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ABSTRACT

The problem of anomaly detection in time series has recently
received much attention. However, many existing techniques
require the user to provide the length of a potential ano-
maly, which is often unreasonable for real-world problems.
In addition, they are also often built upon computing costly
distance functions — a procedure that may account for up to
99% of an algorithm’s computation time.

Addressing these limitations, we propose two algorithms
that use grammar induction to aid anomaly detection with-
out any prior knowledge. Our algorithm discretizes contin-
uous time series values into symbolic form, infers a context-
free grammar, and exploits its hierarchical structure to effec-
tively and efficiently discover algorithmic irregularities that
we relate to anomalies. The approach taken is based on
the general principle of Kolmogorov complexity where the
randomness in a sequence is a function of its algorithmic
incompressibility. Since a grammar induction process natu-
rally compresses the input sequence by learning regularities
and encoding them compactly with grammar rules, the al-
gorithm’s inability to compress a subsequence indicates its
Kolmogorov (algorithmic) randomness and correspondence
to an anomaly.

We show that our approaches not only allow discovery
of multiple variable-length anomalous subsequences at once,
but also significantly outperform the current state-of-the-art
exact algorithms for time series anomaly detection.

1. INTRODUCTION

The ability to detect anomalies in time series efficiently
is important in a variety of application domains where ano-
malies convey critical and actionable information, such as
in health care, equipment safety, security surveillance, and
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fraud detection. Consequently, the anomaly detection prob-
lem has been studied in diverse research areas [10]. Despite
the problem’s simplicity at the abstract level, where an ano-
maly is defined as a pattern that does not conform to the
underlying generative processes, the problem is difficult to
solve in its most general form [3].

Anomalies in time series can be divided into two broad
categories: point anomalies and structural anomalies. Point
anomalies are statistical outliers, i.e., points which are sig-
nificantly different from others [11], and have been studied
the most [3]. In contrast, structural anomalies, whose disco-
very is our present focus, are defined as subsequences whose
shape do not conform to the rest of the observed, or expected
patterns [10, 3, 13].

Previously in [13], the notion of time series discord was in-
troduced. Discords are shown to capture in a sense the most
unusual subsequences within a time series that are likely to
correspond to many possible anomalies within the genera-
tive processes — a property which was confirmed in a recent
extensive empirical study by Chandola et al., where they
concluded ”..on 19 different publicly available data sets, com-
paring 9 different techniques time series discord is the best
overall technique among all techniques” [3]. However, to dis-
cover a discord, the user must specify its length. There are
two limitations with this requirement in real world problems.
First, the user may not know the exact discord length, or
even the best range of lengths in advance. Second, restrict-
ing the discovery to only fixed length discords limits the
algorithm’s exploratory capacity since multiple discords of
different lengths may co-exist in a time series. As a result,
determining all possible lengths to discover the best discords
would be extremely cost prohibitive.

In this work, we focus on the discovery of structural ano-
malies that can also be described as the most unusual sub-
sequences within a given time series, and we introduce a
framework that addresses the above limitation by enabling
efficient detection of variable-length anomalies. The pro-
posed algorithms relies on the grammar induction proce-
dure, which once applied to a string obtained by symbolic
time series discretization, learns algorithmically exploitable
symbol correlations and builds a hierarchical structure of
context-free grammar rules, each of which maps to variable-
length subsequences of the input time series. Through the

10.5441/002/edbt .2015.42


http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2015.42

analysis of the grammar’s hierarchical structure, the algo-
rithms efficiently identify substrings that are rarely used in
the grammar rules and whose corresponding subsequences
can be considered as candidate anomalies.

Our approach builds upon the general notion of Kolmogorov
complexity [15], which defines a string’s complexity as a size
of the smallest program that generates the string. While the
Kolmogorov complexity is an uncomputable function due to
the undecidability of the Turing machine halting problem,
its value is typically approximated by the size of the input
string in its algorithmically compressed form, and the tight-
ness of the approximation bound is related to the overall ef-
ficiency of the compressor [27, 17]. This practical notion of
algorithmic compressibility allows for the estimation, study,
and application of Kolmogorov complexity in a number of
generic solutions to common data mining tasks. For exam-
ple it underlies the Minimum Description Length (MDL) [9]
and Normalized Compression Distance (NCD) [5] principles,
and has been used for time series anomaly discovery [14].

Within the algorithmic compressibility framework, the al-
gorithmic (Kolmogorov) randomness of a string has been
defined through its incompressibility, i.e., the lack of algo-
rithmically exploitable redundancy [17, 9, 6, 20]. Since a
grammar induction algorithm can be used to provide ef-
fective and efficient compression [21], naturally, it can be
used for both the estimation of Kolmogorov complexity and
algorithmic randomness discovery. Hence our present goal
is to explore this property and to show that the algorith-
mic randomness discovered with the application of grammar
induction-based compression to discretized time series can
be correlated to the anomalousness within the time series.

In summary, our work has the following significant contri-
butions:

e To the best of our knowledge, we are the first to explore
the application of grammar-based compression to the
problem of time series anomaly discovery.

e We propose two novel techniques for time series ano-
maly discovery based on grammatical compression, in
which we define an anomaly as an incompressible, al-
gorithmically random subsequence.

e Our approaches offer the unique ability to discover
multiple variable-length anomalies at once (Figure 1).

The remainder of the paper is organized as follows. In Sec-
tion 2, we provide notation and define our research prob-
lem. In Section 3, we give a motivational example and de-
scribe algorithms used. We discuss our approach in detail
in Section 4, showing two algorithms enabling grammatical
compression-driven anomaly detection in time series. In Sec-
tion 5, we empirically evaluate our algorithms on datasets
as diverse as spatial trajectories, space shuttle telemetry,
medicine, surveillance, and industry. We also show the util-
ities of incorporating the algorithms into our visualization
tool, GrammarViz 2. Finally, we review related work and
conclude.

