posing consecutive queries if new dominance relation-
ships cause previous query results to disappear. Chester et
al. [6] conducted an experimental study of how much the sky-
line changes when users evolve their constraints. Both these
works assess the impact on the user of interacting with the
skyline, but neither provide solutions for helping the user to
evolve queries towards his/her objective.

Why-not Queries Providing the user with an explana-
tion for a missing answer [4,11,19] is a relatively new goal in
database research. The general idea of why-not queries is to
provide a user, who has a specific solution record in mind,
with specific details into the cause for its being omitted from
the results. Why-not queries have been studied for relational
(i.e., SPJUA, sort-project-join-union-aggregate) queries [2,

2Throughout this paper, we assume the distance function
is L1 (i.e., Manhattan) norm: �(s, t) =

P
d�1
i=0 |s[i]� t[i]|;

so, we will drop � from the notation. The ideas presented
easily generalize to any weighted L

p

norm.

10], top-k queries [9], and reverse skyline queries [13],3 but
the definitions and techniques do not straight-forwardly ap-
ply for skyline queries because each query type excludes can-
didate results for quite di↵erent reasons (no common join
key, low weighted sum, & dominance).

However, we do adapt two key ideas from other why-not
query types. Because explanations can be arbitrarily com-
plex, it is preferable to determine minimal explanations [28].
Our experiments (Section 6) reveal that Sky-not queries
favour explanations involving fewer dimensions changing.
Additionally, there are generally two ways of manipulating
a query result [24]: either by changing the data or the query
parametres. Here, we focus on changing the query, since
this is more often under the user’s control. With respect to
changing the data, some research has gone into manipulat-
ing skyline query results [12,14,17,21] from a Business Intel-
ligence perspective, where the objective is to modify one’s
product o↵erings in order to penetrate the skyline. We elab-
orate on the relationship between changing the query and
the data in Theorem 5. Lastly, our problem di↵ers from cre-
ating competitive products [25]: we aim to determine why
an existing product is not in the skyline, not to create new
(meta-)products from a collection of existing products.

Technically related papers We overlap some technical
material from tangentially related papers. Our algorithms
first find all the points that cause the absence of p in the
skyline, then relocate qL. To detect the causative points,
we borrow the idea of close dominance [22] (Definition 6).
Regarding relocation, Cheema et al. [5] introduce the idea
of “safe zones” for dynamic skylines, wherein the safe zone
of a point is those query positions in which the point is
still a skyline point. Our objective is to find the nearest
query point where all safe zones are violated. DeltaSky [26]
maintains a view of skyline points to handle deletions.

4. PROPERTIES OF THE SKY-NOT QUERY
In this section, we introduce some algorithm-independent

theoretical insights into the Sky-not query. In particular, we
show both that the solution space (qL, p) can be discretized
and that the input size can be reduced (Section 4.1). This
gives a smaller, finite search space for the problem. We also
show duality of the problems of changing the data vs. the
query to manipulate a skyline result (Section 4.2). Con-
sequently, techniques for both problems are mutually ex-
changeable (and, indeed, we do exactly this in our experi-
mental evaluation, Section 6).

4.1 Reduction and Discretization
We start with a couple properties of a Sky-not query so-

lution that are quickly evident from the definitions.

Proposition 1 (Transitive Order). qL �� q

0
L �� p �� qU.

Proposition 2 (Undominated Data).
8s 2 S(qL,qU), s � p =) q

0
L 6� s.

Proposition 1 simply states that the solution q

0
L must nec-

essarily increase or keep the values of qL and must strictly
dominate neither p nor qU; otherwise, p will not be in the
skyline. Proposition 2 simply states that the solution q

0
L

3Despite the similar name, a reverse (dynamic) skyline query
is quite di↵erent from a skyline query, focusing on dynamic,
spatial proximity and an inversion of the skyline problem.
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Figure 2: An example of close dominance and how it relates to Sky-not queries

must be placed such that it does not dominate any point
s that dominates p; otherwise, s will still satisfy the con-
straints, still dominating p, and thus p will not be in the
skyline. Together, these propositions suggest that the solu-
tion will lie somewhere inside (qL, p).

This hyper-rectangular solution space contains infinitely
many points. Lemma 3 discretizes the search space. Specif-
ically, it states that the value of q0L on each dimension i is
either the same as the original lower constraint, qL[i] or as
one of the data points, s[i], s 2 S. Thus, there is only (an
exponential number of) finite possible solutions.

Lemma 3 (Sky-not Discretization).
Let q0L = SN(S(qL,qU), p, (qL, qU)). Then,

8i 2 [0, d)9s 2
⇣
S(qL,qU)

[
{qL}

⌘
s.t. q0L[i] = s[i].

The basic idea of the proof is that if there were a solution
that was not composed of existing values, then we could find
a better one that was.

