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ABSTRACT 

XML semantic-aware processing has become a motivating and 

important challenge in Web data management, data processing, 

and information retrieval. While XML data is semi-structured, yet 

it remains prone to lexical ambiguity, and thus requires dedicated 

semantic analysis and sense disambiguation processes to assign 

well-defined meaning to XML elements and attributes. This 

becomes crucial in an array of applications ranging over 

semantic-aware query rewriting, semantic document clustering 

and classification, schema matching, as well as blog analysis and 

event detection in social networks and tweets. Most existing 

approaches in this context: i) ignore the problem of identifying 

ambiguous XML nodes, ii) only partially consider their structural 

relations/context, iii) use syntactic information in processing 

XML data regardless of the semantics involved, and iv) are static 

in adopting fixed disambiguation constraints thus limiting user 

involvement. In this paper, we provide a new XML Semantic 

Disambiguation Framework titled XSDF designed to address each 

of the above motivations, taking as input: an XML document and 

a general purpose semantic network, and then producing as output 

a semantically augmented XML tree made of unambiguous 

semantic concepts. Experiments demonstrate the effectiveness of 

our approach in comparison with alternative methods. 

Categories and Subject Descriptors 

H.3.3 [Information Storage and Retrieval]: Information Search 

and Retrieval - Content Analysis and Indexing; I.7.1 [Document 

and Text Processing]: Document and Text Editing – Document 

management; I.7.2 [Document Preparation]: Document 

Preparation – Markup languages. 

General Terms 

Algorithms, Measurement, Performance, Design, Experimentation. 

Keywords 

XML semantic-aware processing, ambiguity degree, sphere 

neighborhood, XML context vector, semantic network, semantic 

disambiguation. 

1. INTRODUCTION 
In the past decade, there has been extensive research around XML 

data processing taking advantage of the semi-structured nature of 

XML documents to improve the quality of Web-based 

information retrieval and data management applications [28]. The 

majority of existing approaches use syntactic information in 

processing XML data, while ignoring the semantics involved [48]. 

Yet, various studies have highlighted the impact of integrating 

semantic features in XML-based applications, ranging over 

semantic-aware query rewriting and expansion [11, 40] 

(expanding keyword queries by including semantically related 

terms from XML documents to obtain relevant results), XML 

document classification and clustering [49, 53] (grouping together 

documents based on their semantic similarities, rather than 

performing syntactic-only processing), XML schema matching 

and integration [13, 55] (considering the semantic meanings and 

relations between schema elements and data-types), and more 

recently XML-based semantic blog analysis and event detection 

in social networks and tweets [2, 7]. Here, a major challenge 

remains unresolved: XML semantic disambiguation, i.e., how to 

resolve the semantic ambiguities and identify the meanings of 

terms in XML documents [23], which is central to improving the 

performance of XML-based applications. The problem is made 

harder with the volume and diversity of XML data on the Web. 

Usually, heterogeneous XML data sources exhibit different ways 

to annotate similar (or identical) data, where the same real world 

entity could be described in XML using different structures and/or 

tagging, depending on the data source at hand (as shown in Figure 

1, where two different XML documents describe the same 

Hitchcock movie). The core problem here is lexical ambiguity: a 

term (e.g., an XML element/attribute tag name or data value) may 

have multiple meanings (homonymy), it may be implied by other 

related terms (metonymy), and/or several terms can have the same 

meaning (synonymy) [23]. For instance (according to a general 

purpose knowledge base such as WordNet [14]) the term “Kelly” 

in XML document 1 of Figure 1 may refer to Emmet Kelly: the 

circus clown, Grace Kelly: Princess of Monaco, or Gene Kelly: 

the dancer. However, looking at its context in the document, a 

human user can tell that “Kelly” here refers to Grace Kelly. Yet 

while seemingly obvious for humans, such semantic ambiguities 

remain extremely complex to resolve with automated processes.  

 
 

<?xml version= “1.0”?> 

<films> 

    <picture title= “Rear Window”> 

        <director> Hitchcock </director> 

        <year> 1954 </year> 

        <genre> mystery </genre> 

        <cast> 

              <star> Stewart </star> 

              <star> Kelly </star> 

        </cast> 

        <plot>A wheelchair bound   

                   photographer spies on his  

                   neighbors …</plot> 

        … 

    </picture> 

</films> 

 

a. Doc 1 

 

<?xml version= “1.0”?> 

<Movies> 

    <Movie year= “1954”> 

        <Name> Rear Window </Name> 

        <Directed_By>Alfred Hitchcock</Directed_By>

        <Actors> 

             <Actor>                             

                 <FirstName>Grace</FirstName> 

                 <LastName>Kelly</LastName> 

             </Actor> 

             <Actor> 

                 <FirstName>James</FirstName> 

                 <LastName>Stewart</LastName> 

             </Actor> 

        </Actors> 

        …   

    </Movie>                          

</Movies>               b. Doc 2 
 

Figure 1. Sample documents with different structures and 

tagging, yet describing the same information. 
 

In this context, word sense disambiguation (WSD), i.e., the 

computational identification of the meaning of words in context 

[39], could be central to automatically resolve the semantic 

ambiguities and identify the meanings of XML element/attribute 
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tag names and data values, in order to effectively process XML 

documents. While WSD has been widely studied for flat textual 

data [20, 39], yet, the disambiguation of structured XML data 

remains largely untouched. The few existing approaches to XML 

semantic-aware analysis (cf. Section 2) have been directly 

extended from traditional flat text WSD, and thus show several 

limitations, motivating this work: 

- Motivation 1: Completely ignoring the problem of semantic 

ambiguity: most existing approaches perform semantic 

disambiguation on all XML document nodes (which is time 

consuming and sometimes needless) rather than only 

processing those nodes which are most ambiguous, 

- Motivation 2: Only partially considering the structural 

relations/context of XML nodes (e.g., solely focusing on 

parent-node relations [52], or ancestor-descendent relations 

[50]). For instance, in Figure 1, processing XML node 

“cast” for disambiguation: considering (exclusively) its 

parent node label (i.e., “picture”), its root node path labels 

(i.e., “films” and “picture”), or its node sub-tree labels (i.e., 

“star”), remains insufficient for effective disambiguation. 

- Motivation 3: Making use of syntactic processing 

techniques such as the bag-of-words paradigm [49, 52] 

(commonly used with flat text) in representing XML data as 

a plain set of words/nodes, thus neglecting XML structural 

and/or semantic features as well as compound node labels,  

- Motivation 4: Existing methods are mostly static in adopting 

a fixed context size (e.g., parent node [52], or root path [50]) 

or using preselected semantic similarity measures (e.g., 

edge-based measure [29], or gloss-based measure [50]), such 

that user involvement/system adaptability is minimal. 
 

The main goal of our study is to provide an effective method to 

XML semantic analysis and disambiguation, overcoming the 

limitations mentioned above. We aim to transform traditional 

syntactic XML trees into semantic XML trees (or graphs, when 

hyperlinks come to play), i.e., XML trees made of concept nodes 

with explicit semantic meanings. Each concept will represent a 

unique lexical sense, assigned to one or more XML 

element/attribute labels and/or data values in the XML document, 

following the latter’s structural context. To do so, we introduce a 

novel XML Semantic Disambiguation Framework titled XSDF, a 

fully automated solution to semantically augment XML 

documents using a machine-readable semantic network (e.g., 

WordNet [14], Roget’s thesaurus [60], FOAF [2], etc.), 

identifying the semantic definitions and relationships among 

concepts in the underlying XML structure. Different from existing 

approaches, XSDF consists of four main modules for: i) linguistic 

pre-processing of XML node labels and values to handle 

compound words (neglected in most existing solutions), ii) 

selecting ambiguous XML nodes as primary targets for 

disambiguation using a dedicated ambiguity degree measure 

(unaddressed in existing solutions), iii) representing target nodes 

as special sphere neighborhood vectors considering a 

comprehensive XML structure context including all XML 

structural relations within a (user-chosen) range (in contrast with 

partial context representations using the bag-of-words paradigm), 

and iv) running sphere neighborhood vectors through a hybrid 

disambiguation process, combining two approaches: concept-

based and context-based disambiguation, allowing the user to 

tune disambiguation parameters following her needs (in contrast 

with static methods). We have implemented XSDF to test and 

evaluate our approach. Experimental results reflect our 

approach’s effectiveness in comparison with existing solutions. 

