
Adapting Tree Structures for Processing with SIMD

Instructions

Steffen Zeuch Frank Huber⇤ Johann-Christoph Freytag
Humboldt-Universität zu Berlin

{zeuchste,huber,freytag}@informatik.hu-berlin.de

ABSTRACT
In this paper, we accelerate the processing of tree-based in-
dex structures by using SIMD instructions. We adapt the
B+-Tree and prefix B-Tree (trie) by changing the search al-
gorithm on inner nodes from binary search to k-ary search.
The k-ary search enables the use of SIMD instructions, which
are commonly available on most modern processors today.
The main challenge for using SIMD instructions on CPUs
is their inherent requirement for consecutive memory loads.
The data for one SIMD load instruction must be located
in consecutive memory locations and cannot be scattered
over the entire memory. The original layout of tree-based
index structures does not satisfy this constraint and must
be adapted to enable SIMD usage. Thus, we introduce two
tree adaptations that satisfy the specific constraints of SIMD
instructions. We present two di↵erent algorithms for trans-
forming the original tree layout into a SIMD-friendly layout.
Additionally, we introduce two SIMD-friendly search algo-
rithms designed for the new layout.

Our adapted B+-Tree speeds up search processes by a fac-
tor of up to eight for small data types compared to the origi-
nal B+-Tree using binary search. Furthermore, our adapted
prefix B-Tree enables a high search performance even for
larger data types. We report a constant 14 fold speedup
and an 8 fold reduction in memory consumption compared
to the original B+-Tree.

1. INTRODUCTION
Since Bayer and McCreight introduced the B-Tree [3] in

1972, it has been adapted in many ways to meet the increas-
ing demands of modern index structures to manage higher
data volumes with an ever decreasing response time. The
B-Tree combines a fixed number of data items in nodes and
relate them in a tree-like manner. Each data item contains
a key and its associated value. In the past, many variants
of the original B-Tree envolved which di↵er, among other
aspects, in the restrictions of allowed data items per node
⇤Current address: frank.huber@sap.com

(c) 2014, Copyright is with the authors. Published in Proc. 17th Inter-
national Conference on Extending Database Technology (EDBT), March
24-28, 2014, Athens, Greece: ISBN 978-3-89318065-3, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

and the kind of data each node stores. The most widely
used variant of the B-Tree is the B+-Tree. The B+-Tree
distinguishes between leaf and branching nodes. While leaf
nodes store data items to form a so-called sequence set [8],
branching nodes are used for pathfinding based on stored
key values. Thus, each node is either used for navigation
or for storing data items, but not for both purposes like in
the original B-Tree. One major advantage of the B+-Tree
is its ability to speedup sequential processing by linking leaf
nodes to support range queries.
As a variant of the original B-Tree, Bayer et al. intro-

duced the prefix B-Tree (trie) [4], also called digital search
tree. Instead of storing and comparing the entire key on
each level, a trie operates on parts of the key by using their
digital representation. The keys are implicitly stored in the
path from the root to the leaf nodes. When inserting a
new key, the key is split into fix sized pieces and distributed
among the di↵erent trie levels. Because the key length and
the partial key length is defined during initialization stat-
ically, the height of a trie is invariant. The fixed height
distinguishes a trie from other tree structures which grow
and shrink dynamically. The fixed height of a trie changes
the complexity of finding a key. Whereas finding a key in
a B+-Tree is O(logN), the worst-case time complexity of a
trie is O(1) for all operations, independent of the number of
records in the trie. Furthermore, a trie may terminate the
traversal above leaf level if a partial key is not present on
the current level. Additionally, splitting keys allows prefix
compression at di↵erent trie levels. However, a trie struc-
ture with its predefined parameters results in a more static
structure compared to a dynamically growing and shrinking
B+-Tree. The existing trie-based structures are mainly used
for string indexing [10]; however, indexing of arbitrary data
types is also possible [7].
An important performance factor for all tree structures

is the number of keys per node. As one node is usually
mapped onto one page on secondary storage, one page is
copied by one I/O operation into main memory. Thus, I/O
operations are the most time-consuming steps in processing
a B-Tree. Other steps that are CPU intensive are usually
negligible in the presence of I/O operations. With a node as
the transport unit within the storage hierarchy, it is impor-
tant to realize that processing will be faster the more keys
fit into one node. This observation has been true for the era
of disk-based databases; it also holds nowadays for main-
memory based databases. That is, the bottleneck between
secondary storage and main memory has now been moved
to a bottleneck between main memory and CPU caches [17].

97 10.5441/002/edbt.2014.10

The link between two levels of the storage hierarchy will be
the bottleneck if the node size is greater than the amount of
data that can be transferred in one step. Therefore, the node
size in a disk-based database is determined by the I/O block
size and in a main-memory database by the cacheline size
[13, 14]. In this paper, we focus on main memory databases.
We assume, the complete working set fits into main mem-
ory, and exclude I/O impact at all. For the remainder of
this paper, we focus on the new bottleneck between main
memory and CPU caches.

As mentioned before, a performance increase for a tree
structure might result from storing more keys in one node.
An increased node size is less applicable for optimization be-
cause the node size is mainly determined by the underlying
hardware. Furthermore, the size of a pointer and the pro-
vided data types are also hardware specific. On the other
hand, the number of keys and pointers within one node are
adjustable. For example, the B+-Tree moves associated val-
ues to leaf nodes. Therefore, the branching nodes are able to
store more keys which accelerates the traversal speed by in-
creasing the fanout. Other approaches for storing more keys
in one node apply prefix or su�x compression techniques
on each key [4]. The compression of stored pointers is also
possible [18]. One disadvantage of compression is the ad-
ditional computational e↵ort. The question if compression
overhead is rewarding for performance is beyond the scope
of this paper.

Searching inside a node has been discussed extensively as
well. Suggested search strategies range from sequential over
binary to exploration search [8]. We contribute a new search
strategy for inner node search based on the k-ary search
algorithm. This algorithm uses single-instruction-multiple-
data (SIMD) for comparing multiple data items in parallel
[16]. We adapt the B+-Tree and the prefix B-Tree structure
for the k-ary search algorithm. The adapted B+-Tree per-
forms well on small data types, i. e., data types that use up
to 16 bits for value representation. To improve k-ary search
performance for larger data types, we also adapt the prefix
B-Tree. Both tree adaptions make SIMD instructions ap-
plicable for tree-based index structures in modern database
systems.

In the light of this discussion the contributions of this
paper are as follows:

1. We adapt the B+-Tree and the prefix B-Tree for SIMD
usage by incorporating k-ary search.

2. We compare both adaptions and derive their suitabil-
ity for di↵erent workloads.

3. We present a transformation and a search algorithm
for a breath-first and depth-first data layout.

4. We contribute three algorithms for interpreting a SIMD
comparison result.

The remainder of this paper is structured as follows. Sec-
tion 2 covers preliminaries of our work. First, we discuss the
SIMD chipset extension of modern processors and their op-
portunities. Furthermore, we outline the k-ary search idea
as the foundation for our work. Sections 3 and 4 cover our
adaption of a B+-Tree (called Segment-Tree) and prefix B-
Tree (called Segment-Trie) using k-ary search. The eval-
uation of our tree adaptions is presented in Section 5. In
Section 6, we discuss related work. Finally, we conclude and
mention future work in Section 7.

2. PRELIMINARIES
This section presents our basic approach of comparing two

keys using SIMD instructions. We start in Section 2.1 by in-
troducing SIMD as a modern chipset extension that enables
parallel comparisons. Based on SIMD, we describe the k-ary
search in Section 2.2 as our starting point for later B-Tree
adaptions.