Proof. We prove this by contradiction. Let q0L be a solution
such that 9j 2 [0, d)8s 2 �S(qL,qU)

S{qL}
�
, q

0
L[i] 6= s[i]. Let

S
<

be the points s 2 S(qL,qU) [ {qL} with s[j] < q

0
L[j]. Let

s be the point in S
<

with the highest s[j] value. Then,
construct a point q

00
L such that q

00
L[i] = q

0
L[i] if i = j and

q

00
L[j] = s[j]. Then, q00L is closer to qL than is q

0
L. Moreover,

8s 62 S
<

, 9i 6= j s.t. s[i] < q

0
L[i] = q

00
L[i], because q

0
L[i] 6� s

and q

0
L[j] < s[j]. Also, 8s 2 S

<

, it is still the case that
q

00
L 6� s, because s[j]  q

00
L[j]. Lastly, q

00
L 2 (qL, qU), since

q

0
L 2 (qL, qU), and they di↵er only on the j’th attribute, for
which q

00
L[j] = qL[j]. Therefore, 8s 2 S(qL,qU), q

00
L[s] 6� s and

p 2 SKY(S, [q00L, qU]).
Lemma 3 discretized the solution space based on the points

s 2 S. Lemma 4 reduces the solution space even further by
showing that only some of the points that dominate p also
influence the solution. For this lemma, we borrow the con-
cept of close dominance (Definition 6) from literature: if s
dominates t, then it also closely dominates t if there is no
other point “in between them”:

Definition 6 (Close dominance [22]).
Given points s, t 2 S, we say that s closely dominates t,
denoted s 2 t, i↵ s � t^ 6 9u 2 S : s � u � t.

Figure 2a illustrates the close dominance relationship. No-
tice that, although s �� u, s 62 u, because the dominance can
be ascertained transitively through t. Lemma 4 states that
it is only the values of points that closely dominate p that
might be used in the Sky-not query solution. In Figure 2b,
s need not be considered, because s 62 p.

Lemma 4 (Close dominance is su�cient).
Let C = {s 2 S : s 2 p} be the set of points in S(qL,qU) that
closely dominate p. Then,

SN(C, p, (qL, qU)) = SN(S, p, (qL, qU)).
The basic idea behind the proof is that by handling all

the points in C, one handles all points in S(qL,qU) by means
of transitivity.

Proof. We show that finding a point q0L that does not dom-
inate any point in C is both necessary and su�cient for
upgrading p to the skyline.

Necessary: Note that t 2 C =) t 2 S(qL,qU) ^ t � p,
by construction. So, by Proposition 2, q

0
L 6� t (i.e., they

necessarily fall outside the constraints).
Su�cient: Consider any point s 2 C \ S(qL,qU). Then,
9t 2 C s.t. 8i 2 [0, d), s[i]  t[i], because s � t. But,
because t 2 C =) q

0
L 6� t, then 9j 2 [0, d) s.t. t[i] < q

0
L[i].

By transitivity, s[i] < q

0
L[i]; so, q

0
L 6� s.

The algorithmic consequence of Lemma 4 is that we can
first find the much smaller set C and then execute whichever
algorithm on C instead of S(qL,qU) for an immediate improve-
ment in e�ciency. In Figure 2c, it is su�cient to solve the
two points that closely dominate p, because solving t tran-
sitively implies that s is also solved.

4.2 Duality
Finally, we show an interesting result, that the Sky-not

query is a dual form of a generalization of the SkyDist prob-
lem (Definition 7) in literature. The SkyDist problem is to
find the cheapest way to modify p so that it will be in the
skyline. That is to say, the SkyDist problem changes the
data, rather than the query, to upgrade p. We redefine it
below with the addition of constraints, which are needed for
the duality result.

352



Definition 7 (Skyline Distance Problem [14]).
Given S, p, (qL, qU), find the point p0 2 (qL, qU) closest to p

such that p0 2 SKY(S [ {p0}, (qL, qU)).
We show that the SkyDist and Sky-not queries are dual

problems of each other. First, define a transform function
f(x) = M � x, overloaded for points and sets, f(p) = p̂ :
p̂[i] = f(p[i]) and f(S) = {f(s) : s 2 S} by applying the
function to each value of a point and each point of a set.
Let p

0 = SD(S, p, (qL, qU)) be an instance and solution to
a SkyDist problem. Then we have Theorem 5, that the
Sky-not query result on the transformed data is exactly the
transformation of the SkyDist result on the original data:

Theorem 5 (SkyDist-SkyNot Duality).
SN(f(S), f(p), [f(qU), f(qL)]) = f(SD(S, p, (qL, qU))).
Proof. To show that the solutions are equivalent, we show
first that distance is preserved by the transformation func-
tion; so that the optimality of any solution is consistent. We
then show that the transform of a point that solves the Sky-
Not instance solves the SkyDist instance, and vice versa.

Distance-preserving: Let s, t be points. Then:

�(s, t) =
d�1X

i=0

|s[i]� t[i]| =
d�1X

i=0

|(M � s[i])� (M � t[i])|

=
d�1X

i=0

|f(s[i])� f(t[i])| = �(f(s), f(t)).

This holds in the opposite direction, because f(f(s)) = s.
Mutually solving:

q = SN(f(S), f(p), (f(qU), f(qL)))
=) f(qU) � q � f(qL), 8s 2 f(S), q 6� s

=) 9i 2 [0, d) : s[i] < q[i]

=) 9i 2 [0, d) : f(q[i]) < f(s[i]) =) f(s) 6� f(q)

=) qL � f(q) � qU, 8s 2 S, s 6� f(q).

f(p0) = f(SD(S, p, (qL, qU))) =) 8s 2 S, s 6� p

0

=) f(p0) 6� f(s) =) 8s 2 f(S), f(p0) 6� s.

In fact, the above holds for any order-inverting and distance-
preserving transformation function.

The signficance of this result is that techniques developed
for SkyDist and Sky-not queries are mutually exchangeable
by applying the transform. However, the addition of con-
straints enables new analytical approaches that lead to more
e�cient computation, as we will show in our experimental
evaluation, where we apply the duality transform to existing
SkyDist techniques (Section 6).