The remainder of this paper is organized as follows. Section 2 

reviews the background and related works. Section 3 develops our 

XML disambiguation framework. Section 4 presents experimental 

results. Section 5 concludes the paper with future works. 

2. BACKGROUND & RELATED WORKS 

2.1 Word Sense Disambiguation 
WSD underlines the process of computationally identifying the 

senses (meanings) of words in context, to discover the author’s 

intended meaning [20]. The general WSD task consists of the 

following main elements: i) selecting words for disambiguation, 

ii) identifying and representing word contexts, iii) using reference 

knowledge sources, and iv) associating senses with words. 
 

Selecting words for disambiguation: two possible methods 

exist: i) all-words, or ii) lexical-sample. In all-words WSD, e.g., 

[10, 44], the system is expected to disambiguate all words in a 

(flat) textual document. In lexical-sample WSD, e.g., [18, 44], 

specific target words are selected for disambiguation, which are 

usually the most ambiguous words, chosen using supervised 

learning methods trained to identify salient words in phrases [39].  
 

Identifying and representing context: the context of a word in 

traditional flat textual data usually consists of the set of terms in 

the word’s vicinity, i.e., terms occurring to the left and right of the 

considered word, within a certain predefined window size [26]. 

Thus, the traditional bag-of-words paradigm to represent context 

terms is broadly adopted with flat textual data [20, 39].  
 

Using reference knowledge sources: distinguished as corpus-

based or knowledge-based. The corpus-based approach, e.g., [3, 

4, 11], considers previously disambiguated words, and requires 

supervised learning from sense-tagged corpora (e.g., SemCor 

[36]) to enable predictions for new words. Knowledge-based 

methods, e.g., [33, 39, 49], use machine-readable knowledge 

bases (i.e., ontologies, thesauri and/or taxonomies, e.g., WordNet 

[14], Roget’s thesaurus [60], ODP [28], etc.) providing ready-

made sense inventories to be exploited in WSD.  
 

Associating senses with words: categorized as supervised or 

unsupervised. Supervised methods, e.g., [31, 39, 57], use 

machine-learning techniques with corpus-based training data 

provided to a learning algorithm that induces rules to be used for 

assigning meanings to words. Unsupervised methods, e.g., [29, 

43, 48], are usually knowledge-based where reference knowledge 

bases (e.g., WordNet) are processed as semantic networks made 

of concepts representing word senses, and links connecting 

concepts, representing semantic relations (hyponymy, meronymy, 

etc., [14, 46], cf. Figure 2). Here, WSD consists in identifying the 

semantic concept (word sense) in the semantic network that best 

matches the semantic concepts of terms appearing in the context 

of the target word, using a measure of semantic similarity [9, 42].  
 

Semantic similarity measures in a semantic network: can be 

classified as edge-based, node-based, and gloss-based [9]. Edge-

based methods [25, 59] estimate similarity as the shortest path (in 

edges, weights, or number of nodes) between concepts being 

compared. Node-based approaches [27, 45] estimate similarity as 

the maximum amount of information content concepts share in 

common, based on the statistical distribution of concept (term) 

occurrences in a text corpus (e.g., the Brown corpus [15]). Gloss-

based methods [5, 6] evaluate word overlap between the glosses 

of concepts being compared, a gloss underlining the textual 
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definition describing a concept (e.g., the gloss of the 1st sense of 

word Actor in WordNet is “A theatrical performer”, cf. Figure 2).  
 

 

Figure 2. Extract of the (weighted) WordNet semantic 

network. Numbers next to concepts represent concept 

frequencies (based on the Brown text corpus [15]). 

Sentences next to concepts represent concept glosses. 
 

Note that unsupervised/knowledge-based WSD has been largely 

investigated recently (including most methods targeting XML 

data), in comparison with supervised and corpus-based methods, 

which usually require extensive training and large test corpora 

[39], and thus do not seem practical for the Web. The reader can 

refer to [20, 39] for reviews on traditional WSD.  

2.2 XML Semantic Disambiguation 
Few approaches have been developed for semantic 

disambiguation of XML and semi-structured data. The main 

challenges reside in the notion of XML (structural) 

contextualization and how it is processed, as described below. 

2.2.1 XML Context Identification 
While the context of a word in traditional flat textual data consists 

of the set of terms in the word’s vicinity [26], yet there is no 

unified definition of the context of a node in an XML document 

tree. Different approaches have been investigated: i) parent node, 

ii) root path, iii) sub-tree, and iv) versatile structural context. 
 

Parent node context: The authors in [51, 52] consider the parent 

node to be the context of an XML data element, and process a 

parent node and its children as one (canonical) entity, deemed as 

the simplest semantically meaningful structural entity. The 

authors utilize context-driven search techniques (structure 

pruning, identifying relatives, etc.) to determine the relations 

between canonical trees. These are used to assign semantic node 

labels using a reference ontology [47], generalizing/specializing 

node concepts following their labels and positions in the XML tree. 

Root path context: In [49, 50], the authors extend the notion of 

XML node context to include the whole XML root path, i.e., the 

path consisting of the sequence of nodes connecting a given node 

with the root of the XML document (or document collection). 

They perform per-path sense disambiguation, comparing every 

node label in each path with all possible senses of node labels 

occurring in the same path (using gloss-based and edge-based 

semantic similarity measures from [6, 59] applied on WordNet) to 

select the appropriate sense for the node label being processed. 

Sub-tree context: The authors in [56] consider the set of XML 

node labels contained in the sub-tree rooted at a given element 

node to describe the node’s XML context. The authors apply a 

similar paradigm to identify the contexts of all possible node label 

senses in WordNet. Consequently, they compare the XML label 

context to all candidate sense contexts in WordNet, identifying 

the sense (concept) with the highest context similarity. 

Versatile structural context: In [29], the authors combine the 

notions of parent context and descendent (sub-tree) context in 

disambiguating generic structured data (e.g., XML, web 

directories, and ontologies). They propose various edge-weighting 

measures (namely a Gaussian decay function) to identify 

crossable edges, such that nodes reachable from a target node 

through any crossable edge belong to the target node’s context. 

Then, they compare the target node label with each candidate 

sense (concept) corresponding to the labels in the target node’s 

context (using edge-based semantic similarity [24] applied on 

WordNet) in order to identify the highest matching concept. 

2.2.2 XML Context Representation and Processing 
Another concern in XML-based WSD is how to effectively 

process the context of an XML node (once it has been identified) 

considering the structural positions of XML data. Most existing 

WSD methods - developed for flat textual data (Section 2.1) 

and/or XML-based data [49-52] - adopt the bag-of-words model 

where context is processed as a set of words surrounding the 

term/label (node) to be disambiguated. Hence, all context nodes 

are treated the same, despite their structural positions in the XML 

tree. One approach in [29] extends the traditional bag-or-words 

paradigm with additional information considering distance 

weights separating the context and target nodes: identified as 

relational information model [29]. The authors employ a specially 

tailored Gaussian decay function estimating edge weights such as 

the closer a node (following a user-specified direction), the more 

it influences the target node’s disambiguation [29].  

2.2.3 Associating Senses with XML Nodes 
Once the contexts of XML nodes have been determined, they can 

be handled in different ways. Two interesting approaches, both 

unsupervised and knowledge-based, have been adopted in this 

context, which we identify as: concept-based and context-based. 

On one hand, the concept-based approach adopted in [49, 50] 

consists in evaluating the semantic similarity between target node 

senses (concepts) and those of its context nodes, using measures 

of semantic similarity between concepts in a semantic network, 

selecting the target sense with maximum similarity. On the other 

hand, the context-based approach introduced in [56] consists in 

building context vectors for each target node sense (concept) in 

the semantic network, and building a context vector for the target 

node in the XML document tree, and then comparing context 

vectors to select the target sense with maximum vector similarity.  

