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ABSTRACT
In the age of statistical and scientific databases, there is an
emerging trend of integrating analytical algorithms into data-
base systems. Many of these algorithms are based on linear
algebra with large, sparse matrices. However, linear algebra
expressions often contain multiplications of more then two
matrices. The execution of sparse matrix chains is nontrivial,
since the runtime depends on the parenthesization and on
physical properties of intermediate results. Our approach
targets to overcome the burden for data scientists of select-
ing appropriate algorithms, matrix storage representations,
and execution paths. In this paper, we present a sparse
matrix chain optimizer (SpMachO) that creates an execu-
tion plan, which is composed of multiplication operators and
transformations between sparse and dense matrix storage
representations. We introduce a comprehensive cost model
for sparse-, dense- and hybrid multiplication kernels. More-
over, we propose a sparse matrix product density estimator
(SpProdest) for intermediate result matrices. We evaluated
SpMachO and SpProdest using real-world matrices and
random matrix chains.

Categories and Subject Descriptors
G.1.3 [Numerical Linear Algebra]: Sparse, structured,
and very large systems

General Terms
sparse linear algebra, optimization

1. INTRODUCTION
In the era of big data and data deluge, scientists and

data analysists are confronted with a time-consuming im-
plementation overhead, when they want to scale and speed
up their existing, handcrafted code that has been working
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for years on small data sets. This set the way for new data-
base applications in the fields of scientific computations and
advanced analytics on large data. However, since most of
the algorithms in science and data mining are composed of
linear algebra expressions, conventional SQL-based relational
database management systems (RDBMS’s) did not match
the requirements. On the other hand, numerical algebra sys-
tems like R are known for e�cient linear algebra algorithms,
but they lack scalability and data manipulation capabili-
ties. As a consequence, the demand of data scientists for a
scalable system that provides a basic set of e�cient linear
algebra primitives attracted the attention of the database
community [11]. Recently emerged systems like SciDB [8] or
SystemML [6] reacted by providing a R or R-like interface
and deep integrations of linear algebra primitives, such as
sparse matrix-matrix and matrix-vector multiplications.
In business environments, data analysts often load data

from a relational database into a numerical algebra system
to perform their analysis by means of linear algebra. For
example, financial analysts that use a RDBMS for storing
stock price data need the functionality of SQL, e.g., in order
to get the average stock prizes, or to find all stocks that
belong to a certain group. On the other side, they might
want to use matrix multiplications to find correlations [24]
of stocks and derivatives.
Matrices as first-class citizens have been integrated in

many systems, for example in array DBMS’s [8], data ware-
houses [19], or in-memory column stores [20], but only little
has been done in the direction of optimizing the execution
of linear algebra expressions. In this paper, we focus on
optimizing the execution of sparse linear algebra expressions
based on physical properties. The idea is the following: next
to the RDBMS optimizer that creates optimized execution
plans from SQL expressions, we propose a component (Fig. 1)
that generates an optimal execution plan for linear algebra,
which is using the native storage and execution engine of the
system, and additional operators for linear algebra, such as
a matrix multiplication operator.
As most of the big matrices occurring in the real world

are sparse, linear algebra expressions often contain multipli-
cations of three or more sparse, or mixed dense and sparse
matrices, e.g. in transitive closure computations, Markov
chains [27], linear transformation [13], or linear discrete dy-
namical systems [4]. An e�cient execution of sparse matrix
chain multiplications is nontrivial, in particular, if inter-
mediate result matrices become dense. In many situations
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Figure 1: DBMS example architecture.

the runtime performance can be significantly improved by
changing the execution order, or by switching from a sparse
to a dense multiplication algorithm in later stages. Since
data scientists are usually not familiar with algorithmic de-
tails of multiplication kernels and system parameters, and
do not have profound knowledge of the characteristics of
their matrices, it makes sense to leave these decisions to the
system.

In particular, the contributions of this work are:

• SpMachO, a general matrix chain multiplication op-
timizer based on a dynamic programming approach,
which leverages density estimations of intermediate re-
sults and di↵erent multiplication kernels to minimize
the total execution runtime. The optimization problem
and the SpMachO algorithm are presented in sections 2
and 3.

• SpProdest, a sparse matrix density estimator, which
predicts the density structure of intermediate and final
result matrices, by using a novel skew-aware stochastic
density propagation method. It is described in detail
in sections 4 and 5.

• An extensive evaluation and comparison of the execu-
tion runtime of the SpMachO-generated plan against
alternative execution strategies and other numerical
algebra systems, which is presented in section 6.

Finally, we will discuss the related work in section 7, followed
by the conclusion in section 8.

2. EXPRESSION OPTIMIZATION
A lot of data scientists work with numeric algebra systems

to run their linear algebra algorithms. However, the user
is often let alone with the execution order, although the
way of executing large sparse matrix expressions contains a
significant optimization potential.
Consider a set of linear algebra expressions that consist

of matrix multiplication and addition on general Rm⇥n ma-
trices. Further operations, like subtraction or division by
a matrix A can be represented by using the corresponding
inverse of addition (�A), or inverse of multiplication A�1,
respectively. Thus, the expression can be reduced to a form:

C = A
0

+A
1

·A
2

· ... ·A
p

+A
p+1

· ...A
l

+ ...,

From a mathematical perspective, the number of operations
needed for the element-wise addition of intermediate results,
or any element-wise operation in general, is independent from
the execution order, thus, it is the same for (A+B) +C as
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Figure 2: Eight of the possible 128 execution plans for the
multiplication of three sparse matrices A
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. ⇥ are
binary multiplication operators, S/D denotes the internal
sparse/dense representation type of matrices, and T are
unary storage type transformations of matrices.

for A+ (B +C). Although this indi↵erence might not hold
in practise, when di↵erent physical representations are used,
the addition part in the computation of C is rather cheap,
since the complexity is at most O(mn) for dense matrices.
Most of the execution time is spent in the computation of
multiplications

A
1

·A
2

· ... ·A
p�1

·A
p

, A
i

2 Rmi⇥mi+1 , (1)

so the work of this paper focus on the optimization of matrix
chain multiplications. The algebraic degree of freedom to
execute expression (1) consists in the setting of parenthesis,
since matrix multiplications are associative. Altering the
parenthesization does not change the result, but the number
of operations required in the computation of the complete
chain can vary significantly. Finding the optimal parenthe-
sization for a dense, non-square matrix chain multiplication
is well understood and serves as a text book example for
the use of dynamic programming [16, 12]. The idea is to
iteratively construct the optimal parenthesization as a com-
bination of optimal sub-parenthesizations, by minimizing a
cost recurrence expression with respect to the split point k

C
⇡

B

(ij)

= min
ik<j

�

C
⇡

B

(ik)

+ C
⇡

B

((k+1)j)

+ TM
�

A
[i...k]

,A
[k+1...j]

�  

. (2)

For the mathematical formulation, we introduce

• ⇡(ij): a parenthesization for the matrix (sub)chain
A

[i...j]

⇡B(ij) denotes the optimal (“best”) one.