5. ANSWERING SKY-NOT QUERIES
In this section, we present two algorithms for solving Sky-

not queries, based on the insight from the previous section.

5.1 Bounding Rectangle Algorithm
Here, we introduce the Bounding Rectangle Algorithm

(BRA). We begin with theoretical analysis to deduce a finite
set of candidate positions to which qL can be moved in order
to position p in the skyline (Section 5.1.1). We then build
an algorithm to e�ciently calculate those positions and find
the optimal solution from within them (Section 5.1.2).
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u 

qL({s,t}) 
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p 

(a) The creation of qL({s, t}) with the minimum value from

{s, t} on each attribute and of rectangle (qL, qL({s, t})). Stars

represent the 2

d

projections of the rectangle.
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u 

qL({s,t}) 
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qL 

p 

(b) All three possible combinations of two points are shown

with their resultant rectangles. Arrows represent strict dom-

inance relationships, the origin of which are points that are

not valid solutions.

Figure 3: Bounding rectangles and their application in BRA.

5.1.1 Bounding Rectangles and Candidate Positions

Recall from Lemma 3 that solutions will take values from
points in the dataset and from Lemma 4 that the set C

contains all the points that need to be considered. We for-
malize that set with Corollary 6 below. We then show that
this set can be further pruned by taking into account how
these points relate to each other (Theorem 7).

First, however, we need to introduce a little more notation
for use in this subsection. Let Pd

(C) be the subsets of C
with at most d elements, and let T 2 Pd

C be such a sub-
set. Furthermore, let qL(T ) be the corner of the minimum
bounding rectangle of T that is closest to qL (the bottom left
corner in two dimensions). Notice that R

T

= (qL, qL(T )) is
itself a (possibly degenerate) hyper-rectangle. Finally, de-
note by x(R

T

) the 2d corners of (qL, qL(T )).
Recall that a minimum bounding rectangle of a set of

points T is the unique smallest hyper-rectangle that con-
tains all points in T . The lowermost corner (i.e., the one
closest to qL) is the one containing the smallest value on
each attribute of any point in T . It represents the best pos-
sible combination of values from points in T . Sets with more
than d points are not interesting, because we only combine
values for up to d dimensions.

Figure 3a illustrates these concepts. The set C = {s, t, u}
has P2C = {{}, {s}, {t}, {u}, {s, t}, {s, u}, {t, u}}. Let T =
{s, t}. The minimum bounding rectangle of T is the dashed
rectangle to the top-right in the figure, and its qL(T ) is
shown as a hollow circle. The dashed rectangle to the lower-
left is (qL, qL(T )). The 2d corners are marked with stars.
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Each of the 2d corners of hyper-rectangle (qL, qL(T )) has
a unique set of attributes with values equal to those of qL
and the others equal to those of qL(T ). They correspond to
solutions with fewer than all values changed. So, Corollary 6
states that if we take all subsets T of up to d points from C

and consider all the corners on the hyper-rectangle traced
from qL to qL(T ), we will include all possible combinations of
all points in C, and therefore also have the optimal solution
somewhere in the (finite) set.

Corollary 6 (BRA search space).
q

0
L = SN(S, p, (qL, qU)) 2 S

T2Pd

(C) x(RT

).

Proof. This follows directly from Lemmata 3 and 6, because
all possible combinations of all points in C are contained inS

T2Pd

(C) x(RT

).

Corollary 6 includes all possible solution points, but also
many more. Theorem 7 gives the key idea for the BRA,
that it is only those points in the set that do not dominate
any others in the set that are possibilities. The property
of not strictly dominating any other corner points is both
necessary and su�cient for indicating that any given corner
point correctly positions p in the skyline.

Theorem 7 (Central BRA postulate).
q solves SN(S, p, (qL, qU)) i↵ 8x2 S

T2Pd

(C) x(RT

), q 6�� x.

The basic idea behind the proof is that it is certainly suf-
ficient, because every point c 2 C is a corner point for some
rectangle; so, not dominating any corner points for any rect-
angles implies that no point in c is dominated either. It is
necessary because any dominated point will produce some
rectangle with a corner point that is also dominated.

Proof. Su�cient:

8x2
[

T2Pd

(C)

x(R
T

), q 6�� x

=) 8x2
[

T2P1(C)

x(R
T

), q 6�� x

=) 8x2
[

t2C

x([qL, t]), q 6�� x =) 8t 2 C, q 6�� t.

Necessary: Assume for the sake of contradiction that
9x2 S

T2Pd

(C) x(RT

) s.t. q �� x. Let T denote the subset

of C that produced the hyper-rectange with that corner.
Then, 9t 2 T : q �� t =) 9s 2 C : q �� s and, thus, q
cannot be a valid solution of SN(S, p, (qL, qU)).

The concept behind Theorem 7 is illustrated in Figure 3b.
Three of the hyper-rectangles are shown, along with all their
corner points. Arrows depict that the originating corner
strictly dominates the destination corner. One can verify
in the figure that all positions with arrows dominate some
point in C, whereas all positions without arrows (namely
qL({s, t}) and qL({t, u})) do not.

