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ABSTRACT
We examine the problem of recommending items to ad-hoc user
groups. Group recommendation in collaborative rating datasets
has received increased attention recently and has raised novel chal-
lenges. Different consensus functions that aggregate the ratings of
group members with varying semantics ranging from least misery
to pairwise disagreement, have been studied. In this paper, we ex-
plore a new dimension when computing group recommendations,
that is, affinity between group members and its evolution over time.
We extend existing group recommendation semantics to include
temporal affinity in recommendations and design GRECA, an ef-
ficient algorithm that produces temporal affinity-aware recommen-
dations for ad-hoc groups. We run extensive experiments that show
substantial improvements in group recommendation quality when
accounting for affinity while maintaining very good performance.

1. INTRODUCTION
Group recommendation refers to finding the best items that a

set of users will appreciate together. It is an active research area
as exemplified by numerous publications [3, 6, 13, 20, 23]. The
main focus of existing work in group recommendation is the de-
sign of appropriate consensus functions that aggregate individual
group members’ preferences to reflect the group’s preference for
each item. A variety of functions have been used ranging from ma-
jority voting to least misery. In this paper, we are interested in ex-
ploring how affinity between group members and its evolution over
time affect group recommendations. To the best of our knowledge,
our work is the first to study affinity and its evolution over time in
combination with existing group consensus functions.

The premise of this work relies on a simple conjecture that is,
a user appreciates recommendations differently in the company of
different people and at different times. When with girlfriends, a
female user may want to watch a romantic movie that she may not
want to watch with men. When with her parents, she may prefer
to go to a nice Italian restaurant while she would prefer a burger
joint with her kids. In addition, her appreciation of an item with
the same group of people may change over time depending on how
their connection and shared interests evolve. In other terms, the
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affinity of a user with other group members should be captured in
how that user appreciates an item.

Previous studies on single user recommendation have shown that
contextual dimensions such as a user’s mood and company or time
and place, may affect her preferences [1, 2]. Indeed, according
to behavioral research studies [5, 14, 18], consumers use differ-
ent decision-making strategies and favor different brands and prod-
ucts depending on their context. Such observations can be incorpo-
rated in different ways into single user recommendations. In [1], a
multidimensional recommendation model is developed to account
for contextual information into a user’s recommendation, one of
which could be her affinity with other users. However, to the best
of our knowledge, multidimensional recommendation has not been
applied to group recommendation. In group recommendation, we
conjecture that each user will have a relative preference for an item
depending on her affinity with other group members. Formalizing
the semantics of relative preference raises two new challenges: (i)
how to account for user affinities in the definition of relative pref-
erence and (ii) how to combine relative preference with popular
group recommendation consensus functions [13].

A major difficulty when addressing (i) is to integrate the evolu-
tion of affinities between users over time. For example, interns at
a research lab may subscribe to a Facebook group during their in-
ternship. When the internship period is over, the group becomes
an alumni of the research lab and affinities between its members
will likely change. Therefore, if events such as workshops or con-
ferences are to be recommended to the alumni group in the future,
affinities between its members should be accounted for, in order to
decide which subgroup would be interested in which event. While
numerous recent studies have shown the importance of accounting
for time in recommender systems [8, 15, 17, 25], they have focused
on user-item preferences and single-user recommendations. In this
work, we propose two dynamic models to capture temporal affini-
ties: a discrete model where time is discretized over a set of time
periods and affinities computed for each sub-period, and a contin-
uous model where time is represented as an exponential function
that positively or negatively affects affinity over time. Both mod-
els have a static component that denotes how close two users are
in a time-independent fashion and a dynamic component that cap-
tures the drift that the affinity of a user-pair exhibits compared to
the overall user population. Finally, while the discrete model is an
approximation of the continuous one, they are both used to capture
increasing and decreasing affinities.

Clearly, combining user-item preferences of group members in-
dependently of each other to produce group recommendations is
not enough to capture the impact of affinities on those recommen-
dations. In other terms, applying the well-known group consensus
functions such as aggregated voting, average preferences or least
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misery on individual group members’ preferences, does not cap-
ture a scenario where the same user appreciates the same item dif-
ferently in different groups. Therefore, we propose a two-step ap-
proach to address (ii). First, we modify individual user-item prefer-
ences on-the-fly to account for affinities and then we apply a group
consensus function over the modified preferences. This approach
has the benefit of dissociating recommendation computation from
affinity computation and therefore being able to use relative prefer-
ences with any group recommendation consensus semantics.

No recommendation work would be complete without consid-
ering both recommendation effectiveness and efficiency. Those
two dimensions raise new challenges when dealing with relative
preference, namely, (i) how to assess the quality of group recom-
mendations? and (ii) how to efficiently compute affinity-aware rec-
ommendations on-the-fly for ad-hoc groups? To address (i), we
build a Facebook application and generate movie recommendations
using MovieLens dataset1. We leverage friendship and common
page-likes to compute affinities and run an extensive set of exper-
iments varying group size, cohesiveness (rating similarity between
group members) and affinity between group members. To address
(ii), we develop GRECA, an algorithm that non-trivially adapts the
family of threshold algorithms [10], to account for affinities be-
tween user pairs that evolve over time. GRECA leverages index
structures that are extremely efficient with updates for maintaining
time-variant affinities, and are used to efficiently produce the top-
k recommended itemset for a group. In fact, as affinity between
users evolves over time, GRECA does not need to recalculate any of
the previously calculated affinities and just augments the index to
account for the latest affinities. In addition to being instance opti-
mal, the key novelty of GRECA is the use of a new buffer condition
for termination, which constitutes a clear departure from traditional
top-k style algorithms [10]. This condition simply implies that just
by examining the items in the buffer, GRECA can terminate with
the guarantee to have found the correct top-k itemset.

Our experiments consistently indicate that incorporating tempo-
ral affinities into group consensus functions is most effective for
dissimilar user groups as well as low-affinity user groups whose
preference significantly evolves over time. Prior work has shown
that such groups generally take longer to reach consensus [20]. Our
performance experiments demonstrate that GRECA achieves a save
up of 75% or beyond in the number of accesses. These results
strongly corroborate the effectiveness of our proposed solutions to
include temporal affinities in group recommendation functions.

The paper makes the following technical contributions:

• We motivate the need to account for user affinities between
group members when computing recommendations and pro-
pose to capture affinities in the relative preference of indi-
vidual group members for each item. Relative preference
modifies a user-item preference with the user’s affinity with
other group members.

• Since affinities may evolve over time, we propose two mod-
els, discrete and continuous, to represent (positive or neg-
ative) affinity drift of two users over time. This dynamic
component is combined with a static component, that cap-
tures how close two users are in a time-independent fashion,
in order to form temporal affinities.

• We extend group recommendation semantics, i.e., average
preferences, least misery and pairwise disagreement, to in-
clude temporal affinities and design GRECA, an efficient al-
gorithm that computes recommendations on-the-fly for ad-

1http://movielens.umn.edu/

hoc groups. GRECA uses a new early termination condition
to efficiently produce the top-k itemset for a group.

• We run extensive experiments using Facebook and Movie-
Lens datasets and examine the impact of our temporal affin-
ity model on group recommendation quality and efficiency.

The paper is organized as follows. Section 2 contains our for-
malism. GRECA, our recommendation algorithm is provided in
Section 3. Extensive experimental evaluation is given in detail in
Section 4. Related work is summarized in Section 5 and conclusion
in Section 6.

