O

proceedings

Cost Estimation of Spatial k-Nearest-Neighbor Operators’

Ahmed M. Aly

Purdue University

West Lafayette, IN
aaly@cs.purdue.edu

ABSTRACT

Advances in geo-sensing technology have led to an unprecedented
spread of location-aware devices. In turn, this has resulted into a
plethora of location-based services in which huge amounts of spa-
tial data need to be efficiently consumed by spatial query proces-
sors. For a spatial query processor to properly choose among the
various query processing strategies, the cost of the spatial operators
has to be estimated. In this paper, we study the problem of estimat-
ing the cost of the spatial k-nearest-neighbor (k-NN, for short) op-
erators, namely, k-NN-Select and k-NN-Join. Given a query that
has a k-NN operator, the objective is to estimate the number of
blocks that are going to be scanned during the processing of this
operator. Estimating the cost of a k-NN operator is challenging for
several reasons. For instance, the cost of a k-NN-Select operator is
directly affected by the value of k, the location of the query focal
point, and the distribution of the data. Hence, a cost model that
captures these factors is relatively hard to realize. This paper in-
troduces cost estimation techniques that maintain a compact set of
catalog information that can be kept in main-memory to enable fast
estimation via lookups. A detailed study of the performance and
accuracy trade-off of each proposed technique is presented. Ex-
perimental results using real spatial datasets from OpenStreetMap
demonstrate the robustness of the proposed estimation techniques.

INTRODUCTION

The ubiquity of location-aware devices, e.g., smartphones and
GPS-devices, has led to a variety of location-based services in
which large amounts of geo-tagged information are created every
day. This demands spatial query processors that can efficiently pro-
cess spatial queries of various complexities. One class of opera-
tions that arises frequently in practice is the class of spatial k-NN
operations. Examples of spatial k-NN operations include: (i) Find
the k-closest hotels to my location (a k-NN-Select), and (ii) Find
for each school the k-closest hospitals (a k-NN-Join).

The k-NN-Select and k-NN-Join operators can be used along
with other spatial or relational operators in the same query. In this

1.

*This research was supported in part by National Science Founda-
tion under Grants IIS 0916614, IIS 1117766, and IIS 0964639.

(©2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

Walid G. Aref

Purdue University
West Lafayette, IN
aref@cs.purdue.edu

457

Mourad Ouzzani
Qatar Computing Research
Institute
Doha, Qatar
mouzzani@qf.org.qa

case, various query-execution-plans (QEPs, for short) for the same
query are possible, but with some of the QEPs having better exe-
cution times than the others. The role of a query optimizer is to
arbitrate among the various QEPs and pick the one with the least
processing cost. In this paper, we study the problem of estimating
the cost of the k-NN-Select and k-NN-Join operators.

To demonstrate the importance of estimating the cost of these op-
erators, consider the following example query: ‘Find the k-closest
restaurants to my location such that the price of the restaurant is
within my budget’. This query combines a spatial k-NN-Select with
a relational select (price < budget). There are two possible QEPs
for executing this query: (i) Apply the relational select first, i.e., se-
lect the restaurants with price < budget and then get the k-closest
out of them, or (ii) Apply an incremental k-NN-Select (i.e., dis-
tance browsing [14]) and evaluate the relational select on the fly;
execution should stop when k restaurants that qualify the relational
predicate are retrieved. Clearly, the two QEPs can have different
performance. Thus, it is essential to estimate the cost of each pro-
cessing alternative in order to choose the cheaper QEP. Observe
that distance browsing is also applicable to non-incremental k-NN-
Select (i.e., to QEP(i)). [14] proves that for non-incremental k£-NN-
Select, the number of scanned blocks is optimal in distance brows-
ing. Thus, in this paper, we model the cost of distance browsing
being the state-of-the-art for k-NN-Select processing.

In addition to modeling the cost of the k-NN-Select, we study
the cost of the k-NN-Join. The k-NN-Join is a practical spatial op-
eration for many application scenarios. For example, consider the
following query that combines a relational or a spatial predicate
with a k-NN-Join predicate. Assume that a user wants to select
for each hotel, its k-closest restaurants (k-NN-Join predicate) such
that the restaurant/hotel’s price is within the user’s budget (rela-
tional predicate), or that the restaurant/hotel’s location is within a
certain downtown district (spatial range predicate). Clearly, esti-
mating the cost of a k-NN-Join is important to decide the ordering
of the relational, spatial, and k-NN operators in the QEP. A k-NN-
Join can also be useful when multiple k-NN-Select queries are to
be executed on the same dataset. To share the execution, exploit
data locality and the similarities in the data access patterns, and
avoid multiple yet unnecessary scans of the underlying data (e.g.,
asin [11]), all the query points are treated as an outer relation and
processing is performed in a single £-NN-Join. In this paper, we in-
troduce a cost model for locality-based k-NN-Join processing [22],
which is the state-of-the-art in k-NN-Join processing.

While several research efforts (e.g., see [2, 3,4, 5,7, 15, 17, 18,
23]) estimate the selectivity and cost of the spatial join and range
operators, they are not applicable to k-NN operators. For instance,
the cost of a spatial range operator is relatively easy to estimate be-
cause the spatial region of the operator, in which the query answer

10.5441/002/edbt .2015.40

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2015.40

resides, is predefined and fixed in the query. In contrast, the spa-
tial region that contains the k-nearest-neighbors of a query point,
in the case of a k-NN-Select, or a point of the outer relation in the
case of a k-NN-Join, is variable since it depends on the value of
k, the location of the point, and the density of the data (i.e., its
distribution). These three parameters render the problem of k-NN
cost-estimation more challenging.

In this paper, we introduce the Staircase technique for estimat-
ing the cost of k-NN-Select. The Staircase technique distinguishes
itself from existing techniques by the ability to quickly estimate the
cost of any query using an O(1) lookup. The main idea of the Stair-
case technique is to maintain a compact set of catalog information
that summarize the cost. We perform various optimizations to limit
the size of the catalog such that it can easily fit in main-memory.
We empirically compare the performance of the Staircase technique
against the state-of-the-art technique [24]. We show that the Stair-
case technique has better accuracy for spatial non-uniform data
in the two-dimensional space while achieving orders-of-magnitude
gain in query estimation time. Having a fast query execution time is
vital for location-based services that serve multiple queries at very
high rates, e.g., thousands of queries per second. Thus, estimating
the cost needs to be extremely fast as it is a preliminary step before
the query itself is executed.

In addition to estimating the cost of k-NN-Select, we introduce
three new techniques for estimating the cost of £-NN-Join. Simi-
larly to the Staircase technique, the proposed techniques employ a
compact set of catalogs that summarize the cost and enable fast es-
timation. First, we present the Block-Sample as our baseline tech-
nique. Then, we introduce the Catalog-Merge technique that has
better estimation time than the Block-Sample technique, but incurs
relatively high storage overhead. Then, we introduce the Virtual-
Grid technique that incurs less storage overhead than the Catalog-
Merge technique. To the best of our knowledge, estimating the cost
of k-NN-Join has not been addressed in previous work.

The contributions of this paper can be summarized as follows:

e We introduce the Staircase technique for estimating the k-
NN-Select cost.

e We introduce three novel techniques for estimating the k-
NN-Join cost, namely the Block-Sample, Catalog-Merge,
and Virtual-Grid techniques.

e We conduct extensive experiments to study the performance
and accuracy tradeoff that each of the proposed technique
offers. Our experimental results demonstrate that:

— the Staircase technique outperforms the techniques
in [24] by two orders of magnitude in estimation time
and by more than 10% in estimation accuracy,

— the Catalog-Merge technique achieves an error ratio of
less than 5% while keeping the estimation time below
one microsecond, and

— the Virtual-Grid technique achieves an error ratio of
less than 20% while reducing the storage required to
maintain the catalogs by an order of magnitude com-
pared to the Catalog-Merge technique.