2.1 Single Instruction Multiple Data
With SIMD, one instruction is applied to multiple data

items in parallel. This technique enables data-level paral-
lelism that arises from concurrent processing of many inde-
pendent data items. Two parameters determine the degree
of parallelism. The SIMD bandwidth or size of a SIMD reg-
ister in bits determines the number of bits that can be pro-
cessed in parallel by one instruction. The data type defines
the size of one data item in a SIMD register. Therefore, the
data type limits the number of parallel processed data items.
For example, a 128-bit SIMD register processes sixteen 8-bit
or eight 16-bit data items with one instruction.
The SIMD instructions are chipset dependent and di↵er

among various computer architectures. For example, Intel
o↵ers a wide range of arithmetical, comparison, conversion,
and logical instructions [2]. We use SIMD comparison in-
structions for our tree adaptions. A SIMD comparison in-
struction splits a SIMD register into segments of fixed size.
The segment size is determined by the used SIMD instruc-
tion, e. g., 8, 16, 32, or 64-bit. The comparison is performed
for all segments in parallel with the corresponding segment
in another SIMD register. For the remainder of this paper,
we refer to one data item in a SIMD register as one segment.
Notice, that data items must be stored in consecutive mem-
ory locations to be loaded in one SIMD load instructions.
We use SIMD comparison instructions to speedup the in-

ner node search in a tree structure; the most time consum-
ing operation. Therefore, we need to compare a search key
v with a sorted list of keys inside a tree node. Following
Schlegel et al. [16], our instruction sequence for comparing
a search key with a sorted list of keys contains five steps:

1. Load keys segment-wise in register R1.

2. Load search key v in each segment of register R2.

3. Run pairwise comparison for each segment.

4. Save the result as a bitmask.

5. Evaluate the bitmask.

Unfortunately, SIMD instructions do not provide conditional
or branching statements [2]. Since all operations are per-
formed in parallel, there is no possibility to check individual
values and branch to specific code. Therefore, the result of
a comparison of two SIMD register is a bitmask. The bit-
mask indicates the relationship between the search key v
and the list of keys. For the remainder of this paper, we use
the greater-than relationship for comparisons. By evaluat-
ing the bitmask, we get a position in the sorted list of keys.
This position indicates the first key that is greater-than the
search key v. In a tree structure, this position identifies the
pointer which leads to the next child node.
Our implementation of the aforementioned sequence for

a 32-bit data type is illustrated in Figure 1. First, we
load a list of keys into a 128-bit SIMD register by using

98

Table 1: Used SIMD instructions from Streaming SIMD Extensions 2 (SSE2).

SIMD instruction Explanation

__m128i _mm_load_si128 (__m128i *p) Loads a 128-bit value. Returns the value loaded into a variable
representing a register.

__m128i _mm_set1_epi32 (int i) Sets 4 signed 32-bit integer values to i.
__m128i _mm_cmpgt_epi32 (__m128i a, __m128i b) Compares 4 signed 32-bit integers in a and 4 signed 32-bit integers

in b for greater-than.
__mm_movemask_epi8 (__m128i a) Creates a 16-bit mask from the most significant bits of the 16 signed

or unsigned 8-bit integers in a and zero extends the upper bits.

Figure 1: A sequence using SIMD instructions to

compare a list of keys with a search key.

the __mm_load_si128 instruction. After that, we load the
search key v = 9 into each 32-bit segment of a second
128-bit SIMD register with __mm_set1_epi32. The pair-
wise greater-than comparison of each segment is executed
by __mm_cmpgt_epi32. This instruction compares each 32-
bit segment in both input registers and outputs �1 into the
corresponding segment of a third 128-bit SIMD register if
the key is greater than the search key, otherwise zero. To
create a bitmask as the result of the comparison, we use
__mm_movemask_epi8 to extract the most significant bit from
each 8-bit segment. The sixteen extracted bits are stored in
the lower 16 bits of an x86 register. Unlike a SIMD register,
a x86 register provides conditional and branching statements
like if. Table 1 describes the used SIMD instructions with
__m128i as a 128-bit SIMD data type.1

The resulting bitmask must be evaluated to determine
the position of the search key within the sorted list of keys.
We exploit a particular property of the greater-than com-
parison for the evaluation. When evaluating the bitmask
linearly from left to right, the first key that is greater than
the search key represents a switch point. After this point,
all subsequent keys are greater than the search key and thus
represented with a one in the bitmask. With this property
in mind, we introduce three algorithms for bitmask evalu-
ation. Notice, that the upper 16 bits are ignored for our
evaluation. Algorithm 1 uses a loop to check if the least sig-
nificant bit in each segment is set. For simplicity, we omit
the case that the evaluation might terminate if we found
the first greater key. In this case, we calculate the position
assuming that only greater keys will follow. c denotes the
number of segments in a SIMD register that is defined by the
used data type and the SIMD bandwidth. Algorithm 2 im-

1http://msdn.microsoft.com/en-us/library/

plements a switch statement for each possible bitmask of a
32-bit segment size in a 128-bit SIMD register. Algorithm 3
uses the popcnt instruction to return the number of bits set
in a register.

Algorithm 1 Bit Shifting
mask bitmask

c number of segments

position 0

for i = 0! c do

position += mask & 0x01

mask >>= c

end for

return c� position

Algorithm 2 Switch Case
mask bitmask

position 0

switch mask do

case 0x↵↵

position 0

break

case 0x↵f0

position 1

break

case 0x↵00

position 2

break

case 0xf000

position 3

break

return position

Algorithm 3 Popcnt
mask bitmask

c number of segments

shift 16/c

return c� popcnt(mask)/shift

By evaluating the resulting bitmask 0xF000 in Figure 1
using one of the three algorithms, we get the third position
as a result. Therefore, the first key in the sorted list of keys
that is greater than the search key v is located at position
three. Note, the positioning starts at zero.
The aforementioned sequence utilizes four di↵erent SIMD

instructions. The load and set instructions load keys in
SIMD register. Set is a composite instruction containing
one load instruction for moving a value into one segment
and an additional instruction for copying the value to the
other segments. The comparison instruction compares two
SIMD register and the movemask instruction moves the re-
sulting bitmask into a x86 register. Modern processors of
Intels Nehalem or Sandy Bridge microarchitecture are able

99

to perform one SIMD load or comparison instruction in each
CPU cycle resulting in one cycle per instruction (CPI) [2].
However, Intel does not provide CPI information for com-
posite instructions. In our sequence, we perform the set
instruction only once to load the search key. Therefore,
we exclude the set instruction from the following consid-
erations of a simplified runtime estimation on instruction
level. We compare our SIMD sequence against the common
approach using scalar instructions. First, the SIMD load
and comparison instructions are as fast as similar scalar
instructions operating on x86 registers. This leads to an
increased instructions per cycle (IPC) rate because SIMD
increases the number of parallel-executed instructions with-
out introducing additional latency. However, the second step
of evaluating the comparison result di↵ers in terms of per-
formed instructions. A sequence using scalar instructions
performs conditional jumps depending on the status flags
in the EFLAGS register. In contrast, our SIMD sequence
performs onemovemask instruction in two CPU cycles to ex-
tract a bitmask from the comparison result. After that, the
bitmask is evaluated using one of the previously introduces
bitmask evaluation algorithms. Section 5 will show, that de-
spite the additional e↵ort for bitmask evaluation, our SIMD
sequence is still faster than a scalar instruction sequence.

Current SIMD extensions of modern processors support
SIMD comparison instructions only for signed data types
[2]. To use SIMD comparison instructions for unsigned data
types, we implement a preceding subtraction by the maxi-
mum value of the signed data type. Therefore, we realign
the unsigned value to a signed value. For example, the value
zero of an 8-bit unsigned integer data type is realigned to
-128. The value 256 is realigned to 127. With this preceding
subtraction, we are able to use the signed SIMD compari-
son instructions for unsigned data types. The value must be
realigned by insert and search operations.