2. DATA MODEL AND PROBLEM
We present a data model that captures temporal affinities and

define our problem of recommending items to ad-hoc groups.
The underlying scenario that will be used to illustrate our model

is a social network of individuals who have some intrinsic charac-
teristics (e.g., birthplace, gender and age) and who express inter-
ests for items via likes and votes as in Facebook and Twitter. At
any given point in time, we are interested in recommending con-
tent items (e.g., movies, books, conferences) to an ad-hoc group.
Parts of this scenario will be used in this section and one instance
will be described in specific details in Section 3.1.

In our model, we assume a set of m items I = {i1, i2, . . . , im}
and a set of n users U = {u1, . . . , un

} out of which any ad-hoc
group G ✓ U can be built. To simplify exposition, we will not for-
malize user or item attributes and will refer to them when needed in
our example. We consider time as a set of consecutive timestamps
that form periods. Each period p is a time interval of the form [s, f ]
where s is its starting timestamp and f its ending timestamp.

2.1 Dynamic User Affinity Models
Affinity describes the bonding between a pair of users (u, u0

) and
is denoted a↵ (u, u0

). It could be as simple as explicit friendship or
users in the same age group or more sophisticated such as users who
like similar movies, have visited similar places and have friends
who live in different parts of the world. For simplicity, we assume
that affinity between a user pair is symmetric, i.e., a↵ (u, u0

) =

a↵ (u0, u). More importantly, a↵ (u, u0
) is dynamic and changes

over time. We therefore compute affinity a↵ (u, u0, p) for a time
period p = [s, f ]. This dynamic affinity captures changes over time
by combining its static and dynamic components defined below.

• Static Affinity - a↵S (u, u
0
): This is a time-agnostic affinity

component and is used to capture how close two users are
in a time-independent fashion. Stable factors such as birth-
place, age, and education naturally contribute to this com-
ponent. However, depending on the application, other di-
mensions could be accounted for. For example, Facebook
friendship being stable, we use it to model static affinity in
our experiments (Section 4.1.2).

• Dynamic Affinity - a↵V (u, u0, p): This is a time-variant com-
ponent that captures affinity between two users u and u0

during period p by considering how close they are during
that period. For example, shared political interests, common
likes, and shared interests for world events, vary over time
and could contribute to formulating this component. Intu-
itively, the objective is to capture the aggregated drift that
the affinity of a user pair exhibits for every time period from
the beginning of time s0 to the end of the current period
p = [s, f ], compared to the overall user population.
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More specifically, time starts at the beginning of time s0 and
is segmented into subsequent time periods p0, . . . , pnow

of
varying lengths. Given two time periods p

i

= [s
i
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] and
p
j

= [s
j

, f
j

], p
i

 p
j

is used to denote that p
i

precedes p
j

,
i.e., s

i

 s
j

and f
i

 f
j

. Determining the right granularity
of a time period depends on the application at hand and the
frequency of user actions and is orthogonal to our model. For
example, in a social network such as Facebook, and when
affinities are computed using shared posts, granularity may
vary from hours to days depending on the time of year. On
Twitter, granularity is finer and may vary from minutes to
hours since post frequency is higher. Not all time periods are
of the same length.
Given a time period p = [s, f ], for every time period p0

that is included in the interval starting at the beginning of
time s0 and ending at f , the end of p, the periodic affinity
drift is calculated as a difference between the periodic affin-
ity a↵ P

(u, u0, p0) between users u and u0 and the average
periodic affinity Avga↵ P

(p0) of the whole user population.
These drifts are aggregated over all time periods included in
the interval [s0, f ] and normalized to generate a↵V (u, u0, p).
Formally,

a↵V (u, u0, p) =
⌃

p

0p

(a↵ P

(u, u0, p0)� Avga↵ P

(p0))

�

(1)
The exact formulation of � depends on how time is mod-
eled (discrete or continuous) and is described. Interestingly,
a↵V (u, u0, p) could be either positive or negative and de-
pends on how the affinity of (u, u0

) evolves compared to the
overall population.
The exact formulation of a↵ P

(u, u0, p0) depends on the ap-
plication. In our Facebook experiment in Section 4.1.2, we
use common page likes between u and u0 during period p0.
Finally, Avga↵ P

(p0) is defined as follows:

Avga↵ P
(p0) =

2⇥ ⌃(u,u0)2U,u 6=u

0a↵ P

(u, u0, p0)

|U|2 � |U|

We now describe our dynamic affinity models that use a↵S (u, u
0
)

and a↵V (u, u0
) as building blocks. The first model relies on dis-

cretized time periods to capture a↵V whereas the second repre-
sents time in a continuous fashion.

• Discrete Dynamic Affinity Model: In this model, the a↵S and
a↵V affinity components are aggregated using a linear func-
tion over a set of discretized time periods. Therefore, �, the
denominator in Equation 1, is simply the number of time pe-
riods between s0, the beginning of time, and e, the end of
p. This simple aggregation also allows us to design efficient
algorithms.
a↵ D

(u, u0, p) =a↵S (u, u
0
) + a↵V (u, u0, p)

• Continuous Dynamic Affinity Model: For this model, time is
considered in a continuous fashion. In this case, the denomi-
nator in Equation 1, �=f -s0 is the length of time between the
the beginning of time s0 and f , the end of p. As a natural rep-
resentation to capture continuous time, we consider an expo-
nential function, which is also supported in prior work [17].
Formally,
a↵ C

(u, u0, p) = a↵S (u, u
0
)⇥ e�(f�s0)

Here � is the rate of growth/decay of affinity and could sim-
ply be replaced by a↵V (u, u0, p) in Equation 1 to represent
the cumulative effect of affinity drift over time.

Consequently, the discrete time model could be viewed as an ap-
proximation of the continuous one where time is discretized into
sub-periods and each user pair’s affinity is normalized over the
number of periods (Equation 1). Alternatively, the continuous model
treats time as a single interval [f -s0] and captures an exponential
growth, resp., decay, affinity model when a↵V (u, u0, p) is positive,
resp., negative.

In both a↵ D

(u, u0, p) and a↵ C

(u, u0, p) affinity drift could be
negative or positive thereby capturing situations in practice where
affinity between two users may increase or decrease over time. We
believe that the ability to capture this varying rate of change is im-
portant in practice in particular for social networks where different
users exhibit different interests over time.

2.2 User-Item Preference Models
We now show how affinities are accounted for in computing the

preference of a user for an item in a group. We first describe how
affinity is incorporated into user-item preferences without account-
ing for time then we show how to modify the formulation to com-
pute time-aware user-item preferences.

Time-Agnostic User-Item Preference: Given a group G, the
preference of a user u 2 G for an item i 2 I is denoted pref (u, i,G)
and depends on two components:

• Absolute preference - apref (u, i). This describes how much
u likes item i akin to the predicted rating of u for i. Existing
single-user recommendation algorithms, such as collabora-
tive filtering, could be used to compute apref (u, i).