2. NOTATION AND THE PROBLEM
DEFINITION

To precisely state the problem at hand, and to relate our
work to previous research, we will define the key terms used
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Figure 1: An example of multiple anomalous events found in a
recorded video time series [14] shown at the top panel. The rule
density curve, which we propose in this paper, and which is built
in linear time and space, is shown in the bottom panel. Reflect-
ing the hierarchical grammar structure, the rule density curve
reaches its minima where no algorithmic redundancy is observed,
pinpointing anomalous locations precisely.

throughout this paper. We begin by defining our data type,
time series:

Time series T = t1,...,tn, is a set of scalar observations
ordered by time.

Since we focus on the detection of anomalous patterns,
which are likely to be local features, we consider short sub-
sections of time series called subsequences:

Subsequence C of time series T is a contiguous sampling
tp,...,tpyn—1 of points of length n << m where p is an
arbitrary position, such that 1 <p <m —n+ 1.

Typically subsequences are extracted from a time series
with the use of a sliding window:

Sliding window subsequence extraction: for a time se-
ries T of length m, and a user-defined subsequence length
n, all possible subsequences of T' can be found by sliding a
window of size n across T'.

As it is well acknowledged in the literature, and as we have
shown before in [25], it is often meaningless to compare time
series unless they are z-normalized:

Z-normalization is a process that brings the mean of a
subsequence C' to zero and its standard deviation to one.

Given two time series subsequences C' and M, both of
length n, the distance between them is a real number that
accounts for how much these subsequences are different,
and the function which outputs this number when given
C and M is called the distance function and denoted
Dist(C, M). One of the most commonly used distance func-
tions is the Euclidean distance, which is the square root
of the sum of the squared differences between each pair of
the corresponding data points in C' and M.

One of our proposed techniques is built upon determining
if a given subsequence C' is similar to other subsequences M
under distance measure Dist. This notion is formalized in
the definition of a match:

Match: Given a positive real number ¢ (i.e., threshold)
and subsequences C' and M, if Dist(C, M) < t then sub-
sequence M is a match to C.

When searching for potential anomalies using a distance
function, it is important to exclude self matches, which are
subsequences that overlap the subsequence currently being
considered. Such self-matches can yield degenerate and un-
intuitive solutions as discussed in [13]. For two subsequences
C and M we define a non-self match:



Non-self match: Given a subsequence C' of length n
starting at position p of time series T', the subsequence M be-
ginning at ¢ is a non-self match to C' at distance Dist(C, M)
if [p—gq| > n.

As mentioned, one of the most effective methods for time
series anomaly detection is via discord discovery. Formally,
it is defined as:

Time Series Discord: Given a time series T, the time
series subsequence C' € T is called the discord if it has the
largest Euclidean distance to its nearest non-self match [13].
Thus, time series discord is a subsequence within a time se-
ries that is maximally different to all the rest of subsequences
in the time series, and therefore naturaly captures the most
unusual subsequence within the time series [13].

2.1 Problem definition

The task of finding a structural time series anomaly is
defined as

Given a time series T, find a subsequence C that is the
most (structurally) different from the rest of the observed
subsequences.

This task, however, is very difficult to solve in its gen-
eral form without a notion of the context [3]. The context
is information that can be induced from the structure of
the dataset or specified as a part of the problem. It places
constraints on both the search space and the results, mak-
ing it possible to find a meaningful solution. Based on this
rationale, we re-define the anomaly discovery problem as:

Given a time series T and some context, find a subsequence
C' that is the most structurally different from others and
which can be related to the context.

In discords—the current state of the art in structural ano-
maly detection [3]—the context is provided by the user-
defined anomaly length, and the notion of the “most struc-
turally different” is defined as the largest Euclidean distance
to the nearest non-self match. Both constraints, while defin-
ing the problem and the solution exactly, place severe restric-
tions on the result by assuming unrealistic a priori knowl-
edge about the exact anomaly length.

In this work we address this issue by allowing the discord
length to vary in boundaries that are consistent with the
time series context. Toward this end, we represent the con-
text as a hierarchical grammar structure obtained through

the processes of time series symbolic discretization and context-

free grammar induction. In turn, by exploiting the use fre-
quencies of the induced grammar rules, our technique finds
the most unusual rules which we consider as discord candi-
dates to be evaluated and which, naturally, vary in length.

3. GRAMMAR-BASED TIME SERIES DE-
COMPOSITION

Before describing our approach in detail, consider the fol-
lowing example showing the context-free grammar proper-
ties used in our approach. Let

S = abc abc cba xxx abc abc cba

be the input string under analysis (e.g. derived from a time
series and reflecting its structure). For reason that will be-
come clearer later, the input string consists of a sequence
of words (in this example, 3-letter words or triplets). Each
triplet is considered an atomic unit, or a terminal in the
sequence. The task is to compress this input sequence by
grammar induction.
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A careful look at the string shows that there are repeated
patterns abc abc cba separated by xxx. Ideally, we expect
the grammar induction or compression algorithm to reflect
this, as shown in the possible grammar for input S:

Grammar Rule
RO — R1 xxx R1
R1 — R2 cha

R2 — abc abc

Expanded Grammar Rule
abc abc cba xxx abc abc cbha
abc abc cbha

abc abc

As shown, the grammar induction algorithm has reduced
the length of the input string (i.e., compressed it) by creating
a grammar whose rules are encoded by non-terminals R1
and R2, which reveal repeated patterns in the input.

In previous work, we have shown that by the analysis of a
grammar built upon time series discretization it is possible
to identify recurrent patterns, i.e. time series motifs [16].
Since anomaly detection can be viewed as the inverse prob-
lem to motif discovery, in this work, we argue that symbols
that are rarely used in grammar rules (i.e. xzz) may aid in
anomaly detection as well. The intuition is that subsequen-
ces of any length that never or rarely occur in grammar rules
are non-repetitive and are thus most likely to be unusual or
anomalous.