2.2 k-ary Search
The k-ary search, introduced by Schlegel et al. [16], is

based on binary search. The binary search algorithm uses
the divide-and-conquer paradigm. This paradigm works it-
eratively over a sorted list of keys A by dividing the search
space equally in each iteration. Thus, the algorithm first
identifies the median key of a sorted list of keys. The me-
dian key serves as a separator that divides the search space
in two equally sized sets of keys (so-called partitions). The
left partition only contains keys that are smaller than the
median key. The keys in the right partition are larger than
the median key. After partitioning, the search key v is com-
pared to the median key. The search terminates if the search
key is equal to the median key. Otherwise, the binary search
uses the left or right partition, depending on the greater-less
relationship, as the input for the next iteration. In case of
an empty partition, search key v is not in A and the search
terminates. For an key count n, the complexity is logarith-
mic and performs h = log

2

n iterations in the worst case and
h�(2h�h�1)/n > h�2 on average [16]. Figure 2 illustrates
the binary search for v = 9 on a sorted list of 26 keys. The
boxed keys form one partition.

While the binary search algorithm divides the search space
into two partitions in each iteration, the k-ary search algo-
rithm divides the search space into k partitions by using
k � 1 separators. We utilize our aforementioned SIMD se-
quence to create this increased number of partitions and

Figure 2: Binary search for key 9 and n = 26.

Figure 3: K-ary search for key 9, n = 26 and k = 3.

separators. As shown in Section 2.1, SIMD instructions are
able to compare a list of keys with a search key in paral-
lel. The number of parallel key comparisons depends on the
data type and the available SIMD bandwidth. With param-
eter k, k � 1 separator keys are compared in one iteration
which increases the number of partitions to k. Figure 3 illus-
trates the same search as in Figure 2 now using k-ary search.
The binary search compares only one key at a time with a
search key; thus producing two partitions. In contrast, the
k-ary search with k = 3 compares two keys in parallel with
a search key and divides the search space into three parti-
tions. As a result, the k-ary search terminates after three
iterations while the binary search needs five iterations to
find the search key. Generally, the k-ary search reduces the
complexity to O(log

k

(n)) compared to O(log
2

(n)) for binary
search. Assuming a commonly available SIMD bandwidth
of 128-bit and a data type of 8-bit results in k = 17. With
k = 17, sixteen 8-bit values are compared in parallel within
one SIMD instruction. Therefore, the number of iterations
is reduced by a factor of log2(n)

logk(n)

= log
2

(k) ⇡ 4. Table 2
illustrates the relationship between common data types and
maximal supported k values in a 128-bit SIMD register.
The main restriction of SIMD instructions is their require-

ment for a sequential load of data. This requirement presup-
poses, that all keys that are loaded into one SIMD register
with one SIMD instruction must be stored consecutively in
main memory. Load or store instructions using scatter and
gather operations that allows a load/store of keys from dis-
tributed memory locations are not supported on CPUs [2].
The keys in a sorted list are placed one key next to the other
in linear order as shown in Figure 3. Therefore, the keys are
placed depending on their relationship to each other, e. g.,
in ascending or descending order. This placement strategy
is su�cient for binary search, but not amenable to k-ary
search. In a linear sorted list of keys, possible separator keys
are not placed in consecutive memory locations because sev-

Table 2: k values for a 128-bit SIMD register.

Data type k value Parallel comparisons

8-bit 17 16
16-bit 9 8
32-bit 5 4
64-bit 3 2

100

Figure 4: Breadth-first transformation overview.

Figure 5: K-ary search for key 9 on a breadth-first

linearized tree, n = 26 and k = 3.

eral keys fall in between. For example, the keys 8 and 17 in
Figure 3 may be chosen as separators to partition the sorted
list in three equally sized partitions. After that, the sepa-
rators and the search key must be compared to determine
the input for the next iteration. When storing the list of
keys in linear order, the separator keys are not placed next
to each other in main memory and thus cannot be loaded
with one SIMD instruction. To overcome this restriction,
Schlegel et al. [16] suggest to build a k-ary search tree from
the sorted list of keys. They define a perfect k-ary search
tree as: “[. . .] every node – including the root node – has
precisely k�1 entries, every internal node has k successors,
and every leaf node has the same depth.”.

The k-ary search tree is a logical representation that must
be transformed for storage in main memory or on secondary
storage. For this transformation, Schlegel et al. propose to
linearize the k-ary search tree. The linearization procedure
transforms a sorted list of keys into a linearized k-ary search
tree. Figure 4 summarizes the transformation process. As a
result, both separator keys are placed side by side and thus
can be loaded with one SIMD instruction. In Section 3.2, we
present two algorithms that use depth-first search or breath-
first search for this transformation. Figure 5 illustrates a k-
ary search for search key v = 9 on a breadth-first linearized
k-ary search tree. The white boxes show the separators and
the block boxed the partitions. In the next section, we adapt
the B+-Tree for k-ary search usage.

3. THE SEGMENT-TREE
In this section, we present our Segment-Tree (Seg-Tree for

short) that implements the k-ary search algorithm for inner
node search in a B+-Tree. In Section 3.1, we adapt the basic
structure and show the implications for the traversal algo-
rithm. Section 3.2 presents two algorithms for linearizing a
sorted list of keys. In Section 3.3, we address the essential
ability of supporting arbitrary sized search spaces. Finally,
Section 3.4 analyzes the performance of the Seg-Tree.

3.1 Using k-ary Search in B+-Trees
Our Seg-Tree uses the k-ary search algorithm for inner

node search in a B+-Tree. We consider each node as a

k-ary search tree—an important aspect when updating a
node. Thus, the e↵ect of an update operation is limited to
one node. This locality property eliminates the need for re-
building the complete Seg-Tree for each update operation.
The traversal across the nodes from the root to the leaves
keeps unchanged compared to B+-Trees. Furthermore, the
split and merge operations in case of a node overflow or un-
derflow are una↵ected. Our approach changes the search
method inside the nodes from commonly binary search to
k-ary search. We store one array for n keys and one array
for n+ 1 pointers inside each node.
For the rest of this paper, let D

m

define a data type with
at most m bits for representing its values; |SIMD| denotes
the SIMD bandwidth. Furthermore, let k denote the order
of the k-ary search tree with k = |SIMD|

m

+ 1 pointers and
k � 1 keys in each node. The number of levels in the k-ary
search tree is determined by r = dlog

k

ne with n being the
number of keys in the sorted list. The maximum number of
keys in one node is bound by N � 1 with N = kr.
Algorithms 4 and 5 implement the sequence of SIMD in-

structions for comparing a search key v with a sorted list of
keys (see Section 2.1). Based on the linearization method,
either one of these two algorithms can be used. Algorithm 5
performs a search on a breadth-first linearized list of keys
in one Seg-Tree node. On each level of the k-ary search
tree, k � 1 keys are compared to a search key using SIMD
instructions. The bitmask on each level is evaluated to a
position using one of the bitmask evaluation Algorithms 1,
2, or 3. The resulting position will be incrementally built up
during the search process and is additionally used to deter-
mine the o↵set for the next lower level. After the search on
each level completes, a lookup into the pointer array using
the returned position determines the path to the next node.
Algorithm 4 is implemented in a similar way for searching
on a depth-first linearized list of keys.
We refer to Figure 4 as a breadth-first linearized node in a

Seg-Tree. The node contains n = 26 64-bit keys. A |SIMD|
bandwidth of 128-bit leads to k = 3. The height of the k-
ary search tree is determined by r = dlog