• Relative preference - rpref (u, i,G). This component cap-
tures that a user likes an item i if close members in the group
G also like i and similarly that a user dislikes an item i if
close members in the group G dislike i. Affinity between
group members is used to capture how close they are. More
formally, rpref (u, i,G) combines the affinity of a user u
with other members u0 2 G, denoted a↵ (u, u0

), with the
preference of u0 for item i, denoted apref (u0, i).

rpref (u, i,G) = ⌃8u0 6=u2Ga↵ (u, u0
)⇥ apref (u0, i)

The overall affinity-aware user-item preference is a simple com-
bination of these two factors: pref (u, i) = apref (u, i)+rpref (u, i,G)

Time-Aware User-Item Preference: We now modify the defi-
nition of relative preference to capture temporal affinities:

rpref (u, i,G, p) = ⌃8u0 6=u2Ga↵ (u, u0, p)⇥ apref (u0, i).

Therefore, a user u’s overall preference on item i during time
period p can be simply formulated as:

pref (u, i,G, p) = apref (u, i) + rpref (u, i,G, p)

2.3 Group Consensus Models
Members of a group may not always have the same preferences

for items and a consensus function needs to aggregate user-item
preferences into a single group’s preference for an item. Intuitively,
there are two main aspects in a consensus function [20]. First, the
preference of a group for an item needs to reflect the degree to
which the item is preferred by all group members. The more group
members prefer an item, the higher its group preference. Second,
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the group preference needs to capture the level at which members
disagree or agree with each other. All other conditions being equal,
an item that draws high agreement should have a higher score than
an item with a lower overall group agreement. We call the first as-
pect group preference and the second aspect group disagreement.
We revisit the definitions we introduced in [3] to include a time
component.

Group Preference: The preference of an item i by a group G
during a time period p, denoted gpref (G, i, p), is an aggregation
over the preferences of each group member for that item. We con-
sider two commonly used aggregation strategies:
Average Preference: 1

|G|
P

u2G (pref (u, i,G, p))
Least-Misery Preference: minu2G(pref (u, i,G, p))

Group Disagreement: The disagreement of a group G over an
item i during a time period p, denoted dis(G, i, p), reflects the de-
gree of consensus in the user-item preferences for i among group
members over time. We revisit the two most common disagreement
computation methods:

1) Average Pair-wise Disagreements:
dis(G, i, p) = 2

|G|(|G|�1)

P
(|pref (u, i,G, p) � pref (v, i,G, p)|),

where u 6= v and u, v 2 G;

2) Disagreement Variance:
dis(G, i, p) = 1

|G|
P

u2G (pref (u, i,G, p)�mean(i,G, p))2, where
mean(G, i, p) is the mean of all the individual preferences for item
i over time.

The average pair-wise disagreement function computes the av-
erage of pair-wise differences in preferences for the item among
group members, while the variance disagreement function com-
putes the mathematical variance of the preferences for the item
among group members. Intuitively, the closer the preferences for i
between users u and v, the lower their disagreement for i.

Time-Aware Group Consensus: We combine group preference
and group disagreement in a time-aware consensus function, de-
noted F(G, i, p). The function combines group preference and dis-
agreement for an item i and a group G into a single group con-
sensus score using the following formula: F(G, i, p) = w1 ⇥
gpref (G, i, p)+w2⇥ (1�dis(G, i, p)) where w1+w2 = 1.0 and
each specifies the relative importance of preference and disagree-
ment in the overall group consensus.

Note that the formulation of group consensus incorporates tem-
poral affinities by aggregating the relative user-item preferences of
its members with disagreement. The proposed formulation is or-
thogonal to how affinities are modeled and incorporated into in-
dividual relative preferences. This way accounting for temporal
affinities in group recommendation is orthogonal to the consensus
function used to aggregate group members.

2.4 Problem Definition
Given a group G, a time-aware consensus function F and an

integer k, the objective is to recommend to G the k best itemset
I
G

that accounts for its members’ affinities during a period p, such
that:

• |IG | = k

• 8i 2 IG , u 2 G, i is not individually recommended to u

• @j 2 I, s.t. F(G, j, p) > F(G, i, p), where j /2 IG , i 2
IG , i.e., there does not exist any other item j in I whose
consensus score is higher than any item in i in IG .

3. INSTANCE OPTIMAL ALGORITHMS
In this section, we discuss how to efficiently compute k affinity-

aware recommendations for ad-hoc groups, meaning for groups
that are not known beforehand. Recall that given a group G, the
goal, stated in Section 2, is to find the k best items to recommend
to G according to a consensus function F .

We propose instance optimal algorithms to compute top-k items
for a given group under different group consensus functions. The
overall intuition of this algorithm is appropriately adapted from
the family of Fagin-style top-k algorithms [10]. These algorithms,
such as, Threshold algorithms TA or No Random Access Algorithm
NRA, rely on a function that aggregates multiple score components
into a single score for each item. Those algorithms are used in
Web search to compute the score of each item (a document in that
case) as a combination of its component scores (its scores for each
keyword in the search query). These algorithms aim to find the k
items that rank the highest (the ones with the highest aggregated
scores) in as little time as possible. They take sorted item lists
that correspond to each component and scan them using sequen-
tial and random accesses (SAs and RAs), and the computation can
be terminated without scanning the input lists fully, using stopping
conditions based on score bounds (thresholds). Early stopping is
possible when the ranking function is monotone [10].

LEMMA 1. The temporal affinity-aware consensus function F
is monotonic w.r.t. absolute preference lists and user-affinity lists
for the dynamic user-affinity model, and pair-wise disagreement
lists.

PROOF. (sketch): In a prior work [3], we showed that all three
group consensus functions without considering time-agnostic affin-
ity (average preference, least misery and pair-wise disagreement)
are monotone. If all group members, except a user u, rate items
i1 and i2 the same, i1 will have at least the same group prefer-
ence as i2 if u rates i1 no less than i2. This holds for both the
average and least-misery. For pair-wise disagreement, we showed
that our group disagreement functions (pair-wise and variance) can
be transformed into aggregations of individual pair-wise disagree-
ments and become monotone.

Monotonicity remains true with the introduction of affinities and
time. For an item i, if both users like i highly, higher affinity be-
tween them only improves i’s overall preference. On the contrary,
for an item j, if they like j as highly as they do i, lower affinity
between them only decreases j’s overall preference. Introduction
of time in the affinity model only makes the affinity calculation
time-dependent by changing the temporal granularity at which it is
computed; however, the relationship between dynamic affinity and
the group consensus of an item does not change.

As a result, we can design instance optimal algorithms with the
early stopping.

3.1 Running Example and Data Structures
We now describe the data structures necessary to run Fagin-style

top-k processing algorithms via an example that will also be used
to illustrate our algorithm, GRECA.