The rest of this paper proceeds as follows. Section 2 intro-
duces some preliminaries and discusses the related work. Section 3
presents the Staircase technique for estimating the cost of k-NN-
Select. Section 4 presents the Block-Sample, Catalog-Merge, and
Virtual-Grid techniques for estimating the cost of k-NN-Join. Sec-
tion 5 provides an experimental study of the performance of the
proposed techniques. Section 6 contains concluding remarks.

458

> Tl -

JMINDIST

C

Figure 1: The MINDIST and MAXDIST metrics. In distance
browsing [14], when k£ = 2 and ¢ is a query focal point of a
k-NN-Select, only blocks A and C' are scanned, i.e., cost = 2.

2. PRELIMINARIES & RELATED WORK

We focus on the variants of the k-NN operations given below.
Assume that we have two tables, say R and .S, that represent two
sets of points in the two-dimensional space. For simplicity, we use
the Euclidean distance metric.

e k-NN-Select: Given a query-point g, ok q(R) returns the k-
closest to g from the set of points in R.

e k-NN-Join: R My S returns all the pairs (7, s), where
r € R, s € S, and s is among the k-closest points to 7.

Observe that the k-NN-Join is an asymmetric operation, i.e., the
two expressions: (R Mynn S) and (S Xynn R) are not equiva-
lent. In the expression (R Miyn S), we refer to Relations R and
S as the outer and inner relations, respectively.

We assume that the data points are organized in a spatial index
structure. However, we do not assume a specific indexing struc-
ture; our proposed techniques can be applied to a quadtree, an R-
tree, or any of their variants, e.g. [12, 20, 13, 6, 16]. These are
hierarchical spatial structures that recursively divide the underly-
ing space/points into blocks until the number of points inside a
block satisfies some criterion (e.g., being less than some threshold).
We assume the existence of an auxiliary index, termed the Count-
Index. The auxiliary index does not contain any data points, but
rather maintains the count of points in each data block.

We make extensive use of the MINDIST and MAXDIST met-
rics [19]. Refer to Figure 1 for illustration. The MINDIST (or
MaXDIST) between a point, say p, and a block, say b, refers to the
minimum (or maximum) possible distance between p and any point
in b. Similarly, the MINDIST (or MAXDIST) between two blocks is
the minimum (or maximum) possible distance between them. In
some scenarios, we process the blocks in a certain order according
to their MINDIST from a certain point (or block). An ordering of
the blocks based on the MINDIST from a certain point (or block) is
termed MINDIST ordering.

Before describing how to estimate the cost of the k-NN oper-
ations, we briefly describe the state-of-the-art algorithms for pro-
cessing the k-NN-Select and k£-NN-Join.

Existing k-NN-Select algorithms prune the search space follow-
ing the branch-and-bound paradigm. [19] applies a depth-first al-
gorithm to read the index blocks in MINDIST order with respect to
the query point. Once k points are scanned, the distance between ¢
and the k-farthest point encountered is marked. Refer to Figure 1
for illustration. Assume that k = 2. Scanning the blocks starts with
Block A (MINDIST = 0). Two points, y and z, are encountered, so
the distance between g and z (the farthest) is marked and scanning

the blocks continues (Block C' then Block B) until the MINDIST
of a scanned blocks is greater than the distance between ¢ and z.
Thus, the overall number of blocks to be scanned is 3.

The above algorithm is suboptimal and cannot be applied for in-
cremental k-NN retrieval. The distance browsing algorithm of [14]
achieves optimal performance and can be applied for incremental
as well as non-incremental k-NN processing. The main idea of this
algorithm is that it can incrementally retrieve the nearest-neighbors
to a query point through its getNextNearest () method. Two
priority queues are maintained: (1) a priority queue for the blocks
that have not been scanned yet (blocks-queue for short), and (2)
a priority queue for the tuples in the already scanned blocks that
have not been returned as nearest-neighbors yet (tuples-queue for
short). The entries in the tuples-queue are prioritized based on the
distance from the query point, while the entries in the blocks-queue
are prioritized based on the MINDIST from the query point. Upon an
invocation of the getNextNearest () method, the top, say ¢, of
the tuples-queue is returned if the distance between ¢ and the query
point is less than the MINDIST of the top of the blocks-queue. Oth-
erwise, the top of the blocks-queue is scanned and all its tuples are
inserted into the tuples-queue (ordered based on the distance from
the query point). To illustrate, we apply the distance browsing al-
gorithm to the example in Figure 1. Assume that £k = 2. Block A
is scanned first. Points y and z are inserted into the tuples-queue.
The MINDIST of Block C is less than the distance of the top of the
tuples-queue, and hence Block C is scanned and Point z is inserted
into the tuples-queue. Now, Point z is retrieved as the nearest-
neighbor followed by Point y. Observe that the algorithm avoids
scanning Block B. Thus, the overall number of scanned blocks is 2
that is less than the number of blocks to be scanned if the algorithm
in [19] is applied.

In addition to being optimal, the distance browsing algorithm is
quite useful when the number of neighbors to be retrieved, i.e., &,
is not known in advance. One use case is when a k-NN-Select
predicate is combined with a relational predicate within the same
query. Consider, for example, a query that retrieves the k-closest
restaurants that provide seafood. The distance browsing algorithm
gets the nearest restaurant and then examines whether it provides
seafood or not. If it is not the case, the algorithm retrieves the
next nearest restaurant. This process is repeated until k restaurants
satisfying the condition (i.e., provide seafood) are found.

Being the state-of-the-art in k-NN-Select processing, we model
the cost of the distance browsing algorithm in this paper. Observe
that the cost of the distance browsing algorithm is dominated by
the number of blocks that get scanned. Thus, given a k-NN-Select,
the goal is to estimate the number of blocks to be scanned with-
out touching the data points. Observe that this goal is challenging
because the cost depends on: (1) the value of k, (2) the location
of the query point, and (3) the distribution of the data that directly
affects the structure of the index blocks. These factors have direct
impact on the cost. Refer to Figure 1 for illustration. If the value
of k is relatively large, MINDIST scanning of the blocks will con-
tinue beyond Block C, and thus leading to a larger overall number
of scanned blocks. Similarly, if the location of ¢ is different, the
MINDIST values will change, and thus leading to different block or-
dering during the MINDIST scan, and different overall number of
scanned blocks. Also, if the distribution of the data is different, the
index blocks will have completely different shapes and locations in
space, and this will affect the values of MINDIST, and hence will
affect the overall number of scanned blocks.

[8, 9, 24] study the problem of estimating the cost of a k-
NN-Select operator for uniformly distributed datasets. The au-
thors of [24] further extend their techniques to support non-uniform

459

datasets. The main idea is to estimate the value of Dy, (Figure 1),
i.e., the smallest radius of a circle centered at the query point and
that contains k points. Once the value of Dy, is estimated, the num-
ber of blocks that overlap with the circle whose center is the query
point and whose radius is Dy, is determined. This number can be
computed by scanning the blocks of the Count-Index in MINDIST
order from gq.

Given a non-uniform dataset, [24] assumes that the points in each
block are uniformly distributed and that each block has a constant
density. Histograms are maintained to estimate the density of each
block in the index. To estimate the cost, [24] applies the following
algorithm. The blocks of the Count-Index are scanned in MINDIST
order from g. Hence, the scanning starts from the block, say b,
that is closest (according to MINDIST) to q. Observe that if g falls
within any block, the MINDIST corresponding to that block will
be zero, and hence scanning will start from that block. Given the
density of Block b, the area of a circle containing k points for that
density is computed and then the value of Dy is determined. If
the circle is fully contained inside Block b, the search terminates;
otherwise, further blocks are examined and the combined density of
these blocks is computed. Given the combined density, the area of
a circle containing k points is determined. This process is repeated
until the computed circle is fully contained within the bounds of the
examined blocks. We refer to this algorithm as the density-based
algorithm.