• C
⇡

: the cost for executing the matrix chain multiplica-
tion, given a certain parenthesization ⇡.

• TM
�

A
[i...k]

,A
[k+1...j]

�

: the cost function for multiplying
the two matrices that result from the subchains A

[i...k]

and A
[k+1...j]

In the textbook case, the combination cost TM
�

A
[i...k]

,A
[k+1...j]

�

is set equal with the number of flops for multiplying the two
dense intermediate result matrices. By using the classical
inner product algorithm the costs can be exactly determined
a priori as m

i

m
k+1

m
j+1

.
However, the dense matrix case has certain limitations

that restricts its relevance in practice. Most important,
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many of the real-world matrices in big data environments
are sparse. A sparse matrix is not only defined by its row
and column dimensions m and n, but also by the number
and the pattern of non-zero elements N

nz

, or the density1

⇢ = Nnz
mn

. As a matter of fact, algorithms on sparse matrices
have a di↵erent complexity: unlike the naive inner product
algorithm for dense matrices, the cost of a multiplication of
two sparse matrices rather depends on the number of non-
zero elements than on their dimensions. Moreover, sparse
matrices are stored in a di↵erent data structure than dense
matrices, which leads to di↵erent actual costs depending on
the characteristics of the physical representation. Most of the
related work on matrix chain multiplications consider either
dense-only [16, 12] or sparse-only [9] multiplications, being
agnostic to the fact that the densities of the intermediate
result matrices can vary significantly from the initial matrices.
For example, the density of the result matrix C = A · B
can be much higher, or even less than that of both A and
B (see Fig. 5). Despite the mathematical complexity, it is
in many cases more e�cient to continue using algorithms on
dense matrix representations, if the density exceeds a certain
threshold. This can be reasoned with the e�cient and well-
tuned implementations of dense matrix multiplication kernels
in BLAS2.

Our idea is to take the individual di↵erences of the di↵erent
matrix representations and multiplication kernels into ac-
count, and to exploit the potential performance benefits from
changing the physical implementation of the initial matrices
or intermediate results. We construct an execution plan
for the chain expression that can contain dense, sparse and
mixed dense/sparse matrix multiplications. Furthermore,
the execution plan can contain conversions from a sparse
into a dense representation. Therefore, we adopted the idea
of dynamic programming and modified it in such a way that
it incorporates the physical properties of the matrices. We
extended the recurrence (2) by adding the input and output
storage types as independent dimensions, and added cost
functions for the storage type conversions:
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• ⇧(ij): execution plan for a matrix (sub)chain multipli-
cation. It contains the execution order as well as all
storage transformations. ⇧B denotes the optimal plan.

• SX : storage type, which is either dense or sparse. The
superscript X labels each of the five matrices that are
considered per execution node. X = l: left subplan
output-, r: right subplan output-, 1: left input-, 2:
right input-, o: current product output matrix .

• TT
S

Y

�

A
[i..k],S

X

�

: cost function for the conversion of a

matrix from type SX into type SY .

1In the remainder of this paper, we refer to the non-zero
structure using ⇢ rather than N

nz

2Basic Linear Algebra Subprograms,
http://www.netlib.org/blas/

Since the cost functions TM in equation (3) depend on the
storage types of the input and output matrices, as well as
their densities, it could be beneficial to convert a matrix from
one into the other representation prior to the multiplication
because conversions are usually less costly than multiplica-
tions. For example, if the initial matrices are in a sparse
representation, and the dense multiplication kernel plus the
conversion has a far lower cost than the sparse multiplication,
then they are first converted into the dense representation.
As a matter of fact, the value of the conversion cost TT

S

(A, S)
equals zero for identity transformations, i.e., when a matrix
is already in the optimal representation. Hence, besides the
parenthesization split point k, we vary the input and output
storage types for each step in recurrence (3).
Some of the parameters that contribute to the cost func-

tions TM/TT(·), for example the density ⇢ of intermediate
results, are not known prior to the execution and have to
be estimated. Therefore, we developed the sparse matrix
product density estimator SpProdest, which is described
in section 4 and 5 of this paper. The resulting costs derived
from recurrence (3) are minimal, given that the estimated
costs encoded in TM and TT are determined precisely. In par-
ticular, the optimality, or goodness, of SpMachO depends on
two parts, which potentially contain uncertainties: first, the
accuracy of the quantitative cost model of the multiplication
kernels, and second, the precision of the density estimates
provided by SpProdest.

The total number of the possible execution plans using our
model (3) for a matrix chain multiplication of length p is

C
p�1

· 23(p�1), (4)

where C
p�1

denotes the Catalan number C
n

= (2n)!

(n+1)!n!

.
C
p�1

reflects the number of possible parenthesizations,
which is the same as for the textbook case [12]. The second
factor is related to the 23 {left input-, right input-, output-}
storage type combinations that are connected with each of the
p�1 type multiplication nodes. The number in (4) resembles
the size of the search space, which grows exponentially. To
give an example, it yields 2560 for a matrix chain of length
p = 4 and already 1376256 for p = 6. As in [12], SpMachO
solves the recurrence (3) in O(p3) time using a bottom-up
dynamic programming approach.

3. SpMachO
The pseudocode of SpMachO is sketched in Algorithm 1.

The cost of the optimal sub-chain multiplications and the
relevant plan information (split points and storage types per
sub-chain) are cached in three-dimensional array structures.
For each combination in the inner loop, the method chk-
MemLimit checks if the total memory consumption of the
matrices and intermediate results in the current plan configu-
ration would exceed the system limit. The memory required
for dense m ⇥ n matrices is O(mn), and O(N

nz

= mn⇢)
for sparse matrices. Since SpMachO optimizes the runtime
performance, the plan may contain conversions from sparse
into dense matrix representations whenever the dense kernel
leads to a lower overall runtime, due to the e�cient dense
kernel implementation. However, the conversions into dense
representations potentially increase the memory consumption
compared to a sparse-only plan. Our strategy is that every
conversion is allowed, as long as the total memory consump-
tion at every point in time does not exceed a hard memory
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Algorithm 1 SpMachO

1: function spMacho(MatrixChain A
[1..p]

,TM,TT)
2: ⇢̂[][] spProdest(A

[1..p]

)
3: for 1  j < p, j > i � 0 do
4: for i  k < j do
5: for types 2 {sparse, dense} do
6: if !chkMemLimit(A, k, ⇢, types) then
7: continue
8: q  TT(A

[i..k..j]

, ⇢̂[][], types)
9: q  q +TM(A

[i..k..j]