Imagine a group G formed with three users u1, u2, u3. Given an
itemset I = {i1, i2, i3}, our objective is to identify the best item
(k = 1) to recommend to the group at time period p (for example,
January 2014). Also, assume that the system has information about
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Algorithm 1 Group Recommendation with Temporal Affinities
(GRECA)
Require: Group G, k, consensus function F ;
1: Retrieve user preference lists PL

u

for each user u in group G;
2: Retrieve pair-wise affinities for a↵S , a↵V for each period;
3: Sc

r

= {r
u

}, the last user preference from PL
u

, 8u 2 G
4: Sca↵S

= {a↵S
u,v

}, the last pair-wise a↵S affinity values read
8u, v 2 G

5: Sca↵V
= {a↵V

u,v

}, the last pair-wise periodic affinity values read
for each time period p0, 8u, v 2 G

6: Cursor cur = getNext() round-robin accesses to PL
u

, a↵S and
a↵V lists

7: while (cur <> NULL) do
8: Get entry e at cur
9: if !(in B(topKHeap, e)) then

10: ComputeUB(e,F)
11: ComputeLB(e,F)
12: Add e in B
13: else
14: Update ComputeUB(e,F) and ComputeLB(e,F)
15: end if
16: Sc

th

= ComputeTh({E},F) considering all current cursor posi-
tions

17: if Sc
th

 B.k
th

LB&|B| = k then
18: return topKList(B, k);
19: Exit;
20: else
21: if CheckBuffer(B) is satisfied then
22: return topKList(B, k)
23: Exit;
24: else
25: cur = getNext()
26: end if
27: end if
28: end while
29: return topKList(B, k)

group members u1, u2, u3 for one year, i.e., January 2013 to Jan-
uary 2014. The user-item preference lists of those group members
are provided in Table 1. Each list contains items preferred by each
user sorted in decreasing order of preference.

The item preference of a member u of a group G is a combi-
nation pref (u, i,G, p) = apref (u, i) + rpref (u, i,G, p), where
rpref is the relative preference that accounts for the temporal affin-
ity of u with other group members.

u1 u2 u3

i1 5 i1 5 i3 2
i2 1 i2 1 i1 2
i3 1 i3 0.5 i2 1

Table 1: Absolute Preference Lists PL
u

of u1, u2, u3

Affinity between users consists of two components, static affinity
a↵S and dynamic affinity a↵V . The detailed interpretations of
these affinities and how they are calculated are given in Section 2.
Out of the two aforementioned affinities, the latter is time-aware,
where time is considered in a continuous fashion or over a discrete
set of time periods (for example, two equal periods p1 and p2 each
of six months in our case). For simplicity, we consider the discrete
model in this example. The a↵S affinity involves all user-pairs
thereby creating 3⇥ (3�1)/2 (i.e. n(n�1)/2 in general) entries.
For every time period p0, similarly, there is a periodic affinity list
of the same size. Notice that each affinity list a↵V or a↵S with
n(n� 1)/2 entries could further be partitioned into a set of n� 1

lists, where the i-th list stands for user u
i

with n � i entries. For

example, we can have a La↵S (u1) that stores u1’s static affinity
with u2 and with u3, one for La↵S (u2) with u2’s affinity with u3

only (storing u1’s affinity here again is redundant), and no static
affinity list needs to be created for user u3. This partitioning allows
us to design efficient algorithms, as we describe later in Section 3.
Table 2 contains a↵S affinity lists of all users sorted in decreasing
order and Tables 3 and 4 contain a↵V affinity of users in periods
p1 and p2 respectively. Note that the temporal affinity of users u1

and u2 has decreased between periods p1 and p2.
In the above example, temporal affinity between user pairs (u, u0

)

is modeled in a discrete manner as a↵ D

(u, u0, p). To facilitate ef-
ficient computation, it is easy to see that the different absolute pref-
erence lists and time-variant affinity lists are to be pre-computed.
Even for a small group such as the one in the example with 3 users,
there are 3 absolute preference lists. Furthermore, the all-pair user
affinities for a given time period p0 are to be stored as well, either
as a single list with n(n � 1)/2 entries, or decomposed over a set
of n � 1 lists, where the i-th list represent user u

i

’s affinities with
n � i other users. Since the period affinities are independent of
each other, we must precompute such lists for every time period.
For the example case, this requires either creating 2 periodic affin-
ity lists to capture a↵V affinity and one static affinity list to capture
a↵S . Each of these lists have n(n � 1)/2 entries (as a single list
or splitted in n � 1 lists, as described in the example). The size
of each list is quadratic in the number of users, but the number
of such lists (T ) is a function of how time is discretized into pe-
riods. Even for a small group such as ours, many lists are to be
used in the computation. Notice that all these user-affinity lists are
required to compute the complete score of any item, because, the
relative preference rpref (u, i,G, p) for every item requires access-
ing all T ⇥n(n�1)/2 entries. An algorithm such as TA must read
all those entries to compute the complete score of an item and will
hence incur a large number of RAs.

We argue that all these accesses are not always necessary. For in-
stance, based on preferences in Tables 1 to 4, we consider scanning
item i1 in PL

u1 . If we were following TA method, to compute
the complete score of this item, 21 RAs are needed, i.e., one RA for
each apref (u, i1) component and 6 RAs for each rpref (u, i1, p)
component where u 2 {u1, u2, u3}. Note that to compute the
score of a single item i1, we have accessed all entries in a↵S (u1),
a↵V (u1, p1) and a↵V (u1, p2) lists. For instance, entries in the list
a↵S (u1) is the static affinity scores between (u1, u2) and (u1, u3)

where we have accessed both.
Instead, our instance optimal algorithm GRECA makes only se-

quential accesses, i.e., SAs like NRA and potentially avoids con-
suming all these T ⇥ n(n � 1)/2 entries to determine the top-k
itemset. Following previous example, if for instance a↵S (u1, u3)

(in Table 2) is not yet scanned, we avoid making an RA to get this
value, but based on NRA principle, we use the score under the cur-
sor in the list of Table 2 (i.e., initially a↵S (u1, u2)) to compute a
partial score for i1. Details are mentioned in Section 3.2.
GRECA returns the top-k itemset which contains the best set of

k-items, although the rank among the returned itemset may not be
fully distinguishable (i.e. giving rise to a partial order). This is
rather reasonable, because k is usually small, and the group is po-
tentially interested in all of the k-items.

3.2 GRECA
For ease of exposition, we describe GRECA using the simplest

group consensus function Average Preference considering time-
aware affinity. The other group consensus functions mimic its be-
havior. The algorithm exploits the settings as is described in the
example in Section 3.1.
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u1 u2

u1u2 1 u2u3 0.3
u1u3 0.2

Table 2: Static Affinity Lists La↵S

u1 u2

u1u2 0.8 u2u3 0.2
u1u3 0.1

Table 3: La↵V Lists for Period p1

u1 u2

u1u2 0.7 u2u3 0.1
u1u3 0.1

Table 4: La↵V Lists for Period p2

Without loss of generality, for a given group with n users, GRECA
uses n user-item preference lists, where each list PL

u

for user
u has m items that are sorted in decreasing user-item preference.
Each PL can be obtained with any single user recommendation
strategy (in our experiments in Section 4, we use collaborative fil-
tering). In addition, GRECA uses n � 1 static affinity lists, and
another n� 1 dynamic periodic affinity lists for each time period.

The algorithm runs in a round-robin fashion over the aforemen-
tioned lists by making only SAs. It reads an entry e = (i, r), where
i is the item-id and r is the user u’s absolute preference score for
i, or an entry e0 = (u0, r0), where r0 is the pair-wise affinity of
(u, u0

). Affinity between a pair of users is either static or periodic
(i.e. dynamic), and the computation does not distinguish between
these two kinds. The algorithm invokes the following 3 different
subroutines to determine whether to continue further or to safely
terminate and return the top-k itemset during its execution:

(a) Compute Upper-Bound of an Item: ComputeUB(i): UB
i

computes the highest score that an item i can have in G based on so
far accesses.

(b) Compute Lower-Bound of an Item: ComputeLB(i):
LB

i

computes the lowest score that an item i can have in G based
on so far accesses.

