
R2G: a Tool for Migrating Relations to Graphs

Roberto De Virgilio
Dipartimento di Ingegneria

Università Roma Tre
Rome, Italy

dvr@dia.uniroma3.it

Antonio Maccioni
Dipartimento di Ingegneria

Università Roma Tre
Rome, Italy

maccioni@dia.uniroma3.it

Riccardo Torlone
Dipartimento di Ingegneria

Università Roma Tre
Rome, Italy

torlone@dia.uniroma3.it

ABSTRACT
We present R2G, a tool for the automatic migration of databases
from a relational to a Graph Database Management System
(GDBMS). GDBMSs provide a flexible and efficient solution to
the management of graph-based data (e.g., social and semantic Web
data) and, in this context, the conversion of the persistent layer of
an application from a relational to a graph format can be very ben-
eficial. R2G provides a thorough solution to this problem with a
minimal impact to the application layer: it transforms a relational
database r into a graph database g and any conjunctive query over
r into a graph query over g. Constraints defined over r are suitably
used in the translation to minimize the number of data access re-
quired by graph queries. The approach refers to an abstract notion
of graph database and this allows R2G to map relational database
into different GDBMSs. The demonstration of R2G allows the di-
rect comparison of the relational and the graph approaches to data
management.

1. INTRODUCTION
Graphs provide a natural representation of data in several ap-

plication domains such as computer networks, biology, geomatics
and, more recently, social networks and the Semantic Web. The
need of these kind of applications to manage highly-connected data
in an effective and efficient way has originated a brand new cat-
egory of storage systems, usually called graph database manage-
ment systems (GDBMS). In such systems data are stored natively
in graph structures and queries are defined in terms of graph traver-
sals. While in RDBMSs relationships between data in different
tables are represented by means of values that appear in tuples, in
GDBMS data are stored in nodes and references are represented ex-
plicitly by means of edges between nodes. This allows GDBMSs
to scale more naturally to large sets of graph-based data as they do
not require expensive join operations. In addition, since GDBMSs
do not rely on a rigid schema, they are more flexible in situations
where the schema evolves rapidly.

In this framework, the migration of databases from a relational to
a graph-based storage system can be beneficial for applications but
clearly, an automatic support to this process is essential. Actually,

(c) 2014, Copyright is with the authors. Published in Proceeding of the 17th
International Conference on Extending Database Technology (EDBT 2014)
on OpenProceedings.org. Distribution of this paper is permitted under the
terms of the Creative Commons license CC-by-nc-nd 4.0.

many tools and techniques have been developed for this purpose, in
particular, for migrating relational databases to RDF [7]. However,
the various approaches provide ad-hoc solutions, as they usually
consider a specific target system or data model and rely on rather
naive techniques (e.g., tuples are simply mapped to nodes and for-
eign keys to edges) that do not fully exploit the features of the target
systems and do not consider the query load. Moreover, and more
important, they disregard the important issue of query mapping:
how to translate queries over the source into queries over the tar-
get. This is clearly fundamental to suitably adapt the application
layer to the new persistent layer in an effective and efficient way.

We provide a contribution to this problem by presenting R2G, a
tool for the automatic migration of databases from a relational to
a graph storage system that converts a relational database r into a
graph database g and any conjunctive query over r into a traversal
of g. The translation takes advantage of the constraints defined
over the source for minimizing the number of accesses needed to
answer queries over the target. Intuitively, this is done by storing in
the same node of the target the data that are likely to occur together
in query results. Another important issue is that our approach relies
on an abstract notion of graph database and this allows R2G to store
the target graph database into different GDBMSs.

The demonstration of R2G aims at illustrating and discussing
with the audience the following issues:

• how a relational database can be transformed into a graph
database in which the entities and relationships of the source
application are naturally represented in terms of nodes and
edges;

• how conjunctive queries on the source database can be trans-
lated into graph traversal operations over the target database;

• how the number of data accesses needed to answer queries
over the target can be minimized by considering the con-
straints defined over the source;

• how the migration can be made system-independent by us-
ing an abstract notion of graph databases that is suitable for
different GDBMSs;

• advantages and limitations of the relational and of the graph
approach to data management.