3

26e = 3 and the
maximum number of keys N � 1 is 26 since N = 33 = 27.
Consider a search for key v = 9 using Algorithm 5 within
this node. R denotes a SIMD register containing the search
key in each segment (Line 6). C denotes a SIMD register
storing k � 1 keys. First, the algorithm determines the key
pointer keyP tr in Line 8. Initially, keyP tr points to the
first key in the key array (Line 3). The algorithm loads k�1
keys via this pointer in a SIMD register (Line 11). During
the first iteration, the node (8,17) is loaded and compared
to search key v = 9 (Line 12). The resulting bitmask is
evaluated in Line 13-14. The returned position 1 is added
to pLevel in Line 17. After that, we determine the base
pointer for the next iteration in Line 18. The base pointer
refers to the left most node on the next lower level (2,5). In
the second iteration, we add an o↵set depending on pLevel
of the previous iteration to the base pointer in Line 8. This
o↵sets the keyPrt to the desired node (11,14) and the SIMD
comparison sequence in Line 10-16 returns zero. For the last
iteration, we set the base pointer to the left most node on the
last level (9,10). This node represents the desired node and
no o↵set must be added. The SIMD comparison sequence in
Line 10-16 returns zero. Finally, we return pLevel in Line 21.
pLevel = 9 was incrementally built over all iterations and
selects the first key in the Seg-Tree node that is greater than

101

search key v = 9. Note, that pLevel is equal to the search
result of a binary search on the same list of keys. Therefore,
the navigation to the next Seg-Tree node is similar to the
original B+-Tree navigation. In case of a branching node, we
follow the pointer at position 9 to a child node on the next
level that contains values smaller or equal to search key v.
For a leaf node, we would perform an additional comparison
for equality to located the associated value for search key v.

Generally, Algorithms 4 and 5 search on a linearized list
of keys but returning the position as if the keys are in linear
sorted order. Therefore, only the keys in the k-ary search
tree must be linearized; pointers are left unchanged. Due to
this important property, an update operation does not a↵ect
the pointer array. This property also impacts the transfor-
mation process in the next section. Figure 6 illustrates our
Seg-Tree that rearranges keys inside nodes to enable an in-
ner node search algorithm using SIMD instructions.

Algorithm 4 Depth-first search using SIMD
1: pLevel 0

2: subSize N-1

3: R set searchKey in each segment

4: keyPtr pointer to first key in key array

5: while subSize > 0 do

6: pLevel pLevel ⇤ k
7: subSize subSize� k � 1

8: subSize subSize/k

9: function searchSIMD(keyPtr, R)

10: C load k � 1 keys from keyPtr

11: cmp compare C and R for greater-than

12: bitmask extract bitmask from cmp

13: position evaluate bitmask

14: return position

15: end function

16: keyPtr keyP tr + k � 1

17: keyPtr keyP tr + subSize ⇤ position
18: pLevel pLevel+ position

19: end while

20: return pLevel

Algorithm 5 Breadth-first search using SIMD
1: pLevel 0

2: lvlCnt 1

3: keyPtr pointer to first key in key array

4: nextBaseP tr keyPtr

5: endPtr keyPtr + key count

6: R set searchKey in each segment

7: while nextBaseP tr < endPtr do

8: keyP tr nextBaseP tr + pLevel ⇤ (k � 1)

9: pLevel pLevel ⇤ k
10: function searchSIMD(keyP tr, R)

11: C load k � 1 keys from keyPtr

12: cmp compare C and R for greater than

13: bitmask extract bitmask from cmp

14: position evaluate bitmask

15: return position

16: end function

17: pLevel pLevel+ position

18: nextBaseP tr nextBaseP tr + lvlCnt ⇤ (k � 1)

19: lvlCnt lvlCnt ⇤ k
20: end while

21: return pLevel

The search Algorithms 4 and 5 perform one comparison
operation on each k-ary search tree level. In contrast, the
binary search algorithm has the possibility to perform less
than log

2

n iterations when the separator is placed on the
searched key. One possible improvement might extend our

search algorithms by an additional comparison for equality
on each level. Therefore, instead of comparing both SIMD
registers only for greater-than relationship, we additionally
compare for equality. This additional comparison requires
no further load instructions because the search key and the
list of keys are already resident in the SIMD registers. How-
ever, the additional comparison result must be interpreted
using expensive conditional branches with possibly no ben-
efit. A benefit will only emerge, if the search key is equal
to a key on an upper k-ary search tree level. In this case,
the search may terminates above leaf level and comparisons
below this level can be omitted. However, we expect no
performance improvements for flat k-ary search trees.

3.2 Algorithms for Linearization
We examine two algorithms for linearizing keys in a Seg-

Tree node. The first algorithm uses breadth-first search while
the second algorithm uses depth-first search to determine the
linearized key order. The breadth-first search transformation
P
BF

(p
L

) assigns each key in a sorted list p
L

= (0, . . . , n�1)
to a position in the linearized k-ary search tree (0, . . . , N�1).
N � 1 defines the maximum number of keys. Formula 1
calculates the o↵set recursively on each level of the k-ary
search tree. The recursion starts on root level for R = 0
with P

BF

(p
L

, 0) and terminates if the last level is reached.
The division refers to an integer division without remainder
and S(R) = b N

k

R
+1

c.

P
BF

(p
L

, R) =

8
>>>>><

>>>>>:

pL+1

S(R�1)

(k � 1) + (pL+1) mod (S(R)k)

S(R)

� 1,

if (p
L

+ 1) mod S(R) = 0,

P
BF

(p
L

, R+ 1) + kR(k � 1)

else.

(1)

The depth-first search transformation formula P
DF

(p
L

) is
defined in Formula 2 and starts with P

DF

(p
L

) = P
DF

(p
L

, 0).

P
DF

(p
L

, R) =

8
>>>>>><

>>>>>>:

(pL+1) mod S(R�1)

S(R)

� 1
if (p

L

+ 1) mod S(R) = 0,

P
DF

(p
L

, R+ 1) + (k � 1)

+ (pL+1) mod S(R�1)

S(R)

(S(R)� 1)
else.

(2)

In general, data manipulations require a reordering of exist-
ing keys. In case of an insert operation, a naive approach
restores the linear order by sorting the list of keys first, be-
fore inserting the new key and linearizing the list again. This
naive approach results in a possibly large reordering over-
head. Therefore, the Seg-Tree is advantageous for workloads
with few inserts. These workloads benefit from an acceler-
ated search and the reordering overhead can be neglected.
For workloads with high insert rates, like OLTP systems,
the reordering overhead probably eliminates the speedup of
an accelerated search.
Besides the naive approach, we identify two cases when

we can avoid reordering of existing keys. Generally, insert-
ing a new key into a linearized node that falls in between
two existing keys requires a reordering of all existing keys.
However, we can leverage a particular property in case of
continuous filling with ascending key values. In this case,

102

Figure 6: B

+

-Tree node with linear order (left) and breadth-first linearized order (right).

the inserted key is guaranteed to be greater than all exist-
ing keys in the node; thus fall not in between two existing
keys. Therefore, the positions of all existing keys remain un-
changed and no reordering is necessary. The new key can be
copied directly to its position in the linearized list of keys.
The case of initial filling is a special case of continuous fill-
ing. In this case, a sorted data set will be inserted into an
empty Seg-Tree in one batch.

Delete operations behave similar to insert operations. Ex-
cept for a deletion from left to right (increasing values) and
from right to left (decreasing values), every random deletion
leads to a reordering operation. Update operations always
require reordering due to their unpredictable modifications.