A hybrid approach in [29] combines variants of the two preceding 

approaches to disambiguate generic structured data (including 

XML). Yet while producing quality results, the authors do not 

compare their solution with XML disambiguation methods. 

Wrapping up: we identify four major limitations motivating our 

work (which have been highlighted in Section 1): most existing 

methods i) completely ignore the problem of semantic ambiguity,  

ii) only partially consider the structural relations/context of XML 

nodes (e.g., parent-node [52] or ancestor-descendent relations 

[50]), ii) neglect XML structural/semantic features by using 

syntactic processing techniques such as the bag-of-words 

paradigm [49, 52],  and iv) are static in choosing a fixed context 

(e.g., parent node [52], or root path [50]) or preselected semantic 

similarity measures, thus minimizing user involvement. 
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3. XML DISAMBIGUATION FRAMEWORK 
In order to address all motivations above and provide a more 

complete and dynamic XML disambiguation approach, we 

introduce XSDF as an unsupervised and knowledge-based 

solution to resolve semantic ambiguities in XML documents. 

XSDF’s overall architecture is depicted in Figure 3. It is made of 

four modules: i) linguistic pre-processing, ii) nodes selection for 

disambiguation, iii) context definition and representation, and iv) 

XML semantic disambiguation. The system receives as input: i) 

an XML document tree, ii) a semantic network (noted SN), and 

iii) user parameters (to tune the disambiguation process following 

her needs), and produces as output a semantic XML tree.  
  

 

Figure 3. Overall XSDF architecture. 
 

We develop XSDF’s main modules in the following, starting with 

the XML and semantic data models adopted in our study. 

3.1 XML and Semantic Data Models 
XML documents represent hierarchically structured information 

and can be modeled as rooted ordered labeled trees (Figure 4.a 

and b), based on the Document Object Model (DOM) [58]. 
 

Definition 1 - Rooted Ordered Labeled Tree: It is a rooted 

tree in which the nodes are labeled and ordered. We denote by 

T[i] the ith node of T in preorder traversal, T[i].  its label, T[i].d its 

depth (in number of edges), and T[i].f its out-degree  (i.e., the 

node’s fan-out). R(T)=[0] designates the root node of tree T 
1 ● 

 

An XML document can be represented as a rooted ordered 

labeled tree where nodes represent XML elements/attributes, 

labeled using element/attribute tag names. Element nodes are 

ordered following their order of appearance in the XML 

document. Attribute nodes appear as children of their containing 

element nodes, sorted2 by attribute name, and appearing before all 

sub-elements [41, 61]. Element/attribute text values are stemmed 

and decomposed into tokens (using our linguistic pre-processing 

component), mapping each token to a leaf node labeled with the 

respective token, appearing as a child of its container 

element/attribute node, and ordered following their order of 

appearance in the element/attribute text value (Figure 4.a).  

Note that element/attribute values can be disregarded (structure-

only) or considered (structure-and-content) in the XML document 

                                                                 

1  Tree and rooted ordered labeled tree are used interchangeably hereafter. 

 2 While the order of attributes (unlike elements) is irrelevant in XML [1], 

yet we adopt an ordered tree model to simplify processing [44, 58]. 

tree following the application scenario at hand. Here, we believe 

integrating XML structure and content is beneficiary in resolving 

ambiguities in both element/attribute tag names (structure) and 

data values (content). For instance, in the document of Figure 1.a, 

considering data values “Kelly” and “Stewart” would be 

beneficial to disambiguate tag label “cast”. The same applies the 

other way: “cast” can help disambiguate “Kelly” and “Stewart”. 

Also, we provide the formal definition of a semantic network, as 

the semantic (knowledge base) data model adopted in our study3. 

Definition 2  – Semantic network: It is made of concepts 

representing groups of words/expressions designating word 

senses, and links connecting the concepts designating semantic 

relations, and can be represented as SN=(C, L, G, E, R, f, g):  
 � C: set of nodes representing concepts in SN (synsets as in 

WordNet [14]), � L: set of words describing concept labels, � G: set of glosses describing concept definitions, � E: set of edges connecting concept nodes, E � C u C, � R: set of semantic relations, R = {Is-A, Has-A, Part-Of, Has-

Part…}, the synonymous words/expressions being 

integrated in the concepts themselves, � f: function designating the labels, sets of synonyms, and 

glosses of concept nodes, f: C o L, Ln, G where n designates 

the number of synonyms per concept,  � g: function designating the labels of edges,  g: Eo R. 
 

Note that c � SN designates a semantic concept with c. its label, 

c.syn its set of synonymous words, and c.gloss its gloss. We also 

designate by SN  a weighted semantic network: augmented with 

concept frequencies (cf. Figure 2) statistically quantified from a 

given text corpus (e.g., the Brown corpus [15]) ●  [1] 
 

In our current study and tests, we adopt WordNet [14] as a 

reference semantic network, being a commonly used lexical 

reference for the English language. Yet, any other knowledge 

base can be used based on the application scenario, e.g., ODP [28] 

for describing semantic relations between Web pages, or FOAF 

[2] to identify relations between persons in social networks.  

Note that after disambiguation, target nodes in the XML 

document tree would consist of semantic concept identifiers 

extracted from the reference semantic network, where non-target 

XML nodes remain untouched (cf. Figure 4.b). 

3.2 Linguistic Pre-Processing 
Linguistic pre-processing consists of three main phases: i) 

tokenization, ii) stop word removal, and iii) stemming, applied on 

each of the input XML document’s element/attribute tag names 

and text values, to produce corresponding XML tree node labels. 

Here, we consider three possible inputs: 

� Element/attribute tag names consisting of individual words, � Element/attribute tag names consisting of compound words, 

usually made of two individual terms (t1 and t2)4 separated 

by special delimiters (namely the underscore character, e.g., 

“Directed_By”), or the use of upper/lower case to distinguish 

the individual terms (e.g., “FirstName”), � Element/attribute text values consisting of sequences of 

words separated by the space character. 
 

                                                                 

3 Knowledge base & semantic network are used interchangeably hereafter. 
4 More than two terms per XML tag name is unlikely in practice [59]. 
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Figure 4. Sample input (syntactic) XML tree and output 

(semantic) XML trees. 
 

 

Considering the first case, no significant pre-processing is 

required, except for stemming (when the word is not found in the 

reference semantic network). Considering the second case (i.e., 

compound words, usually disregarded in existing methods), if t1 

and t2 match a single concept in the semantic network (i.e., a 

synset in WordNet, e.g. first name), they are considered as a 

single token. Otherwise, they are considered as two separate 

terms, and are processed for stop word removal and stemming. 

Yet, they are kept within a single XML node label ( ) in order to 

be treated together afterward, i.e., one sense will be finally 

associated to , which is formed by the best combination of t1 and 

t2’s senses (in contrast with studies in [29, 56] which process 

token senses separately as distinct labels). As for the third case, 

we apply traditional tokenization (i.e., the text value sentence is 

broken up into a set of word tokens ti), processed for stop word 

removal and stemming, and then represented each as an individual 

node (xi) labeled with the corresponding token (xi.  = ti), and 

appearing as children of the containing element/attribute node. 

3.3 Node Selection for Disambiguation 
Given an input XML tree, the first step is to select target nodes to 

disambiguate, which (we naturally assume) are the most 

ambiguous nodes in the document tree. Thus we aim to provide a 

mathematical definition to quantify an XML node ambiguity 

degree which can be used to select target nodes for 

disambiguation (answering Motivation 1). To do so, we start by 

clarifying our assumptions about XML node ambiguity: 

x Assumption 1: The semantic ambiguity of an XML node is 

related to the number of senses of the node’s label: i) the 

more senses it has, the more ambiguous the node is, ii) the 

less senses it has, the less ambiguous the node is. 
 x Assumption 2: The semantic ambiguity of an XML node is 

related to its distance from the root node of the document 

tree: i) the closer it is to the root, the more ambiguous it is, 

ii) the farther it is from the root, the less ambiguous it is. 
 