The rest of the presentation of R2G is organized as follows. In
Section 2 we present the graph model adopted in our approach
while in Section 3 we provide an overview of the system. In Sec-
tion 4 we illustrate an outline of the demonstration of our tool and
finally, in Section 5, we draw some conclusions. More details on
the techniques implemented in R2G can be found in [3].

640 10.5441/002/edbt.2014.63

User (US)
uid uname

t1 u01 Date
t2 u02 Hunt

Follower (FR)
fuser fblog

t3 u01 b01

t4 u01 b02

t5 u01 b03

t6 u02 b01

Blog (BG)
bid bname admin

t8 b01 Information Systems u02
t9 b02 Database u01
t10 b03 Computer Science u02

Tag (TG)
tuser tcomment

t7 u02 c01

Comment (CT)
cid cblog cuser msg date

t11 c01 b01 u01 This is what I was looking for! 25/02/2013

Figure 1: A relational database.

2. PRELIMINARIES

2.1 Schema graphs and full schema paths
A relational schema can be naturally represented in terms of a

graph by considering the constraints defined on it. This represen-
tation is used in first step of the conversion of a relational into a
graph database and is defined as follows.

Given a relational schema R, the schema graph RG for R is a
directed graph 〈N,E〉 such that:

• there is a node A ∈ N for each attribute A of a relation in
R,

• there is an edge (Ai, Aj) ∈ E if one of the following holds:
(a) Ai belongs to a key of a relation R inR and Aj is a non-
key attribute of R, (b) Ai, Aj belong to a key of a relation R
inR, (c) Ai, Aj belong to Ri and Rj respectively and there
is a foreign key between Ai and Aj .

Let us consider for instance the relational databaseR for a social
application in Figure 1 in which keys are underlined and foreign
key can be easily inferred. The schema graph for R is depicted in
Figure 2.

The transformation technique adopted by R2G consider the full
schema paths of a schema graph, that is, the paths from a source
node to a sink node. This is because they represent logical rela-
tionships between concepts of the database and for this reason they
correspond to natural ways to join the tables of the database for an-
swering queries. A full schema path of the graph in Figure 2 is, for
instance, the following:

TG.tuser→ TG.tcomment→ CT.cid→ CT.msg

2.2 Graph Databases
Recently, graph database models are receiving a new interest

with the spread of GDBMSs. Unfortunately, due to diversity of the
various systems, there is no accepted definition of data model for
GDBMSs and of the features provided by them. However, almost
all the existing systems exhibit three main characteristics.

First of all, at physical level, a graph database satisfies the so
called index-free adjacency property: each node stores information
about its neighbors only and no global index of the connections be-
tween nodes exists. As a result, the traversal of an edge is basically

US.uid

US.uname

FR.fuser FR.fblog

CT.cuser

CT.cblog

CT.cid

BG.bid
BG.bnameBG.admin

CT.msg

CT.date

TG.tuser TG.tcomment

Figure 2: The schema graph for the database in Figure 1.

independent of the size of data. This allows the efficient compu-
tation of local analyses on graph-based data and makes GDBMSs
well-suited in scenarios where the size of data increases rapidly.

Secondly, a GDBMS stores data in a multigraph (a graph where
two nodes can be connected by more than one edge), usually called
property graph [6], where every node and every edge has associ-
ated a set of key-value pairs, called properties. We consider here a
simplified version of a property graph where only nodes have prop-
erties, which represent actual data, while edges have just labels that
represent relationships between data in nodes.

We then simply define a graph database as a labeled multigraph
g = (N,E) where every node n ∈ N is associated with a set
of pairs 〈key, value〉. An example of graph database is reported
in Figure 3. Note that a tuple t over a relation schema R(X) is
represented here by set of pairs 〈A, t[A]〉, where A ∈ X and t[A]
is the restriction of t on A.

The third feature common to GDBMSs is the fact that data is
queried using path traversal operations expressed in some graph-
based query language, as discussed next.