Although the density-based algorithm in [24] achieves good es-
timation accuracy, it incurs relatively high overhead in many cases.
For instance, if the value of k is high or if the density of the blocks
around the query point is low, the algorithm will keep extending
its search region by examining further blocks until its search region
contains k points. In addition, at each iteration of the algorithm, the
combined density of the encountered blocks is computed, which
can be a costly operation. The process of estimating the cost of a
database operator has to be extremely fast. Typically, a database
query optimizer keeps a set of catalog information that summarizes
the cost estimates. Then, given a query, it performs quick lookups
or simple computations to estimate the corresponding cost. With
that goal in mind, we propose a new cost estimation technique that
incurs no computational overhead at query time, but rather requires
O(1) lookups.

Several query processing techniques have been proposed in the
literature for processing k-NN-Join operators, e.g., [10, 25, 22].
[22] represents the state-of-the-art technique in A-NN-Join and
has proved to achieve better performance than other existing tech-
niques. The key idea that distinguishes [22] from other existing
techniques is that in any other technique, each point in a block inde-
pendently keeps track of its k-nearest-neighbors encountered thus
far with no reuse of neighbors of one point as being neighbors of
another point in its spatial proximity. In contrast, [22]’s approach
identifies a region in space (termed locality) that contains all of the
k-nearest-neighbors of all the points in a block. Once the best pos-
sible locality is built, each point searches only the locality to find its
k-nearest-neighbors. This block-by-block processing methodology
results in high performance gains.

A naive way to estimate the cost of a k-NN-Join operator us-
ing the density-based algorithm of [24] is to treat every point from
the outer relation as a query point for a k-NN-Select operator and
then aggregate the cost across all the points from the outer rela-
tion. However, this approach is costly. Furthermore, this approach
does not capture the rationale behind the block-by-block process-
ing methodology in k-NN-Join processing as stated above. This
calls for efficient cost estimation techniques that can represent the
cost of the state-of-the-art techniques in k-NN-Join processing.

(a) Cost=1

(b) Cost=6

(c) Cost=10

Figure 2: Variability of the cost (number of blocks to be scanned) of a query point given its position with respect to the center of the
block. Assume that the dashed circle includes exactly % points. The cost tends to increase as the query point gets farther from the
center of the block. The maximum cost is at the corners of the block if we assume uniform distribution of the points within the block.

3. K-NN-SELECT COST ESTIMATION

3.1 The Staircase Technique

In this section, we present the Staircase technique; a new tech-
nique for estimating the cost (i.e., number of blocks to be scanned)
of a k-NN-Select o,4(R). The main idea of the Staircase tech-
nique is to maintain a set of catalog information that enables quick
estimation of the cost via lookups. Conceptually, the catalog should
reflect the cost of a k-NN-Select for every possible query location
and for every possible value of k. Given a query point, say ¢, and
the value of k, we can search the catalog and determine the cost.
However, maintaining a catalog that covers the domains of these
two parameters (k and the location of q) is prohibitively expensive
in terms of computation cost and storage requirements. The num-
ber of possible locations of ¢ is infinite and the value of k£ can range
from 1 to the size of the underlying table.

One key insight to improve the above approach is to exploit the
spatial locality of the k-NN operation to reduce the size of the cat-
alog. We observe that the k-nearest-neighbors of a query point, say
q1, are likely to be among the k-nearest-neighbors of another query
point, say g, if g1 and g2 are within the spatial proximity of each
other. In addition, any spatial index structure aims at grouping the
points that are within spatial proximity in the same block. This
means that the k-nearest-neighbors of the points of the same block
have high overlap, and hence the query points that fall within the
same block are likely to have similar costs. Given a query point,
say ¢, we can estimate the cost corresponding to g by the cost cor-
responding to the center of the block in which gq is located.

Although the above approach yields good estimation accuracy,
it is slightly inaccurate because the cost corresponding to a query
point, say g, may vary according to the location of ¢ with respect
to the center of the block, say b, in which q is located. For a fixed
value of k, the cost corresponding to ¢ is minimum if q is near the
center of b and tends to increase as q gets far from the center until it
reaches its maximum value in the corners of b. Refer to the example
in Figure 2 for illustration of this observation. This observation is
particularly true if we assume that within a leaf index block, the
points are uniformly distributed. Such assumption is practically
reasonable. A typical spatial index tends to split the data points
(which can be non-uniformly distributed) until the points are almost
balanced across the leaf blocks, and hence points that are within the
same block tend to have a uniform distribution within that block.

Applying the above observation, we estimate the cost corre-
sponding to a query point, say g, by combining two values: 1) the
cost corresponding to the center of the block, Ceenter, (i-€., the
minimum cost), and 2) the cost corresponding to one of the corners,

460

q

e

*

Figure 3: Cost estimation with respect to the center of a block.

Cleorner, (i.€., the maximum cost). More precisely, the estimated
cost can be computed as:

2L

C t = Ccﬁn er A . .)
o8 ter F Diagonal

M
where Diagonal is the length of the diagonal of the block, L is the
distance between ¢ and the center of the block, and

A= Ccorner - Ccenter- (2)

Refer to Figure 3 for illustration.

Thus, we do not need to precompute the k-NN cost for every
possible query location. Instead, we precompute the cost only for
the center and the corners of every block. Although this can reduce
the size of the catalog, we still need to precompute the cost for ev-
ery possible value of k£, i.e., from 1 to the size of the table. This can
still be prohibitively expensive because it needs to be performed for
every block in the index.

We observe that the cost corresponding to any query point tends
to be constant for different ranges of values of k. The reason is
that the number of points in a block is relatively large, and hence
the cost (number of blocks to be scanned) tends to be stable for a
range of values of k. To illustrate this idea, consider the example
in Figure 1. Assume that Blocks A and B have 1000 points each.
Assume further that k1 = 500 tuples in Block A have a distance
that is less than the MINDIST betweeb Block B and the query point
q. Applying the distance browsing algorithm [14] as explained in
Section 2, points in Block A will be inserted in the tuples-queue.
The k1 points in Block A will be retrieved from the tuples-queue
before Block B is scanned. Thus, the cost (number of scanned
blocks) will equal to 1 for k € [1, ki]. For k > ki, Block B will
have to be scanned, and thus the cost will equal to 2. However,
the cost will remain equal to 2 for k € [k1 + 1, k2], where k2
equals the number of points in the tuples-queue that have distance
less than the MINDIST between Block C' and the query point g.

To better illustrate the above observation, we use the Open-
StreetMap dataset and build a quadtree index on top (as detailed
in Section 4), and then measure the cost corresponding to a ran-
dom query point. Figure 4 illustrates that the cost is constant for

[kslart, kend] Cost
1, 520
% 15 [| S
2 [521, 675] 7
« 10
; [676, 3496) 8
g€ ° [3497,6799] | 12
=]
Z 0 [4700, 5837] | 13
1 2000 4000 6000 8000 10000
" (5838, 10000] | 14
(a) (b)

Figure 4: Stability of the cost for different values of k.

large intervals of k.! The shape of the graph resembles a staircase
diagram (and hence the name Staircase for the technique). As the
figure demonstrates, the cost is constant for relatively large inter-
vals of k. For instance, when k € [1, 520], the cost is 3 blocks,
and when k € [521, 675], the cost is 7 blocks. Observe that this
stability increases as the maximum block capacity increases, i.e.,
the intervals become larger.