Assumption 2 follows the nature of XML and semi-structured 

data, where nodes closer to the root of the document tend to be 

more descriptive of the whole document, i.e., having a broader 

meaning, than information further down the XML hierarchy [8, 

61]. In other words, as one descends in the XML tree hierarchy, 

information becomes increasingly specific, consisting of finer 

details [54], and thus tends to be less ambiguous. 
 x Assumption 3: The semantic ambiguity of an XML node is 

related to its number of children nodes having distinct labels: 

i) the lesser the number of distinct children labels, the more 

ambiguous the node is, ii) the more the number of distinct 

children labels, the less ambiguous the node is. 
 

Assumption 3 is highlighted in the sample XML trees in Figure 5. 

One can clearly identify the meaning of root node label “Picture” 

(i.e., “motion picture”) in Figure 5.a., by simply looking at the 

node’s distinct children labels. Yet the meaning of “Picture” 

remains ambiguous in the XML tree of Figure 5.b (having several 

children nodes but with identical labels). Hence, we believe that 

distinct children node labels can provide more hints about the 

meaning of a given XML node, making it less ambiguous. 

x Assumption 4: An XML node which label has only one 

possible sense is considered to be unambiguous (i.e., 

semantic ambiguity is minimal), regardless of its distance 

from the tree root and its number of distinct children labels. 

 

 

a. Distinct children node labels. b. Identical children node labels.
 

Figure 5. Sample XML document trees. 
 

While our goal is to quantify XML semantic ambiguity, yet this 

can be done in many alternative ways that would be consistent 

with the above assumptions. Hence, we first provide a set of 

propositions that map to the above assumptions, which we will 

utilize to derive our ambiguity degree measure.  
 

Proposition 1: The ambiguity degree of an XML node x in 

tree T increases when the number of senses of x.  is high in the 

reference semantic network SN, or else it decreases such that: 
 

> @(x. ) - 1
Amb (x. , SN)  =  0,1    

Max( (SN)) - 1
Polysemy

senses

senses
�  (1)

where Max(senses(SN)) is the maximum number of senses of a 

word/expression in SN (e.g., in WordNet 2.1 [14], Maxpolysemy = 

33, for the word “head”) ฀ 
 

Proposition 2: The ambiguity degree of an XML node x in 

tree T increases when the distance in number of edges between x 

and R(T) is low, or else it decreases such that: 
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Title Title Title Title 
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Plot Title Director Cast 

d. Output inverted concept indexes, 

generated after disambiguation 

along with the output semantic tree.
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a. Input syntactic XML tree (representing Doc 1 in Figure 1).

281



 

> @x.d
Amb (x, T)  = 1 -  0,1    

Max( (T))
Depth

depth
�  (2)

 

where Max(depth(T)) is the maximum depth in T ฀ 
 

Proposition 3: The ambiguity degree of an XML node x in 

tree T increases when the number of children nodes of x having 

distinct labels, designated as .x f , is low, or else it decreases:  
 

> @x.f
Amb (x, T)  = 1 -  0,1    

Max( - (T))
Density

fan out
�  (3)

 

where ( - (T))Max fan out  is the maximum number of children 

nodes with distinct node labels in T. We identify this factor as 

node density factor to distinguish it from traditional node fan-out: 

number of children nodes (regardless of label, cf. Definition 1) ฀ 
 

From the above propositions, we can derive a general definition 

for XML ambiguity degree: 
 

Definition 3  – XML Node Ambiguity Degree: Given an 

XML tree T, a node x � T, and a reference semantic network SN, 

we define the ambiguity degree of x, Amb_Deg(x), as the ratio 

between AmbPolysemy(x. , SN) on one hand, and the sum of             

1-AmbDepth(x, T) and 1-AmbDensity(x, T) on the other hand: 
 

> @Polysemy

Depth Density

                              Amb_Deg(x, T, SN)  = 

w  Amb (x. , SN)
0,1

w (1 Amb (x, T)) w (1 Amb (x, T)) 1

Polysemy

Depth Density

u �u � � u � �
(4)

 

where  wPolysemy, wDepth, wDensity � [0, 1] are independent weight 

parameters allowing the user to fine-tune the contributions of 

polysemy, depth, and density factors respectively ● 
 

Lemma 1:  The ambiguity degree measure Amb_Deg in 

Definition 3 varies in accordance with Propositions 1-3, and 

conforms to Assumptions 1-4 ฀ 
 

Proofs of Propositions 1-3 and Lemma 1 have been omitted for 

space limitations, and can be found in [38]. 

 

Special case: When the label of node x consists of a compound 

word made of tokens t1 and t2, we compute Amb_Deg(x) as the 

average of the ambiguity degrees of t1 and t2. 
 

Amb_Deg is computed for all nodes in the input XML tree. Then, 

only the most ambiguous nodes are selected as targets for 

disambiguation following an ambiguity threshold ThreshAmb 

automatically estimated or set by the user, i.e., nodes having 

Amb_Deg(x, T, SN) t ThreshAmb, whereas remaining nodes are left 

untouched. Note that the user can disregard the ambiguity degree 

measure: i) by setting wPolysemy = 0 so that all nodes end up having 

Amb_Deg = 0 regardless of constituent polysemy, depth, and 

density factors, or ii) by setting ThreshAmb = 0 so that all nodes are 

selected for disambiguation regardless of their ambiguity degrees.  

Note that the fine-tuning of parameters is an optimization problem 

such that parameters should be chosen to maximize 

disambiguation quality (through some cost function such as f-

measure, cf. Section 4). This can be solved using a number of 

known techniques that apply linear programming and/or machine 

learning in order to identify the best weights for a given problem 

class, e.g., [19, 30, 37]. Providing such a capability, in addition to 

manual tuning, would enable the user to start from a sensible 

choice of values (e.g., identical weight parameters to consider all 

ambiguity features equally, i.e., wPolysemy= wDepth= wFan-out =1, with 

a minimal threshold ThreshAmb = 0 to consider all results initially) 

and then optimize and adapt the disambiguation process following 

the scenario and optimization (cost) function at hand. We do not 

further address the fine-tuning of parameters here since it is out of 

the scope of this paper (to be addressed in an upcoming study). 

3.4 Context Definition and Representation 

3.4.1 XML Sphere Neighborhood 
For each target node selected from the previous phase, node 

contexts have to be defined and processed for disambiguation. 

While current approaches only partly consider the semi-structured 

nature of XML in defining disambiguation contexts (Motivation 

2), we introduce the XML sphere neighborhood context model, 

inspired from the sphere-search paradigm in XML IR [17]5, 

taking into account the whole structural surrounding of an XML 

target node (including its ancestors, descendants, and siblings) in 

defining its disambiguation context. We define the notion of XML 

ring as the set of nodes situated at a specific distance from the 

target node. An XML sphere would encompass all rings included 

at distances less or equal to the size (radius) of the sphere.  
 

Definition 4  – XML Ring: Given an XML tree T and a 

target node x � T, we define an XML ring with center x and 

radius d as the set of nodes located at distance d from x, i.e., Rd (x) 

= {xi � T | Dist(x, xi) = d} ● 
 

 

 
 

Figure 6. Sample XML (ring and) sphere neighborhoods. 
 

The distance between two XML nodes in an XML tree, Dist(xi, 

xj), is typically evaluated as the number of edges separating the 

nodes. For instance, in tree T of Figure 6.a, the distance between 

nodes T[2] and T[6] of labels “cast” and “Kelly” respectively is 

equal to 2. Hence, the XML ring R1(T[2]) centered around node 

T[2] (“cast”) at distance 1 consists of nodes: T[1] (“Picture”), 

T[3] (“star”) and T[5] (“star”). Note that our approach can be 

straightforwardly extended to consider different kinds of tree 

node distance functions (including edge weights, density, or 

direction, etc. [16, 21]). Yet, we restrict ourselves to the most 

intuitive notion of node distance here, and report the investigation 

of other distance functions to a dedicated study. 