To illustrate this, suppose we annotate each word of the
input string S with the number of rules that the word ap-
pears in excluding the top-level rule RO. The input string S
becomes the following:

S = abce abes cbar zxxo abes abes cbaq

All occurrences of the word abc have a count of 2 be-
cause they appear in both R1 and R2; the word cba has
count of 1 since it appears only in R1; whereas the word
zzx has a count 0, because it is not a part of any rule. Since
the counts naturally reflect the algorithmic compressibility
of the sequence of terminal and non-terminal symbols, the
triplet zzzo is algorithmically incompressible by the gram-
mar induction algorithm and thus algorithmically random.
In turn, if the input string S is derived by discretizing a time
series into a sequence of words, where each word corresponds
to a time series subsequence, then based on our hypothesis,
the subsequence in the time series that xxx represents is a
potential anomaly.

Note that when identifying a potential anomaly we have
not used any explicit distance computation between termi-
nal or non-terminal symbols, grammar rules, or their cor-
responding (i.e., raw) subsequences. Moreover, note that
the time series discretization technique SAX [25] and the
grammatical inference algorithm Sequitur [22] that we rely
upon, also do not compute any distance (i.e., they do not
explicitly measure how far apart objects are). Hence, unlike
most anomaly discovery algorithms, our approach does not
require any distance computation to discover and to rank
multiple potential anomalies.

Discovered in the above example potential anomaly is the
most unusual substring of a larger input string in terms of
the grammatical inference algorithm of choice. Specifically,
in contrast to other terminal symbols, the word zxz is not
included in any of grammatical rules — the property that
is discovered and accounted for by the grammatical infer-
ence algorithm. Thus, the discovered anomalous substring
is analogous in meaning to a time series discord. However,
our approach determines the anomalous subsequence length



automatically in the course of grammar induction process,
whereas the discord discovery algorithm requires the length
of a potential anomaly to be known in advance.

Based on the intuition shown above, we shall present two
algorithms that enable the discovery of variable-length ano-
malies. Before that, we discuss time series discretization
and grammatical inference — the procedures upon which our
techniques are built.

3.1 Discretization

Since grammar induction algorithms are designed for dis-
crete data, we begin by discretizing a continuous time se-
ries with SAX (Symbolic Aggregate approXimation) [25].
In addition, since an anomaly is a local phenomenon, we
apply SAX to subsequences extracted via a sliding window.
SAX performs discretization by dividing z-normalized sub-
sequence into w equal-sized segments. For each segment, it
computes a mean value and maps it to symbols according
to a pre-defined set of breakpoints dividing the distribution
space into a equiprobable regions, where « is the alphabet
size specified by the user. This subsequence discretization
process [19] outputs an ordered set of SAX words, where
each word corresponds to the leftmost point of the sliding
window, and which we process with numerosity reduction at
the next step.

As an example, consider the sequence S1 where each word
(e.g. aac) represents a subsequence extracted from the orig-
inal time series via a sliding window and discretized with
SAX (the subscript following each word denotes the start-
ing position of the corresponding subsequence in the time
series):

S1 = aaci aacs abes abbs acds aace aacy aacs abcy . . .

In contrast to many SAX-based anomaly discovery tech-
niques that store SAX words in a trie or a hash table for
optimizing the search, and essentially throw away the or-
dering information, we argue that the sequential ordering of
SAX words provides valuable contertual information, and is
the key for allowing variable-length pattern discovery.

3.2 Numerosity reduction

As we have shown in [19], neighboring subsequences ex-
tracted via sliding window are often similar to each other.
When combined with the smoothing properties of SAX, this
phenomenon persists through the discretization, resulting in
a large number of consecutive SAX words that are identi-
cal. Later, these yield a large number of trivial matches
significantly affecting performance. To address this issue,
we employ a numerosity reduction strategy: if in the course
of discretization, the same SAX word occurs more than once
consecutively, instead of placing every instance into the re-
sulting string, we record only its first occurrence. Applied
to S1, this process yields:

S1 = aac1 abcs abby acds aace abco
In addition to speeding up the algorithm and reducing its
space requirements, the numerosity reduction procedure pro-

vides an important feature in this work — it naturally enables
the discovery of variable-length anomalies as we show next.

3.3 Grammar induction on SAX words

Next, the reduced (from repetitions) sequence of SAX
words is inputted into Sequitur [22], our grammar induction
algorithm of choice, to build a context-free grammar.
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Sequitur is a linear time and space algorithm that derives
the context-free grammar from a string incrementally. Pro-
cessing the input string from left to right, Sequitur builds
the hierarchical structure of a context-free grammar by iden-
tifying and exploiting symbol correlations while maintaining
the two constraints of uniqueness and utility at all times. Al-
though simple in design, Sequitur has been shown to be com-
petitive with state of the art compression algorithms — the
property which allows us to use the notion of Kolmogorov
complexity. In addition, Sequitur performance tends to im-
prove with the growth of the input string size [21].

When applied to a sequence of SAX words, Sequitur treats
each word as an input string token and builds the context-
free grammar’s hierarchical structure. This structure re-
cursively reduces all digrams that are consecutive pairs of
tokens (terminal or non-terminal) occurring more than once
in the input string to a single new non-terminal symbol.

To reiterate the benefit of the numerosity reduction strat-
egy and how it lends itself to variable-length pattern dis-
covery with Sequitur, consider the single grammar rule R1
generated by Sequitur from the string SI as shown here:

Expanded Grammar Rule
aacy abes abby acds aace abeg
aac abc

Grammar Rule
RO — RlabbacdR1
R1 — aac abc

In this grammar, R1 concurrently maps to substrings of
different lengths: S1}1.3 of length 3 (i.e., aaci aacz abes) and
Slie.g) of length 4 (i.e., aacs aacr aacs abcy), respectively.
The potential anomalous substring “abbs acds” has length
2. Since each SAX word corresponds to a single point of the
input time series (a subsequence starting point), R1 maps
to its subsequences of variable lengths.

3.4 Mapping rules to subsequences

As shown in the above example, by keeping SAX words’
offsets throughout the procedures of discretization and gram-
mar induction, our algorithm is able to map rules and SAX
words back to their original time series subsequences.