, ⇢̂[][], types)
10: if q < cost[i][j][So] then
11: cost[i][j][So] q
12: plan[i][j][So] k, types

13: if cost[1][p][·] � MAXVAL] then
14: /* memory exceed exception */
15: else
16: return min(plan[1][p][sparse], plan[1][p][dense])

limit. Execution paths that would exceed the memory limit
are automatically skipped (line 6). We assume that there is
at least one plan that does not exceed the memory limit. If
not, SpMachO returns with an exception (line 13). Finally,
the resulting plan, which can be converted into a directed
acyclic graph representation as of Fig. 2, is returned to the
system for execution.
The complexity of Algorithm 1 is O(p3), which can be

derived from the dynamic programming loop and is the same
as in the dense-only problem. The additional complexity
by the introduction of storage type transformations yields
a constant factor, since the inner loops over the storage
types do not depend on the chain length p. A few pruning
methods can be applied to reduce the execution plan space,
for example, by excluding that the product of two dense
can be sparse. However, they do not lower the asymptotic
complexity of the algorithm.
The system executes the plan using the corresponding

transformation and matrix multiplication operators. While
the unary transformation operator either performs a dense-
to-sparse or a sparse-to-dense storage transformation, the
eight-fold multiplication operator delegates the execution
to one of the multiplication kernels. We implemented all
algorithms in our prototype using row-major 2D-arrays for
dense- and the columnar compressed sparse row layout (CSR)
for sparse matrices, since they are to our notion the most
common physical representations, and are used in many
numerical libraries, e.g. the Intel Math Kernel Library [1].
As mentioned in the beginning, we already showed in [20]
that these representations can be mapped onto a columnar
storage layout of an in-memory columnar DBMS.

3.1 Multiplication Kernels
There are eight di↵erent general matrix multiply (gemm)

kernels that are used in our system. We will use the notation
xyz gemm to denote a multiplication kernel, where x is the
left-hand input-, y is the right-hand input type and z the
output matrix storage type, which can be either sparse (sp)
or dense (d). Some of the kernels, for example the stan-
dard BLAS ddd gemm, or spdd gemm, are implemented by
vendor-tuned C++ libraries, so we call the library instead of
providing an own implementation. As of the current status,
this is done only for ddd gemm, for which we use the Intel

Table 1: The matrix multiplication kernels for the product
Cm⇥n = Am⇥k · Bk⇥n and their cost functions used in
SpMachO. N⇥ denotes the number of actual multiplications,
the hat indicates the corresponding estimated value. ↵,�, �
are constant parameters.

Kernel Cost Function

ddd gemm ↵(mkn)
spdd gemm ↵N̂⇥

dspd gemm ↵(mk) + �N̂⇥

spspd gemm ↵NA

nz

+ �N̂⇥

ddsp gemm ↵N̂⇥ + �N̂C

nz

+ �(mn)
spdsp gemm ↵NA

nz

+ �N̂⇥ + �N̂C

nz

dspsp gemm ↵N̂⇥ + �N̂C

nz

+ �(mk)
spspsp gemm ↵NA

nz

+ �N̂⇥ + �N̂C

nz

MKL implementation.
Table 1 lists the kernels that are used in our system. In

order to obtain the optimal execution plan via solving recur-
rence (3), the cost model and its corresponding parameters
have to be determined accurately for each multiplication ker-
nel. Since the actual runtime depends on many parameters
and external influences, an exact determination cannot be
guaranteed. However, even for small variations, the plan gen-
erated by SpMachO is still near-optimal, which we verified
in the evaluation in section 6.

3.2 Execution Time Cost Model
The cost for multiplying two dense or sparse matrices

generally depends on the matrix dimensions m,k, n, the
number and pattern of non-zero elements of both the input
and the result matrices, and the implementation details of
the corresponding kernel algorithm. The idea is to reduce
the dimensions to a set of only a few, significant dimensions,
and create the cost model based on the reduced dimension
set. On average, it is a fair approximation to assume that
the runtime of a single multiplication only depends on the
number of non-zero elements, and not on the individual non-
zero pattern variations. Hence, we are able to reduce the
parameter space to the dimensions m,k, n, ⇢

A

, ⇢
B

, and ⇢̂
C

,
which corresponds to the product density estimation, which
is determined by SpProdest.
As an example, we will examine the spspsp gemm kernel

that uses the popular Gustavson algorithm [18]. The algo-
rithm is based on the sparse accumulator method, which is
still commonly used for sparse matrix implementations [15].
In order to not repeat the algorithm description in detail, we
only sketch the derivation of our cost model for spspsp gemm,
which we consider as the most interesting kernel.

For reasonably large sparse matrices, the runtime of sparse
kernels is often dominated by main memory bandwidth.
Hence, mainly the memory accesses contribute to the run-
time of an algorithm, which is in conformance to the external
memory (I/O) model. For spspsp gemm, the access pattern
can be formulated as

TM(m, k, n, ⇢
A

, ⇢
B

) = m⇥ (read
rowA

+ k⇢
A

⇥ (read
colA,rowB

+

n⇢
B

⇥ (read
colB,valA,valB

+write
colC,valC

)) + n⇢̂
C

write
colC,valC

),

where the read/write denote the accesses to the respective
data structures (rowA, rowB, etc.) in memory. For example,
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Figure 3: Measured runtimes (markers) and time estimates
(lines) for di↵erent matrix multiplication kernels.

a read on colA has a higher average cost than a read on colB,
since a complete row of matrix B is touched in-between two
consecutive colA-reads, thus, the system has most probably
evicted the cache line of colA and has to fetch it again. The
exact number of cycles, and hence, the required time per
read or write access depends on whether the addressed cache
line resides in the system cache. However, since we consider
large matrices with sizes that are by factors larger than the
last level system cache, we approximate the read and write
accesses as fixed time constants in our model. Moreover,
instead of determining the individual time constants for the
read

X

/write
X

access, we abstracted them into few parame-
ters, which can then be determined empirically. Therefore,
we expand the expression of TM and accumulate the time
constants of the read/write accesses into the constant param-
eters ↵, �, �, and obtain a simple time approximation for the

Wall-clock time

T ⇡ ↵(m · k · ⇢
A

| {z }

N

A
nz

) + �(m · k · ⇢
A

· n · ⇢
B

| {z }

ˆ

N⇥

) + �(m · n · ⇢̂
C

| {z }

ˆ

N

C
nz

),

which only depends on the constant parameters
↵ = T (read

colA,rowB

)

� = T (read
colB,valA,valB

+ write
colC,valC

)

� = T (write
colC,valC

)

and the derived dimensions:

• NA

nz

: the number of non-zeros in matrix A

• N̂⇥: the estimated number of multiplications

• N̂C

nz

: the estimated number of non-zero elements in the
result matrix

For the other kernels, the cost function can be deduced in
a similar manner. Because of space limitations, we will not
discuss them in this paper. Table 1 lists the cost function
for each kernel. Each cost function is a linear combination
of di↵erent derived dimensions, weighted by constant pa-
rameters ↵,�, �. The constant parameters are estimated for
each kernel by a multilinear least-squares fit. Since they are
dependent on the system hardware, the fit has to be done
once for each system configuration.