We leverage the above stability property to reduce the storage
size associated with every block in the index. Instead of blindly
computing the cost corresponding to the center (and the corners)
of a block for every possible value of k, we determine the values
of k at which the cost changes. We store a set of intervals and
associate with each interval the corresponding cost. We refer to
this information as the catalog. The catalog is a set of tuples of the
form ([kstart, kend], size). Refer to Figure 4 for illustration.

3.2 Building the Catalog

The process of building a catalog, be it for the center of a block
or for one of the corners, is straightforward. Similarly to the dis-
tance browsing algorithm in [14], we maintain two priority queues,
a tuples-queue and a blocks-queue. The blocks-queue orders the
blocks according to a MINDIST scan. In contrast, the tuples-queue
orders the points according to their distance from the query point,
say gq. We start with the block in which q is located and insert all
the block’s points into the tuples-queue. At this point, the cost = 1.
We keep removing points from the tuples-queue until the MINDIST
in the blocks-queue is less than the top of the tuples-queue. The
number of points, say ki, removed so far from the tuples-queue
represents the first interval in the catalog, i.e., ([1, k1], 1). Then,
we scan the next block in the blocks-queue, insert all its points into
the tuples-queue, and increment the cost. We repeat this process
until all the blocks are scanned or a sufficiently large value of k is
encountered. Pseudocode of the process of building the catalog of
a query point is illustrated in Procedure 1.

For every block in the index, we precompute five catalogs, one
for the center and one for each corner. We merge the four catalogs
corresponding to the corners into one catalog that stores for each
value of k, the maximum cost amongst the four corners. Thus,
we store only two catalogs, one for the center (center-catalog, for
short), and one that corresponds to the maximum cost at the corners
(corners-catalog, for short).

3.3 Cost Estimation

Given a query with a k-NN-Select at Location ¢, the cost can
be estimated as follows. First, we identify the block that encloses ¢
and then search in the center-catalog and the corners-catalog for the

'A similar behaviour occurs for any query point, but with different
values.

Procedure 1 Building the k-NN-Select-Cost Catalog.

Terms: q: The query point to which we need to build the catalog.
M AX _K: The maximum possible/maintained value of k.
tuple@ + 0; block@ < MINDIST scan w.r.t. ¢
cost + 0; currentK < 1; catalog < 0
while (currentK < MAX_K) do
current Block < blockQ.next()
cost + +
tupleQ.insert(current Block.allPoints) ordered ac-
cording to the distance from q
7: startK < currentK
8: while (tupleQ.top.distance < block@.top.MINDIST) do
9: tuple@.removeT op()
10: currentK + +
11: end while
12: catalog.add([startK, currentK], cost)
13: end while
14: return catalog

I
Catalog| |

SN ol e

Query Output
k < 10,000 I
Se|ect_'@ator Estimate Pipeline
k = 10,000
Count Data
Index Index

Figure 5: Cost estimation for a k-NN-Select.

intervals to which the value of k belongs. Observe that the above
process for building a catalog yields a sorted list of ranges of values
of k, and hence binary search can be applied to find the enclosing
interval and the corresponding cost in logarithmic time w.r.t. the
number of intervals. Then, the cost is estimated using Equations 1
and 2.

Because the Staircase technique relies on precomputing the esti-
mates, the auxiliary index that contains the statistics, e.g., counts
and cost estimates, has to be a space-partitioning index, e.g.,
quadtree or grid, so that the query point always falls inside a block.
Observe that the structure of the auxiliary index can be independent
of the index that contains the actual data points, i.e., the data-index.
If the data-index is a space partitioning index, then the auxiliary
index can have the same exact structure as the data-index. If the
data-index is a data-partitioning index, e.g., R-Tree, then the struc-
ture of the auxiliary index will be different. In either case, the query
point will never be outside a block in the auxiliary index, and hence
we will always be able to estimate the cost

Because the number of blocks in the index can be large, the stor-
age overhead of the catalogs can be significant. We hence limit the
maximum value of k that a catalog supports to a practically large
constant, e.g., k = 10,000. This would result in compact cata-
logs that can be practically maintained for each index block. In
the case when a k-NN-Select query has a k value that is greater
than 10, 000, we can estimate its cost by applying the algorithm

—
B[
J >< //’

—) ;
RN !

Z ‘ P /

B 700 paints

Figure 6: Building the locality of a block. The gray block Q is a
block from the outer relation; other blocks are from the inner
relation.

in [24] using the Count-Index. Figure 5 illustrates the typical flow
of a k-NN-Select query. Queries with & > 10,000 (that do not
arise frequently in practice) are directed to the Count-Index. All
other queries (k < 10,000) are served through the catalogs. In
Section 5, we show that for a real dataset of 0.1 Billion points, the
overhead to store all the catalogs is less than 4 MBs.

4. K-NN-JOIN COST ESTIMATION

As highlighted in Section 2, the state-of-the-art technique [22]
in k-NN-Join processing applies a block-by-block mechanism in
which, for each block from the outer relation, the locality blocks
are determined from the inner relation. The locality blocks of a
block, say b, from the outer relation represent the minimal set of
blocks in which the k-nearest-neighbors of any point € bo exist.
Thus, each point from the outer relation searches only the locality
of its enclosing block to find its k-nearest-neighbors.

Before estimating the cost of k-NN-Join, we briefly explain how
the locality of a block is computed. Given a block from the outer re-
lation, say b,, the corresponding locality blocks in the inner relation
are determined as follows. Blocks of the inner relation are scanned
in MINDIST order from b,. The sum of the count of points in the
encountered blocks is maintained. Once that sum reaches k, the
highest MAXDIST, say M, of an encountered block is marked and
scanning of the blocks continues until a block of MINDIST greater
than M is encountered. The encountered blocks represent the lo-
cality of b,. For example, consider the process of finding the lo-
cality of Block @ in Figure 6 where k = 10. Blocks are scanned
in MINDIST order from Block @. This means that scanning starts
with Block Z. Assume that Block Z contains 700 points. Now,
the sum of the count of points in the encountered blocks (in this
case, only Block Z) exceeds k. The MAXDIST between Block @
and Block Z is marked, and scanning the blocks continues (Blocks
X, Y, and T, respectively) until Block L is encountered. At this
point, scanning is terminated because Block L has MINDIST from
Block @ that is greater than the marked MAXDIST (between Blocks
Q@ and 7). Hence, the number of blocks in the locality of Block @
is 4.

A naive way to estimate the cost (i.e., the total number of scanned
blocks) of a k-NN-Join is to compute the size of the locality blocks
for each block in the outer relation and sum these sizes. However,
this can be expensive because the number of blocks in the outer re-
lation can be arbitrarily large. In the rest of this section, we present
three different techniques that address this problem.

462

2

S 70

o 56 -

E [kstan, kend] Loc_allty

] 42 Size

S o8 [1,313] 25

° [314, 5380] 41

g [5381, 6537] 54

€ .

2 0 6538, 9368 7

=z 1 2000 4000 6000 8000 10000 | 1020] S
K [9369, 10882] | 63

(@) ()

Figure 7: Stability in the size of the locality for different values
of k.

4.1 The Block-Sample Technique

Instead of computing the locality for each block of the outer rela-
tion, we pick a random sample of these blocks, compute the locality
size of each block in the sample, and then aggregate the total size
and scale it to the total number of blocks in the outer relation. We
refer to this technique as the Block-Sample technique.

Given a set of n, blocks from the outer relation, we pick a ran-
dom sample of size s. If the aggregate locality size of the s blocks
is agg, then we estimate the overall join cost as 249X"e The sam-
ple blocks are chosen to be spatially distributed across the space in
which the blocks of the outer relation reside. To get such sample of
blocks, we do either a depth-first or breadth-first index traversal for
the blocks of the outer relation and skip blocks every =2.