                                                                 

5  While comparable with the concept of XML sphere exploited in [19], the 

latter consists of an XML retrieval paradigm for computing TF-IDF 

scores to rank XML query answers, which is orthogonally different, in 

its use and objectives, from our disambiguation proposal. 
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Definition 5  – XML Sphere6: Given an XML tree T, a 

target node x � T, and a set of XML rings ( )jdR x  � T, we 

define an XML sphere with center x and radius d as the set of 

nodes in the rings centered around x at distances less or equal to 

d, i.e., Sd(x) = {xi � T  |  xi � ( )jdR x � dj ≤ d} ● 

 

In  Figure 6.b, the XML sphere S2(T[2]) centered around node 

T[2] of label “cast” with radius 2 consists of: ring R1(T[2]) of 

radius 1 comprising nodes T[1] (“picture”), T[3]  (“star”) and 

T[5] (“star”), and ring R2(T[2]) of radius 2 comprising nodes T[0] 

(“Films”), T[4] (“Stewart”), T[6] (“Kelly”), and T[7] (“Plot”). 

The size (radius) of the XML sphere context is tuned following 

user preferences and/or the nature of the XML data at hand (e.g., 

XML trees might contain specialized and domain-specific data, 

and thus would only require small contexts to achieve good 

disambiguation, whereas more generic XML data might require 

larger contexts to better describe the intended meaning of node 

labels and values, cf. experiments in Section 4).  

3.4.2 Context Vector Representation 
Having identified the context of a given XML target node, we 

need to evaluate the impact of each of the corresponding context 

nodes in performing semantic disambiguation (in contrast with 

existing methods using the bag-of-words paradigm where context 

is processed as a set of words/nodes disregarding XML structure: 

Motivation 3). Here, we introduce a relational information 

solution based on the general vector space model in information 

retrieval [32] (in comparison with the specific decay function 

used in [29]), designed to consider the structural 

proximity/relations among XML nodes in computing 

disambiguation scores following our sphere neighborhood model. 

Our mathematical formulation follows two basic assumptions: 
 x Assumption 5: XML context nodes closer to the target node 

should better influence the latter’s disambiguation, whereas 

those farther away from the target node should have a smaller 

impact on the disambiguation process.  

This is based on the structured nature of XML, such as nodes 

closer together in the XML hierarchy are typically more related 

than more separated ones. 
 x Assumption 6: Nodes with identical labels, occurring 

multiple times in the context of a target node, should better 

influence the latter’s disambiguation in comparison with 

nodes with identical labels occurring a lesser number of times. 
 

This is based on the notion of context in WSD, where words 

occurring multiple times in the context of a target word have a 

higher impact on the target’s meaning. Therefore, we represent 

the context of a target XML node x as a weighed vector, which 

dimensions correspond to all distinct node labels in its sphere 

neighborhood context, weighted following their structural 

distances from the target node. 

Definition 6 – XML Context Vector: Given a target node 

x � XML tree T, and its sphere neighborhood Sd (x) � T, the 

corresponding context vector ( )d xV

 

is defined in a space which 

dimensions represent, each, a single node label r � Sd (x), such as 

1 < r < n where n is the number of distinct node labels in Sd (x). 

                                                                 

6  The notion of sphere here is equivalent to that of a disk in 2D space. 

Yet, we adopt the sphere nomination for clearness of presentation.   

The coordinate of a context vector ( )d xV  on dimension r, 

 ( )
( )

d
rV x

w , stands for the weight of label r in sphere Sd (x) ● 
 

Definition 7 – XML Node Label Weight: The weight 

 ( )
( )

d
rV x

w  of node label r in context vector ( )d xV  

corresponding to the sphere neighborhood Sd (x) of target node x 

and radius d, consists of the structural frequency of nodes xi � Sd 

(x) having label xi.  = r. It is composed of a normalized 

occurrence frequency factor � �, ( )r dFreq S x  (based on 

Assumption 6) defined using a structural proximity factor � �, ( )i dStruct x S x  (based on Assumption 5). Formally, given 

|Sd(x)| the cardinality (in number of nodes) of Sd(x): 
 

 ( )
( )

d
rV x

w � � � � > @d d

Freq d

Freq ,S (x) 2 Freq ,S (x)
 0,1

Max S (x) 1

r ru  ��  
(5)

 � �, ( )r dFreq S x  underlines the total number of occurrences of 

nodes xi � Sd (x)  having label xi.  = r, weighted w.r.t. structural 

proximity, formally: 

� � � �
d

d

d i d

 ( ) /

 .  = 

xi
ri

Sx
x  

11

d 1 2

S (x)
Freq ,S (x) Struct x ,S (x)    ,  r �

�
�

ª º �« »¬ ¼¦
(6)

� �, ( )i dStruct x S x

 

underlines the structural proximity between 

each context node xi � Sd (x) having xi.  = r, and the target 

(sphere center) node x, formally:  
 

� � i
i d

1 ,1
d 1

Dist(x, x )
Struct x ,S (x)   1   

d 1 �ª º � �« »¬ ¼�  
(7)

The denominator in � �, ( )i dStruct x S x

 

is incremented by 1 (i.e., 

d+1) to allow context nodes occurring in the farthest ring of the 

sphere context Sd(x), i.e., the ring Rd(x) of radius d, to have a non-

null weight in ( )d xV , and thus a non-null impact on the 

disambiguation of target node x ● 

 

For instance, given the XML tree in Figure 6, Figure 7 shows 

context vectors of sphere neighborhoods S1(T[2]) and S2(T[2]) 

centered around node T[2] of label “Cast”.  One can realize that 

label weights in Figure 7 increase as nodes occur closer to the 

target node (Assumption 5), and as the number of node label 

occurrences increases in the sphere context (Assumption 6, e.g., 

in 
1 ]( [2 )TV , 

 1(“ ”)
“ ” 2( )

V Cast
Starw u 

 
 1(“ ”)

“ ”( )
V Cast

Picturew
 

since 

node label “Star” occurs twice in S1(T[2]) while “Picture” occurs 

once; also in 
2 ]( [2 )TV ). Formally: 

 

Lemma 2: The context vector weight measure 
 ( )

( )
d

rV x
w  

in Definition 7 varies in accordance with Assumptions 5 and 6 ฀  
 

The lemma’s proof is omitted here, and can be found in [38], 

along with detailed computation examples. 

In short, context nodes are weighted based on their labels’ 

occurrences as well as the sizes (radiuses) of the sphere contexts 

to which they correspond, varying context node weights and thus 

their impact on the target node’s disambiguation accordingly. 
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Figure 7. Sample sphere context vectors based on the sphere 

neighborhoods in Figure 6. 

3.5 XML Semantic Disambiguation 
Once the contexts of XML nodes have been determined, we 

process each target node and its context nodes for semantic 

disambiguation. Here, we propose to combine two strategies: the 

concept-based approach and the context-based approach. The 

former is based on semantic concept comparison between target 

node senses (concepts) and those of its sphere neighborhood 

context nodes, whereas the latter is based on context vector 

comparison between the target node’s sphere context vector in the 

XML tree and context vectors corresponding to each of its senses 

in the reference semantic network. The user will be able to 

combine and fine-tune both approaches (answering Motivation 4). 

3.5.1 Concept-based Semantic Disambiguation 
It consists in comparing the target node with its context nodes, 

using a combination of semantic similarity measures (edge-based, 

node-based, and gloss-based, cf. Section 2.1) in order to compare 

corresponding semantic concepts in the reference semantic 

network. Then, the target node sense with the maximum similarity 

(relatedness) score, w.r.t. context node senses, is chosen as the 

proper target node sense. To do so, we propose an extension of 

context-based WSD techniques (cf. Section 2.2.3) where we: 

� Build upon the sphere neighborhood context model, to 

consider XML structural proximity in evaluating the 

semantic meanings of context nodes (in comparison with the 

traditional bag-of-words context model), 

� Allow an extensible combination of several semantic 

similarity measures, in order to capture semantic relatedness 

from different perspectives (in comparison with most 

existing methods which exploit pre-selected measures). 
 