3.3 Arbitrary Sized Search Spaces
The key count in a B+-Tree node is bound by the order

o of the tree. One node contains at least o and at most
2o keys. A variable number of keys does not satisfy the
requirements of a perfect k-ary search tree by Schlegel et
al. [16]. A perfect k-ary search tree always contains kh � 1
keys for some integer h > 0. A dynamically growing index
structure is not capable of satisfying this static property.
Therefore, the Seg-Tree must be able to build a k-ary search
tree from less than kh � 1 keys. Our SIMD sequence for
searching requires only a multiple of k � 1 keys. In short,
we must extend the k-ary search for an arbitrary number of
keys.
Following Schlegel et al. [16], our approach extends the

number of keys after linearization if necessary. At first, we
identify S

max

as the largest available key, i. e., the right most
key in a sorted list of keys in ascending order. Next, we
transform the sorted list into a linearized order as described
in the previous section. Finally, all k-ary search tree nodes
with less than k � 1 keys are replenished with the value of
S
max

+ 1 until each node contains k � 1 keys. Figure 7
illustrates a list of 11 keys. To satisfy the property of k � 1
keys, we insert S

max

= 11 three times in the k-ary search
tree.
Our replenishment approach also a↵ects the search strat-

egy. A search for key v in a k-ary search tree must first check
if v > S

max

. If v > S
max

and the current node is the root or
a leaf node, than the search terminates because v does not
exist in the Seg-Tree. If v > S

max

for a branching node, the
last pointer at position n+ 1 must be traversed.
Appending S

max

even a↵ects the order of a Seg-Tree. In
contrast to the original B+-Tree, the order o of a Seg-Tree
specifies no more the minimum and maximum key count in

Figure 7: Linearization for an incomplete k-ary

search tree.

each node. If the combination of k and o does not satisfy
the condition of k � 1 keys, then the maximum and mini-
mum key count in a Seg-Tree node are multiples of k � 1.
For example, an order o = 2 leads to a minimum of two and
a maximum of four keys per B+-Tree node. With k = 9,
k � 1 = 8 keys are needed for performing SIMD search.
Therefore, a Seg-Tree node must store at least eight keys in-
stead of four keys. Thus, our replenishment approach leads
to a larger key count in the Seg-Tree nodes if the property of
a multiple of k�1 keys per node is not satisfied. Our replen-
ishment strategy represents a tradeo↵ between the ability to
use SIMD instructions for searching and additional compu-
tational e↵ort and memory consumption for storing keys in
linearized order. The best node utilization is achieved by
storing kh � 1 keys per node. Schlegel et al. [16] suggest
another approach for non perfect k-ary trees by defining a
complete tree [16].

3.4 Seg-Tree Performance
The Seg-Tree performance depends on k-ary search. With

larger data type sizes, the k-ary search slows down. Table 2
shows common data types and resulting k values for a com-
monly available 128-bit SIMD bandwidth. For an 8-bit data
type and k = 17, the k-ary search compares 16 keys in par-
allel. For a 64-bit data type and the same SIMD bandwidth,
the k-ary search compares only two keys in parallel. As a re-
sult, the 8-bit data type will perform better. Unfortunately,
an 8-bit data type is less likely to be used—usually 32-bit
or 64-bit data types are common. In contrast, k-ary search
for common data types performs not as good as for small
data types. This observation motivated us to develop the
Segment-Trie to achieve 8-bit k-ary search performance on
larger data types.

103

4. THE SEGMENT-TRIE
The Segment-Trie (Seg-Trie for short) enables the afore-

mentioned performance advantages of k-ary search on small
data types for a prefix B-Tree storing larger data types. Fol-
lowing Bayer et al. [4] and Boehm et al. [7], the L bit Seg-Trie
is defined on data type D

m

with length m bits as:
Definition Segment-Trie: Let Seg-Trie

L

be a balanced
trie with r = m

L

levels (E
0

, . . . , E
r�1

). Level E
0

contains
exactly one node representing the root. Each node on each
level contains one part of the key with length L (in bits), the
segment. Each node contains n (1  n  2L) partial keys.
One paritial key in one node on level E

i

(0  i  r � 2)
points exactly to one node at level E

i+1

. The nodes on level
E

r�1

contain just as many associated values as partial keys
exist. The i-th pointer relates to the i-th partial key and
vice versa.

Inserting a key into a Seg-Trie starts by disassembling the
key. A key S[b

m�1

. . . b
0

] is split into r segments S
0

, . . . , S
r�1

of size L in bits. Each partial key S
i

[b
L�1

. . . b
0

] is com-
posed of S[b

(i+1)L�1

. . . b
iL

](0  i  r � 1). After disas-
sembling, the segments are distributed among the di↵erent
levels E

0

, . . . , E
r�1

. The i-th segment S
i

serves as partital
key on level E

i

.
The search for a key S navigates from the root node on

level E
0

to a leaf node on level E
r�1

. Therefore, S is split
into r = m

L

segments; each segment will be compared on a
di↵erent trie level. If a segment does not exist on level E

i

,
then the search key does not exist in the trie and the search
terminates. If the search navigates down to the lowest level
and the key exists in the leaf node, then the associated value
is returned. Commonly associated values are sets of tuple ids
or pointers to other data structures. As a variant of a trie,
the major advantage of the Seg-Trie against tree structures
is its reduced comparison e↵ort resulting from non-existing
key segments. If one key segment does not exist at one level,
the traversal ends above leaf level. In contrast, a Seg-Tree
will always perform the traversal to leaf level [3]. The insert
and delete operations are defined similarly.

Suppose an 8-bit Seg-Trie (see Figure 8) storing two 64-bit
keys S

i

[b
L�1

. . . b
0

] and K
i

[b
L�1

. . . b
0

]. A Seg-Trie for a 64-
bit data type is capable of storing up to 264 keys. One 64-bit
key is divided into eight 8-bit segments that are distributed
over eight trie levels. Except the root level E

0

, each level
contains at most 256 nodes and each node points to at most
256 nodes on the next lower level. The nodes on leaf level
store the associated value instead of pointers. Each node is
able to represent the total domain for the segment data type,
i. e., 256 values for 8-bit. Internally, the nodes store the par-
tial keys in a linearized order. With commonly available 128-
bit SIMD bandwidth, the keys inside the nodes are linearized
using a 17-ary search tree and 16 keys can be compared in
parallel. Each node maintains a k-ary search tree of two lev-
els since dlog

17

256e = 2. Therefore, an inner node search for
a partial key requires two SIMD comparison operations; one
for each k-ary search tree level. For simplicity, the nodes in
Figure 8 show a k-ary search tree for 8 instead of 256 partial
keys. A full traversal of a Seg-Trie with k = 17 from the
root to the leaves takes at most dlog

17

264e = 16 comparison
operations. In contrast, a trie using ternary search will per-
form dlog

3

264e = 41 comparison operations while a binary
search trie performs dlog

2

264e = 64 comparison operations
for the same number of keys.

Figure 8: Segment-Trie storing two keys.