Although the above technique can result in high accuracy when
the sample size increases, it incurs computational overhead upon
receiving a k-NN-Join query. As mentioned earlier in Section 2,
a typical query optimizer requires fast estimation of the cost, pos-
sibly through quick catalog-lookups. With this goal in mind, we
introduce next a catalog-based approach.

4.2 The Catalog-Merge Technique

The main idea of the Catalog-Merge technique is to precompute
the size of the locality of each block in the outer relation and store
it in a catalog. Given a k-NN-Join query, we can simply aggregate
the precomputed values in the catalogs of the blocks of the outer
relation. However, the size of the locality depends on the value of
k, so we need to precompute it for every possible value of k£, which
can be prohibitively expensive.

Similarly to the case of k-NN-Select, we observe that the size
of the locality of a given block tends to be constant (stable) for
relatively large intervals of k. To illustrate, consider the example
in Figure 6. Assume that Block Z has 700 points. If k has any
value between 1 and 700, exactly the same set of blocks will rep-
resent the locality of Block Z, i.e., the size of the locality will be
the same. To better illustrate this observation, we use the Open-
StreetMap dataset and build a quadtree index on top (as detailed
in Section 4), and then measure the locality size of a randomly se-
lected block.> Figure 7 illustrates that the size of the locality is
stable for large intervals of k.

To build the locality-catalog of a block, we identify the inflection
points in the range of values of k at which the locality size changes,
e.g., k = 313,5380,...,9368 in Figure 7. This can be performed
using binary search within the range of values of k. In particular,
we start with k& = 1 and compute the locality size, say S. Then,
we perform a binary search for the smallest value of & at which the

%A similar behaviour occurs for any block, but with different val-
ues.

locality size would be greater than S, i.e., the inflection point, say
k;. At this moment, we identify the first range of values as [1, k; —
1]. Afterwards, we perform another binary search starting from
k = k; to get another range of values of k. This process is repeated
until no inflection points are found, i.e., when the maximum value
of k is reached.

A more efficient approach is to build the locality-catalog incre-
mentally through two rounds of MINDIST scan of the Count-Index.
These MINDIST scan rounds can be achieved using two priority
queues in which the blocks of the Count-Index are ordered accord-
ing to their MINDIST from the block we need to build the catalog
for. The two MINDIST scan rounds are interleaved. One scan ex-
plores the blocks that should contain at least C' points. We refer
to this scan as Count-Scan. The other scan explores the blocks that
have MINDIST < the highest MAXDIST value of the explored blocks
so far from Count-Scan. We refer to this queue as Max-Scan. We
maintain a counter, say C. Whenever a block from Count-Scan is
retrieved, its MAXDIST, say M, is marked and the value of C' is
incremented by the number of points in the retrieved block. Then,
blocks from Max-Scan are scanned until the MINDIST is greater
than the highest value encountered for M. At this point, a new en-
try is created in the catalog by aggregating the number of blocks
retrieved from Max-Scan thus far. This process is repeated until
C reaches the maximum value of k or all the blocks of the inner
relation are consumed by Count-Scan.. Pseudocode for the process
is given in Procedure 2. Refer to Figure 6 for illustration, where
we compute the catalog of Block). We start with C' = 1. In
Count-Scan, we explore Block Z, update C' to be 700, and mark
the highest MAXDIST encountered. Then, in Max-Scan, we explore
Blocks X, Y, and T" because their MINDIST is less than the largest
MaXDIST encountered. At this moment, we create a catalog en-
try ([1,700], 4) that represents the start and end values of C' with
the cost of four blocks (namely, Z, X, Y and T'). Afterwards, we
continue Count-Scan to explore Block X. Assuming that Block X
has 500 points, we update C' to be 700 + 500 = 1200 and also
mark the MAXDIST between Blocks X and (. Then, in Max-Scan,
we explore Block L because its MINDIST is less than the highest
MaXDIST marked thus far. Now, the cost is incremented by 1 due
to Block L. We create a new catalog entry ([701, 1200], 5).

Observe that the above approach is cheap because it relies only
on counting (using the Count-Index) with no scan of the data. As-
sume that for a given block from the outer relation, the number of
blocks in its locality is L. The above approach visits each of the L
blocks at most twice, i.e., the running time is O (L) per block.

Note that, by definition, the locality conservatively includes all
the blocks needed for the k£-NN search (see [22] for details), i.e., the
locality contains the k-NN for every point in the outer block, say Q.
Although it is true that for some k1 > k all the nearest-neighbors of
some points in () may exist in already scanned blocks (by Count-
Scan), there will be some points, e.g., near the corners of (), that
might have some of their £-NN in unscanned blocks. Hence, in our
approach, we jump into new ranges of k (and new corresponding
cost) whenever a block is retrieved through Count-Scan.

Observe that if a block retrieved from Count-Scan has MAXDIST
that is less than or equal to the highest MAXDIST encountered thus
far, it will not lead to any scan in Max-Scan, and hence will lead
to a repeated cost in the next entry of the catalog. For instance, in
Figure 6, if the MAXDIST between Blocks) and Z is greater than
the MAXDIST between Block @ and Block X (the next in Count-
Scan), then the next new entry in the catalog will be ([701, .. .], 4),
i.e., will have the same cost. To get rid of these redundant entries in
the catalog, we continue Count-Scan until the value of the highest
encountered MAXDIST changes.

463

Procedure 2 Building the locality-catalog of a block.

Terms: (Q: The block to which we need to build the catalog.
M AX _K: The maximum possible/maintained value of k.

1: // Initializations:
2: CountScan < MINDIST Scan from Q)
3: ¢Block + CountScan.next()
4: MaxScan < MINDIST Scan from)
5: mBlock < MaxScan.next()
6: C + 1;agg9Cost + 0;
7: Catalog < 0; highest Maz Dist < 0
8: while (C < MAX_K) do
9: startK <+ C
10: while (cBlock.MAXDIST < highestMazDist) do
11: C+ = cBlock.count
12: cBlock < CountScan.next()
13: end while
14: highestMaxDist < cBlock.MaXDIST from Q
15: endK + C
16: while (mBlock.MINDIST < highest M axDist) do
17: aggcost + +
18: mBlock < MaxScan.next()
19: end while
20: Catalog.add([startK, endK], aggCost)

21: end while
22: return Catalog

Block 1 [2 JT |] [Kstart, kend] | Cost
K T [1, kil 17

Block 2 [5] 13 ki ks | 25
ks :| Merger| =P ko ki | 29

Blocks [6 [o[| [] =7 s,] | 32
Blockb [a [[[1] b A
k-NN-Join

Temporary catalogs of blocks Merge-Catalog
from the outer relation

Figure 8: Flow of the Catalog-Merge process.

4.2.1 Preprocessing

For each block in the outer relation of the k-NN-Join, we com-
pute a temporary catalog that is similar to the one in Figure 7(b). If
the number of blocks in the outer relation is n,, then this process
requires O(n, - L), where L is the average size of the locality of
a block. This can be costly if n, is large. To solve this problem,
we take a spatially distributed random sample of the blocks of the
outer relation. We compute a temporary catalog only for the sam-
ple blocks and not for each block in the outer relation. Afterwards,
we merge all the temporary catalogs, and produce a single catalog
that contains the aggregate cost of all the temporary catalogs. Each
entry in the final catalog has the form ([kstart, kend|, size), where
size is the estimated join cost when kstart < k < kend.