Definition 8 – Concept-based Semantic Score: Given a 

target node x � XML tree T and its sphere neighborhood Sd (x) � 

T, and given sp as one possible sense for x.  in a (weighted) 

reference semantic network SN , we define Concept_Score(sp, 

Sd(x), SN ) to quantify the semantic impact of sp as the potential 

candidate for the intended sense (meaning) of x.  within context 

Sd(x) in T w.r.t. SN , computed as the average of the weighted 

maximum similarities between sp and context node senses:  
 

 

Concept_Score(sp, Sd(x), SN ) = 

� � > @ i d
ij

i d

i
p j iV (x)  .

d  S ( )

s x

x x

Max Sim s s x .

0,1
S x

, ) ( )

| ( ) |

SN wo
�

u �¦  

( ,

 
(8)

 

where i
js  designates the jth sense of context node xi.  � Sd (x), 

and i
p j  , )Sim s s SN( , designates the semantic similarity measure 

between senses sp and i
js
 
w.r.t. SN  ●    

Definition 9 – Semantic Similarity Measure: It quantifies 

the semantic similarity (relatedness) between two concepts (i.e., 

word senses) c1 and c2 in a reference (weighted) semantic network 

SN 7, computed as the weighted sum of several semantic 

similarity measures8. Formally: 

Sim(c1, c2, SN ) = wEdge SimEdge (c1, c2, SN) +   

           wNode  SimNode(c1, c2, SN )) +  

                       wGloss  SimGloss(c1, c2, SN))    �[0, 1] 

(9)

 

where:  

� wEdge+ wNode + wGloss =1 and (wEdge, wNode, wGloss) ≥ 0 � SimEdge is a typical edge-based measure from [59], 

� SimNode is a typical node-based measure from [27], 

�  SimGloss is a normalized extension of a typical gloss-based 

measure from [6] ●  
 

Special case: If the target node label x.  is a compound word 

consisting of two tokens t1 and t2 for which no single match was 

found in the reference semantic network SN  (cf. Section 3.2), an 

average score for each possible combination of senses (sp, sq) 

corresponding to each of the individual token senses (sp for token 

t1, and sq for t2) is computed to identify the sense combination 

which is most suitable for the compound target node label:  
 

Concept_Score((sp, sq), Sd(x), SN ) =         � � > @ i d
ij

i d

i
p p j iV (x)  .

d  S ( )x x

Max Sim s s s x .

0,1
S x

, , ) ( )

| ( ) |

SN wo
�

u �¦  s x
(( ),

 

 

(10)

where 

> @i i
p j q ji

p p j

Sim s s Sim s s
Sim s s s 0,1

, , 
, 

2

, ) , )
, )  

SN SN
SN

� �( (
(( ),  

 

Note that a compound context node label xi.  which tokens 
1
it  

and 
2
it  do not match any single concept in SN , is processed 

similarly to a compound target node label. 

3.5.2 Context-based Semantic Disambiguation 
It consists in comparing the target node sphere neighborhood in 

the XML tree with each of its possible sense (concept) sphere 

neighborhoods in the reference semantic network. To do so, we 

adopt the same notions of sphere neighborhood and context vector 

(Definitions 4-7) defined for XML nodes in an XML tree, to build 

the sphere neighborhood and context vector of a semantic concept 

in the semantic network. The only difference here is that sphere 

rings in the semantic network are built using the different kinds of 

semantic relations connecting semantic concepts (e.g., 

hypernyms, hyponyms, meronyms, holonyms, cf. Definition 2), in 

contrast with sphere rings in an XML tree which are built using 

XML structural containment relations (Definition 1). Here, given 

                                                                 

7  SN  designates a semantic network SN weighted with corpus statistics 

needed to compute a node-based similarity  measure [29, 48]. Yet, the 

original non-weighted semantic network SN is sufficient to compute 

typical edge-based and gloss-based measures (cf. Section 2.1). 
8   Here, we use three typical semantic similarity measures, yet any other 

semantic similarity measure can be used, or combined with the latter. 
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a reference semantic network SN, a semantic concept c � SN, and 

a radius d, we designate by Rd(c), Sd(c), and ( )d cV  the ring, 

sphere, and context vector of radius d corresponding to concept c 

in SN respectively. Note that linguistic pre-processing (cf. Section 

3.2) can be applied to concept labels (when needed9) before 

building context vectors and computing vector weights. Formally:  
 

Definition 10 – Context-based Semantic Score: Given a 

target node x � XML tree T, its sphere neighborhood Sd (x) � T 

and context vector  ( )d xV , and given sp as one possible sense for 

x.  in a reference semantic network SN, with its sphere 

neighborhood Sd (sp) � SN and context vector ( )pd sV , we define 

Context_Score(sp, Sd(x), SN) to quantify the semantic impact of sp 

as the potential candidate designating the intended sense 

(meaning) of x.  within context Sd(x) in T w.r.t. SN, computed 

using a vector similarity measure between ( )d xV  and ( )pd sV : 
 

Context_Score(sp, Sd(x), SN) = cos( ( )d xV , ( )pd sV ) � [0, 1] (11)

where cos designates the cosine vector similarity measure10 ●    
 

Special case: If the target node label x.  is a compound word 

consisting of tokens t1 and t2 for which no single match was found 

in the reference semantic network SN, an integrated score for each 

possible combination of senses (sp, sq) corresponding to each of 

the individual token senses (sp for token t1, and sq for token t2) is 

computed. Here, the sphere neighborhoods and context vectors of 

individual senses sp and sq are combined together to represent the 

context sphere of the combination of senses (sp, sq) in SN:  
  

Concept_Score((sp, sq), Sd(x), SN)= cos( ( )d xV , ( ),
p qd s sV ) > @0,1�  (12)

where ( ),p qd s sV  is a compound context vector generated based 

on compound sphere neighborhood Sd(sp, sq) = Sd(sp)  Sd(sq). 

3.5.3 Combined Semantic Disambiguation 
While concept-based and context-based disambiguation can be 

applied separately as described in the above sections, yet we 

allow the user to combine and fine-tune both approaches 

(answering Motivation 4), producing a combined score as the 

weighted sum of concept-based and context-based scores: 
 

Concept_Score(sp, Sd(x),SN )  = 

wConcept u Concept_Score(sp, Sd(x),SN ) + 

               wContext u Context_Score(sp, Sd(x), SN)       � [0, 1]

(13)

 

where wConcept+ wContext =1 and (wConcept, wContext) ≥ 0 
 

Note that disambiguation algorithms have been omitted for space 

limitations. Overall complexity simplifies to the sum of the 

complexities of concept-based and context-based disambiguation 

processes, i.e., O(|senses(x. )| u |Sd(x)| u |senses(xi. )|), and 

O(|senses(x. )| u (|Sd(x)| + |Sd(sp)|) respectively (cf. details in [38]). 

                                                                 

9 This depends on the semantic network (not required with WorldNet). 

4. EXPERIMENTAL EVALUATION 
We have developed a prototype titled XSDF11 to test and compare 

our approach with its most recent alternatives. We have evaluated 

two criteria: i) semantic ambiguity and ii) disambiguation quality. 

4.1 Experimental Test Data 
We used a collection of 80 test documents gathered from several 

data sources having different properties (cf. Table 3), which we 

describe and organize based on two features: i) node ambiguity, 

and ii) node structure (cf. Table 1). The former feature highlights 

the average amount of ambiguity of XML nodes in the XML tree, 

estimated using our ambiguity degree measure, Amb_Deg � [0, 

1]. The latter feature describes the average amount of structural 

richness of XML nodes, in terms of node depth, fan-out, and 

density in the XML tree, estimated as the sum of normalized node 

depth (1-AmbDepth), fan-out, and density (1-AmbDensity) factors, 

averaged over all nodes in the XML tree, formally: 
 

> @Depth DensityFan-out
w x.d w x.fw x.f

Struct_Deg(x, T) = + 0,1
Max( (T)) Max( - (T)) Max( - (T))depth fan out fan out

u uu � � (14)

where wDepth+ wFan-out + wDensity =1 and (wDepth, wFan-out, wDensity) ≥ 

0. In other words, high node depth, fan-out, and/or density here 

indicate a highly structured XML tree, whereas low node depth, 

fan-out, and/or density indicate a poorly structured (relatively 

flat) tree. In our experiments, we set equal weights wDepth = wFan-

out = wDensity = 1/3 when measuring Struct_Deg (cf. Table 1). In 

this study, we do not address the issue of assigning weights, 

which could be performed using optimization techniques (e.g., 

linear programming and/or machine learning [19, 30, 37]) to help 

fine-tune input parameters and obtain optimal results (cf. Section 

3.3). Such a study would require a thorough analysis of the 

relative effect of each parameter on disambiguation quality, which 

we report to a dedicated subsequent study. 
 