3.5 Pattern mining with Sequitur

Previously in [16], we proposed GrammarViz, an algo-
rithm for variable-length time series motif discovery that
makes full use of the hierarchy in Sequitur’s grammar. We
showed the ability of the proposed algorithm to discover re-
current patterns of variable lengths. This is due to several
properties of the algorithm, including: the data smoothing
capability of SAX, numerosity reduction which enables the
patterns’ variable length, and Sequitur’s wutility constraint
which ensures that all of the grammar’s non-terminals cor-
respond to recurrent patterns. We later implemented visual-
ization software based on this concept [26] that also provides
a pilot module demonstrating the potential for a grammar-
based approach to identify anomalies.

In this work, we formally introduce the notion of the rule
density curve which is the key to our grammar-driven ano-
maly detection algorithm. Simply put, the rule density curve
reflects the number of Sequitur grammar rules that span a
time series point. We also provide theoretical background
for our empirical observations. For this, we emphasize the
role of the second Sequitur constraint, digram uniqueness,
which ensures that none of the digrams processed by the
algorithm (i.e., compressed into non-terminals) repeats it-



self. This property guarantees the ezhaustiveness of the
search for algorithmically exploitable redundancies in the
input string, and consequently asymptotically maximal com-
pression of the output string [21]. Both properties allow
us to put our approach within the Kolmogorov complex-
ity framework based on the algorithmic compressibility and
relate algorithmically incompressible subsequences to ano-
malies as we discuss in the next section.

4. GRAMMAR-DRIVEN ANOMALY
DISCOVERY

Within Kolmogorov complexity research, it has been pro-
ven that algorithmic incompressibility is a mecessary and
sufficient condition for randomness [6, 17], thanks to the
elegant statistically-sound theory developed by Martin-Lof
[20]. This theoretically grounds our intuition and effectively
supports the claim that if a grammar induction algorithm is
incapable of encoding a subsequence by finding exploitable
correlations within the input string, such a subsequence is
random within the context of the input string and applied al-
gorithm. We call such subsequences algorithmically anoma-
lous and equate them to time series anomalies.

Let us explain the utility of “algorithmic anomalousness”.
When searching for an anomaly in a time series, we expect
that while the true generative process is unknown, it is likely
to be regular and that the time series reflects these regular-
ities. At the same time, we also assume that the time series
may contain some abnormal segments, whose identification
is our goal. Further, assuming that the discretization pro-
cess preserves these regularities and irregularities, the Se-
quitur algorithm should be able to learn the regularities and
effectively compress the input string. However, due to its in-
variants of utility and uniqueness, Sequitur will not be able
to form rules that contain symbolic subsequences occurring
just once in the input string, because it will not be able to
find any short- or long-term correlations between them and
the rest of the string — the property that reflects irregularity
and defines a variable-length anomaly in the most natural
way.

Based on the intuition behind algorithmic anomalousness
we propose two algorithms for grammatical compression-
driven variable-length anomaly discovery from time series.
Configured only by the discretization parameters, both algo-
rithms are capable of efficient discovery of putative anoma-

lous subsequences without any prior knowledge of their length,

shape, or minimal occurrence frequency. While the result
produced by the first algorithm is an approximate solution,
our second algorithm is based on explicit distance computa-
tions and outputs time series discords of variable length.

4.1 Efficient, rule density-based anomaly
discovery

To efficiently discover approximate anomalies, we propose
to compute the rule density curve for the input time series.
Toward that end, an empty array of length m (the length
of the time series), is first created. Each element in this ar-
ray corresponds to a time series point and is used to keep
count of the grammar rules that span (or “cover”) the point.
Second, since the locations of corresponding subsequences
for all grammar rules are known, by iterating over all gram-
mar rules the algorithm increments a counter for each of the
time series points that the rule spans. After this process
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Dataset ECG qtdb 0606, excerpt [701-3000]
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Sequitur grammar rules density (discretization parameters W=100,P=9,A=5)
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Figure 2: Anomaly discovery in ECG dataset. Top panel shows
the anomalous heartbeat location. Middle panel shows that the
rule density curve clearly identifies the true anomaly by its global
minimum. Bottom panel confirms that the RRA-reported discord
has indeed the largest distance to its nearest non-self match.

each element of the array contains a value indicating the to-
tal number of grammar rules that covers the corresponding
time series point. The curve that corresponds to the array’s
values is the rule density curve. As an example, consider the
rule density curves shown in the middle panels of Figures 2
and 3.

Since each SAX string corresponds to a subsequence start-
ing at some position of the time series, the points whose rule
density counters are global minima correspond to the gram-
mar symbols (terminals or non-terminals) whose inclusion
in the grammar rules are minimal. These subsequences are
algorithmically anomalous by our definition and we argue
that the rule density curve intervals that contain minimal
values correspond to time series anomalies, and our algo-
rithm simply outputs these intervals.

Consider the example shown in Figure 2. The top panel
shows an excerpt of an ECG time series with a highlighted
instance of an anomalous heartbeat featuring a very subtle
premature ventricular contraction. The middle panel shows
a significant drop in the grammar rule density over the inter-
val 462-484, which is in perfect alignment with the ground
truth — an expert’s annotation of an anomaly occuring in the
ST interval of the ECG curve (as discussed in [13]). Similar
to that, the global minima of the rule density curve shown
in the middle panel of Figure 3 pinpoints the weekly interval
that has the most unusual power consumption pattern (the
dataset in the top panel of Figure 3 shows the power con-
sumption history of a Dutch research facility for the entire
year of 1997 [28]).

The rule density-based approach is capable of discovering
multiple anomalies of variable length. When given a fixed
threshold, it simply reports contiguous points of the input
time series whose density is less than the threshold value.
If needed, an additional ranking criterion can be defined,
such as a minimal anomaly length or a statistically sound
criterion based on probabilities.

Note that even though we need to specify the sliding win-
dow length, it is only the initial “seed” value. Unlike most
existing algorithms in which this subsequence length is the
exact length of the anomaly, anomalies reported by our tech-
nique are not bounded by the seed length and may range
from very short to very long time spans.