Because each temporary catalog is sorted with respect to the
ranges of values of k, we apply a plane sweep over the ranges
of values of k£ and aggregate the cost. To illustrate, consider the
example in Figure 8. ki is the smallest value of & in the catalog
entries. This means that the aggregate cost for the interval [1, k1]
is2+5+6-+4 = 17. ko is the next smallest value of k, and hence
another interval [k1, k2] with aggregate cost=17 — 5+ 13 = 25
is created in the output catalog. Similarly, for interval [kz, k3], the
aggregate cost = 25 — 4 + 8 = 29 and for interval [k3, ---], the
aggregate cost =29 —6+9 = 32. A min-heap is used to efficiently

determine the next smallest value across all the temporary catalogs
in the plane sweep process.

To reduce the size of the catalog, we limit the maintained values
of k to some practically large constant, e.g., 10,000. In Section 5,
we show that for a real dataset of 0.1 Billion points, the size of the
catalog is about 1 MB.

4.2.2 Cost Estimation

Observe that the resulting k-NN-Join catalog is sorted w.r.t. the
values of k. Given a k-NN-Join query, we can lookup the estimate
cost using a binary search to find the catalog entry corresponding
to the given k value.

Although the process of building the catalog is performed once,
it can be costly if the number of tables in the database schema is
large, say n. The k-NN-Join catalog information is required for
every possible pair of tables in the database schema, and hence
2 x (%) catalogs need to be built (because the k-NN-Join is asym-
metric). Although sampling can speed up the merging process of
the temporary catalogs, it is still expensive to compute 2 x (3),
i.e., a quadratic number of catalogs across the database tables. To
address this issue, we introduce our third cost estimation technique

that requires only a linear number of catalogs.

4.3 The Virtual-Grid Technique

Similarly to the Catalog-Merge technique, in the Virtual-Grid
technique, we maintain a set of catalog information that is built
only once before executing any queries. The key idea is to estimate
the cost corresponding to a dataset, say D, when D is the inner rela-
tion of a k-NN-Join. Given the n relations in the database schema,
where each can potentially be an outer relation in a k-NN-Join with
D, instead of computing n catalogs corresponding to D, we com-
pute only one catalog that corresponds to the join cost between a
virtual index and D.

4.3.1 Preprocessing

Refer to Figure 9 for illustration. Given the index of a dataset
(e.g., the red quadtree decomposition in the figure), we assume the
existence of a virtual grid that covers the whole space.> For each
block (grid cell) in the virtual-grid, we compute a catalog that is
similar to the one in Figure 7(b) with the difference that the locality
is computed with respect to the given index. We associate all these
virtual-grid catalogs with the given index (e.g., the quadtree). We
repeat this process for each relation in the database schema, i.e.,
associate with every index a virtual-grid-cost. Observe that unlike
the Catalog-Merge approach, this requires linear storage (and pre-
processing time) overhead.

4.3.2 Cost Estimation

Given a k-NN-Join query, we retrieve the virtual-grid corre-
sponding to the inner relation. Then, we estimate the cost by scal-
ing the cost corresponding to the part of the virtual-grid that over-
laps with the outer relation. In particular, for each grid cell, say
C, in the virtual-grid, we retrieve the locality size, say L, stored in
C"s catalog. Then, we select the blocks in the outer relation that
overlap with C. This can be performed using a range query on
the outer relation. For each of the overlapping blocks, say O, in
the outer relation, we multiply L by the ratio between the diagonal
length of Block O and the diagonal length of Block C. We sum
these products across all the cells of the virtual-grid. The overall
sum represents the join cost estimate.

3This can be achieved for real datasets where the bounds of the
earth are fixed.

464

Virtual Grid

Inner Index:

..

-.-,..-
'
'
'
'
'
'
'
.
T
'
'
'
'
'
.

=5
v
'
'
'
'

Figure 9: The Virtual-Grid technique for k-NN-Join cost esti-
mation.

Figure 10: A sample of OpenStreetMap GPS data and the cor-
responding region-quadtree decomposition overlaid on top.

Assuming that the number of blocks in the outer relation is 7,
the estimation process is O(n,). The reason is that eventually,
all the blocks of the outer relation get selected (through the range
query performed at each grid cell). In other words, regardless of
the grid size, all the blocks will be selected and the corresponding
products have to be aggregated. In Section 5, we study the estima-
tion time for different grid sizes while fixing the size of the outer
relation and demonstrate that the estimation time is almost constant
for different grid sizes.

5. EXPERIMENTS

In this section, we evaluate the performance of the proposed esti-
mation techniques. We realize a testbed in which we implement the
state-of-the-art techniques for k-NN-Select estimation [24] as well
as our proposed estimation techniques. To have a ground truth for
the actual cost of the k-NN operators, we implement the Distance
Browsing algorithm for k-NN-Select as well as the locality based
k-NN-Join. Our implementation is based on a region-quadtree in-
dex [21], where each node in the quadtree represents a region of
space that is recursively decomposed into four equal quadrants,
or subquadrants, with each leaf node containing points that cor-
respond to a specific subregion. The maximum block capacity in
the quadtrees used in our experiments is set to 10,000 points. All
implementations are in Java. Experiments are conducted on a ma-
chine running Mac OS X on Intel Core i7 CPU at 2.3 GHz and 8
GB of main memory.

We use a real spatial dataset from OpenStreetMap [1]. The num-
ber of data points in the dataset is 0.1 Billion points. Figure 10
displays a sample of the data that we plot through a visualizer that

35%

e

18% —0 9o o O 00 9
@ Staircase (Center+Corners)

O Staircase (Center Only)
4 Density-Based

26%

Error Ratio

9%

0%

1 2 3 4 5 6 7 8 9 10

Scale Factor

Figure 11: k-NN-Select estimation accuracy.

we have built as part of our testbed. The figure also displays a
region-quadtree decomposition that is built on top of the data.

To test the performance of our techniques at different data scales,
we insert portions of the dataset into the index at multiple ratios.
For instance, for scale = 1, we insert 10 Million points, for scale =
2, we insert 20 Million points, and so on until scale = 10 in which
all the 0.1 Billion points are inserted. Our performance metrics are
the estimation accuracy (i.e., error ratio), the estimation time, the
preprocessing time, and the storage overhead. We limit the maxi-
mum maintained value of k in all the catalogs to 10,000.

5.1 KNN-Select Cost Estimation

In this section, we present the performance of the Staircase tech-
nique in estimating the cost of a k-NN-Select and compare it with
the density-based technique of [24]. We evaluate two variants of the
Staircase technique, 1) Center-Only, where the cost corresponding
to a query point, say g, is estimated as the cost corresponding to the
center in which g is located, and 2) Center+Corners, where the cost
is estimated using Equations 1 and 2.

5.1.1 Estimation Accuracy

In this experiment, we measure the average error ratio in estimat-
ing the cost of 100,000 queries that are chosen at random. For each
query, we compute the actual cost, compare it with the estimated
cost, and measure the error ratio. We compute the average error
ratio of all the queries.

Figure 11 illustrates that the Staircase technique achieves a
smaller error ratio than that of the density-based technique. The
error ratio reaches less than 20% when the cost is estimated using
the Center+Corners variant.

5.1.2 Estimation Time

In this experiment, we measure the time each estimation tech-
nique requires to estimate the cost of a query. Figure 12 illus-
trates that the Staircase technique is almost two orders of mag-
nitudes faster than the density-based technique. Observe that the
Center+Corners variant of the Staircase technique is slightly slower
than the Center-Only variant because the former requires two cat-
alog lookups, one from the center-catalog and the other from the
corners-catalog. Also, observe that the estimation time of the
density-based technique increases as the value of k increases. The
reason is that the density-based technique keeps scanning the in-
dex blocks until the encountered blocks are estimated to contain k
points. In contrast, the estimation time of the Staircase technique
is constant regardless of the value of k because the Staircase tech-
nique relies on just a single catalog lookup (two lookups in case of
the Center+Corners variant).