Table 1. XML test documents organized based on average 

node ambiguity and structure. 

 Structure + Structure – 

Ambiguity + 
Group 1 

Amb_Deg = 0.1127 & 

Struct_Deg = 0.6803 

Group 2 
Amb_Deg = 0.1378 & 

Struct_Deg = 0.6621

Ambiguity – 
Group 3 

Amb_Deg = 0.0625 & 

Struct_Deg = 0.612 

Group 4 
Amb_Deg = 0.0447 & 

Struct_Deg = 0.5515

4.2 XML Ambiguity Degree Correlation 
We compare XML node ambiguity ratings produced by human 

users with those produced by our system (i.e., via our ambiguity 

degree measure, Amb_Deg, cf. Section 3.3), using Pearson’s 

correlation coefficient, pcc = GXY/(VX+VY) where: x and y 

designate user and system generated ambiguity degree ratings 

respectively, VX and VY denote the standard deviations of x and y 

respectively, and GXY denotes the covariance between the x and y 

variables. The values of pcc � [-1, 1] such that: -1 designates that 

one of the variables is a decreasing function of the other variable 

(i.e., values deemed ambiguous by human users are deemed 

unambiguous by the system, and visa-versa), 1 designates that one 

of the variables is an increasing function of the other variable 

                                                                                                           

10 We adopt cosine since it is widely used in IR [35]. Yet, other vector 

similarity measures can be used, e.g., Jaccard, Pearson corr. coeff., etc.  
11 Available online at http://sigappfr.acm.org/Projects/XSDF/ 
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(i.e., values are deemed ambiguous/unambiguous by human users 

and the system alike), and 0 means that the variables are not 

correlated. Five test subjects (two master students and three 

doctoral students, who were not part of the system development 

team) were involved in the experiment. Manual ambiguity ratings 

(integers � [0, 4], i.e., � [min, max] ambiguity) where acquired 

for 12-to-13 randomly pre-selected nodes per document, i.e., a 

total of 1000 nodes (during an average 10 hours rating time per 

tester) and then correlated with system ratings, computed with 

variations of Amb_Deg’s parameters to stress the impact of its 

factors (AmbPolysemy, AmbDepth, and AmbDensity): i) Test #1 considers 

all three factors equally (wPolysemy = wDepth = wDensity = 1), ii) Test 

#2 focuses on the polysemy factor (wPolysemy =1 while wDepth = 

wDensity = 0), iii) Test #3 focuses on the depth factor (wDepth =1 

while wPolysemy = 0.2 and wDensity = 0), iv) Test #4 focuses on the 

density factor (wDensity =1, wPolysemy = 0.2 and wDepth = 0).  

Results compiled in Table 2 highlight several observations. First, 

XML ambiguity seems to be perceived and evaluated similarly by 

human users and our system – obtaining maximum positive 

correlation between human and Amb_Deg scores – when highly 

ambiguous and highly structured XML nodes are involved (e.g., 

Group 1). Second, ambiguity seems to be evaluated differently by 

users and our system when less ambiguous and/or poorly 

structured XML nodes are involved, attaining: negative or close 

to null correlation when low ambiguity and/or poorly structured 

XML nodes are evaluated (e.g., Groups 2, 3, and 4). This might 

be due to the intuitive understanding of semantic meaning by 

humans, in comparison with the intricate processing done by our 

automated system. For instance, in the case of documents of 

Dataset 9 of Group 4 (conforming to the personnel.dtd grammar 

of the Niagara XML document collection, cf. [38]), the meaning 

of child node label “state” under node label “address” was 

obvious for our human testers (providing an ambiguity score of 

0/4). Yet, the interpretation of the meaning of “state” is not so 

obvious for a machine, especially using a rich lexical dictionary 

such as WordNet where word “state” has 8 different meanings. 

Here, a label considered relatively unambiguous form the user’s 

point of view was assigned a higher ambiguity score by the 

system based on the expressiveness of the lexical reference. 
 

Concerning Amb_Deg’s parameter weight variations (for wPolysemy, 

wDepth, and wDensity) with tests 2, 3, and 4, all three parameters 

seem to have comparable impacts on ambiguity evaluation. Note 

that evaluating XML node ambiguity is not addressed in existing 

approaches (they do not select target nodes, but simply 

disambiguate all of them, which can be complex and needless). 

4.3 XML Semantic Disambiguation Quality 
In addition to evaluating our XML ambiguity degree measure, we 

ran a series of experiments to evaluate the effectiveness of our 

XML disambiguation approach. We used the same test datasets 

described previously. Target XML nodes were first subject to 

manual disambiguation (12-to-13 nodes were randomly pre-

selected per document yielding a total of 1000 target nodes, 

allowing the same human testers to manually annotate each node 

by choosing appropriate senses from WordNet, which required an 

average 22 hours per tester) followed by automatic 

disambiguation. We then compared user and system generated 

senses to compute precision, recall and f-value scores. 

4.3.1 Testing with Different Configurations 
We first tested the effectiveness of our approach considering its 

different features and possible configurations, considering: i) the 

properties of XML data (w.r.t. ambiguity and structure), ii) 

context size (sphere neighborhood radius), and iii) the 

disambiguation process used (concept-based, context-based, and 

the combined approach). We only show f-value levels in Figure 8 

for space limitation (precision and recall levels follow similar 

patterns). Several interesting observations can be made here. 
 

Table 2. Correlation between human ratings and system 

generated ambiguity degrees (cf. graphs in [38]). 

 
Test #1 

All factors 

Test #2 

Polysemy 

Test #3 

Depth 

Test #4 

Density 

Group 1 Doc 1 0.394 0.411 0.335 0.439 

Group 2 Doc 2 0.017 0.181 0.243 0.139 

Group 3 

Doc 3 -0.087 -0.139 -0.071 -0.138 

Doc 4 0.408 0.438 0.390 0.398 

Doc 5 -0.184 -0.185 -0.131 -0.235 

Group 4 

Doc 6 -0.284 -0.291 -0.243 -0.316 

Doc 7 -0.177 -0.190 -0.254 -0.143 

Doc 8 -0.119 -0.025 0.033 -0.156 

Doc 9 -0.452 -0.301 -0.251 -0.456

Doc 10 -0.258 0.180 0.412 0.276 
 
 

1) Considering XML data properties, one can realize that our 

approach produced consistent f-value levels � [0.55, 0.69] over 

all the tested configurations. The highest levels were reached with 

Dataset 1 of Goup1 having high ambiguity and rich structure, 

which resonates with the node ambiguity results discussed in the 

previous section (highly ambiguous and structurally rich XML 

nodes seem to be most effectively processed by our approach). 
 

2) Considering context size, optimal f-value levels are obtained 

with the smallest sphere neighborhood radius d=1 with Group 1 

(high ambiguity and rich structure XML nodes), whereas optimal 

levels are obtained with larger contexts having d=3                   

with Groups 2, 3, and 4 (low ambiguity and/or poor structure). 

This is expected since increasing context size with highly 

ambiguous/structure rich XML would increase the chances of 

including noise (e.g., unrelated/heterogeneous XML nodes) in the 

disambiguation context and thus disrupt the process. Yet, 

increasing context size with less ambiguous/poorly structured 

XML could actually help in creating a large-enough and/or rich-

enough context to perform effective disambiguation. 
 