5.1.2 Algorithm description

Theorem 7 suggests an elegant way to adapt existing sky-
line algorithms to solve a Sky-not query, since the candidate
solutions are the points in X =

S
T2Pd

(C) x(RT

), and the

optimal solution is the point x 2 X closest to qL. So, we
adapt the Block-Nested-Loop (BNL) [3] skyline algorithm,

Algorithm 1 Bounding Rectangle Algorithm (BRA)

Input: S, p, qL, qU
Output: q0L, the optimal Sky-not solution on (S, p, (qL, qU))
1: Create empty set C
2: for all s 2 S do
3: if qL � s � p � qU then
4: for all c 2 C do
5: if s � c then
6: add false; break
7: else if c � s then
8: C  C \ {c}
9: if add then
10: C  C

S{s}
11: Create queue W sorted by ascending proximity to qL

12: for all x2 S
T2Pd

(C) x(RT

) do

13: for all p 2 W do
14: if x�� p then
15: add false; break
16: else if p �� x then
17: W W \ {p}
18: if add then
19: W W

S{x}
20: Return W[0]

using a window sorted by proximity to qL, to produce the
set X. The head of the window once all points have been
processed is the optimal solution, since Corollary 6 states
that all possible solutions are in that set.

Specifically, Algorithm 1 first computes the set C (Lines
1 � 10) and then iterates through all corner points to find
those that are valid solutions (Lines 11�19). By storing the
valid solutions in a queue that is sorted by proximity to qL,
the head of the list is the optimal solution (Line 20).

Both steps follow the same control flow. We go through
every point s, x and compare it to every other point c, p

in our current solution set. If s is dominated by c, then
c is removed from the current solution set. If s does not
dominate any c, then it is added. The di↵erence with x, p is
that we require strict dominance.

The running time of the algorithm thus depends on the
maximum size that the window W becomes. We know the fi-
nal solution is correct and optimal on account of Theorem 7.

5.2 Prioritized Recursion Algorithm
In this section, we introduce our Prioritized Recursion Al-

gorithm (PrioReA), which uses a few theoretical conclusions
to discover good solutions very quickly, and use it to prune
the majority of the search space.

5.2.1 Algorithmic Foundations

The objective in this section is to build towards a sound
recursive formulation of the problem and a series of theo-
retical pruning rules that can be used to limit the search
space. We can then describe a recursive algorithm, based
on that formulation, which uses the pruning rules to pursue
the optimal solution dramatically faster.

We begin with two lemmata that give rise to the prun-
ing rules and recursion. First, we note that the problem is
monotonic in the sense that solutions on subsets of points
are necessarily at least as good as those on supersets. Specif-
ically, Lemma 8 states that if one adds points to S, the cost
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of the solution cannot decrease. The key observation is that
adding more points to an input set forces a solution to be
farther from qL if it is not to strictly dominate any of the
points in either the subset nor the superset.

Lemma 8 (Monotonically increasing cost).
Let q

0
L = SN(S, p, (qL, qU)) and q

00
L = SN(S 0

, p, (qL, qU)).
Then, S ⇢ S 0 =) �(qL, q

0
L)  �(qL, q

00
L).

Proof. q

0
L is the closest point to qL that dominates all points

in S. q

00
L must also dominate all points in S, since S ⇢ S 0;

so, it cannot be closer to qL than q

0
L is.

The second lemma defines a lower bound on the solution
cost. Specifically, Lemma 9 states that, if one discovers the
point s whose smallest attribute value (relative to qL’s) is
farthest from qL’s value on that attribute, this di↵erence
lower bounds the cost of the optimal solution. Here, the
observation is that this value is the smallest value that could
conceivably guarantee that no point is strictly dominated.

Lemma 9 (Lower bound on solution cost).
max

s2S min
i2[0,d) (s[i]� qL[i])  SN(S, p, (qL, qU)).

Proof. Since 8s 2 S, q0L 6�� s, q0L must be larger or equal to
at least one value of every point.

Lemma 8 is valuable for pruning the search space, because
it indicates that if we find a recursive call to be unpromising,
then all recursive calls using a superset of those points will
be likewise unpromising. Lemma 9 is useful because it allows
estimating the optimal solution that will be returned by a
recursive call without actually calculating it. Thus, we can
often use the estimate to determine that a recursive call
cannot possibly produce a better solution than what we have
already seen.

This brings us to the main theorem for this section, which
formulates the problem recursively. Specifically, Theorem 10
states that if we partition a set of points C based on whether
they have a value > x on dimension i, then the solution q

0
L

with q

0
L[i] = x that is closest to qL is exactly the di↵erence

between q

0
L[i] and qL[i] plus the cost of the best possible

solution with q

0
L[i] = qL[i] on the higher-valued partition.

Theorem 10 (Basis for recursion).
Let C

i>x

= {s 2 C : s[i] > x} and Q

i>x

= {q 2 [qL, p] :
8s 2 C

i>x

, q 6�� s}. Then, for x � qL[i]:

�(qL, argmin
q2Q

i>qL[i]:q[i]=x

�(qL, q))

= �(qL, argmin
q

02Q

i>x

:q0[i]=qL[i]�(qL, q
0)) + (x� qL[i]).

Proof. Note that for a point q with q[i] = x, 6 9s 2 C with
s[i]  x such that q �� s. All other points, those in C

i>x

,
must have a lower value than q on some other attribute; i.e.,
must be dominated by the projection of q onto the point
q

0 where q

0[i] = qL[i] (i.e., is not changed from the original
constraint). So, �(qL, q) is exactly the distance of the pro-
jection q

0 from qL plus the distance from q to q

0, since all
distances are positive in all directions.