465

@ Staircase (Center+Corners)
1E-03 O Staircase (Center Only)
T 4 Density-Based
o
<2
o 1E-04
£ \
. SNV N N i i Ny N S S
< 1E-05 /
2
®
£ 1E-06
£
7]
ul s e s o
1E-07
1 4 16 64 256 1024 4096
k

Figure 12: k-NN-Select estimation time.

'S 200 .

@ @ Staircase (Center+Corners)

° O Staircase (Center Only)

] »
£ 150 2 Density-Based //'
'—

2 100

0

@ /

o 50

: !ﬁa—./;;g=g=£:8:8:X:2
o

2 o

1 2 3 4 5 6 7 8 9 10

Scale Factor

Figure 13: Preprocessing time of the k-NN-Select estimation
techniques.

5.1.3 Storage Overhead and Preprocessing Time

In this experiment, we measure the storage requirement and pre-
processing time of each estimation technique. Observe that the
density-based technique has no preprocessing time requirements
because it precomputes no catalogs.

Figure 13 illustrates that the Staircase technique incurs relatively
high preprocessing overhead to precompute the catalogs of all the
index blocks. Observe that as the scale factor increases, the pre-
processing time increases because more blocks will need to be
processed. Also, observe that the Center-Only variant incurs less
preprocessing overhead than the Center+Corners variant because
the former computes only one catalog per block while the latter
computes five catalogs and merges four of them. Notice that this
preprocessing phase is an offline process that does not affect the
performance of the online cost estimation process.

Figure 14 illustrates that density-based technique consumes little
storage overhead, basically, due to the density values maintained
at each block in the index. In contrast, the Staircase technique
has higher storage overhead due to the maintained catalogs. Ob-
serve that as the scale factor increases, the storage overhead in-
creases because more blocks will be present in the index and each
of them will have a separate catalog. However, the storage require-
ments of the Staircase technique are less than 4 MBs even for the
largest scale factor. Also, observe that the Center-Only variant of
the Staircase technique incurs less storage overhead than the Cen-
ter+Corners variant because the former maintains only one catalog
per block while the latter maintains two catalogs.

5.2 K-NN-Join Cost Estimation

In this section, we study the performance of the proposed tech-
niques for estimating the k-NN-Join cost, namely the Block-
Sample, Catalog-Merge, and Virtual-Grid techniques.

IN

@ Staircase (Center+Corners)
‘O Staircase (Center Only)

/.
A Denaitv-Racod
4 Density-Based /

2 3 4 5 6 7 8 9 10

w

.

Storage Overhead (MB)
nN

o
-

Scale Factor

Figure 14: Storage requirements of the £-NN-Select estimation
techniques.

5.2.1 Estimation Accuracy

In this experiment, we estimate the cost of a k-NN-Join between
two indexes of 0.1 Billion points each for a random value of k, com-
pare it with the actual cost, and then calculate the error ratio. We
repeat this process for various sampling sizes for both the Block-
Sample and Catalog-Merge techniques, and for various grid sizes
for the Virtual-Grid technique. Figure 15 illustrates that the Block-
Sample and Catalog-Merge techniques can reach an error ratio that
is less than 5% for a sample size > 400. Figure 16 illustrates that
the Virtual-Grid technique achieves less than 20% error ratio.

%

80%

o 60%

2

£ 0% -+ Catalog-Merge
5 ° O Block-Sample
&

20%

M

100 150 200 250 300 350 400 450 500

0%
50

Sample Size

Figure 15: k-NN-Join estimation accuracy.

50%
@ Virtual Grid
o 40%
=
©
T 30%
g
w 20%
GW'
10%
4x4 8x8 12x12 16x16 20x20
Grid Size

Figure 16: k£-NN-Join estimation accuracy.

5.2.2 Estimation Time

In this experiment, we measure the time required to estimate the
cost of a k-NN-Join between two indexes of 0.1 Billion points each.
Figure 17 gives the performance for different values of k. The
number of samples used in the Catalog-Merge and Block-Sample
techniques is fixed to 1000. The grid size used in the Virtual-Grid
technique is 10 x 10. As the figure demonstrates, the Catalog-

466

Merge technique is more than four orders of magnitude faster than
the Block-Sample and Virtual-Grid techniques. The reason for this
variance in performance is that the Catalog-Merge technique main-
tains one catalog for every pair of relations (indexes) in which the
estimate cost is maintained; the cost is directly retrieved from the
catalog via one lookup. In contrast, the Block-Sample technique
computes the locality for a sample of blocks, which is costly. Also,
the Virtual-Grid technique aggregates the cost across each of the
grid cells after computing the overlap with the outer relation, which
is costly as well.

1E+00
o
Q
2
o 1E-02
£
= - Virtual Grid
§ 1E-04 O Sampling
® #4 Catalog-Merge
£
8 1E-08
1 4 16 64 256 1024 4096
Kk

Figure 17: k-NN-Join estimation time.

Figure 18 gives the performance of the Block-Sample and
Catalog-Merge techniques for different sample sizes. Observe that
the estimation time of the Block-Sample technique increases as
the sample size increases.” In contrast, the estimation time of the
Catalog-Merge technique is constant irrespective of the sample size
because estimation is performed through one lookup through a pre-
computed catalog, i.e., the sample size only affects the preprocess-
ing time as we show next.

_ 1E+00
[4)
9 >_o___o_o_o_——()—o——O—O—(
@
o 1E-02
-E O Block-Sample
.s 1E-04 Z Catalog-Merge
=
(]
£
% 1E-06
w
100 300 500 700 900
Sample Size
Figure 18: k-NN-Join estimation time.
< 1E-02
Q
2
o S8E-03
E H_.—.—.\'/.—.—.-._._./.—.—Q—O—(l
= L
< 5E-03
2 & Virtual Grid
g 3E-03
£
[}
W 1E-06
4x4 8x8 12x12 16x16 20x20
Grid Size

Figure 19: k-NN-Join estimation time.

“The slope of the curve is low due to the use of a log-scale.

Figure 19 gives the performance of the Virtual-Grid technique
for different grid sizes. As the figure demonstrates, the estimation
time is almost constant regardless of the grid size. As highlighted
in Section 4, the reason is that the time required for estimation de-
pends on the number of blocks in the outer relation, not on the
number of cells in the grid. For each grid cell, the overlapping
blocks from the outer relation have to be retrieved regardless of the
size of the grid.

5.2.3 Storage Overhead and Preprocessing Time

In this experiment, we measure the storage and preprocessing
time requirements for maintaining a set of catalogs for the estima-
tion of k-NN-Join queries between 10 indexes that we create. We
test the performance at different scale factors, i.e., create 10 differ-
ent indexes for each scale factor. For instance, if the scale factor is
5, this means that we create 10 indexes and insert 50 Million points
into each of them.

In Figure 20, we fix the grid size in the Virtual-Grid technique
to 10 x 10 and the sample size for the Catalog-Merge technique
to 1000. As the figure demonstrates, the Virtual-Grid technique re-
quires almost an order of magnitude less storage than the Catalog-
Merge techniques. The reason is that the Catalog-Merge technique
maintains a catalog for every pair of indexes, i.e, 2 X (120) =90
catalogs. In contrast, the Virtual-Grid technique maintains a cata-
log for every index, i.e., only 10 catalogs. Figure 21 demonstrates
that the Virtual-Grid technique requires a constant amount of pre-
processing time (about two seconds) regardless of the scale factor.
The reason is that the preprocessing time depends on the number
of grid cells; for each grid cell, a catalog is computed.