Dataset Dutch Power Demand and 3 anomalies discovered by SAXSequitur

AR AAAALD
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Second discord Best discord Third discord

N

0 5000 10000 15000 20000 25000 30000 35000

Non-self distance to the nearest neighbor among rule-corresponding subsequences
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Figure 3: Multiple discord discovery in Dutch power demand
data [28]. Top panel shows 52 weeks of power demand by a re-
search facility. Middle panel shows that while the rule density-
based technique was able to discover the best discord, others are
difficult to discriminate. The bottom panel shows distances to
the nearest non-self match computed for each rule-corresponding
subsequence, which allows for the ranking of discords discovered
with RRA.
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Figure 4: A detailed view of RRA-ranked variable length dis-
cords discovered in the Dutch power demand dataset. All of them
highlight time intervals where typical weekly patterns are inter-
rupted by state holidays.

Another distinguishable and desirable characteristic of this
approach is its efficiency. It has linear time and space com-
plexity since the sequential processing of SAX, Sequitur, and
the global minima search take linear time and space. This
efficiency, when combined with effective rule density curve-
based visualization, enables the user to interactively explore
the dataset and to refine discretization parameters and the
anomaly selection threshold.

4.2 Exact, distance-based anomaly discovery

If the time series under analysis has low regularity (an is-
sue that impacts the grammar’s hierarchy) or the discretiza-
tion parameters are far from optimal and regularities are
not conveyed into the discretized space, the rule density-
based anomaly discovery technique may fail to output true
anomalies. In addition, some applications may require addi-
tional anomaly evidence or ranking. To address this, we pro-
pose a second variant of a grammar-driven variable-length
anomaly discovery algorithm based on an explicit distance

computation which outputs discords — the subsequences whose

distance to their nearest non-self match is the largest. Since
anomalous subsequences correspond to rare grammar rules,
we call the algorithm RRA (Rare Rule Anomaly).

Algorithm 1 RRA algorithm

1: function FIND_DISCORD(T), Intervals, Outer, Inner)

2:  best_so_far_dist =0

3:  best_so_far_loc = NaN

4: for each p in Intervals ordered by Outer do

5: nearest_neighbor_dist = Infinity

6: for each ¢ in Intervals ordered by Inner do

T if |[po — qo| > Length(p) ! then

8: current_dist = Dist(p, q)

9: if current_dist < best_so_far_dist then

10: break

11: if current_dist < nearest_neighbor_dist then
12: nearest_neighbor_dist = current_dist

13: if nearest_neighbor_dist > best_so_far_dist then
14: best_so_far_dist = nearest_neighbor_dist

15: best_so_far_loc = p

16:  return (best_so_far_dist, best_so_far_loc)

'po and qo are the global indexes (in T') of the first points
of subsequences p and g respectively. In this line we check
that currently analyzed subsequences do not overlap (i.e.,
q is non-self match of p).

The RRA algorithm is based on the HOTSAX framework
initially proposed in [13] for the discord discovery. The al-
gorithm’s input includes the original time series T', a list
of variable length subsequences corresponding to grammar
rules which we call Intervals, and two heuristics: Inner
and Quter, which can be applied to list of subsequences.

Similar to HOTSAX, our algorithm iterates over all can-
didate subsequences in the outer loop (line 4 of Algorithm 1)
while computing distances to all other non-self matches in
the inner loop (lines 6-8; po and qo in line 7 are the indexes)
and selecting the closest non-self match (lines 9-15). The
candidate subsequence from the outer loop which yields the
largest distance to a non-self match is output as the result.
In HOTSAX, the candidates in the outer (Outer) and inner
(Inner) loops are ordered based on the SAX representations
of the candidate subsequences such that the order of consid-
eration is as close to the optimal ordering (i.e., the ordering
that would result in the most elimination of computations)
as possible. However, as mentioned earlier, HOTSAX can-
didates are restricted by their subsequence length. Our pro-
posed technique differs from HOTSAX in that subsequences
(i.e., Intervals in Algorithm 1) and their ordering for the
inner (Imner) and outer (Outer) loops are provided as the
input based on the information derived from grammar.

Specifically, Intervals subsequences are those that corre-
spond to the grammar rules plus all continuous subsequences
of the discretized time series that do not form any rule. The
Outer subsequence ordering utilizes the information derived
from a hierarchical grammar structure — we order subsequen-
ces in ascending order of their corresponding rule usage fre-
quency (note that continuous subsequences of the discretized
time series that do not form any rule have frequency 0 and
are thus considered first). The intuition behind this order-
ing is simple and is a reflection of the previously discussed
properties of algorithmically anomalous subsequences. That
is, the sooner we encounter the true anomaly, the larger the
best_so_far_dist is, and the more computations we can po-
tentially eliminate later on (line 9).

The Inner candidate match ordering is also based on
grammar information. First, having a candidate subsequence



Table 1: Performance comparison for brute-force, state-of-the-art, and the proposed exact discord discovery algorithms.

Dataset name and discretization Length  Number of calls to the distance function = Reduction in HOTSAX & RRA dis-
param. (window, PAA, alphabet) Brute-force HOTSAX RRA  distance calls  cords length and overlap
Daily commute (350,15,4) 17175 271'442°101 879’067 112’405 87.2% 350 / 366 100.0%
Dutch power demand (750,6,3) 35’040 1.13 x 10° 6’196’356 327’950 95.7% 750 / 773 96.3%
ECG 0606 (120,4,4) 2’300 4241°541 72’390 16’717 76.9% 120 / 127 79.2%
ECG 308 (300,4,4) 5’400 23°044’801 327454 14’655 95.5% 300 / 317 97.7%
ECG 15 (300,4,4) 15’000 207’374°401 1’434°665 111’348 92.2% 300 / 306 65.0 %
ECG 108 (300,4,4) 21’600 441°021°001 6°041°145 150’184 97.5% 300 / 324 89.7%
ECG 300 (300,4,4)! 536’976 288 x 109  101’427°254 17712845 82.6% 300 / 312 83.0%
ECG 318 (300,4,4) 586’086 343 x 109 45’513’790 10°000°632 78.0% 300 / 312 80.7%
Respiration, NPRS 43 (128,5,4) 4’000 14°021°281 89’570 45’352 49.3% 128 / 135 96.0%
Respiration, NPRS 44 (128,5,4) 24’125 569°753°031 1°146°145 257’529 77.5% 128 / 141 61.7%
Video dataset (gun) (150,5,3) 11251  119’935’353 758’456 69’910 90.8% 150 / 163 89.3%
Shuttle telemetry, TEK14 (128,4,4) 5’000 22’510°281 691’194 48’226 93.0% 128 / 161 72.7%
Shuttle telemetry, TEK16 (128,4,4) 5’000 22’491°306 61’682 15’573 74.8% 128 / 138 65.6%
Shuttle telemetry, TEK17 (128,4,4) 5’000 22°491°306 164’225 78211 52.4% 128 / 148 100.0%