2.3 Graph Query Languages
The various proposals of query languages for graph data mod-

els [8] can be classified into two main categories. The former
includes languages, such as SPARQL and Cypher [5], in which
queries are expressed as a graph and query evaluation relies on
graph matching between the query and the database. A limita-
tion of this approach is that graph matching is expensive on large
databases [1]. The latter category includes languages that rely on
expressions denoting paths of the database. Among them, we men-
tion Gremlin [5], XPath, and XQuery [4]. These languages, usually
called traversal query languages, are more suitable for an efficient
implementation.

For the sake of generality, in this paper we consider an abstract
traversal query language with an XQuery-like syntax. Expressions
of this language are based on path expressions in which, as usual,
square parentheses denote conditions and the slash character (/) de-
notes the adjacency between nodes and edges. We will also make
use of variables, which range over paths and are denoted by the
prefix $, of the for construct, to iterate over path expressions, and
of the return construct, to specify the values to return as output.

641

3. SYSTEM OVERVIEW

3.1 Architecture of the tool
R2G has four main components: (1) the Metadata Analyzer

(MA), which inspects schema and constraints of the source rela-
tional database and builds the corresponding schema graph, (2) the
Data Mapper (DM), which generates the data mapping, (3) the
Query Mapper (QM), which is responsible for translating queries,
and (4) the Graph Manager (GM), which actually migrates the
data and executes queries over the target database by using the map-
pings generated by the DM and the QM. Both the DM and the QM
take advantage of the output of MA.

R2G has been developed in Java and uses the Tinkerpop1 frame-
work to implement the abstract interface over graph databases.
Specifically, the GM component of R2G relies on Tinkerpop
Blueprints for data management and on Tinkerpop Gremlin for
query processing. PostgreSQL and JDBC have been used as source
RDBMS and relational API, while Neo4J2 and OrientDB3 have
been used as target GDBMSs.

The rest of this section sketches the mapping techniques used by
the Data and the Query Mapper, respectively. More details on our
approach can be found in [3].

3.2 Data Mapping
Existing GDBMSs usually provide ad-hoc relational importers

based on a naive approach that generates a node for each tuple oc-
curring in the source database and an edge for each pair of joinable
tuples, that is, tuples t1 and t2 over R1 and R2 respectively such
that there is a foreign key constraint between R1.A and R2.B and
t1[A] = t2[B]. Conversely, in our approach we aggregate values of
different tuples in the same node to speed-up traversal operations
over the target. The basic idea is to store in the same node data
values that are likely to be retrieved together in the evaluation of
queries. Intuitively, these values are those that belong to joinable
tuple. However, by just aggregating together joinable tuples we
could run the risk to accumulate a lot of data in each node.

Therefore, we consider a data aggregation strategy based on a
more restrictive property, which we call unifiability. In the def-
inition that follows, a multi-key is a key of a relation composed
by a set of attributes each of which is a foreign key for a dif-
ferent relation. An example of multi-key is the set of attributes
{tuser,tcomment} of relation Tag in Figure 1. Basically, a multi-
key implements a many-to-many relationship.

Two data values v1 = t1[A] and v2 = t2[B] are unifiable in
a relational database r if one of the following holds: (i) t1 = t2
and both A and B do not belong to a multi-key; (ii) t1 and t2 are
joinable and A belongs to a multi-key; (iii) t1 and t2 are joinable,
A and B do not belong to a multi-key and there is no other tuple t3
that is joinable with t2.

This notion guarantees a balanced distribution of data among the
nodes of the target graph database and an efficient evaluation of
queries over the target that correspond to joins over the source. In
Figure 3 it is shown the graph database obtained by aggregating in
the nodes the unifiable values occurring in the relational database
of Figure 1. In this graph, an edge between two nodes n1 and
n2 with label R_A denotes that values occurring in n1 and n2 are
related by a foreign key constraint from the attribute A of relation
R. For instance, in the graph of Figure 3 there is an edge labeled

1http://tinkerpop.com/
2http://neo4j.org/
3http://www.orientdb.org/orient-db.htm

FR.fuser : u01
US.uname : Date

US.uid : u01

FR.fblog : b01
BG.bname : Information Systems

BG.admin : u02
BG.bid : b01

TG.tuser : u02
FR.fuser : u02

US.uname : Hunt
US.uid : u02

FR.fblog : b02
BG.bname : Database

BG.admin : u01
BG.bid : b02

TG.tcomment : c01
CT.cuser : u01
CT.cblog : b01

CT.cid : c01
CT.msg : Exactly what I was looking for!