3) Considering the disambiguation process, one can realize that 

the concept-based approach12 generally produces higher f-value 

levels in comparison with the context-based approach, the latter 

appearing to be more sensitive to context size. This is expected 

since the context-based approach primarily depends on the notion 

of context and context nodes, in both the XML document and 

semantic network, and thus increasing/decreasing context size 

would disturb its effectiveness. The effect of context size here 

could be aggravated when using a rich semantic network (such as 

WordNet) where a small increase in sphere neighborhood radius 

could include a huge number of concepts (synsets) in the semantic 

network context vector, thus adding considerable noise. 

To sum up, the above results emphasize the usefulness and need 

for a flexible approach (such as ours), allowing the user to fine-

tune the disambiguation process in order to optimize 

disambiguation following the nature and properties of the data.

                                                                 

12 When applying the concept-based approach, semantic similarity 

measures were considered with identical parameter weights (wEdge = 

wNode = wGloss = 1/3 = 0.3334), since evaluating the effectiveness of 

different semantic similarity measures is out of the scope of this paper. 
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Table 3. Characteristics of test documents. 

Groups Datasets 
Source 

dataset 
Grammar N# of docs 

Avg. N#   

of nodes   

per doc 

Node label polysemy 

(N# of senses) 
Node Depth Node Fan-out Node Density 

Avg. Max. Avg. Max. Avg. Max. Avg. Max. 

Group 1 1 Shakespeare collection1 shakespeare.dtd 10 192.054 7.052 30 3.687 6 0.604 20 0.38 6 

Group 2 2 Amazon product files2 amazon_product.dtd 10 113.333 8.407 72 4.309 7 0.539 13 0.38 6 

Group 3 

3 SIGMOD Record3 ProceedingsPage.dtd 6 39.375 4.615 16 2.743 6 0.692 9 0.692 9 

4 IMDB database4 movies.dtd 6 15.475 4 10 2.666 5 1.066 5 1 5 

5 Niagara collection5 bib.dtd 8 26.5 4.384 13 2.961 5 0.884 5 0.884 5 

Group 4 

6 W3Schools6 cd_catalog.dtd 4 16.5 3.937 10 2.312 3 0.812 6 0.812 6 

7 W3Schools food_menu.dtd 4 16 2.375 7 2.437 3 0.562 4 0.562 4 

8 W3Schools plant_catalog.dtd 4 11.675 3.454 15 2 3 1.181 6 1.181 6 

9 Niagara collection personnel.dtd 4 19 3.947 9 2.368 5 1.157 4 1.157 4 

10 Niagara collection club.dtd 4 15.5 4.533 10 2.266 4 1.4 5 1.4 5 
 

Table 4. Comparing our method with existing approaches 

Approaches 

Considers 

linguistic        

pre-processing  

Considers tag 

tokenization 

(compound terms) 

Addresses XML  

node ambiguity 

Integrates an 

inclusive XML 

structure context 

Flexible w.r.t. 

context size 

Adopts relational 

information approach

Combines the results     

of various semantic 

similarity measures 

Straightforward 

mathematical 

functions 

Disambiguates 

XML structure 

and content 

RPD [50] √  x  x  x  x  x  x  x  x 
VSD [29] √  √  x  √  √  √  x  x  x 

XSDF (our approach) √  √  √  √  √  √  √  √  √ 
 

 

 

 

a. F-value results with Group 1. b. F-value results with Group 2.

 

c. F-value results with Group 3. d. F-value results with Group 4.

 

Figure 8. Average f-value scores considering different features and 

configurations of our approach. 13 14 15 16 17 18 

4.3.2 Comparative Study 
In addition, we evaluated the effectiveness of our approach in 

comparison with two of its most recent alternatives: RPD (Root 

Path Disambiguation) [50], and VSD (Versatile Structure 

Disambiguation) [29]. A qualitative comparison is shown in Table 

4. We ran a battery of tests considering the different features and 

configurations or our approach. Here, we provide a compiled 

presentation considering optimal input parameters for our 

approach19 (i.e., context size d=1 when processing Group 1, d=3 

when processing Groups 2, 3, 4, using the concept-based 

                                                                 

13 Available at http://metalab.unc.edu/bosak/xml/eg/shaks200.zip 
14 Available at simply-amazon.com/content/XML.html 
15 Available at  http://www.acm.org/sigmod/xml 
16 Data extracted from http://www.imdb.com/ using a wrapper generator. 
17 Available at http://www.cs.wisc.edu/niagara/ 
18 Available from http://www.w3schools.com 
19 Manually identified from repeated tests with different parameter values. 

 

disambiguation process with all groups) and its alternatives (as 

indicated in corresponding studies). Results in Figure 9 show that 

our method yields precision, recall, and f-value levels higher than 

those achieved by its predecessors, with almost all test groups 

except with Group 4 where RPD produces better results. In fact, 

XML nodes in Group 4 are less ambiguous and poorly structured 

in comparison with remaining test groups. Hence, choosing a 

simple context made of root path nodes has proven to be less 

noisy in this case, in comparison with the more comprehensive 

context models used with our approach and with VSD. 
 

 

 

 

a. Results with Group 1.  b. Results with docs of Group 2.

 

 

 

c. Results with Group 3.  d. Results with Group 4.

 
 

Figure 9. Average PR, R and F-value scores comparing our approach 

with RPD [50] and VSD [29]. 
 

One can also realize that our method produces highest precision, 

recall, and f-value levels with Group 1 (high ambiguity and rich 

structure XML nodes), with an average 35% improvement over 

RDP and VSD (Figure 9.a), in comparison with average 25%, 5%, 

and almost 0% improvements with Groups 2, 3, & 4 respectively. 

This concurs with our results of the previous section: our method 

is more effective when dealing with highly ambiguous nodes 

within a rich XML structure, in comparison with less 

ambiguous/poorly structured XML. 

XSDF (our approach) RPD VSD 

d = 1 d = 3 d = 5 (or d=4 if Max(Depth(T)) = 4)

Concept- 

based 

Context- 

based 

Combined 

approach 

Precision Recall F-value 

Concept- 

based 

Context-

based 

Combined

approach 

Concept- 

based 

Context- 

based 

Combined 

approach 

Concept- 

based 

Context-

based 

Combined

approach 

Precision Recall F-value 

Precision Recall F-value Precision Recall F-value 
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5. CONCLUSION 
This paper introduces a novel XML Semantic Disambiguation 

Framework titled XSDF, to semantically annotate XML 

documents with the help of machine-readable lexical knowledge 

base (e.g., WordNet), which is a central pre-requisite to various 

applications ranging over semantic-aware query rewriting [11, 

40], XML document classification and clustering [49, 53], XML 

schema matching [13, 55], and blog analysis and event detection 

in social networks [2, 7]. XSDF covers the whole disambiguation 

pipeline from: i) linguistic pre-processing of XML node labels to 

handle compound words (neglected in most existing solutions), to 

ii) selecting ambiguous nodes for disambiguation using a 

dedicated ambiguity degree measure (unaddressed in most 

solutions), iii) representing target node contexts as comprehensive 

and flexible (user chosen) sphere neighborhood vectors (in 

contrast with partial and fixed context representations, e.g., parent 

node or sub-tree context), and iv) running a hybrid 

disambiguation process, combining two (user chosen) methods: 

concept-based and context-based (in contrast with static methods). 

Experimental results w.r.t. user judgments reflect our approach’s 

effectiveness in selecting ambiguous XML nodes and identifying 

node label senses, in comparison with existing solutions.  

We are currently investigating different XML tree node distance 

functions (including edge weights, density, direction, etc. [16, 

21]), to define more sophisticated neighborhood contexts. Fine-

tuning user parameters using dedicated optimization techniques 

[19, 30] is another work in progress. We are also investigating the 

use of additional/alternative lexical knowledge sources such as 

Google [22], Wikipedia [12], and FOAF [2] to acquire a wider 

word sense coverage, and thus explore our approach in practical 

applications, namely semantic blog and wiki document clustering.   
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