Additionally, an 8-bit Seg-Trie leads to an improved cache-
line utilization. Compared to larger data types, the 8-bit
Seg-Trie reduces the number of cache misses due to an in-
creased ratio of keys per cacheline. Furthermore, the 8-bit
data type o↵ers the largest number of parallel comparison
operations. Beyond that, the Seg-Trie o↵ers three additional
advantages. First, the corporate prefixes for keys leads to a
compression. The Seg-Trie represents a prefix B-Tree on bit
level; thus extending the already existing tries. Second, the
fixed number of levels leads to a fixed upper bound for the
number of search operations, page, and memory accesses.
Third, each level stores a fixed partition of a key. Therefore,
the reorganization following a data manipulation operations
in one node is limited to this single node. The remaining
trie remains una↵ected.
The worst storage utilization for a Seg-Trie occurs when

all keys are evenly distributed over the domain. Then, all
upper nodes are completely filled; however, the nodes on
lower levels contain only one key. This worst case utiliza-
tion leads to a poor storage utilization due to sparsely filled
nodes. One possible solution to overcome this problem is to
swap the assignment of segments and levels. On the other
hand, the best storage utilization is achieved when storing
consecutive numbers like tuple ids. In this case, the Seg-Trie
is evenly filled resulting in a high node utilization.
We identify three cases when no inner node search is nec-

essary: 1) the node is empty, 2) the node contains only one
key, and 3) the node is completely filled and contains all
possible keys. The first case occurs only for an empty trie.
In this case, the search key does not exist in the trie and the
search terminates. A node that becomes empty due to delet-
ing all partial keys will be removed. For the second case, if
only one key is available in a node, we directly compare this
key with the search key without performing a search. In the
last case, the node is filled with all possible partial keys of
the domain. Therefore, we directly follow the corresponding
pointer for that partial key instead of performing a search.
This transforms a node into a hash like structure with a
constant-time lookup speed.

104

Following the idea of expanding tries by Boehm et al. [7]
and lazy expansion by Leis et al. [12], we suggest to omit tree
levels with only one key. Therefore, we create inner nodes
only if they are required to distinguish between at least two
lower nodes. This approach speeds up the search process
and reduces the memory consumption for a Seg-Trie. We
refer to this improvement as the optimized Seg-Trie. The
optimized Seg-Trie stores only levels with at least two dis-
tinct keys. Suppose an 8-bit Seg-Trie storing 64-bit keys
on eight levels. When filling the tree with consecutive keys
starting from 0 to 255, the partial keys are only inserted
into one leaf node. After initializing with zero, the seven
nodes above leaf level remain unchanged and contain only
one partial key throughout the entire key range [0. . . 255].
Therefore, we suggest to omit the seven levels with only one
partial key above leaf level. This reduces the memory con-
sumption and speeds up the trie traversal. When inserting
256, the optimized Seg-Trie increases by one level and cre-
ates an additional node on the same level. The optimized
Seg-Trie incrementally builds up the Seg-Trie starting from
leaf level. To remember the prefixes of omitted level, we
store them as an additional information inside the nodes.
Other techniques for decreasing the height of a trie by re-
ducing the number of levels are Bypass Jumper Arrays sug-
gested by Boehm et al. [7] and path compression suggested
by Leis et al. [12]. Both techniques are applicable for our
Seg-Trie but currently not implemented. In the next section,
we evaluate our Seg-Trie and Seg-Tree implementations.

5. EVALUATION
In this section, we experimentally evaluate our tree adap-

tions for di↵erent data types and data set sizes. At first,
we describe our experimental setup. After that, we evaluate
three algorithms for bitmask evaluation and choose one for
the remaining measurements. Next, we evaluate the perfor-
mance of our B+-Tree (Seg-Tree) and trie (Seg-Trie) imple-
mentations using k-ary search. The original B+-Tree serves
as the baseline for our performance measurements.

5.1 Experimental Setup
All experiments were executed on a machine with an In-

tel Xeon E5520 processor (4 cores each 2,26 GHz and Intel
Hyper Threading). Each core has a 32 KB L1 cache and
a 256 KB L2 cache. Furthermore, all cores share a 8 MB
L3 cache. The Xeon E5520 is based on Intel’s Nehalem mi-
croarchitecture with a cacheline size of 128 byte and a SIMD
bandwidth of 128 bit. The machine utilizes 8 GB of main
memory with 32 GB/s maximum memory bandwidth. We
use the Intel compiler with O2 optimization flag and SSE4 for
SSE support on a Windows 7 64-bit Professional operating
system.

We use a synthetically generated data set. For 8-bit and
16-bit data types, we generate key sequences for the entire
domain of 256 and 65536 possible values, respectively. For
32-bit and 64-bit data types, we generate key sequences con-
taining values in ascending order starting at zero. Initially,
we load the entire data set into main memory. After that,
we build the tree by creating the nodes using the configura-
tion shown in Table 3. K results from a SIMD bandwidth of
128-bit and the chosen data type. N

L

denotes the number
of keys in the sorted list of keys and N

S

denotes the number
of keys in the linearized k-ary search tree of height r. N
determines the maximum number of keys in one node. The

memory consumption of one key consists of a key value and
a pointer to the next node level. The size of a pointer on a
64-bit operating system is eight byte and the key size is de-
termined by the chosen data type. To utilize the hardware
prefetcher e�ciently, we adjust the node size to be smaller
than 4 KB. A node size smaller than 4 KB results in no
cache miss due to crossing the 4 KB prefetch boundary [2].
Additionally, our node configuration builds a perfect k-ary
search tree from kr keys. Considering the prefetch bound-
ary and perfect k-ary search tree property, we configure the
nodes as shown in Table 3. The node size is calculated by
N

L

+ 1 ⇤ sizeof(pointer) +N
S

⇤ sizeof(data type). For ex-
ample, each node for an 8-bit data type stores N

L

+1 = 255
8-byte pointers and N

S

= 256 8-bit keys. We store the keys
in one contiguous array. The cache lines column expresses
how many cache lines are required to access each key in a
node. It is calculated by NS⇤sizeof(data type)

cacheline size

. Using k-ary
search, we need one comparison operation on each k-ary
search tree level r. Therefore, we access at most r cache
lines. Notice, that all nodes are completely filled. After
building the tree, we measure the time for searching x keys
in random order and calculate the average search runtime
for one search operation. For the remainder of this paper, we
define x = 10, 000. To measure the runtime we use RDTSC
(Read time-stamp counter) instructions to count the clock
cycles between to points in time. All measurements are per-
formed in a single thread. There is no output written to
disk and the search result is not further processed.

Data

type

k N

L

N

S

r N Node

size

Cache

lines

8-bit 17 254 256 2 289 2296 2
16-bit 9 404 408 3 729 4056 7
32-bit 5 338 344 4 625 4096 11
64-bit 3 242 242 5 243 3880 16

Table 3: Node characteristics.

5.2 Bitmask Evaluation
As described in Section 2.1, our SIMD sequence compares

two SIMD registers and outputs the result into a third SIMD
register. The resulting bitmask in the third SIMD register
must be evaluated to determine the relationship between the
search key and the list of keys. For bitmask evaluation, we
analyze three algorithms, i. e., bit shifting, switch case, and
popcount. At first, all algorithms use the movemask instruc-
tion to create a 16-bit bitmask from the most significant bits
in the result SIMD register and place the bitmask into the
lower 16 bits of an x86 register. The algorithms di↵er in
converting the 16-bit bitmask into a position in a sorted list
of keys. Figure 9 shows the results for the three algorithms
performing a search in an 8-bit Seg-Tree. The three cate-
gories Single, 5 MB and 100 MB represent the amount of
data in the Seg-Tree. For the remainder of this paper, we
refer to Single as a data set containing keys in one single
node. With 5 MB and 100 MB, we refer to upper bounds
for the data set size. The node count depends on the single
node size and the upper bound (see Table 3).
The popcount algorithm achieves the best overall results;

it is also independent of data set size. The main reason for
its superiority is the elimination of 16 conditional branches;
thus eliminating expensive pipeline flushes. The perfor-

105

Figure 9: Evaluation of bitmask for 8-bit data type.

mance improvements of k-ary search is mainly based on
eliminating conditional branches. For larger data types,
there are less conditional branches available which can be
eliminated. Therefore, the decreasing number of conditional
branches for larger data types leads to a decrease in k-ary
search performance. The largest data type, i. e., 64-bit, per-
forms only two conditional branches. Due to the overall best
performance, we use the popcount algorithm for the follow-
ing evaluation of our Seg-Tree and Seg-Trie implementation.