Fig. 3a shows the scaling behavior of the matrix multiplica-
tion kernels spspsp gemm, spspd gemm and ddd gemm with
respect to matrix dimension and density. We observe that our
cost models (lines) conform well with the actual algorithm
runtimes (markers). From the right plot in Fig. 3a we can
infer the following example scenarios: if the density ⇢

A

has
a higher value than about 0.1, then it can be worthwhile to
convert A into a dense representation and continue with the
dense kernel – of course only if the dense representation does
not exceed the available memory. If the density is below,
it is probably best to select the spspd gemm kernel. For
⇢
A

⌧ 0.01 and depending on the following multiplications
and the estimated intermediate result densities, it might be
best to take with the spspsp gemm kernel.
In Fig. 3b, we fixed the densities ⇢

A

, ⇢
B

and the product
(m · k · n), and only varied the relative matrix shapes m

k

⌘ k

n

.
At both edges of each plot the matrices are extremely rectan-
gular. The deviation of the actual times from our estimates
shows that our cost model has limited accuracy in these
extreme cases. However, the deviation is still acceptable,
since the times are always overestimated. Overestimation is
more robust than underestimation, because SpMachO would
then just select another multiplication kernel, whereas in the
latter case the deviation would propagate into the overall
estimation. It is worthwhile mentioning that one conclusion
we deduce from Fig. 3b is that simplistic cost models, which
solely depend on the number of non-zero multiplications
N⇥, are not able to describe the shape dependency, since
N⇥ ⌘ const. is fixed in each plot.

4. DENSITY ESTIMATION
The estimation of the intermediate result matrix densities

is a crucial part of the SpMachO optimizer, since the cost
models of the sparse multiplication kernels primarily depend
on the number of non-zero elements, and hence, the matrix
densities ⇢. Our approach is to encode the non-zero structure
into the smallest possible set of values without losing too
much information.
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Figure 4: Assignment of non-zero population densities for
two di↵erent matrices using a) scalar density, b) density map.

4.1 Scalar Density
A matrix can be considered as a two-dimensional object

which has a certain population density ⇢ of non-zero matrix
elements. As an example, Fig. 4 a) shows a 4 ⇥ 4 matrix,
which has five non-zero elements, and thus, a total population
density of ⇢ = 5/16 ⇡ 0.31. The scalar density value does
not reflect any patterns in the matrix, but it contains all
relevant information if, and only if, the matrix is uniformly
populated with non-zero elements. Then, the probability
of a randomly picked matrix element for being non-zero is
p((A)

ij

6= 0) = ⇢, which is 0.31 in the example of Fig. 4 a).

Lemma 4.1. Under the condition that the non-zero elements
are uniformly distributed, the density estimate ⇢̂ of a product
of two matrices C = A·B can be calculated using probabilistic
propagation

⇢̂
C

= ⇢̂
A·B = 1� (1� ⇢

A

⇢
B

)k. (5)

The estimate of Eq. (5) is unbiased, i.e. E[⇢̂
C

] ⌘ ⇢
C

.

For the sake of simplicity, we denote the operation in Eq. (5)
with the symbol �, thus, ⇢̂

C

= ⇢
A

� ⇢
B

. Lemma 4.1 can be
derived as follows: using the inner product formulation, the
elements c

ij

of the result matrix are calculated as
P

k

a
ik

b
kj

.
The probability for a

ik

being non-zero is p(a
ik

6= 0) = ⇢
A

,
for b

kj

accordingly: p(b
kj

6= 0) = ⇢
B

. Thus, every summand
a
ik

b
kj

is nonzero with probability p
nz

(a
ik

)^p
nz

(b
kj

) = ⇢
A

⇢
B

.
c
ij

is non-zero if any of the summands a
ik

b
kj

is non-zero.
We leverage the inverse probability and obtain p(c

ij

= 0) =
⇧

k

(1 � ⇢
A

⇢
B

). Finally, with p(c
ij

6= 0) = 1 � p(c
ij

= 0)
and p(c

ij

6= 0) = ⇢
C

, equation (5) results. We remark that
we are assuming no cancellation, i.e., a sum of products of
overlapping non-zero elements never cancel to zero, which is a
very common assumption in the mathematical programming
literature [10].
Eq. (5) can be used as an O(1) estimator for the result

density prediction of a multiplication of two matrices A
and B that have uniform non-zero patterns. Hence, the
prediction of a chain multiplication of p matrices has a linear
time complexity O(p). Moreover, the density prediction is
independent of the parenthesization.

4.2 Estimation Errors
However, the obvious disadvantage of maintaining a scalar

density is that ⇢̂ is only valid for matrices with uniformly
distributed non-zero elements. Although the uniform as-
sumption holds for many matrices to a certain degree, there

· =

· =

Figure 5: Product density in extreme non-uniform cases. The
upper row shows how two half-populated matrices cancel to
zero. The lower row shows how two, almost empty sparse
matrices produce a full matrix (outer vector product).

are many matrices that have distinguishable non-zero pat-
terns, i.e. a topology with some regions that are significantly
more dense than others. For these matrices, a density predic-
tion according to equation 5 does not provide an accurate,
unbiased result.

In extreme non-uniform cases, equation (5) could produce
an asymptotic maximum error of 100%. Fig. 5 shows two
example cases where the ⇢̂ estimate according to (5) fails
significantly: In the first case, the product of two n ⇥ n
matrices with each ⇢ = 0.5 cancel out into an empty matrix
with ⇢ = 0, whereas the naive estimate according to Eq. 5 is
⇢̂ = 1�(0.75)n

n!1����! 1. Hence, the density value is maximal
overestimated. The second example is a multiplication of
two sparse ⇢ = 1

n

matrices, which are zero except one column
in A and the matching row in B. The resulting full matrix
has ⇢ = 1, whereas the naive prediction gives ⇢̂ = 1� (1�
1

n

2

)n
n!1����! 0.

In order to lower the average estimation error, we estimate
matrix densities on a finer granularity. SpProdest uses a
density map for non-uniform sparse matrices, which is able
to reflect a 2D matrix pattern on a configurable, granular
level.

4.3 Density Map
The density map ⇢

A

of a m ⇥ n sparse matrix A is ef-
fectively a m

b

⇥ n

b

density histogram. It consists of
�

mn

b

2

�

density values (⇢)
ij

, each referring to the density of the corre-
sponding block A

ij

of size b⇥ b in matrix A. As an example,
Fig. 4b) shows the density map of a 4⇥ 4 matrix with blocks
of size 2⇥ 2.