'RRA reported the best discord discovered with HOTSAX as the second discord (Figure 5).

from a grammar rule selected in the Outer loop, we consider
all other subsequences from the same rule as possible near-
est non-self matches. After this step, the rest of the subse-
quences are visited in random order. The intuition behind
this ordering is also simple — the subsequences correspond-
ing to the same Sequitur rule are very likely to be highly
similar. Thus, considering those in the beginning of Inner
loop allows us to potentially encounter a distance that is
smaller than best_so_far_dist sooner and to benefit from
early abandoning (lines 9-10 of the Algorithm 1) while con-
sidering all other candidates in the Outer loop. Since RRA
operates with rule-corresponding subsequences of variable
lengths, when searching for nearest non-self match we em-
ploy the Euclidean distance normalized by the subsequence
length, which favors shorter subsequences for the same dis-
tance value:

Yo (pi — qi)?

Length(p) (1)

Dist(p,q) =
When run iteratively, excluding the current best discord
from Intervals list, RRA outputs a ranked list of multi-
ple co-existing discords of variable length, as shown in Fig-
ures 3 and 4. The bottom panels of Figures 2 and 3 in-
dicate locations and true distances from each time series
subsequence corresponding to a grammar rule to its nearest
non-self match by a vertical line placed at the rule beginning
and whose height equals the distance.

5. EXPERIMENTAL EVALUATION

We evaluated both proposed techniques on a number of
datasets previously studied in [13] that include Space Shuttle
Marotta Valve telemetry (TEK), surveillance (Video data-
set), health care (electrocardiogram and respiration change),
and industry (Dutch Power Demand). We also evaluated on
a new dataset of spatial trajectories. We compared the per-
formance of the proposed algorithms against brute force and
HOTSAX [13] discord discovery algorithms. Since RRA re-
turns discords of variable length that may differ significantly
from the specified sliding window length, we show the RRA
discord recall rate as the overlap between discords discov-
ered by HOTSAX and RRA algorithms in the last column
of Table 1.

Best HOTSAX discord Best RRA discord

54000 54500 55000 55500 56000 236000 236500 237000 237500 238000

Second HOTSAX discord Second RRA discord

441000 441500 442000 442500 443000 54000 54500 55000 55500 56000

Third HOTSAX discord Third RRA discord

236000 236500 237000 237500 238000 441000 441500 442000 442500 443000

Figure 5: The comparison of discords ranking by HOTSAX
and RRA algorithms from ECG300 dataset of length 536’°976.
RRA ranked the shorter discord first due to the larger value of
normalized by the subsequence length Euclidean distance (Eq.(1))
to its nearest non-self match: the best discord has length 302,
whereas the second and third discords have a length of 312 and
317 respectively.

We compared the algorithms performance in terms of calls
to the distance computation routine, which, as pointed out
in [13], typically accounts for up to 99% of these algorithms’
computation time. Table 1 compares the number of distance
function calls made by the competing techniques. Note that
in the ECG300 dataset (which is record 300 of the MIT-BIH
ST change database [8]), RRA failed to rank discords in the
same order as the HOTSAX algorithm.

Our rule density-based algorithm was also able to discover
anomalies in all data sets, though more careful parameter
selection was needed at times; nevertheless, we found that
this technique allows the discovery of very short anomalies
which other evaluated techniques missed. For example, in
the spatial trajectory dataset, the rule density-based tech-
nique was the only method capable of discovering a short,
true anomaly that was intentionally planted by taking a de-
tour.

To summarize, the rule density-based approach, when used
alone, is extremely fast, but it has difficulty discriminating
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Figure 6: Approximations of the Hilbert space filling curve (first
order at the left, second order at the right panel) and a trajec-
tory conversion example. The trajectory shown at the right panel
is converted into the sequence {0,3,2,2,2,7,7,8,11,13,13,2,1,1} by
converting each recorded spatial position into the enclosing
Hilbert cell id.

and ranking subtle discords. Incorporating the grammatical
context into the distance-based RRA algorithm, however,
enables the efficient discovery of discords in all data sets.
RRA is much faster than HOTSAX and brute force, and it
allows for the discovery of variable-length discords.

5.1 Spatial trajectory case study

To demonstrate the utility of our technique for discover-
ing anomalies of an unknown nature, we performed a case
study on spatial trajectory data. The trajectory data is in-
trinsically complex to explore for regularity since patterns
of movement are often driven by unperceived goals and con-
strained by unknown environmental settings.

The data used in this study was gathered from a GPS
device which recorded location coordinates and times while
commuting during a typical week by car and bicycle.

To apply RRA to the trajectory, the multi-dimensional
trajectory data (time, latitude, longitude) was transformed
into a sequence of scalars. To achieve this, the trajectory
points were mapped to the visit order of a Hilbert space
filling curve (SFC) [12] embedded in the trajectory mani-
fold space and indexed by the recorded times in the visit
order (Figure 6, right panel). The Hilbert SFC was chosen
to reduce the distortion on the data’s spatial locality. The
Hilbert SFC-transformed trajectory produces a time series,
which is then passed to the RRA algorithm for anomaly
discovery.