5.3 Evaluation Seg-Tree
We evaluate the Seg-Tree using four di↵erent integer data

types (8-, 16-, 32-, and 64-bit) as keys and store three dif-
ferently sized data sets (Single, 5 MB, 100 MB). Figure 10
shows the average runtime of one search operation in clock
ticks using di↵erent inner node search algorithms. The red
bar presents the original B+-Tree using binary search. The
Seg-Tree uses SIMD search on breadth-first (green bar) and
depth-first (blue bar) linearized keys. The measurements
show, that the depth-first search performs best in all config-
urations. Generally, the performance increases for smaller
data types. This observation is independent of data set size
and can be explained by two reasons. At first, for 8-bit data
type values, 16 comparison operations can be performed in
parallel while for 64-bit data type values, only two are pos-
sible. Second, small data type values lead to a better cache
behavior due to an increased ratio of keys per cacheline. The
k-ary search on 8-bit data type values outperforms the bi-
nary search nearly by a factor of eight even for large data
set sizes.

For large data set sizes, the SIMD search performance on
breadth-first and depth-first linearized keys is nearly similar,
except for an 8-bit data type. For decreasing data set sizes,
a Seg-Tree using depth-first linearized keys outperforms a
Seg-Tree using breadth-first linearized keys. The cache hi-
erarchy impacts the performance of both Seg-Trees and the
B+-Tree. For a single node, the node resides most likely in
the L1 cache for each search operation. Therefore, the Single
category illustrates the pure runtime for each search algo-
rithm in a comparable way by excluding cache e↵ects. For a
5 MB data set size, the entire data set will properly fits into

Figure 10: Evaluation of Seg-Tree.

the 8 MB L3 cache but not entirely in the 256 KB L2 cache.
A random node select has a possibility to produce a L2 cache
miss. The 100 MB data set fits in no cache level entirely;
thus further increases the impact of cache misses. The com-
putational e↵ort for searching inside the nodes become more
negligible with an increasing number of cache misses. The
cache hierarchy becomes the bottleneck for larger data set
sizes. Generally, the inner node search algorithms transform
from a computation bound algorithm to a cache/memory
bound algorithm for increasing data set sizes.

5.4 Evaluation Seg-Trie
We evaluate the Seg-Trie and optimized Seg-Trie against

di↵erent Seg-Trees in Figure 11. The speedup refers to the
original B+-Tree using binary search. The optimized Seg-
Trie implements the elimination of levels as mentioned in
Section 4. The node configuration for the Seg-Tree is equal
to the 64-bit data type configuration in Table 3. The Seg-
Trie contains precisely eight levels and the optimized Seg-
Trie contains at most eight levels. Each node follow the 8-bit
data type configuration in Table 3. The depth of the tree in
Figure 11 refers to the number of levels that are filled with
keys. We vary the number of keys to fill the expected level
count. For comparability reasons, all tree variants contain
the same number of levels and keys. To achieve this, we skew
the data for both Seg-Trie variants to produce the expected
level count.
As shown in Figure 11, the performance of a Seg-Trie in-

creases almost linearly with the depth of the tree. The per-
formance is measured against aB+-Tree using binary search.
Instead of comparing a 64-bit search key with a 64-bit key on
each level like the B+-Tree using binary search, the Seg-Trie
compares only one 8-bit part of the search key on each level.
Additionally, an increase of tree depth by one for a Seg-Trie
leads to no additional node comparison because a 64-bit Seg-
Trie always searches above eight tree level. In contrast, the
B+-Tree using binary search must perform one additional
node search for each additional tree level. Therefore, with
increasing tree depth, the speedup of the Seg-Trie compared
to the B+-Tree using binary search increases almost linear.
The optimized Seg-Trie provides a constant speedup in-

dependent of tree depth. As mentioned in Section 4, the

106

optimized Seg-Trie omits levels with less than two distinct
values. The depth of the tree in Figure 11 refers to the num-
ber of filled levels. Compared to a Seg-Trie, the optimized
Seg-Trie requires one node comparison on each filled tree
level. In contrast, a Seg-Trie always performs eight compar-
isons even for levels containing only one key. Therefore, the
number of node comparisons for the optimized Seg-Trie in-
creases for deeper trees. The speedup is constant because it
is measured against the B+-Tree using binary search. Each
additional tree level adds one additional node to both tree
variants. Therefore, the speedup remains unchanged. Sup-
pose, we insert a 100 MB data set containing nearly 1.6 M
keys in consecutive order (starting at zero) into a 64-bit op-
timized Seg-Trie. We need 21 bits out of the available 64
bits to represent the largest key representation (1,638,400).
Therefore, the upper 43 bit are unused. The number of lev-
els that can be omitted due to 43 unused bits depend on the
size of the partial keys. In our example, we split a 64-bit
key into eight parts. Therefore, the optimized Seg-Trie of
depth three omits five out of eight levels, i. e., 40 bits. For
a tree depth of eight, no levels are omitted and both Seg-
Trie variants behave similar. The reduced number of levels
leads to a reduced amount of memory transfers, a reduced
possibility of cache misses and less computational e↵ort.

The Seg-Tree using breadth-first linearization provides a
constant speedup compared to aB+-Tree using binary search
and is independent of tree depth. However, the large data
type leads to a small speedup. The Seg-Tree using depth-
first linearization provides a similar improvement with same
characteristics. Therefore, both lines overlap in Figure 11.
Like the B+-Tree using binary search, the Seg-Tree adds one
node to the traversal path for each increase in tree depth.
Therefore, the speedup remains constant.

The smallest data type that can currently be processed by
the SIMD Extensions is 8-bit [2]. This restriction limits a
further increase in tree depth. However, the optimized Seg-
Trie and the Seg-Tree are independent of tree depth. The
Seg-Tree performs poorly on large data types but increases
its performance for smaller data types. The optimized Seg-
Trie provides a constant 14 fold speedup independently of
tree depth and an eight fold reduced memory consumption
compared to the original B+-Tree.

6. RELATED WORK
Zhou and Ross examine the application of SIMD instruc-

tion to implement database operations [20]. They address
sequential scans, aggregations, index operations, and joins.
For our work, the index operations are the most impor-
tant ones. The SIMD instructions are applied in three ap-
proaches. The first approach improves the binary search by
expanding the number of elements in one iteration step. In-
stead of comparing one separator with the search key, they
use the entire SIMD bandwidth. As a result, they include
elements that are located besides the separator. The sec-
ond approach is a sequential search using the entire SIMD
bandwidth. Instead of comparing one element at a time,
the second approach compares as many elements as fit into
one SIMD register and proceed in a stepwise manner. The
third approach combines both approaches in a so-called hy-
brid search. In contrast, our approach based on k-ary search
that reorders the sorted list of elements. The k-ary search
also increases the number of separators. Additionally, the k-

Figure 11: Evaluation Seg-Tree vs. Seg-Trie for 64-

bit key.

ary search supports a distance between two separators that
is wider than SIMD bandwidth.
Other research improves index structures like hashes using