Finally, we note the three pruning rules that are straight-
forward consequences of the earlier lemmata in this section.
In particular, Corollary 11 states that if we have already seen
a point whose cost (i.e., distance to qL) is less than the sum
of the distance of a given point from qL and the lower bound

Algorithm 2 Prioritized Recursion Algorithm (PrioReA)

Input: C, p, qL,D
Output: q0L, the optimal Sky-not solution on (S, p, (qL, qU))
1: if C = ; then
2: Return qL

3: best p

4: Sort d 2 D by p[d]� qL[d], ascending
5: for all d 2 D do
6: Sort s 2 S by s[d]� qL[d], descending
7: maxmin 0
8: for all s 2 C do
9: if s[d]� qL[d] + maxmin < �(qL, best) then
10: rec PrioReA(C[0,...,s�1],D \ {d}, qL, p)
11: if �(qL, rec) + s[d]� qL[d] < �(qL, best) then
12: best rec, best[d] s[d]
13: else if �(qL, rec) � �(qL, best) then
14: Break {Pruning rule (2).}
15: else if maxmin �best then
16: Break {Pruning rule (2’).}
17: else
18: Do nothing {Pruning rule (1).}
19: if maxmin < min

d

02D s[d0]� qL[d
0] then

20: maxmin min
d

02D s[d0]� qL[d
0]

21: Return best

on the recursive call, then, independent of the recursive call,
the given point cannot produce a better solution than what
has already been seen. This comes directly from Lemma 9
and Theorem 10.

Corollary 11 (Pruning Rule (1)).
If 9q 2 (qL, p) , i 2 [0, d), x � qL[i] s.t.
�(qL, q)  (x� qL[i]) + max

s2C

i>x

min
i2[0,d) (s[i]� qL[i]))

then 8q0 2 (qL, p) : q
0[i] = x,�(qL, q)  �(qL, q

0).

The second pruning rule, Corollary 12, states that if we
have already seen a point whose cost is less than the cost of
the best solution returned by a recursive call on C

0, then we
need never consider any recursive calls on supersets of C0.
This comes directly from Lemma 8.

Corollary 12 (Pruning Rule (2)).
If 9q 2 (qL, p) , i 2 [0, d), x � qL[i] s.t.
�(qL, q)  �(qL, argmin

q

02Q

i>x

:q0[i]=qL[i]�(qL, q
0)) then

8x0  x,�(qL, q)  �(qL, argmin
q

02Q

i>x

0 :q0[i]=qL[i]�(qL, q
0)).

Finally, a variant of the second pruning rule, Corollary 13,
states that if we have already seen a point with cost less than
the lower bound estimate of the recursive call, we can also
safely dismiss all recursive calls on supersets.

Corollary 13 (Pruning Rule (2’)).
If 9q s.t. �(qL, q) < max

s2C

min
i2[0,d) (s[i]� qL[i]) then,

8C0
, C ✓ C

0, q is the best possible solution.

5.2.2 Algorithm Description

Algorithm 2 describes the PrioReA algorithm. At a high
level, it is a recursive algorithm, based on Theorem 10, that
selects a dimension d and fixes a value x for that dimension.
Any point s with s[d]  x is clearly not strictly dominated.
With all the other points s0 2 C, s

0[d] > x, and the remaining
dimensions d

0 6= d, we recurse to find an optimal solution.
The combination of the result from the recursion with the
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value x on dimension d is argmin
q

02Q:q0[i]=x

�(qL, q
0), the

best possible solution with value x on dimension d.
To set the value x on a recursive call with points C

0, we
sort the points in c 2 C

0 by descending c[d] value (Line 6)
and iterate the sorted list (Line 8). We know from the dis-
cretization lemma, Lemma 3, that these are the only values
that need to be considered. By iterating in descending or-
der, we prioritize recursive calls with smaller inputs: it is
the set of all points preceding the current one that still need
to be resolved on the recursive call.

If we first compute C as in Lines 1�10 of Algorithm 1, and
then we iterate through all dimensions (Line 5) and for all
possible values to which each of those dimensions could be
set (Line 8), we are guaranteed to find the optimal solution,
because we will have covered the entire search space of BRA
that was defined in Corollary 6, with performance O(nd).

However, PrioReA uses Corollaries 11-13 to avoid the ma-
jority of that search space. We maintain track of the best
solution globally seen, the point q in the corollaries. Then,
whenever the conditions of the corollaries are met (Lines 13,
15, or 17), we can avoid the recursive call (Line 18) or even
break the loop entirely (Lines 14 or 16).

Furthermore, we prioritize the recursive calls exactly to
push the best seen point, q, as close to qL as early as possible.
Specifically, we always choose next the dimension wherein
p is closest to qL, because this increases the likelihood of
finding a good value x on that dimension that is also close
to qL. We always choose points closest to p first, rather than
qL, so that the recursive calls have fewer points and we need
to change fewer dimensions to reach a solution.
The e↵ectiveness both of the pruning rules and of the

prioritizations we evaluate next, in Section 6.

6. EXPERIMENTAL EVALUATION
In this section, we provide an extensive experimental eval-

uation of the contributions made thus far. We describe the
basic, common setup for the experiments in Section 6.1. We
evaluate the impact of Section 4.1 in Section 6.2 by measur-
ing how large is the set C of points that closely dominate
p, as a function of the input parametres. In Section 6.3,
we compare the query performance of our two algorithms
from Section 5 against adaptations using Theorem 5 of state-
of-the-art algorithms for the SkyDist problem. Finally, in
Section 6.4, we investigate our recursive algorithm in more
depth, particularly the e�cacy of its pruning rules and the
average depth of the recursion.