CT.date : 25/02/2013

FR.fblog : b03
BG.bname : Computer Science

BG.admin : u02
BG.bid : b03

BLOG_ADMIN

COMMENT_CUSER

FOLLOWER_FUSER

BLOG_ADMIN

BLOG_ADMIN

FOLLOWER_FUSER

n1 n2

n3

n4

n5 n6

FOLLOWER_FUSER

FOLLOWER_FUSER

TAG_TUSER

Figure 3: The graph database generated by R2G from the re-
lational database in Figure 1.

BLOG_ADMIN between n3 and n5 because of the value u02 of
attribute ADMIN in relation BLOG.

In [3] we illustrated a technique for identifying and aggregat-
ing efficiently unifiable values. This is done by following the
full schema paths of the schema graph for the source relational
database.

3.3 Query Mapping
R2G is able to translate conjunctive SQL queries (select-

projection-join operation) into path traversal operations over the
graph database. The translation technique first generates a graph-
based structure, called query template (QT for short), that denotes
the sub-graphs of the target graph database that include the result of
the query. A query template is then translated into a path traversal
query.

We show the generation of a query template by means of an ex-
ample. Let us consider the following SQL query Q on top of the
relational database of Figure 1.

SELECT US.uname
FROM User US, Blog BG
WHERE (BG.admin = US.uid) AND

(BG.bname = ’Inf. Systems’)

The query retrieves the names of the users that have commented
the Inf. Systems blog. The construction of the corresponding query
template considers the schema graph sg in Figure 2 and proceeds
as follows.

1. We identify a minimal set SP of full schema paths in sg such
that for each join condition Ri.Ai = Rj .Aj occurring in Q,
there is an edge (Ri.Ai, Rj .Aj) in at least one sp in SP.
Note that this set forms a connected graph since Q is a con-
junctive query. Referring to our example, the minimal set we
obtain is the following:

sp1 : TG.tuser → US.uid → US.uname.
sp2 : TG.tuser → TG.tcomment → CT.cid → CT.cblog

2. If there is an attribute in a selection condition R.A = c that
does not occur in any full schema path in SP, another full
schema path sp that includes both A and an attribute in a full
schema path sp′ in SP is added to SP;

642

BG.bname : Information Systems US.uname : ?
BLOG_ADMIN

Figure 4: The query template for Q.

3. We build a relational database rQ made of: (i) a set of ta-
bles R(A) having as instance c for each selection condition
R.A = c, and (ii) a set of tables R(A) having as instance
the special symbol ? for each attribute R.A in the SELECT
clause of Q;

4. The final query template is then obtained by applying the
data conversion procedure to SP and rQ, cited in Section 3.2
and described in [3] . We obtain in our example the query
template in Figure 4. The label 〈US.uname, ?〉 indicates
that the value associated to US.uname is the goal of the
query. By matching this query template against the graph
database in Figure 3 it is easy to see that the result of the
query is Hunt.

The query pattern we obtain is then translated into a graph traversal
language expression. By adopting the syntax of the abstract query
language mentioned in Section 2, we obtain the following expres-
sion:

FOR $x in /[BG.bname=’Inf. Systems’]
$y in $x/BLOG_ADMIN/*

RETURN $y/US.uname

This expression can be finally computed over the target graph
database with a graph traversal operation expressed in the specific
language adopted by the target GDBMS.

4. DEMONSTRATION OUTLINE
In the demonstration of R2G we will use both synthetic and

real data sets of different size. In particular we consider MON-
DIAL (17.115 tuples and 28 relations), ACADEMIC4 (4.200 tuples)
and two ideal counterpoints (due to the larger size): IMDB and
WIKIPEDIA (200.000 tuples). You can find more details about
these data sets in [2]. The demonstration includes four scenarios
that aim at showing all the capabilities of the system in different
use cases.