(c) Compute Global Threshold: ComputeTh({E}): Input to
this function is the current set {E} of entries read from all the lists.
The output is simply a numeric score that captures the highest score
that an unseen item can have for group G.

Subroutines can be invoked after reading one entry from each
type of list (preference list, static affinity list or dynamic affinity
list) to make sure all types of lists are visited before or after reading
the j-th entry from all lists.

The first two subroutines return the latest bounds of an item i.
Then, those updated bounds are pushed into an item buffer that is
maintained throughout the execution of the algorithm. We describe
our proposed buffer management strategy later on. Naturally, these
two subroutines are to be invoked for all encountered items so far.

Illustration of the Subroutines: The upper-bound score of an
item i is simply the highest score it can have on current accesses. It
is computed by combining the actual encountered values for some
of the entries and then assigning the current cursor readings to the
rest. Consider our three-user group described in Section 3.1 and
assume that ComputeUB(i3) is invoked after the cursor reads the
second entry at PL

u2 . At that point, apref (u3, i3) = 2 is encoun-
tered, but for the other two users, these are to be approximated
based on the current cursor readings. For example, the highest
score of apref (u1, i3) = 1, apref (u2, i3) = 1. Similarly, static
and dynamic periodic affinities of users u1, u2 and u2, u3 are en-
countered, but those of u1, u3 are to be guessed based on the latest
cursor reading from the respective lists. This gives rise to
ComputeUB(i3)= ⌃8i2{1,2,3}UB[apref (ui

, i3)] + UB[rpref (u
i

, i3,G, p)]
= 13.02 (by ignoring normalization and final averaging).

The computation of the lower-bound of an item i is similar ex-
cept that it replaces the unseen entries of the function with the low-
est possible score. For example, instead of assigning apref (u1, i3) =
1, apref (u2, i3) = 1, it will consider those values to be 0 (as-
suming that the smallest absolute preference for an item could be
0). The same will happen in affinity calculation; as an example,
it substitutes a↵S (u1

,

u3) = 0, instead of 0.8 in the upper-bound
computation case. When invoked using item i1, ComputeLB(i1)
returns a value of 14.2 (ignoring normalization and final averag-
ing).

Computation of ComputeTh({E}) is rather simple. It simply
incorporates each of the entries in {E} in the function and returns
a numeric score.

Buffer Management Strategy: Once the upper-bound and lower-
bound scores of each item are computed, they are pushed into a
buffer B and are sorted in decreasing order of lower-bound score.
The buffer is implemented as a heap data structure which allows ef-
ficient updates since it requires to maintain sorted lists of potential
results and, in some cases, item lower-bounds and upper-bounds
need to be updated (for example, when the item is encountered
again in one of the lists).

Stopping Condition: The algorithm has both global threshold
computation and buffer management strategies. We now show that
the buffer management itself is sufficient to govern early stopping.
More importantly, unlike traditional threshold algorithms, GRECA
cannot terminate only based on the threshold condition in the cases,
where the buffer contains more than k items.

• Using the Global Threshold: If the current global threshold
is not larger than the lower-bound score of the k-th item in
the buffer, GRECAwill not find any item later on whose score
is larger than the current threshold. On the other hand, if the
current threshold is no larger than the lower-bound of the k-
th item in the buffer, any unseen item can never be in the top-
k itemset. This implies that a subset of the items in the cur-
rent buffer is the actual top-k itemset. If the buffer contains k
items only, then GRECA can safely terminate and return those
items in the buffer as the answer. However, in general, when
the buffer has more than k-items, to precisely determine the
actual top-k itemset, it needs to apply the buffer management
strategy that we describe now.

• Using the Buffer: A key novelty of GRECA is in using only
the buffer condition for termination. This condition sim-
ply implies that just by looking into the items in the buffer,
GRECA can terminate, as well as declare the partially ordered
correct top-k itemset. The buffer stopping condition works
as follows: the buffer contains k0-items (k0 > k) such that
the lower-bound of the k-th item score is no smaller than the
upper-bound score of each of the remaining k0 � k items.
In that case, those remaining k0 � k items could be safely
pruned. Interestingly, satisfying this condition implies satis-
fying the threshold condition as well, as Theorem 1 states.
The remaining k items are returned as answers.
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• Global Threshold and Buffer Management: Global thresh-
old can simply determine that the current buffer contains a
subset of items which are the actual top-k itemset. In a gen-
eral case, where the buffer has more than k items, GRECA
applies the buffer stopping conditions to determine that sub-
set. It is still possible that the buffer condition for stopping
is not met. In that case, GRECA resumes computation until
the buffer condition is satisfied or all lists are exhaustively
scanned.

Theorem 1. Satisfying the buffer condition for termination im-
plies that the global threshold condition for termination is met.

PROOF. (sketch): At a given snapshot during the execution of
GRECA, the score returned by ComputeTh({E}) is strictly not
greater than the upper-bound score of any item that is already seen
and in the buffer, i.e., ComputeUB(i) � ComputeTh({E}).
Therefore, if the buffer condition is satisfied (meaning that the lower
bound of the k-th item score in the buffer is not smaller than the
upper-bound score of the remaining k0 � k items), this automat-
ically implies, that the lower bound of the k-th item score is not
smaller than the current global threshold. Hence the proof.

For our running example in Section 3.1, this returns i1 as the
top-1 item to the group.

The pseudocode of GRECA is presented in Algorithm 1. In ad-
dition to the group G and k, it takes the preference and affinity
lists of G as inputs as well as the consensus function F . Lines
9 � 14 either add a new item into the buffer B and compute its
lower-bound and upper-bound scores, or update the latest lower-
bound and upper-bound score of an existing item and reorganize
the buffer. Line 16 computes the global threshold condition us-
ing the function ComputeTh(); lines 17 � 19 checks if the thresh-
old stopping condition is satisfied. Otherwise, the control goes on
to line 21 on wards and CheckBuffer(B) checks whether the
stopping condition is met using the buffer. The computation con-
tinues unless one of these conditions are satisfied, or all lists are
exhaustively scanned. Of course, in the latter case, there is no save-
up. However, as our experimental results exhibits, GRECA achieves
speed-up, compared to its naive counterpart.

LEMMA 2. GRECA returns correct top-k itemset.

PROOF. Notice that GRECA returns from the buffer those k-
items whose lower-bound scores are the highest and larger than the
upper-bound score of any remaining item. As Theorem 1 proves
that this also implies that the global threshold at that point cannot
be larger than the lower-bound score of the k-th item in the buffer.
Notice that the threshold captures the highest score that any unseen
item can have. Due to the monotonicity property of the consen-
sus function, global threshold decreases gradually, implying that
the highest score of any item gets only smaller, as more entries are
scanned from the lists. Therefore, when GRECA terminates and out-
puts the itemset with the highest top-k lower-bound scores, this im-
plies that any other items that are discarded or unseen cannot have
higher score than the returned itemset. Hence the proof. However,
since the complete score of many of the items may not be computed
upon termination, the output may give rise to a partial order among
the top-k items.

LEMMA 3. GRECA is instance optimal.

PROOF. (sketch): In [10], authors prove that NRA is instance
optimal with optimality ratio m and no deterministic algorithm can

perform any better. GRECA mimics the cursor movement of tra-
ditional NRA, however, it has a different stopping condition. The-
orems 1 and 2 prove that our stopping condition implies both the
threshold stopping condition and result correctness, therefore, the
instance optimality of GRECA holds. A detailed proof is deferred
to an extended version of the paper.