6.1 Experimental Setup
Algorithms: We implement four algorithms in C++ for
comparison. This includes both BRA and PrioReA from
Section 5. We also adapt and implement the Sort-Projection
(sort proj) and Space-Partition (space part) methods of
Huang et al. [12], since these were shown to be the most
e�cient SkyDist algorithms [12]. All four implementations
start from the same reduced input set, C, based on the the-
oretical analysis in Section 4.
Environment: All experiments are run on a commodity
machine with an i7-2700 quad-core processor clocked at 3.4
GHz, 16 GB of memory, and Ubuntu on kernel version 3.13.0.
The code is compiled using the GNU C++ compiler version
4.8.2 with full optimization. Since BRA is embarassingly
parallel (and the slowest running), we run it on 8 threads
(hyperthreading is enabled). All other algorithms are single-

|C
|
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Anticorrelated

(a) |C| vs. d (|S| = 10

6
).

|C
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Corr,d=4
Anti,d=4
Anti,d=8

(b) |C| vs. |S| (d = 4, 8).

Figure 4: Variation of the size of the reduced input, C,
relative to the full input, S.

threaded.4

Datasets: We generate random datasets using the data gen-
erator standard to skyline research [3] to produce normalized
datasets of anticorrelated (A) and correlated (C) distribu-
tions. The selection of dataset cardinality (n) and dimen-
sionality (d), query constraints (qL, qU), and query points
(p) varies according to the objective of each sub-study.

6.2 Regarding close dominance and |C|
Experiment description: By Lemma 4, it is not the size
of the input dataset that governs performance, but the size
of the set C, the points that closely dominate p. We begin
by empirically gauging the impact on the input size it has
to apply this lemma.

We run 104 random trials for each configuration and re-
port the average. For each trial, we pick a point p 2 S
uniformly at random. We then select each lower constraint,
qL[i], uniformly from the data range, [0, p[i]]), independently
for each attribute. Since qU does not influence the set C, we
set it to the maximum value (i.e., 1) on each attribute. With
this setup, we then compute the set C using Lines 1� 10 of
Algorithm 1 and record the number of points, |C|.
Results and discussion: The results are reported in Fig-
ure 4. In Figure 4a, we vary data dimensionality (d) from
2� 10 in increments of 1 and hold the data cardinality (|S|)
fixed at one million points. The pink line with x’s shows the
results for correlated data, and the orange line with o’s, for
anticorrelated data. Note that the y-axis, representing |C|,
is logarithmic.

The results in this plot are very surprising, because cor-
related data exhibits more challenging behaviour than the
anticorrelated data. In typical skyline experiments, anticor-
related data produces larger skylines (output). This slows
performance because performance is typically dependent on
the size of the output. Similarly, increases in d also hinder
performance, because they also increase the size of the out-
put. Here, however, we see that the reduced input set for

4Parallelizing the slowest running algorithm allows us to
scale up the experiments without compromising fairness
among the competitive algorithms.
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Figure 5: Execution time of the algorithms and the computation of C as a function of input parametres (|S| = 106).

Sky-not queries is larger on correlated data, and grows ex-
ponentially with d. On anticorrelated data, it peaks around
d = 6, then decreases with subsequent increases in d.

This counter-intuitive behaviour can be understood clearly
by considering the extra requirement imposed by close dom-
inance (Definition 6): that c 2 C i↵ 6 9c0 2 S s.t. c � c

0 � p.
On correlated data, it is likely that, for a randomly chosen
point p, many other points dominate it. However, there are
also many dominance relationships among them. As d in-
creases, the points that dominate p become incomparable to
each other. For points c � c

0 that both dominate p, only
c 2 C. However, if c �� c

0, then c

0 2 C as well.
Considering anticorrelated data, on the other hand, there

are much fewer points that originally dominate p. So, for
low-dimensional increases to d, we observe the same trend
as with correlated data, but less pronounced. However, by
d = 6, this e↵ect has been saturated, and most points that
dominate p are incomparable to each other. For subsequent
increases in d, many points in C that dominate p become
incomparable to it; so, the size of the set shrinks.
Figure 4b, on the other hand, shows behaviour with in-

creases data cardinality (|S|). Because di↵erent values of
d exhibited quite di↵erent results, we plot twice as many
curves here: two for d = 4 and two for d = 8 (either side
of the peak for the anticorrelated data). The pink lines are,
again, correlated data; the orange, anticorrelated. The x’s
correspond to d = 8 and the o’s, d = 4.
Here, we see easily predicted behaviour. By increasing the

number of points in S, we consequently increase the number
of points in C. For anticorrelated data and for d = 4 on
correlated data, the relationship is roughly linear, but the
savings o↵ered by Lemma 4 is dramatic. Only 1/104 of the
points need to be processed. All possible solutions involving
values from any of the other 9999/10000 of the data points
can be discarded early in preprocessing by all algorithms.
The exceptional case is the higher-dimensional, correlated

data. This again grows steeply in accordance with Figure 4a.
Of the additional points, many dominate p because the data
is correlated, but many also are incomparable to each other
because of the higher dimensionality.
In summary, this study shows that Lemma 4 can dra-

matically reduce the input, and thus also the search space.
Counter-intuitively, it also demonstrates that for Sky-not
queries, correlated data is much more challenging than an-
ticorrelated data, with the former becoming exponentially
more challenging with increases in d > 6 and the latter be-

coming easier under the same conditions.