SIMD [15]. Kim et al. introduce FAST, a binary tree that is
optimized for architectural features like page size, cache line
size, and SIMD bandwidth of the underlying hardware [11].
They examined the impact of translation lookaside bu↵er
(TLB) misses, last level cache (LLC) misses and memory
latency on CPU and GPU. Furthermore, Kim et al. exploit
thread-level and data-level parallelism on both CPUs and
GPUs. They point out, that the tree size and the size of the
LLC impacts the usability of CPU or GPU. In sum, the tree
processing is computation bound on small trees which fit
into LLC and bandwidth bound on trees larger than LLC
size. Our evaluation shows similar results. Compared to
our approach, they use an additional lookup table to evalu-
ate the bitmask and navigate to the next child node. The
data layout also di↵ers between our Seg-Tree and Seg-Trie
using k-ary search and the adapted binary search by Kim
et al. [11]. They divide the tree in sub-trees to create a
layout optimized for specific architectural features. In con-
trast, our approaches use k-ary search and our data layout is
determined by breadth-first or depth-first search. Based on
FAST, Yamamuro et al. introduce the VAST-Tree, a vector-
advanced and compressed structure for massive data tree
traversal [19]. By applying di↵erent compression techniques
to di↵erent node levels, they achieve a more compact tree
with higher traversal e�ciency.
Leis et al. [12] introduce the Adaptive Radix Tree as an

ARTful index for main memory databases. The ART tree
uses four node types with di↵erent capacities inside the nodes
depending on the number of keys. However, this approach
uses SIMD instructions only for the search in one node type
and for at most 16 keys. In comparison, our approach uses
SIMD instructions independent of the number of keys and
for each node size.
Graefe and Larson summarized several techniques for im-

proving cache performance for B-Trees [9]. Furthermore,
Bender et al. introduce a cache oblivious B-Tree [5] and
a cache oblivious string B-Tree [6]. Rao and Ross intro-
duce two cache conscious tree structure, the Cache-Sensitive

107

Search Trees (CSS-Tree) [13], and the Cache Sensitive B+-
Tree (CSB+-Trees) [14]. These tree variants construct the
tree such that the keys are placed as cache-optimized as pos-
sible in terms of spatial or temporal locality. The trees di↵er
in terms of knowing the main parameters of the memory hi-
erarchy, i. e., they are cache conscious, or running best on an
arbitrary memory hierarchy, i. e., they are cache oblivious.
Besides these di↵erences, all tree variants increase the cache-
line utilization by changing the tree layout. In contrast, our
approach constructs the tree in a way that enables SIMD
usage for tree traversal. However, our layout modification
increases the cacheline utilization as well. At first, our ap-
proach maximizes the cacheline utilization by sorting the
keys such that separator keys are placed next to each other.
Therefore, we compare k separators in parallel instead of
two in case of the commonly used binary search. Second,
our approach reduces the number of comparison operations
inside the node from log

2

n to log
k

n. The decreased number
of comparisons reduces the number of loaded cache lines.
Furthermore, the number of accesses to di↵erent memory
locations are reduced; thus increasing spatial locality.

Following the idea of a prefix B-trees by Bayer et al. [4],
many trie variations were proposed. The generalized trie by
Boehm et al. [7] exhibits the most similarities to our trie im-
plementation using k-ary search. Both approaches partition
a fix sized integer value and distribute it above di↵erent trie
levels. However, the inner node search di↵ers. Inside one
node, the generalized trie maps the partial key to a position
in an array of pointers. A node contains one pointer for
each possible value of the partial key domain. In contrast,
our Seg-Trie implementation performs a k-ary search in each
node. Our implementation will store the same pointer array
and an additional array for all possible key representation.
For traversal, our implementation performs the k-ary search
in each node with two comparison operations for an 8-bit
data type.

7. CONCLUSION AND FUTURE WORK
This paper introduces the Seg-Tree and Seg-Trie which

enable e�cient SIMD usage for tree and trie structures. We
show that SIMD instructions of modern processors are qual-
ified to speed up tree-based index structures. Therefore,
we make SIMD instructions applicable for tree based search
algorithms in modern database systems. Based on k-ary
search by Schlegel et al. [16], we investigate how to use this
approach for a B+-Tree and prefix B-Tree structure. We
contribute two di↵erent linearization and search algorithms,
the generalization to an arbitrary key count, and three al-
gorithms for bitmask evaluation. The introduced Seg-Trie
takes advantages of k-ary search for small data types and
enables them for large data types. Furthermore, our op-
timized Seg-Trie provides a 14 fold speedup and an 8 fold
reduced memory consumption compared to the original B+-
Tree. We emphasize, that the strength of a Seg-Trie arises
from storing consecutive keys like tuple ids. On the other
hand, if the keys are evenly distributed, the Seg-Trie needs
further adjustments to enhance the storage utilization. As
the SIMD bandwidth will increase in the future [1], index
structures using SIMD instructions will further benefit by
increased performance.
We plan to extend this work in two areas. First, this pa-

per focuses on optimizing the Seg-Tree and Seg-Trie for sin-
gle thread performance. In future work, we will investigate

the impact of multi-threading, multi-core, and many-core
architectures on di↵erent aspects of Seg-Tree and Seg-Trie
processing. Especially, the impact of SIMD instructions on
concurrently used index structures is an ongoing research
task. Second, we plan to adapt the Seg-Trie and Seg-Tree for
GPU processing. Compared to CPUs, GPUs support scatter
and gather operations that allow a load/store of keys from
distributed memory locations. Thus, we expect a reduced
reordering e↵ort.

8. REFERENCES
[1] Intel Advanced Vector Extensions Programming

Reference. http://software.intel.com/en-us/avx/, 2008.
[2] IntelR� 64 and IA-32 Architectures Software

Developer’s Manual, August 2012.
[3] R. Bayer and E. McCreight. Organization and

maintenance of large ordered indices. In Workshop on
Data Description, Access and Control, 1970.

[4] R. Bayer and K. Unterauer. Prefix b-trees. ACM
Trans. Database Syst., 1977.

[5] M. A. Bender, E. D. Demaine, and M. Farach-Colton.
Cache-oblivious b-trees. In FOCS, 2000.

[6] M. A. Bender, M. Farach-Colton, and B. C. Kuszmaul.
Cache-oblivious string b-trees. In PODS, 2006.

[7] M. Boehm, B. Schlegel, P. B. Volk, U. Fischer,
D. Habich, and W. Lehner. E�cient in-memory
indexing with generalized prefix trees. In BTW, 2011.

[8] D. Comer. Ubiquitous b-tree. ACM Comp. Surv.,
1979.

[9] G. Graefe and P.-A. Larson. B-tree indexes and cpu
caches. In ICDE, 2001.

[10] S. Heinz, J. Zobel, and H. E. Williams. Burst tries: a
fast, e�cient data structure for string keys. ACM
Trans. Inf. Syst., 2002.

[11] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D.
Nguyen, T. Kaldewey, V. W. Lee, S. A. Brandt, and
P. Dubey. Fast: fast architecture sensitive tree search
on modern cpus and gpus. In SIGMOD, 2010.

[12] V. Leis, A. Kemper, and T. Neumann. The adaptive
radix tree: Artful indexing for main-memory
databases. In ICDE, 2013.

[13] J. Rao and K. A. Ross. Cache conscious indexing for
decision-support in main memory. In VLDB, 1999.

[14] J. Rao and K. A. Ross. Making b+- trees cache
conscious in main memory. In SIGMOD, 2000.

[15] K. Ross. E�cient hash probes on modern processors.
In ICDE, 2007.

[16] B. Schlegel, R. Gemulla, and W. Lehner. k-ary search
on modern processors. In DaMoN workshop, 2009.

[17] M. Stonebraker, S. Madden, D. J. Abadi,
S. Harizopoulos, N. Hachem, and P. Helland. The end
of an architectural era: (it’s time for a complete
rewrite). In VLDB, 2007.

[18] R. E. Wagner. Indexing design considerations. IBM
Systems Journal, 1973.

[19] T. Yamamuro, M. Onizuka, T. Hitaka, and
M. Yamamuro. Vast-tree: a vector-advanced and
compressed structure for massive data tree traversal.
In EDBT, 2012.

[20] J. Zhou and K. A. Ross. Implementing database
operations using simd instructions. In SIGMOD, 2002.

108