In the following we sketch how the density map ⇢̂
C

of the
result matrix C are estimated from the density maps ⇢

A

and
⇢
B

of its factor matrices. Therefore, it is necessary to take a
glance at blocked matrix multiplication. Assuming square
blocks, the product matrix C can be represented as

C =

✓
A

11

·B
11

+A
12

·B
21

A
11

·B
12

+A
12

·B
22

A
21

·B
11

+A
22

·B
21

A
21

·B
12

+A
12

·B
22

◆
. (6)

First, we define an estimator for the addition of two ma-
trices:

Lemma 4.2. Under the condition that the non-zero ele-
ments are uniformly distributed, the density estimate ⇢̂ of the
addition of two matrices C = A ·B can be calculated using
probabilistic propagation

⇢̂
A+B

= ⇢
A

+ ⇢
B

� (⇢
A

⇢
B

) ⌘ ⇢
A

� ⇢
B

. (7)

The derivation of Lemma 4.2 is similar to that of Lemma 4.2,
which is why we leave it out for space reasons.
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Then, combining Eq. (6) with (5) and (7), one obtains
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=
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for the density propagation of a 2⇥ 2 map. Density maps
of a finer granularity, i.e. with more than four blocks, are
calculated accordingly.
As a result, the average density estimation error is signif-

icantly lowered when using density maps compared to the
scalar density estimation, which we verified empirically in
the evaluation section (Fig. 6.) As a matter of fact, the
smaller the block size and the higher the granularity, the
more information is stored in the density map and finer struc-
tures can be resolved. However, the runtime of the density
map estimation also grows with the granularity, since its
complexity is in O(

�

n

b

�

3

), and hence, O(p
�

n

b

�

3

) for a chain
estimation of length p. For infinitesimal block sizes b! 1⇥1,
the estimation error vanishes completely, but the determina-
tion of ⇢̂

C

is then equivalent with the corresponding boolean
matrix multiplication of A ·B, and has the same problem
complexity as the actual multiplication. Thus, the block size
configuration is generally a trade-o↵ between accuracy and
runtime of the prediction.
However, we employ a greedy strategy, which reduces

the runtime by using density maps only for matrices with
a skewed non-zero distribution, and the scalar density for
matrices with an approximately uniform distribution. To
decide whether a given matrix has an uniformly distributed or
a skewed non-zero pattern we define a quantitative disorder
measure for sparse matrices.

4.4 Matrix Disorder Measures
We introduce two measures to quantify how the non-zero

pattern of a sparse matrix deviates from an (approximate)
uniform distribution. Since we already introduced the density
map that involves blocks of di↵erent densities, it is natural
to approach the problem from same the block-granular level.

4.4.1 Variance Analysis

One way of deciding whether or not a matrix is approxi-
mately uniformly distributed is to make use of a statistical
hypothesis testing method. The scalar density propagation
formulas as shown in Lemmas 4.1 and 4.2 are based on the
assumption that every element of the matrix has the same
probability to be populated, and the probability is equal
to the overall density ⇢. Using this assumption as the null
hypothesis H

0

, the number of non-zero elements in each
b⇥ b-block would follow a binomial distribution B(N, p) with
N = b2 and p = ⇢. This can be deduced in the same way as
a coin toss experiment, where the number of experiments N
is equal to the number of potential elements in a block, and
the success probability p = ⇢ equals the global population
density. From elementary statistics [7] we get

E[Nb⇥b

nz

] = b2⇢, E[V (Nb⇥b

nz

)] = b2⇢(1� ⇢) (8)

for the expectation values of for the number of non-zero
elements N

nz

in one b ⇥ b and the variance of Nb⇥b

nz

when
assuming a binomial distribution B(b2, ⇢).

The (dis-)conformance of the null hypothesis H
0

with the
reality can be determined using a simple one-factorial vari-
ance analysis. Therefore, we use the F -test [7], a likelihood
quotient test, which checks the conformance of the observed

variance of two random, normally distributed3 variables X
and Y . If the test statistic f = V

X

/V
Y

(ratio of variances
in X and Y ) exceeds a critical value f

crit

according to an
↵-quantile of the F -distribution, then H

0

is rejected, mean-
ing that X and Y are not of the same distribution with
probability 1-↵.

For a matrix with N
B

b⇥ b blocks, we define

V
observed

=
1

N
B

� 1

X

ij

(N
nz

(ij)� E[Nb⇥b

nz

])2 (9)

f =

✓

V
observed

V
expected

◆

=

✓

V
observed

E[V (Nb⇥b

nz

)]

◆

(10)

For uniformly distributed matrices, f has the expectation
value E[f ] = 1. The exact choice of the threshold, however,
depends on the sample size, i.e. the number of blocks N

B

and the desired accuracy.

4.4.2 Entropy

A known measure for the disorder of elements is the entropy

N

X

i

�p
i

ln p
i

, (11)

which is defined over a space with N entities (or states) i
that have a relative probability p

i

. The entropy is used in
a variety of contexts. To name an example, the Shannon
entropy [26] is used in information theory to quantify the in-
formation content of a message with N characters as entities.
In a similar manner, we can define and quantify the informa-
tion content of the non-zero pattern of a sparse matrix, by
identifying the p

i

with the local block density ⇢
ij

.
The entropy (11) is maximal if each entity has the same

probability. In the terms of sparse matrices, the theoretical
disorder is maximized if every block has the same local density
⇢
ij

⌘ ⇢. The scaled entropy

H̃ =
H

H
max

=

P

NB
ij

⇢
ij

ln ⇢
ij

N
B

⇢ ln ⇢
2 [0, 1] (12)

is sensitive to the matrix density skew, which we evaluated
in section 6. However, in contrast to f , the entropy is rather
suited for measuring relative changes in the non-zero disorder,
and it is hard to interpret the absolute value of H̃.

5. SpProdest
SpProdest is sketched in algorithm 2. First, the disorder

measure � =
p

1/f is retrieved (getDisorder) for each
matrix, which is a modified version of f according to Eq. (10).
Then, � is used to decide whether to store a only scalar
density value, or a density map (line 4). If � is lower than a
certain threshold �

T

, then the density map is created, if the
disorder is higher, then a scalar density is chosen. Finally,
the density estimates are calculated by using the probabilistic
density propagation method (EstProdDensity), according
to equations (5) and (7). Note that instead of calculating
� and ⇢̂ for each expression (line 4-7), they can be cached
as matrix statistics in the system, and reused for further
multiplications.