4. EXPERIMENTS
We evaluate our group recommendation method from two major

angles: effectiveness and efficiency. We conduct an extensive user
study on Facebook to demonstrate that group recommendation with
the consideration of temporal affinity is superior to solely relying
on aggregating individual preferences (Section 4.1). We also run
comprehensive experiments to show that GRECA achieves scalable
performance when computing temporal affinity-aware recommen-
dations for ad-hoc groups (Section 4.2).

We implement our prototype system using JDK 1.8.0. All scala-
bility experiments are conducted on an 2.4 GHz Intel Core i5 with
8 GB of memory on OS X 10.9.5 operating system.

Dataset Description: We use the MovieLens 1M ratings dataset 2

for our evaluation. MovieLens is a collaborative rating database
where users provide a rating ranging from 1 to 5 for movies (5
being the best). Table 5 contains the statistics of the 1M ratings
dataset.

# users # movies # ratings
6,040 3,952 1,000,209

Table 5: The MovieLens 1M Dataset

Individual User Preferences: We use collaborative filtering [2]
to generate individual user preferences where user similarity is com-
puted with cosine similarity over vec(u), i.e., the ratings of u for
each movie.

cos(~u, ~u0
) =

~u⇥ ~u0

k~uk2 ⇥ k~u0k2

4.1 Quality Experiment
We exploit the availability of Facebook users for our user study

which gives us the opportunity to obtain preferences of real users
and leverage the social graph for affinities. Our aim is to com-
pare our temporal affinity-aware group recommendation with naive
methods without consideration of time or affinity. Our group rec-
ommendations are produced and compared using the following con-
sensus functions (as discussed in Section 2).

• Average Preference (AP), which computes the group prefer-
ence for an item as the average of individual group members’
preferences for that item.

• Least-Misery Only (MO), which computes the group pref-
erence for an item as the minimum among individual group
members’ preferences for that item.

• Pair-wise Disagreement (PD), which computes the group
preference for an item as the combination of its average and
its pair-wise disagreement between individual group mem-
bers’ preferences.

2http://movielens.umn.edu
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For each of these functions, we incorporate time-aware affinity
to compute the relative user preference to an item at a given time
(see Section 2 for an exact definition of relative preference.)

We developed an application using the Facebook API3 and re-
cruited 72 Facebook users overall to rate movies from the Movie-
Lens 1M dataset. We obtained 1981 ratings. Our Facebook applica-
tion asks only for public profiles and friend list access permissions.
Also, we anonymize the dataset by mapping Facebook IDs to a ran-
dom 5-digit number. The study is conducted in two phases: User
Collection Phase and Quality Assessment.

Summary of Results: In summary, we observe that including
temporal affinity in group recommendation significantly improves
user satisfaction. The amount of satisfaction is variable and is de-
pendent on how groups are formed. In particular, dissimilar user
groups as well as those with low-affinity users whose preference
significantly evolves over time, are most satisfied. We found that
prior work has indeed shown [20] that reaching consensus among
such group members is indeed difficult. In addition, we found that
PD, in general, is the method of choice and works best for dissim-
ilar and high affinity groups. This observation is also in line with
one of our prior results [22] where we showed that including dis-
agreement in group consensus generates higher quality recommen-
dations. We also observe that incorporating time models produces
better results for high affinity groups suggesting that groups with
high affinity are most sensitive to temporal affinities. Finally, the
continuous time model is preferred by large groups of dissimilar
members. That could be explained because it better captures vari-
ability for groups whose members are more sensitive to differences
between them. The discrete model on the other hand, is a good ap-
proximation of the continuous one in the case of high affinity and
high similarity groups.

4.1.1 User Collection Phase
In this phase, the goal is to recruit users and collect their data.

Later, collected users are used to form different groups and perform
judgments on group recommendations. For this aim, we start with
13 seed users (denoted S). Users in S have to complete two tasks:
i. rate at least 30 movies in MovieLens, and ii. invite between 10
and 20 of their friends to participate in the study. The set of friends
of a seed user s 2 S is denoted friends(s). Note that we consider
[

s2S

friends(s) \ S = ;. Friends are only asked to rate movies
and not invite friends, i.e., we stop at the depth 1 of the social graph
for this study.

We select a subset of MovieLens movies for participants to pro-
vide their preferences. We consider two factors in selecting those
movies: familiarity and diversity. On one hand, we want to present
users with a set of movies that they do know about and therefore
can provide ratings for. On the other hand, we want to maximize
our chances of capturing different tastes among movie-goers. To-
wards those two goals, we select two sets of movies. The first set is
called the popular set, which contains the top-50 movies in Movie-
Lens in term of popularity (i.e. the number of users who rated a
movie in the set). The second set is called diversity set, which con-
tains the 25 movies with the highest variance among their ratings
and that are ranked in the top-200 in terms of popularity. Each par-
ticipant rates movies in one of two pre-computed sets: the Similar
Set which consists entirely of movies within the popular set and
the Dissimilar Set which consists of the top-25 movies from the
popular set and the 25 movies from the diversity set.

Users are instructed to provide a rating between 1 and 5 (5 being

3https://developers.facebook.com

the best) for at least 30 movies listed in random order, according to
their preferences.

4.1.2 Static and Dynamic Affinities
In addition to ratings, we store anonymized lists of friends and

page-likes for each user. Since Facebook friendship is relatively
stable over time, we use it to compute static affinity: a↵S (u, u

0
) =

|friends(u) \ friends(u0
)|. We normalize all static affinity values

in a group by the maximum pair-wise value in the group to obtain
a number between 0 and 1.

Page likes are dynamic and are used to compute the time-varying
component of affinity. To calculate dynamic affinity for each user,
we store all pages (s)he has ever liked in Facebook and for each
page, we record the timestamp of when the user liked it and the
page category (music, movie, etc.). There exist 197 different page
categories in Facebook. For privacy reasons, we do not record the
name of the liked pages. Thus the periodic affinity between two
users u and u0 in time-period p is calculated as: a↵ P

(u, u0, p) =

|page_likes(u, p) \ page_likes(u0, p)| where page_likes(u, p) is
the set of page categories whose pages are liked by u in time-period
p. Then we calculate a↵V (u, u0, p) using Equation 1. We also nor-
malize dynamic affinity values to be between 0 and 1. We consider
6 different two-month consecutive periods (Section 4.2.1). Note
that the average standard deviation over number of common page-
likes for all user pairs during 6 periods is 0.42.

4.1.3 Group Formation
We consider three main factors in forming user groups, i.e., group

size, group cohesiveness and affinity strength. Size and cohesive-
ness (i.e. how similar are group members in their movie tastes) are
akin to prior work [22].

We hypothesize that varying group sizes will influence reach-
ing consensus among the members and therefore to which degree
members are satisfied with the group recommendation. We choose
two group sizes, 3 and 6, representing small and large groups, re-
spectively.

Similarly, we assume that group cohesiveness is also a significant
factor in their satisfaction with group recommendation. As a result,
we form two kinds of groups: similar and dissimilar. A similar
group is formed by selecting users who i. have watched Similar
movies and ii. have the maximum summation of pair-wise simi-
larities (between group members based on their provided ratings)
among all groups of the same size. A dissimilar group is formed by
selecting users who i. have completed the Dissimilar movie set and
ii. have the minimum summation of pair-wise similarities among
all groups of the same size.