6.3 On the scalability of the algorithms
Experiment description: We next compare the four al-
gorithms in terms of execution time, using the same exper-
imental configurations as in Section 6.2. In contrast to the
query generation methodology of [12], which first chooses m
skyline points, and then generates a virtual query point that
is dominated by all of them, our methodology ensures that
query points still come from the original underlying distri-
bution. So, we expect to observe performance following the
trends illustrated in Figure 4. For readability, we separate
the cardinality plots using di↵erent dimensionality.
Results and discussion: Figure 5 shows performance of
the algorithms with respect to d. We also include the time
taken to compute the set C, which is not included in the
time for any of the four algorithms. Generally speaking,
it is relatively e�cient compared to all the algorithms. The
exception, relative to PrioReA, on correlated data for higher
d, is quite interesting. Recall that C is computed BNL-style
with a window of current points to which each candidate
is compared. Much like anticorrelated data slows skyline
computation in BNL with increasing d, the correlated data
slows the generation of C with increasing d.

Figure 5a gives performance on anticorrelated data, and
Figure 5b, correlated. A first observation is the di↵erent
scales on the y-axis. As expected from the larger C input
set, the correlated data generally takes longer to compute for
all algorithms. Another immediate observation is that, ex-
cepting PrioReA, all the algorithms deterioate rapidly after
a threshold dimensionality. For BRA, this is unfortunately
just d = 3; so, we exclude it from all subsequent experiments
due to its poor scalability. Evidently, the combination of a
large window size, W, and a still quite large search space,
make BRA prohibitively slow.

In agreement with the findings in [12], we observe space part
to be both faster and more scalable than sort proj. They
both deteriorate rapidly after a threshold dimensionality–
sort proj at d = 5 and space part at d = 8. Interestingly,
these thresholds are independent of the data distribution,
which suggests that it is not |C|, which is decreasing on the
anticorrelated data, that is the cause. Rather, it is strictly
a function of the dimensionality.

In contrast, PrioReA scales quite gracefully with increas-
ing dimensionality, independent of the data distribution. We
investigate why in Section 6.4.
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Figure 6: Query performance vs. |S| (d = 4).
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Figure 7: Query performance vs. |S| (d = 8).

Next, we consider increasing |C|. Figure 6 shows results
with d = 4 and Figure 7 shows results with d = 8. Because
BRA did not scale to these dimensionalities, we exclude it
from these plots. Similarly, sort proj did not scale to d =
8; so, we instead show the preprocessing time.

With the exclusion of the slower-performing algorithms,
we can portray a more granular comparison of the algo-
rithms. We see now that, even at d = 4, PrioReA is al-
ready an order-of-magnitude faster than the next fastest al-
gorithm. We will investigate this di↵erence in the next sub-
section. All three algorithms scale gracefully with increases
in cardinality, but sort proj and space part have a much
larger scaling factor than PrioReA.

In summary, this study shows that PrioReA has much
better scalability than the other three algorithms, with re-
spect to both d and |S|. We also see that the preprocessing
phase is e�cient for the savings in Section 6.2.

6.4 Granular Analysis of Recursion
We saw in Section 6.3 that space part substantially out-

performs both BRA and sort proj and that PrioReA out-

performs space part by an additional order of magnitude.
Here, we conduct more granular experiments to explain the
performance. Since both space part and PrioReA are re-
cursive algorithms, we compare them in Section 6.4.1 based
on the number of recursive calls each makes. Then, in Sec-
tion 6.4.2, we evaluate the success rate of PrioReA’s pruning
rules from Section 5.2.1.

6.4.1 Number of recursive calls

Experiment description: In order to better understand
the discrepancy in performance between space part and
PrioReA, we study here the average number of recursive
calls made by each algorithm. To do this, we insert a global
counter variable into the source code of the recursive method
for each algorithm. We adopt the same experimental con-
figurations as in the earlier tests.
Results and discussion: Figure 8 gives results of the re-
cursion experiments. Here, the pink lines represent space part
and the orange lines represent PrioReA. The lines with x’s
show correlated data and the lines with o’s, anticorrelated.
The y-axis is the number of times the recursive method is
invoked per Sky-not query, plotted on a logarithmic scale.

Figure 8a shows the variation with respect to d with |S| =
106. It is worth contrasting this to Figure 5, the query times
for the same configurations. On the correlated data, we ob-
serve that the number of recursive calls made by space part
grows dramatically, even on the logarithmic scale. Note that
the growth pattern of |C| in Figure 4a has the same inflec-
tion point at d = 4. Intuitively, the number of recursive calls
is increasing with the e↵ective input size, |C|.

For the anticorrelated data, the number of recursive calls
still grows exponentially for space part, but more control-
lably. With each addition of a dimension, the number of par-
titions created by space part doubles, but the occupancy of
these partitions shrinks (because the same number of points
are distributed among a larger number of partitions).

In contrast, the number of recursive calls made by PrioReA
is stable with increasing d, indicating that the condition on
Line 9 of Algorithm 2, which tests whether or not to recurse
on a subset of dimensions, is not a↵ected strongly by the
number of dimensions, only by the quality of the solutions
yet seen. This e↵ect is distribution-independent.