. 10.0
o
£
° \/A/A/A‘“A“A—A‘A—A—A
3 1.0
£
[# Catalog-Merge
[e] @ \Virtual Grid
o 0.1
=)
o L 4 L 4 L 4 L 4 L 4 L 4 L 4 L 4
]
»

0.0

1 2 3 4 5 6 7 8 9 10

Scale Factor

Figure 20: Storage requirements of the £-NN-Join estimation
techniques.

[(e]

@ Virtual Grid
O Block-Sample
4 Catalog-Merge

[$)] ~
;\

N

Preprocessing Time (sec)
o

N
N
w
SN
o
o
~
©
©

Scale Factor

Figure 21: Preprocessing time of the k-NN-Join estimation
techniques.

In Figure 23, we fix the scale factor to 10. As Figs. 22(a)
and 23(a) demonstrate, the Catalog-Merge technique requires more

467

@2
=
o /A’—A/A/’x
@
o
<
g 1
>
o
% 4 Catalog-Merge
54
20
100 300 500 700 900
Sample Size
(@
@ 02
=3
g @ Virtual Grid
o
£
g 0.1
o
(]
o
o
S o
7]
4x4 8x8 12x12 16x16 20x20
Grid Size
(b)

Figure 22: Storage requirements of the k-NN-Join estimation
techniques.

o
10
8 A
® 8
g P4
'_
> 6 J\/A/A/A/
£
@ 4
3 "
(3] 2 Catalog-Merge
o 2
Q
2 o
o 100 300 500 700 900
Sample Size
(@)
B
3 0.7 >
> /—o"
E 05 o
= M
(=]
c 04
Z e ® Virtual Grid
8 02
2
o
2 0
o 4x4 8x8 12x12 16x16 20x20
Grid Size
(b)

Figure 23: Preprocessing time of the k-NN-Join estimation
techniques.

storage and preprocessing time as the sample size increases. The
reason is that, as the sample size increases, more temporary cata-
logs get created during the process of merging the catalogs, which
are likely to result in more entries in the final merged catalog. Sim-
ilarly, Figs. 22(b) and 23(b) demonstrate that the Virtual-Grid tech-
nique requires more storage and preprocessing time as the grid size
increases because it maintains a catalog for every grid cell.

Estimation Estimation Storage Preprocessing
Time Accuracy Overhead Time
Density-Based Medium Medium None None
k-NN-Select
Cost Staircase (Center-Only) Low Medium Low Medium
Estimation
Staircase (Center+Corners) Low High Low High
Block-Sample High High None None
k-NN-Join
Cost Catalog-Merge Low High Medium Medium
Estimation
Virtual-Grid Medium Medium Low Low

Figure 24: Summary of the pros and cons of each estimation technique.

6. CONCLUDING REMARKS

In this paper, we study the problem of estimating the cost of the
k-NN-Select and k-NN-Join operators. We present various estima-
tion techniques; Figure 24 summarizes the tradeoffs each technique
offers. Performance evaluation using real spatial datasets from
OpenStreetMap demonstrates that: 1) the Staircase technique for
k-NN-Select cost estimation is faster than the state-of-the-art tech-
nique [24] by more than two orders of magnitude and has better
estimation accuracy; 2) the Catalog-Merge and Virtual-Grid tech-
niques for k-NN-Join cost estimation achieve less than 5% and
20% error ratio, respectively, while keeping the estimation time be-
low one microsecond and one millisecond, respectively; and 3) the
Virtual-Grid technique reduces the storage required to maintain the
catalogs by an order of magnitude compared to the Catalog-Merge
technique.

REFERENCES

OpenStreetMap bulk gps point data.
http://blog.osmfoundation.org/2012/04/
01/bulk-gps-point-data/.

S. Acharya, V. Poosala, and S. Ramaswamy. Selectivity
estimation in spatial databases. In SIGMOD Conference,
pages 13-24, 1999.

N. An, Z.-Y. Yang, and A. Sivasubramaniam. Selectivity
estimation for spatial joins. In /ICDE, pages 368-375, 2001.
W. G. Aref and H. Samet. Estimating selectivity factors of
spatial operations. In FMLDO, pages 31-43, 1993.

W. G. Aref and H. Samet. A cost model for query
optimization using R-Trees. In ACM-GIS, pages 60—67,
1994.

N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger.
The R*-tree: An efficient and robust access method for
points and rectangles. In SIGMOD Conference, pages
322-331, 1990.

A. Belussi and C. Faloutsos. Estimating the selectivity of
spatial queries using the ‘correlation’ fractal dimension. In
VLDB, pages 299-310, 1995.

S. Berchtold, C. Bohm, D. A. Keim, and H.-P. Kriegel. A
cost model for nearest neighbor search in high-dimensional
data space. In PODS, pages 78-86, 1997.

C. Bohm. A cost model for query processing in high
dimensional data spaces. ACM Trans. Database Syst.,
25(2):129-178, 2000.

7.
(1]

(2]

(3]
(4]

[5]

(6]

(7]

[8

—_—

(9]

468

[10] C.Bohm and F. Krebs. The k-nearest neighbour join: Turbo
charging the kdd process. Knowl. Inf. Syst., 6(6):728-749,
2004.

S. Chandrasekaran and M. J. Franklin. Streaming queries

over streaming data. In VLDB 2002, Proceedings of 28th

International Conference on Very Large Data Bases, August

20-23, 2002, Hong Kong, China, pages 203-214, 2002.

M. Y. Eltabakh, R. Eltarras, and W. G. Aref.

Space-partitioning trees in postgresql: Realization and

performance. In ICDE, page 100, 2006.

A. Guttman. R-trees: A dynamic index structure for spatial

searching. In SIGMOD Conference, pages 47-57, 1984.

G. R. Hjaltason and H. Samet. Distance browsing in spatial

databases. ACM Trans. Database Syst., 24(2):265-318, 1999.

Y.-W. Huang, N. Jing, and E. A. Rundensteiner. A cost

model for estimating the performance of spatial joins using

R-trees. In SSDBM, pages 30-38, 1997.

H.-P. Kriegel, P. Kunath, and M. Renz. R*-tree. In

Encyclopedia of GIS, pages 987-992. 2008.

[17] N. Mamoulis and D. Papadias. Selectivity estimation of
complex spatial queries. In SSTD, pages 155-174, 2001.

[18] V. Poosala, Y. E. loannidis, P. J. Haas, and E. J. Shekita.
Improved histograms for selectivity estimation of range
predicates. In SIGMOD Conference, pages 294-305, 1996.

[19] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor
queries. In SIGMOD Conference, pages 71-79, 1995.

[20] H. Samet. Foundations of Multidimensional and Metric Data
Structures. Morgan Kaufmann Publishers Inc., 2006.

[21] H. Samet and R. E. Webber. Storing a collection of polygons
using quadtrees. ACM Trans. Graph., 4(3):182-222, 1985.

[22] J. Sankaranarayanan, H. Samet, and A. Varshney. A fast all
nearest neighbor algorithm for applications involving large
point-clouds. Computers & Graphics, 31(2):157-174, 2007.

[23] C. Sun, D. Agrawal, and A. El Abbadi. Selectivity estimation

for spatial joins with geometric selections. In EDBT, pages

609-626, 2002.

Y. Tao, J. Zhang, D. Papadias, and N. Mamoulis. An efficient

cost model for optimization of nearest neighbor search in

low and medium dimensional spaces. IEEE Trans. Knowl.

Data Eng., 16(10):1169-1184, 2004.

C. Xia, H. Lu, B. C. Ooi, and J. Hu. Gorder: An efficient

method for KNN join processing. In VLDB, pages 756767,

2004.

(1]

[12]

[13]
[14]

[15]

[16]

[24]

[25]