The complexity of SpProdest depends on the actual gran-
ularity of the density map. Assuming a chain multiplication

3for su�ciently large N and Np ! const., the binomial
distribution can be approximated by a normal distribution
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Algorithm 2 SpProdest

1: function spProdest(MatrixChain A
[1..p]

)
2: ⇢̂[][] 0
3: for Matrix A

i

2 A
[1..p]

do
4: �  getDisorder(A

i

)
5: if � < �

T

then
6: ⇢̂[i][i] scalarDensity(A

i

)
7: else
8: ⇢̂[i][i] densityMap(A

i

)

9: for 1 < j < p do
10: for j > i > 0 do
11: ⇢̂[i][j] estProdDensity(⇢̂[i][j�1], ⇢̂[j][j])

return ⇢̂[][]

of p square matrices, the time complexity would be in the
best case O(p) (no map) and in worst case O(p(n

b

)3), which
is equal to the chain multiplication of p n

b

⇥ n

b

matrices,
where n

b

is the dimension of the density grids. Analogously,
the space complexity of SpProdest is best case O(p), worst
case O(p(n

b

)2). In practice, the overhead of the SpProdest
component is negligible against the potential speedup gained
by the SpMachO, which is manifested in our evaluation in
section 6.3.

6. EVALUATION
In this section, we first evaluate the accuracy of spProdest

according to the deviation in the result sparse matrix densi-
ties. Second, we apply SpMachO on di↵erent matrix chains
and compare the execution runtime against R and a popular
commercial numerical algebra system for matrix computa-
tions (called system A here), and two further execution
approaches. The platform for our prototype implementation
is a two-socket Intel Xeon X5650 CPU with 2⇥ 6 cores with
2.66 GHz and a total of 48 GB RAM.

6.1 Density Estimate Accuracy
As mentioned in section 4, the density ⇢

C

of a matrix
C = A ·B depends not only on the densities of the factor
matrices ⇢

A

and ⇢
B

, but also on their non-zero patterns,
especially on the pattern skew. To show the e↵ect of the non-
zero pattern skew on the density estimation, we generated a
set of matrices with increasing skew. The skew parameter ⇠ in
our example defines the slope of a linear ascend in the density
distribution with increasing row number r: ⇢(r) = ⇠ · r. We
fixed the total density of A, thus, N

nz

=const.
The left-hand plot in Fig. 6 shows the actual density ⇢

C

and the estimated densities using the scalar density and
the density map approach with di↵erent block sizes. In our
example, the density of the product matrix ⇢

C

decreases
with increasing pattern skew. This conforms with our notion,
that in most cases a higher skew at constant density leads to
a lower density of the result matrix, although there are cases
which show the opposite behavior, for example, as in Fig. 5.

Nevertheless, it is clearly observable that a finer granularity
of the density map, and thus, a smaller block size, results in
a better density estimation. The idea is to choose the block
size as large as possible, since a finer granular density grid
negatively influences the runtime performance of spProdest.
We chose a block size of 256 ⇥ 256 as a good compromise
between accuracy and estimation runtime. The right-hand
plot of Fig. 6 confirms that the disorder measures are both
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Figure 6: Left: Estimated density ⇢̂
C

vs. actual density
(⇢

C

) of the product matrix C = A · B using the scalar
and the density map estimation with di↵erent grid block
sizes (BS). Matrices: A 2 R4096⇥2048,B 2 R2048⇥4096 and
average density h⇢i = 0.1. Right: Influence of the matrix
A,B nonzero skew on the disorder measures �, H̃.

sensitive to the nonzero skew, but the teststatistic-based
disorder measure � is much more sensitive to the skew than
the entropy-based H̃. In particular we can observe that
the trivial scalar density provides a su�cient accuracy for
approximately uniform nonzero patterns (⇠ ! 0).

6.2 Plan Ranking
In this experiment we evaluate the total cost model ac-

curacy of SpMachO by comparing the estimated runtime
against the actual runtime of each possible plan. Hence, Sp-
MachO is optimal if the plan with the lowest actual runtime
has also the lowest estimated runtime. However, this experi-
mental verification of optimality requires to run all possible
execution plans, which is not feasible for longer matrix chains
due to the exponentially growing number of plans according
to Eq. (4). Thus, we did a “brute-force evaluation” only for
matrix chains of length p = 3:

AS

1

·AS

2

·AS

3

. (13)

Although there are only two ways of setting the parenthesis
in this expression, with all the possible storage type transfor-
mations per multiplication node, one obtains 128 di↵erent
execution plans. Fig. 2 shows some of the possible plans, to
illustrate the problem complexity. The execution plans are
composed of

• multiplication operators D/S⇥D/S

D/S

, which can ei-
ther produce a sparse result matrix or a dense one. For
a chain of length p there are exactly p�1 multiplication
operators.

• transformation operator T
S/D

S/D

that transforms the
intermediate result from one storage representation into
another (which is either dense or sparse.) There can
be none or up to 23p�1 transformation operators.

SpMachO estimates the cost for each operator via the cost
functions TM,TT described in section 2. As a consequence, each
operator estimation potentially contributes to the absolute
execution runtime error.
In this experiment, we first executed all 128 plans and

measured the actual execution runtime. Thereafter, we com-
puted the runtime estimations using SpMachO’s cost model
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Figure 7: Vertical histogram of the actual (bars on left-hand
side) and estimated (bars on right-hand side) runtimes of all
128 possible execution plans. The edges denote the plan (dis-
)placement, the linewidth correlates with the corresponding
number of plans. The vertical time axis has a logarithmic
scale.

for each plan. Fig. 7 shows the histograms for the actually
measured (left-hand side) and the estimated (right-hand side)
execution runtimes. Note that the vertical axis has a logarith-
mic scale, hence, the width of the upper bins refers to a larger
time interval than the width of the lower bins. The connect-
ing edges in-between the bins of the two histograms show
where the plans of the actual runtime histogram are placed
in the estimated runtime histogram. If there is an ascending
edge, for example from the lowest bin in the left histogram
to the second lowest bin of the right histogram, then there is
at least one plan, whose runtime was overestimated. If the
edge is horizontal, then the estimated runtimes of all plans
corresponding to this edge are within the same time interval
as their actual runtimes. The width of the edges indicates
how many plans are a↵ected. It is worthwhile mentioning
that for the selection of the best execution plan, the quan-
titative estimation of execution runtimes could potentially
di↵er arbitrarily from the actual runtimes, as long as the esti-
mated order of the plans preserves the actual runtime order
correctly. This condition is only violated for the edges that
are crossing another edge. If the total runtime for a plan is
significantly under- or overestimated, its corresponding edge
crosses multiple other edges. Indeed, the goodness of the
cost model can be defined by the number of edges crossings,
weighted by the number of plans per crossing edge.