Finally, we consider groups with low and high affinity between
members. We set affinity to be high if each pair-wise affinity in a
group is equal to 0.4 or higher.

4.1.4 Quality Assessment
In the second phase of the study, users are instructed to de-

cide which of the recommended movies they are satisfied with in a
group. We form 8 groups out of Facebook users by considering dif-
ferent combinations of group size, group cohesiveness and affinity
strength. Each user evaluates movies in two phases: Independent
and Comparative.

Independent Evaluation: In the independent evaluation, a user,
who is a member of a group, observes a single recommendation list
at each time and is asked to say how satisfied she is with watch-
ing those movies with other group members using a scale between
0 and 5 (5 being the best). Figure 1 illustrates the results of this
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Figure 1: Independent Evaluation

evaluation phase. The score is reported as a percentage, i.e., a re-
sult with an average score of 5 gets 100%. Four parameters play a
role in generating different recommendation lists in Figure 1, i.e.,
affinity awareness, time model (discrete vs. continuous), temporal
awareness and consensus function. Figure 1. A illustrates results
with default values, i.e., affinity-aware, discrete, time-aware and
AP consensus function. In all other figures, only one parameter
value changes, i.e., affinity-agnostic in B, time-agnostic in C, con-
tinuous time model in D, MO function in E and finally PD func-
tion in F . That parameter is mentioned in the title of each chart in
Figure 1.

We observe that in general, participants give a score of at least
80% to A, which is the default case with discrete temporal affin-
ity. Participants in dissimilar groups have scored A with 90.66%
preference while it is 10% lower for similar groups. This could
be interpreted as: averaging individual ratings and using a discrete
time model works well for groups formed by users who like dif-
ferent movies. Interestingly, the same result holds for low affinity
and high affinity groups. This potentially shows that our model is
robust to time-varying tastes. On the other hand, the low preference
of high affinity groups show that members of those groups benefit
from another consensus function, i.e., PD (chart F ).

Lists without affinity (chart B) and time awareness (chart C)
have at most 55% and 60% overall preference respectively. This
margin of 20% difference in preference with the temporal affin-
ity case (chart A) shows explicitly the importance of affinity and
temporal affinity in group recommendation. In B, worst results
are obtained for small (30.08%), high affinity (36.66%) and similar
groups (40%) where we observe a decrease in satisfaction. This
potentially shows those are the groups that would best benefit from
using affinity in computing their recommendations. In C the worst
results are for dissimilar and large groups (both 50.19%). One ex-
planation is that dissimilar large groups, i.e., those who differ in
their movie tastes among many members, prefer temporal recom-
mendations, i.e., movies that are generated by taking into account
their friendship and page-like differences over time.

Groups with different tastes (dissimilar, large and low affinity)
prefer the continuous time model (chart D). This is potentially be-
cause of a higher precision in capturing time. Considering the time
as a whole from the beginning of time is needed to deliver recom-

mendations that satisfy all members of those heterogeneous groups.
In case of MO (chart E), we observe a superior satisfaction for dis-
similar and low affinity groups as increase in uncertainty in large
groups leads members to like MO better.

Comparative Evaluation: In the comparative evaluation, users
are asked to compare two lists l1 and l2 at a time and pick the list
they prefer. Following the closed world assumption, when a list is
not chosen by a user, it means that it is not preferred. A user has to
choose one and only one of the proposed lists. Figure 3 illustrates
the preferences of l1 over l2.

First, a user is asked to compare affinity-aware (l1) vs. affinity-
agnostic (l2) recommendations. In A, we observe that in general,
in 75% of the cases, affinity-aware recommendations are preferred.
They are mostly appreciated by small groups followed by high
affinity groups. Larger groups have less preference for affinity-
aware results. A large group potentially leads to higher variability
of preference and weaker affinity among its members, thus natu-
rally prohibiting an early agreement.

In the second comparative study, we examine the effect of tem-
poral affinity by comparing time-aware (l1) vs. time-agnostic (l2)
recommendations. In B, we observe that in most groups, tempo-
ral recommendations are preferred in over 80% of the cases. This
leaves no doubt that participants like better results obtained based
on time. It also shows that high affinity groups prefer not only
affinity-based results, but also its temporal version. Small groups
have also exhibited a high preference. This is because in groups
with fewer members or groups whose participants deeply know
each other, the effect of time manifests itself more strongly. Fi-
nally, high preference for large groups show that the temporal di-
mension of affinity is a useful component for such groups to obtain
higher quality results, because group members potentially observe
that their common affinity history plays a role in recommendations.

We now examine which of the discrete or the continuous tempo-
ral affinity models is better and in which case. In C, we observe
that in general, the discrete time model is preferred for groups with
strong connections between members (high affinity and high simi-
larity). In the case of dissimilar and large groups, it is the contin-
uous model that is preferred. The continuous nature of the latter
is certainly better to capture variability for groups whose members
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are more sensitive to differences between them while the discrete
one is a good approximation of the continuous model in the case of
high affinity and high similarity groups.

Finally, we compare different group consensus functions. This
time, we compare 3 different lists together which are results of AP,
MO and PD consensus functions. We are interested to discover
which function delivers more satisfactory results when we account
for temporal affinities. Figure 2 illustrates this comparison. In
short, while the choice of which consensus function to apply heav-
ily depends on group characteristics, there exists a general prefer-
ence for PD especially in the case of loosely connected groups (low
affinity and dissimilar groups). That could be explained by the fact
that PD favors items that minimize disagreement between group
members which is more appropriate for dissimilar group members.

In summary, it is shown that AP is highly preferred in small and
high affinity groups. Whenever AP has a high preference, PD is
also highly preferred. MO provides higher quality results for larger
groups (this is consistent with our findings in [22]) and for groups
with loose connections.

Table 1

Table 2

Sim Diss Small Large High Aff Low Aff

AP 27.7777777777778 22.2222222222222 44.4444444444444 16.6666666666667 38.8888888888889 22.2222222222222

MO 22.2222222222222 33.3333333333333 16.6666666666667 44.4444444444444 16.6666666666667 33.3333333333333

PD 50 44.4444444444444 38.8888888888889 38.8888888888889 44.4444444444444 44.4444444444444
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Figure 2: Qualitative Evaluation of Consensus Functions

4.2 Scalability Experiment
Experiment Settings: Unless otherwise stated, we form 20 dif-

ferent random groups by selecting a subset of users who partici-
pated in our quality experiment. The default settings of the rest
of the parameters are, group size = 6, k = 10, number of items =
3900, consensus function = AP. Unless otherwise stated, affinity
is computed using the discrete time model. For each scalability
experiment, we compute the average percentage of SAs needed by
GRECA in different settings. The percentage of SAs represents the
computational cost that GRECA incurs, compared to a naive algo-
rithm which entirely scans all lists. A smaller percentage exhibits
higher scalability.

We conduct experiments by varying time periods, result size
(k), group size, number of input items, similarity and dissimilarity
among items and users in the group, and considering the discrete
and continuous affinity models. Our results illustrate the scalabil-
ity of GRECA with different group consensus functions. We only
present a subset of these results. The omitted results are similar to
the ones presented. All results are presented with standard error
bars, wherever applicable.