Scenario A. The first scenario shows how the data migration
takes place with all the above data sets. The user can be-
come familiar with R2G and monitor how different relational
databases are transformed into graph databases with our sys-
tem. The user will also exploit a graphical tool5 to navigate
the content of the graph database and will be able to monitor
the status of R2G through an interactive front-end.

Scenario B. The second scenario aims at illustrating how the
query mapping is performed. We will provide a set of SQL
queries for each data set; the user can monitor, step-by-step,
how the SQL statements are translated by R2G into path
traversal expressions. Here, we will use Gremlin as query
language. For example, the query Q discussed in Section 3.3
is translated into the following expression:

4A synthetic data set based on the schema in Figure 1
5https://github.com/neo4j-contrib/neoclipse

g.V.filter{it.BGbname==’Inf. Systems’}.
outE.filter{it.label==’BLOG_ADMIN’}.
inV.’USuname’

At the end, the user can perform the same query on both the
relational and graph DBMSs and compare the outcomes. The
interactive front-end will support the user in this task.

Scenario C. With respect to Scenario B, the third scenario al-
lows users to freely submit SQL queries to the system. In
response, the user can obtain the result of the query over
Neo4J and OrientDB or, alternatively, the translation of the
SQL query into a Gremlin expression.

Scenario D. This scenario involves alternative approaches
adopted by the import facilities of Neo4J and OrientDB.
This serves to illustrate how our techniques outperform the
naive solution of the competitors. Since Neo4J and Ori-
entDB do not provide any query mapping facility, we cannot
provide any comparison in Scenario B and in Scenario C,
but only in Scenario A.

5. CONCLUSION
In this paper we have illustrated R2G, a tool for migrating

databases from a relational to a Graph Database Management Sys-
tem (GDBMS). R2G relies on a general representation of relational
data in terms of a graph and provides methods and techniques that,
taking into account the integrity constraints defined on the source,
map data and queries to the target system in an effective and effi-
cient way. R2G provides a support for database reengineering in
application domains where the adoption of a GDBMS is convenient
and enables, in those domains, the comparison of the relational and
the graph-based technology to manage and query data.

6. REFERENCES
[1] C. Bizer and A. Schultz. The berlin sparql benchmark. Int. J.

Semantic Web Inf. Syst., 5(2):1–24, 2009.
[2] J. Coffman and A. C. Weaver. A framework for evaluating

database keyword search strategies. In the 19th ACM
Conference on Information and Knowledge Management
(CIKM), pages 729–738, 2010.

[3] R. De Virgilio, A. Maccioni, and R. Torlone. Converting
relational to graph databases. In the first International
Workshop on Graph Data Management Experiences and
Systems (GRADES), co-located with SIGMOD/PODS, page 1,
2013.

[4] J. Hidders and J. Paredaens. Xpath/xquery. In L. Liu and M. T.
Özsu, editors, Encyclopedia of Database Systems, pages
3659–3665. Springer US, 2009.

[5] F. Holzschuher and R. Peinl. Performance of graph query
languages: comparison of cypher, gremlin and native access in
neo4j. In the Second International Workshop on Querying
Graph Structured Data (GraphQ), co-located with
EDBT/ICDT, pages 195–204, 2013.

[6] M. A. Rodriguez and P. Neubauer. Constructions from dots
and lines. CoRR, abs/1006.2361, 2010.

[7] S. S. Sahoo, W. Halb, S. Hellmann, K. Idehen, T. T. Jr,
S. Auer, J. Sequeda, and A. Ezzat. A survey of current
approaches for mapping of relational databases to rdf. W3C.
http://www.w3.org/2005/Incubator/rdb2rdf/RDB2RDF_
SurveyReport.pdf, 2009.

[8] P. T. Wood. Query languages for graph databases. SIGMOD
Record, 41(1):50–60, 2012.

643