The majority of estimations, which are shown in Fig. 7,
are in the correct corresponding time bin. Although there
are quite a few crossings, especially in the middle part, most
of the edges only span over to the neighboring bin. Moreover,
for the selection of the most e�cient plan, only the lower
part of Fig. 7 is relevant. In particular, the plan with the
lowest estimated runtime, which is generated by SpMachO,
should be contained in the lowest bin of the actual runtime
histogram. Since all edges of the lowest estimated time bin
originate from the lowest actual time bin, we observe that the
SpMachO selected plan is at least among the top k plans, if
not the best.

6.3 Performance Comparison
We compared the absolute execution runtime of a matrix

chain multiplication expression using the optimized plan by
SpMachO against R and the commercial system A. Both

systems contain classes and algorithms for dense and sparse
matrices. In R (V3.0.0) we used the Cran R matrix pack-
age[2] (V1.0.12), in system A we used the native sparse
matrix representation. In addition,we included the following
alternative execution approaches to the measurement:

• Left-deep, sparse only: All matrices are multiplied
using a sparse-sparse into sparse multiplication using
the spspsp gemm kernel (S⇥S

S

), starting with the first
left pair and proceeding into the right direction.

• Right-deep, sparse-dense-dense: The outermost
right pair is multiplied using sparse-sparse into dense
multiplication (S⇥S

D

). Then, the matrices on the left
are consecutively multiplied with the right-hand dense
intermediate result matrix using the sparse-dense into
dense multiplication kernel (spdd gemm, S⇥D

D

).

Both approaches use the same infrastructure as SpMachO.
The reason why we chose exactly these two specific execution
strategies is that either of them turned out to be good (or
even optimal) for a reasonable large fraction of matrix chains.
In particular, they yield good performance if the inter-matrix
skew is low, i.e., the dimensions and the densities do not
di↵er, since in these cases, the impact of parenthesization
on the optimization is less significant. We also tried other
alternatives to the dynamic programming approach of Sp-
MachO, for example, a method that picks an execution plan
based on the metaheuristic simulated annealing. However,
due to the high dimensionality of the search space and the
large discrepancy in the runtimes, it turned to be out to be
far worse in most cases, hence, we did not include it in the
measurements.

6.3.1 Data Set

Since there are currently no standardized benchmarks for
large scale linear algebra expressions, it is generally di�cult
to provide a comprehensive performance comparison. There-
fore, we created two performance experiments: first, we took
real world-matrices of di↵erent domains and compared the
execution runtime of self-multiplication chains (matrix pow-
ers). Thereafter, we generated random matrices of di↵erent
dimension and density skews in order to study the systematic
behavior of SpMachO.

Table 2: Sparse matrices of di↵erent dimensions and pop-
ulation densities. The ⇢ = N

nz

/(n ⇥ n) value denotes the
population density (rounded) of each matrix. All matrices
are square (n⇥ n.)

Name Matrix Domain Dim. N
nz

⇢ · 102 [%]

NCSM1 Nuclear Physics 3440 2.930M 24.7
PWNET Power Eng. 8140 2.017M 3.0
JACO1 Econometric 9129 56K 0.07

Tab. 2 lists the matrix data sets which we used in the
evaluation. The first matrix NCSM1 is taken from a nuclear
physics group, the other two (PWNET, JACO1) are from
the Florida Sparse Matrix Collection4.

In our prototype system, some of the multiplication kernels
are implemented single-threaded, whereas other kernels have
parallel implementations. Although we emphasize that the
4http://www.cise.ufl.edu/research/sparse/matrices/
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Figure 8: Left Column: Measurement of the execution run-
time of sparse matrix chains (matrix powers). Right : The
total runtime of SpMachO is visually separated into its
components: the plan execution, the SpProdest runtime
and the dynamic programming part.

conceptual execution plan optimization of SpMachO works
orthogonal to the individual performance of the multiplica-
tion kernels, the absolute execution runtime does obviously
also depend on the low level implementation of each algo-
rithm. Hence, there is still potential to reduce the overall
runtime further by switching completely to massively par-
allelized multiplication kernels. However, although we use
mostly sequential kernels in the prototype, our algorithm
was still able to outperform R and the commercial system A.

6.3.2 Self Multiplications

In this part we discuss the performance of matrix self
multiplications (matrix powers), which is for example used
for the calculation of Markov chains models.
The left column of Fig. 8 shows the absolute runtimes

using SpMachO versus R, commercial system A, and the
right-deep spspsp and left-deep spdd approaches. The first
notion is that the relative performance speedup of SpMa-
chO becomes more significant with increasing chain length.
For matrices with a relatively high density, e.g. NCSM1,
SpMachO outperforms the other systems even for a single

multiplication already by several factors. In this case, Sp-
MachO recognizes that it is worth to convert the matrix
into dense representations prior to the multiplication. For
the second matrix chain (PWNET), the performance gap
is increasing with the chain length up to a speedup factor
of five. Only in the third plot (JACO1), the overhead of
SpMachO amortizes not before a chain length of four. In
this relatively simple case of matrix self multiplications, the
speedup is related to the density evolution of the intermediate
results. When the matrix reaches a relatively high density in
an early stage of the execution plan, SpMachO is likely to
choose dense formats and proceed with dense multiplication
kernels, whereas the use of sparse-only kernels will have a
poor performance for every additional multiplication. That
also explains why the right-deep spdd gemm strategy is often
optimal, e.g. for the PWNET matrix chain.

The right column in Fig. 8 shows the separate runtimes of
each component of SpMachO, which are: the plan execution,
the SpProdest runtime, and the dynamic programming loop.
The runtime of the dynamic programming part is negligible
and only visible for longer chains (10-12). Note that we the
SpProdest cost can be further reduced, if we cache the
density maps. As of now, they are created once prior to
each expression execution, consuming most of SpProdest’s
runtime.

As a side note, the R and commercial system A runtimes
show astonishing similarity with our left-deep spspsp gemm
approach. We assume that they use a similar way of execu-
tion.

6.3.3 Random Matrix Chains

In the next experiment, we used three di↵erent, randomly
created matrices. Products of three matrices are very com-
mon in many applications, for example in algorithms that
contain matrix factorizations.
In order to observe the systematic influence of the data

skew on the execution runtime, we varied three skew di-
mensions: the matrix shape skew, the inter-matrix density
skew and the matrix intra-density skew (as of section 6.1).
For each skew dimension, we varied a parameter ⇠ 2 [0, 1]
that quantifies the skew in a range from zero (no skew) to
one (maximum skew). More precisely, the parameter dimen-
sions (m/n)

i

, ⇢
i

and the intra-density skews ⇠
i

, are randomly
picked from a <min, max, average> distribution, where ⇠
corresponds to the deviation from the average value.
Since we created the matrices randomly for each skew

parameter configuration, one single configuration can have
various random instances, which results in a potentially large
variety of di↵erent runtimes. This is reasoned by the fact
that a skew in the matrices can a↵ect the execution runtime
in both directions – increasingly or decreasingly. Generally
speaking, a large skew in the data can dramatically slow
down naive execution approaches, but also reveals a large
optimization potential for SpMachO by exploiting the skew.
In contrast to the previous self-multiplication experiment,
a skew in the matrices leads to a higher influence of the
parenthesization, and the selection of storage representations
and algorithms.