Summary of Results: First and foremost, we observe that GRECA
is highly scalable with varying k, group size, number of items and
enables a significant saveup in the number of accesses (almost al-
ways, more than 75% accesses are avoided) with early termination.
Then, we observe that the pruning ability is highest for similar user
groups. We observe that the score distribution of top-k itemsets
for such groups is different from the rest of items, therefore, the
stopping condition in the buffer is satisfied early. Third, we ob-
serve that GRECA is effective across all group consensus functions.
In fact, for some of the complex group consensus functions that

consider user disagreement, GRECA incurs the smallest percent-
age of accesses ensuring the highest saveup in computation cost.
Fourth, GRECA scales linearly with an increasing number of peri-
ods. Finally, we observe that GRECA is effective both for discrete
and continuous models.

4.2.1 Varying Time Period
We explore discretizing time into periods of different lengths:

week, month, two-month, season and half-year. Since dynamic
affinity relies on user page-likes in Facebook and liking a page is
not a frequent action, many time segments were empty after dis-
cretization (Figure 4). The length of a time period should be cho-
sen in such a way that each period contains enough data to compute
affinities. Figure 4 shows that two-month periods achieve a good
balance between the percentage of non-emptiness (65%) and the
number of periods (6). We hence pick a two-month discretization
for the rest of our experiments.

Table 1

Table 2

Non-empty 
Periods (%)

# of Periods

Week 26.01 53

Month 54.35 12

Two-Month 67.4 6

Season 77.18 4

Half-Year 97.83 2
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Figure 4: Different Time Periods

Figure 6 illustrates the average number of accesses in each pe-
riod. As expected, this figure shows a linear behavior in general,
as going to subsequent periods increases the number of lists. An
exception happens in period 5 where its average #SA is very close
to its next period. By looking more carefully at the underlying data
distribution, we noticed that the number of common page-likes be-
tween user pairs in period 5 is very low. Therefore, scanning this
period does not help to update bounds in order to have early termi-
nation.

Figure 6: Average Percentage of SAs for Different Periods in
Discrete Time Model

4.2.2 Varying k, Group Size and Number of Items
In Figure 5, we illustrate the scalability of GRECA by varying

result size, group size and number of items. In A, we vary k from
5 to 30 and run GRECA with the AP consensus function for 20
different groups with 6 members. We observe that GRECA scales
linearly with varying k. The algorithm always produces a saveup
of 81% or higher.
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Figure 3: Comparative Evaluation
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(C) Varying Number of Items
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Figure 5: Average Percentage of SAs by Varying Result Size, Group Size and Number of Items

In B, we examine the effect of different group sizes on perfor-
mance. The results clearly demonstrate that GRECA scales well
with varying group sizes. The average saveup is greater than 77%.

In C, we vary the number of available items for group recom-
mendation from 900 to 3900. The results demonstrate that the
number of accesses does not necessarily increase with that. This
observation is unsurprising as the number of accesses depends on
the score distribution of the item preferences and user affinities.
GRECA saves more than 83% accesses even in the worst case.
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Figure 7: Average Percentage of SAs for Similar, Dissimilar,
High Affinity and Low Affinity Groups

4.2.3 Similarity/Dissimilarity
We examine the effect of similarity on GRECA in two ways: first,

we compare the number of accesses between groups with similar
and dissimilar ratings; then, we compare groups with high and low
affinities. Figure 7 contains the result. The results demonstrate that
the effectiveness is higher for similar groups in both cases (item
based similarity and high affinity).

4.2.4 Time Models
We examine the effect of continuous and discrete time models

on GRECA. The average number of SAs for the continuous model
is 16.32% and 16.6% for the discrete one. This means that in both

cases, we obtain a saveup greater than 83%. The number of ac-
cesses for both methods are very similar with a slight superiority
for the discrete model.

4.2.5 Consensus Functions
In this last performance study, we compare different consensus

functions. Figure 8 contains the results. We introduce two different
versions of PD based on [22] by varying the weights used in the lin-
ear combination of rating aggregation (w1) and disagreement (w2)
s.t. w1 +w2 = 1. In PD V1, we consider w1 = 0.8 and in PD V2,
w1 = 0.2.
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Figure 8: Average Percentage of SAs for Different Consensus
Functions

All results clearly demonstrate that GRECA achieves significant
saveups for those consensus functions. They also show that PD V2
outperforms PD V1. During our post-analysis, we observed that a
higher weight on disagreement allows faster stopping, because the
items have smaller scores. MO is the next best performer achieving
as high as 83% in accesses’ saveups.

5. RELATED WORK
Group recommendation has been designed for various domains

such as news pages [21], tourism [11] and music [7]. A group may
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be formed at any time by a random set of users with different in-
terests, a number of persons who explicitly choose to be part of
a group, or by computing similarities between users with respect
to some similarity functions and then clustering similar users to-
gether [19, 3].

There are two dominant strategies for group recommendations
[4, 3]. The first approach creates a pseudo-user representing the
group and then makes recommendations to that pseudo-user, while
the second strategy computes a recommendation list for each group
member and then combines them to produce a group’s list. For
the latter, a widely adopted approach is to apply an aggregation
function to obtain a consensus group preference for a candidate
item. However, to the best of our knowledge, none of the existing
functions account for the influence between group members [24].

Affinities may be strong emotional bonds, like links between
family members or a clique of close friends. Those links may also
be relatively weak thereby breaking with the passage of time or
the occurrence of relationship-damaging events. In [16], an affinity
model is proposed for group recommendation based on NEO-FFI 4

personality test. Another model is proposed in [12] where 3 differ-
ent components (social relationship, expertise and disagreement)
are aggregated to form affinity. A possible extension of our work
could make use of that affinity definition.

On e-commerce platforms, recent studies have proved the im-
portance of time in recommender systems. In [8], Yi Ding et al.
assign different weights to different rating records based on their
creation time, and reveal the existence of a dynamic change in user
interests. Liang Xiong et al. [25] improved the accuracy of recom-
mendations by incorporating the global evolution pattern of user
preferences. Potentially the most similar contributions to ours on
time models are [17, 15] where Yehuda Koren et al. take temporal
dynamics of user and item biases into consideration for individual
recommendations. To the best of our knowledge, no previous work
has studied a time model for group recommendations.

Threshold algorithms [9] have been used extensively for recom-
mendation. Their attractiveness lies in monotonic score aggrega-
tion functions, which operate on sorted input and enable the early
pruning of low-ranked answers. In this work, we adapt NRA to ag-
gregate individual preferences, disagreement and temporal affinity
lists to compute temporal recommendations and propose a novel
stopping condition and prove correctness and instance optimality.

6. CONCLUSION
We examined affinity-aware group recommendation over time

and developed GRECA, an efficient algorithm with unique features
that distinguish it from state-of-the-art recommendation algorithms.
Our proposed semantics is compatible with popular group consen-
sus functions. Our extensive experiments with real Facebook users
and Movielens datasets assess the high quality of temporal affinity-
aware recommendations for groups with different characteristics
(small/large groups, similar/dissimilar groups, high and low affin-
ity groups). In the future we would like to study the maintenance of
our index structures over time in relationship with how often affin-
ity between users changes. In particular, we are examining how to
combine incremental clustering with our indices in order to deter-
mine the minimum amount of information to store that guarantees
instance optimality. Moreover, we plan to extend our performance
studies to larger groups with thousands of users.

4Neuroticism Extroversion Openness Five Factor Inventory
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