Figure 8b shows the variation with respect to |S| with
d = 8. Note that the scale of the y-axis is di↵erent from
the previous plot. We only show the results for d = 8, since
they are mirrored, but less pronounced, at d = 4. Contrast
these results to the query times in Figure 7. Here, we ob-
serve that, in contrast, to increases in d, the behaviour of
both algorithms is relatively stable. In fact, they almost ex-
actly mirror the trends in Figure 4b, which show |C|. With
increasing input size, the algorithms both incur proportion-
ately more recursive calls.

Note, importantly, that there is a large deviation, over an
order of magnitude, between the number of recursive calls
made by space part and PrioReA on anticorrelated data.
It is di�cult to see in the plot because the range of the scale
must be very large to fit space part on correlated data.

In summary, we see the query time performance of space part
exhibits the same behaviour as the number of recursive calls,
with sharp inflection points as d increases and more stable
growth with |S|. For PrioReA, the stable query times are
matched by a stable number of recursive calls.
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6.4.2 Pruning efficacy

Experiment description: Our last experiment investi-
gates why the number of recursive calls for PrioReA is so
stable. In particular, because recursive calls are averted by
the pruning rules introduced in Section 5.2.1, we evaluate
their success rates. We use, again, the same configurations,
and add global counters at Lines 12, 14, 16, and 18 of Algo-
rithm 2 to profile the percentage of invocations taking each
path through the possible conditions.
Results and discussion: Figure 9 presents the results.
Pruning rules 2 and 20 are combined, since they both break
the loops early based on the result of, or estimation of, the
quality of the solution on the recursion, respectively. Prun-
ing rule 1, on the other hand, does not break the loop, and
is based on an estimate of the cost for a current value, s[d].

Here, the y-axis indicates the fraction of times that the
relevant condition evaluates favourably for the given pruning
rule. The pink lines represent correlated data and the orange
lines, anticorrelated. Rule 1 is depicted with o’s and Rule 2,
with x’s. The combined success rate, 1� (1�Rule1) ⇤ (1�
Rule2), is computed analytically and plotted.

Figure 9a shows the success rates with respect to d, with
|S| = 106. Interestingly, as d increases, so does the success
rate of both pruning rules. This is the e↵ect of our pri-
oritizing the most promising (i.e., closest) dimensions first,
obtaining good solutions very quickly. As the dimensionality
increases, so do the number of choices of dimensions to prior-
itize. Additionally, the reasonably good solutions are found
quite quickly, regardless of how many iterations through the

loops we need, and can subsequently improve pruning power.
As d increases, so too does the number of iterations through
the loops on the first recursive call. However, the first few
find the good solutions and boost the pruning potential for
the increased number of subsequent iterations.

Rule 1 is, for d > 2, more e↵ective than Rule 2. However,
it is also tested first in Algorithm 2. So, easily pruneable
cases are pruned by Rule 1 and never evaluated by Rule 2.
All cases evaluated by Rule 2 were missed by Rule 1; so, it
is not surprising that the success rate of pruning these cases
is slightly lower.

Both pruning rules are more often successful on correlated
data than on anticorrelated data. As with increases in d, this
is because there are more tests in general (the loop on Line
6 of Algorithm 2 is larger), but a relatively constant number
of unsuccessful, early evaluation of the pruning conditions.

By d = 4, we see that the combined success rate of the
pruning rules is very nearly 100% on both data distribu-
tions, which clearly explains why the number of recursive
calls observed in Section 6.4.1 was stable with increasing d.

Figure 9b shows the success rates with respect to |S|, with
d = 8. As before, we omit highly similar results for d = 4.
Here we see that, aside from initial relatively large jumps
in input size, increases in cardinality do not especially a↵ect
the pruning rates. At d = 8, they are very high, nearly 100%
in combination, on smaller datasets as well. Note here that
the scale on the y-axis is smaller than Figure 9a, and that
the success rates are consistently above 80% for both rules.

In summary, the evaluation of the pruning rules shows
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that, indeed, they are responsible for pruning the majority
of the recursive calls, which, in turn, was shown to reflect
the query performance. As the size of C grows, so too do the
pruning rule success frequencies. Consequently, PrioReA is
able to outperform the competing algorithms consistently
and scale gracefully.

7. CONCLUSION AND OUTLOOK
In this paper, we introduced the Sky-not query to em-

power a user to better understand skyline results. Given a
point p and a constrained skyline query, the Sky-not query
returns the minimal change to the user’s constraints that
places p in the skyline. This can be used both to understand
how competitive p is relative to the skyline and to dynami-
cally adapt queries to fit user needs and expectations.

Towards this, we first conducted a theoretical study of
Sky-not queries, showing that the space of possible solutions
can be discretized and the set of relevant input points can
be dramatically reduced. We also showed Sky-not queries
are dual to the minimum skyline distance problem, imply-
ing techniques for each can be shared. We then presented
two novel algorithms: BRA transforms the Sky-not query
one highly resembling a new skyline instance, and adapts
the BNL skyline algorithm; PrioReA uses theoretically mo-
tivated pruning rules in a recursive framework. The latter
we showed has excellent empirical performance, largely on
account of the success rate of the pruning rules.

We focused in this paper on improving the usefulness of
skyline queries that include selection, perhaps the most fun-
damental element of database queries. There is much in-
teresting work to be done in expanding this research with
other clauses, such as joins and aggregations, where there
is yet more complexity for the user to understand query re-
sults. Furthermore, there is a broad range of applications
for skyline queries, such as road networks and social network
graphs, and these settings may provide unique, specific chal-
lenges for supporting user understanding of skyline results.
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