To be independent of particular random matrix instances,
we repeated the measurement multiple times, hence, we took
25 di↵erent randomly created sparse matrix chains of length
three per configuration. Fig. 9 shows for each skew configura-
tion a box plot with the corresponding median, lower quartile,
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Figure 9: Average (log scale) runtime and variance comparison of SpMachO vs. the right-deep spdd and left-deep spspsp
approaches, R, and the commercial system for a multiplication of the expression A
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. We varied in x-direction:
the inter-density skew (left), the shape skew (middle) and the intra-density skew (right). The bounding <min,max,avg>
distributions for the data skew are <0.001, 0.5, 0.025> for matrix densities, and <32, 16384, 3072> for the matrix dimensions.
The intra-density skew ⇠ was chosen according to Fig. 6 with values ranging from 0 to 0.5.

upper quartile and whiskers of the execution runtimes. Note
that our measured runtime of SpMachO includes the time
for the density estimation (SpProdest). We observe the fol-
lowing characteristics: First, for low skew parameters, both
SpMachO and the right-deep spdd outperform the other
approaches for most of the instances. For unskewed matrices,
this underlines the result that we already obtained in the
previous experiment for matrix chains with similar densi-
ties, i.e. that the right-deep spdd multiplication execution
is optimal if intermediate results are rather dense. Second,
and more interesting, is the development of the runtime
distributions with higher data skews. In the inter-density
skew experiment (left plot), the median execution time in R,
the commercial system A and the left-deep spspsp approach
increases, whereas the SpMachO median time stays low and
gets even lower for ⇠ = 1. Moreover, the variance in time
of SpMachO grows notably slower than these of the other
systems. In the other two plots, we see a similar picture, al-
though most of the median execution times decrease slightly
in the shape skew experiment (middle plot), and more sig-
nificantly in the intra-density skew experiment (right plot).
Here, the increased intra-density skew leads in the majority
of cases to a reduced execution runtime, which conforms to
our notion. Still, in quite a few cases the runtime of the
other systems explodes, leading to the observed high variance
and scattering of the execution times. The right-deep spdd
approach is more robust, but not optimal for high skews. In
contrast, SpMachO is able to reveal the skew and exploit
it for optimization. As a result, we observe that SpMachO
has a by far better worst-case behavior than the established
systems.

7. RELATED WORK
As this work has overlaps with multiple research areas, we

subdivide the discussion into the major subtopics:

7.1 Optimization of Linear Algebra Expres-
sions

Despite the optimization potential, we did not find that
common numerical algebra systems optimize the execution
of linear algebra expressions based on matrix sparsity and
dimension characteristics. In contrast, the idea of optimizing

linear algebra operations on system level has been men-
tioned in SystemML [14, 6], which describes a Hadoop-based
machine-learning framework with an R-like declarative lan-
guage. However, the cost model they describe in [6] is based
on independent, one-dimensional scaling functions, and they
assume full density (⇢ = 1) for intermediate results. In [5]
they mention that they optimize by assuming “independence
with regard to the sparsity of intermediates”. In contrast, we
observed that particularly in situations with large density
di↵erences (inter-density skew) the density of intermediate
results influences the optimization significantly. Since simple
models are unable to reconstruct the complicated runtime
behaviour of matrix multiplication kernels, we also put our
focus on accurate cost models from an algorithmic perspec-
tive. In addition, our cost analysis revealed that matrix
dimensions and the matrix sparsity can not be regarded as
independent parameters.

7.2 Matrix Chain Multiplication and Density
Estimation

In contrast to dense matrix chain multiplication, which has
been discussed thoroughly in the past decades, e.g. in [12,
16, 21], there is little work about sparse matrix chain multi-
plications. Interesting work that should be mentioned in this
context is from Cohen [9, 10], who extended the dynamic
programming approach idea to sparse matrices. In her work,
she minimizes the overall number of floating point operations
that are needed to compute the matrix chain product by
predicting the non-zero structure for intermediate result ma-
trices on row/column-level. The density prediction algorithm
of [10] is based on random number propagation in a layered
graph, and has a fixed complexity ⇥(

P

N
nz,i

). However, as
observed in section 2, the actual runtime cost of sparse matrix
multiplication kernels are not just proportional to number
of floating point operations. Moreover, coming from a real
system perspective, we consider not only pure sparse-sparse
matrix multiplications, but leverage sparse-dense transfor-
mations and the coexistence of sparse and dense matrices to
optimize on a more complete level.

7.3 Join Optimization
The problem of sparse matrix chain multiplication is re-
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lated to join enumeration and cardinality estimation in a
relational database management system RDBMS. This con-
nection is more obvious when sparse matrices are represented
as hrow, col, vali triple tables [20]. In fact, a multiplication
can then be expressed as a join aggregation [3]. The use of
dynamic programming in join optimization [25, 22] and join
plan generation with respect to physical table properties [17]
were inspiring for this work, as well as the use of multidi-
mensional histograms [23] for the optimization of queries on
multidimensional data. Although the mathematical charac-
teristics of matrices and multiplications require a slightly
di↵erent perspective, it is an interesting aspect that some
of the ideas of relational join optimization can be used for
linear algebra.

8. CONCLUSION
In times of emerging analytical and scientific databases,

many systems [8, 6] started to deeply integrate linear algebra.
This work shows that integrating linear algebra operations,
such as matrix multiplications, is not just adding algorithms
to the database engine. In fact, due to di↵erent matrix
representations, algorithms, and the presence of data skew,
we observed that a naive execution of sparse matrix products
can be up to orders of magnitude slower than an optimized
one.
In this paper we presented SpMachO, which optimizes

sparse, dense and mixed matrix multiplications of arbitrary
length, by creating an execution plan that consists of trans-
formation and multiplication operators. By using detailed
cost functions of di↵erent sparse, dense and mixed matrix
multiplication kernels, SpMachO leads to a faster and more
robust execution compared to widely used algebra systems.
Moreover, our density prediction approach SpProdest with
an entropy-based skew awareness enables accurate memory
consumption and runtime estimates at each stage in the
execution plan.
To put it in a nutshell, we showed how methods inspired

from database technology can improve linear algebra compu-
tations, and took a step into the direction of taking complex-
ity from data scientists – who should not be required to have
profound knowledge about the connections between math-
ematical optimizations, matrix characteristics, algorithmic
complexities and the hardware parameters of their system.
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