To visualize this data transformation approach, consider
Figure 6 showing a Hilbert SFC of first order in the left
panel and one of second order in the right panel. Note, that
the left panel is divided into 4 quadrants and the first-order
curve is drawn through their center points. The quadrants
are ordered such that any two which are adjacent in the or-
dering share a common edge. In the next step, shown in
the right panel, each of the quadrants of the left panel are
divided into 4 more quadrants and, in all, 4 “scaled-down”
first order curves are drawn and connected together. Note
that the adjacency property of consecutive squares is main-
tained. As shown, maintaining adjacency helps to preserve
spatial locality — points close in space are generally close in
their Hilbert values. For our trajectory experimentation, we
have used a Hilbert SFC of order eight.

In general, a trajectory anomaly is defined as a sub-trajec-
tory path that is atypical in the set of paths taken by an
individual. Specifically, an anomaly can either be a sub-
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The global minimum of the rule coverage curve
corresponds to the path travelled only once

[The best discord corresponds to the path with a partial GPS fix Ioss

The sequence of Hilbert space filling curve visit order for GPS trail and best discords

5000 10000
SeqU|tur rules density for transformed trail (discretization param W=350,P=15,A=4)

0 5000 10000 15000

Non-self distance to the nearest neighbor among subsequences corresponding to Sequitur rules

Y W T

] 5000 10000 15000

Figure 7: An example of anomaly discovery in the Hilbert SFC
transformed GPS track. The true anomaly, corresponding to the
unique detour, was discovered by the rule density curve global
minima, which reaches 0 at the interval of length 9, the best RRA
discord of length 366 corresponds to the path traveled with a par-
tial GPS fix (abnormal path running across properties). Note that
RRA approach was not able to capture the anomalous detour.

trajectory that occurs in rarely visited spatial regions such
as a detour, or a novel path taken within a frequently visited
spatial region. The second type of trajectory anomaly is
important because it considers the order in which the various
locations are visited. For instance, if multiple points in a
space are visited frequently, the occurrence of a visit to these
points is not an anomaly by itself; however, the occurrence
of visiting these points in an unseen order is an anomaly. To
evaluate the proposed algorithm’s efficiency in these specific
settings, we also intentionally planted an anomaly by taking
an atypical route.

Figure 7 shows the results of the discovered anomalies in
the GPS track by both proposed algorithms. As shown,
the rule density curve pinpoints an unusual detour devi-
ating from a normal route significantly (red colored seg-
ment), the RRA algorithm highlighted a trajectory segment
which was travelled with a partial GPS signal fix, but close
to previously traveled routes (blue segment). This results
highlight the difference in the algorithms’ sensitivity due to
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Figure 8: The second discord discovered by the RRA algorithm
highlights a uniquely traveled segment.
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Figure 9: The third discord discovered by the RRA algorithm
highlights an abnormal behavior that does not conform to the
usual pattern of exiting and entering the block’s parking lot.

their nature: the rule density curve-based approach finds al-
gorithmically anomalous, short subsequences (shorter than
the specified sliding window length) in the symbolic space of
discretized values, whereas RRA is capable to rank algorith-
mically similar symbolic subsequences by discordance using
their real representation.

While the second RRA-discovered discord shown in Fig-
ure 8 highlights a unique path, the third discord shown in
Figure 9 spotlights the algorithm’s sensitivity and ability to
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Area with successful RRA-based
discovery of the true anomaly

Area with successful rule density-based
discovery of the true anomaly

1500

8
g
Grammar size
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Approximation distance

50 a0 150
Approximation distance

Figure 10: An illustration from our exploratory study concerned
with optimal parameters selection based on the constructed gram-
mar properties. Both plots show boundaries of optimal parame-
ter choices: left panel for the rule density curve-based algorithm,
right panel for RRA. Note that RRA algorithm-corresponding
area is much larger indicating its robustness.

capture subtle anomalies. The shown discord corresponds
to an abnormal behavior within frequently traveled spatial
regions — not visiting the block’s parking lot when traveling
through the area.

5.2 Discretization parameters selection

Similar to other discretization-based learning techniques,
it is difficult to pinpoint a solution that offers the best trade-
off between gain in tractability and loss in accuracy. Never-
theless, we found that within the grammar-based paradigm,
the sliding window length parameter is not as critical as it is
for most of the existing anomaly and motif detection algo-
rithms, since it is just the "seed” size. Specifically, we found
that the rule density curve facilitates the discovery of pat-
terns that are much shorter than the window size, whereas
the RRA algorithm naturally enables the discovery of longer
patterns. Second, we observed that when the selection of dis-
cretization parameters is driven by the context, such as using
the length of a heartbeat in ECG data, a weekly duration in
power consumption data, or an observed phenomenon cycle
length in telemetry, sensible results are usually produced.

In addition, we found that the rule density approach alone
is more sensitive to parameter choices than it is when incor-
porated into the RRA distance-based algorithm. Consider
an example shown in Figure 10 where we used the ECG0606
dataset featuring a single true anomaly (the dataset overview
is shown in Figure 2). Since the discretization parameters
affect both the precision of raw signal approximation and
the size of the resulting grammar, by sampling this space
and recording both algorithms’ results we found that the
area where the RRA algorithm discovered the true anomaly
is twice as large as the same area for the rule density curve-
based algorithm. In particular, when we varied the window
size in the range [10,500], PAA size in [3,20], and the al-
phabet size in [3, 12]; the rule density curve-based algorithm
successfully discovered the anomaly for 1460 parameter com-
binations whereas RRA for 7100.

5.3 Visualization

As we pointed out before, to explore the properties of algo-
rithmically anomalous subsequences, we have incorporated
both algorithms proposed in this paper into our visualiza-
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Figure 11: Incorporating the RRA algorithm in GrammarViz 2.0 [26]. The screenshot shows its application to the recorded video data
set [14]. As shown, when configured with a window length of 150, RRA was able to detect multiple discords whose lengths vary from 11

to 189.

tion tool called GrammarViz2.0 [26]. Figure 11 shows the
screenshot of GrammarViz 2.0 using the RRA algorithm to
find anomalies in a recorded video dataset. The discovered
candidate anomalies are ranked by the distances to their
nearest non-self matches. As shown in the “Length” col-
umn, all candidate anomalies have different lengths. The
highlighted subsequences in the upper panel correspond to
the anomalies selected in the bottom panel.

Figure 12 shows the anomalies discovered in the same
dataset using the rule density curve-based approach. As
shown, we use the blue color intensity to express the gram-
mar rules density: the darker is the shade, the higher is the
corresponding value in rule density curve (i.e., the higher is
rule count). Thus, the white-shaded regions denote the best
potential anomalies since they correspond to global minima
intervals in the rule density curve.

Incorporating the proposed algorithms in our visualization
tool allows interactive and efficient user-driven parameter
tuning, as well as navigation and visualization of the results.

6. PREVIOUS WORK ON ANOMALY
DETECTION

The brute force solution for the problem of time series
anomaly detection or, more specifically, the discovery of a
discord of a given length n in time series T of length m, needs
to consider all possible distances between each subsequence
C of length n and all of its non-self matches M (C,M € T).
This method has O(m?) complexity and is simply untenable
for large data sets.

To mitigate this heavy computational requirement, previ-
ous work suggests that the subsequence comparisons should
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be reordered for efficient pruning. For example HOTSAX
[13], which is the pioneering work on discord discovery, sug-
gests a fast heuristic technique that is capable of true discord
discovery by reordering subsequences by their potential de-
gree of discordance. Similarly in [29], the authors use local-
ity sensitive hashing to estimate similarity between shapes
with which they can efficiently reorder the search to dis-
cover unusual shapes. The authors of [7] and [2] use Haar
wavelets and augmented tries to achieve effective pruning of
the search space. While these approaches achieve a speed-
up of several orders of magnitude over the brute-force al-
gorithm, their common drawback is that they all need the
length of a potential anomaly to be specified as the input,
and they output discords of a fixed length. In addition, even
with pruning, they rely on the distance computation which,
as suggested by Keogh et al. [13], accounts for more than
99% of these algorithms run-time.

An interesting approach to find anomalies in a very large
database (terabyte-sized data set) was shown by Yankov et
al. [31]. The authors proposed an algorithm that requires
only two scans through the database. However, this method
needs an anomaly defining range r as the input. In addition,
when used to detect an unusual subsequence within a time
series, it also requires the length of the potential discord.

Some techniques introduced approximate solutions that
do not require distance computation on the raw time series.
VizTree [18] is a time series visualization tool that allows
for the discovery of both frequent and rare (anomalous) pat-
terns simultaneously. VizTree utilizes a trie (a tree-like data
structure that allows for a constant time look-up) to decode
the frequency of occurrences for all patterns in their dis-
cretized form. Similar to that defined in VizTree, Chen et
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Figure 12: Incorporating the rule-density-curve approach in GrammarViz2.0 [26]. The varying degrees of shades in the background
correspond to rule density curve values; the non-shaded (white) intervals pinpoint true anomalies.

al.[4] also consider anomalies to be the most infrequent time
series patterns. The authors use support count to compute
the anomaly score of each pattern. Although the definition
of anomalies by Chen et al. is similar to discords, their tech-
nique requires more input parameters such as the precision
of the slope e, the number of anomalous patterns k, or the
minimum threshold. In addition, the anomalies discussed in
their paper contain only two points. Wei et al. [30] suggest
another method that uses time series bitmaps to measure
similarity.

Finally, some previous work has examined the use of algo-
rithmic randomness for time series anomaly discovery. Arn-
ing et al. [1] proposed a linear time complexity algorithm for
the sequential data anomaly detection problem from data-
bases. Simulating a natural mechanism of memorizing pre-
viously seen data entities with regular-expression based ab-
stractions capturing observed redundancy, their technique
has been shown capable of detecting deviations in linear
time. The proposed method relies on the user-defined en-
tity size (the database record size). Alternatively, Keogh et
al. [14] have shown an algorithmic randomness-based para-
meter-free approach to approximate anomaly detection (the
WCAD algorithm). However, built upon use of an off-shelf
compressor, their technique requires its numerous execu-
tions, which renders it computationally expensive; in ad-
dition, it requires the sliding window (i.e., anomaly) size to
be specified.

7. CONCLUSION AND FUTURE WORK

In this work we hypothesized, that time series anomaly
maps to algorithmically anomalous (i.e., incompressible with
a grammatical inference algorithm) symbolic subsequence
within the string obtained via time series symbolic discretiza-
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tion. The rationale behind this hypothesis is that if true, it
allows for an efficient variable-length time series anomaly
discovery approach.

Building upon subsequence discretization with SAX, which
preserves the data structural context, and grammar induc-
tion with Sequitur, which guarantees discovery of all existing
algorithmically-effective correlations by maintaining its in-
variants of uniqueness and utility at all times, we designed a
generic framework for learning algorithmic regularities and
detecting irregularities in time series in order to test our
hypothesis.

Using the framework, we constructed two time series ano-
maly discovery algorithms to empirically evaluate the hy-
pothesis. One of these algorithms operates in the space
of discretized data, whose dimensionality is typically much
smaller than the original time series, and therefore is highly
efficient. The output of this algorithm, namely the rule den-
sity curve, was found to behave according to our hypothe-
sis and provides an intuitive and efficient way for putative
anomaly detection. Our second algorithm is based on the
explicit distance computation and is capable to detect even
subtle variable-length discords.

Through an experimental evaluation, we have validated
our hypothesis and have shown, that the proposed tech-
niques are orders of magnitude more efficient than current
state of the art without a loss in accuracy (Table 1).

Since the grammar-based time series decomposition allows
us to quantitatively assess the time series context through
analysis of the grammar’s hierarchical structure, the pri-
mary direction of our future effort is to analyze the effect of
the discretization parameters on the algorithm’s ability to
discover contextually meaningful patterns. Since both tech-
niques underlying our approach, namely, SAX discretization
and grammatical inference with Sequitur, process the input



time series from left to right, yet another research direction
that suggests itself is the possibility of early anomaly detec-
tion in real-time data streams.
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