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ABSTRACT
Exploiting word-of-mouth effect to create viral cascades in
social networks is a very appealing possibility from the mar-
keting standpoint. However, in order to set up an effective
viral marketing campaign, one has first to accurately esti-
mate social influence. This is usually done by analyzing user
activity data. As we point out in this paper, the data anal-
ysis and sharing that is needed to estimate social influence
raises important privacy issues that may jeopardize the le-
gal, ethical and societal acceptability of such practice, and
in turn, the concrete applicability of viral marketing in the
real world.

In this paper we devise secure multiparty protocols that
allow a group of service providers and a social networking
platform to jointly compute social influence, in a privacy
preserving manner.

1. INTRODUCTION
The idea of viral marketing is that of exploiting a pre-

existing social network in order to increase brand awareness
or to achieve other marketing objectives (such as product
sales) through self-replicating viral processes, analogous to
the spread of viruses. More concretely, the idea is to“target”
the most influential users in the network so that, hopefully,
they will create a word-of-mouth driven cascade, potentially
delivering the marketing message to a large portion of the
network, with a small initial marketing cost.

The key computational problem behind viral marketing
is that known as influence maximization, formalized by
Kempe et al. [1] as a constrained optimization problem:
given a directed social graph, where each arc is labeled with
a probability representing the strength of social influence
along the arc, and given a budget k, find k “seed” nodes
such that activating them maximizes the expected number
of nodes that eventually get activated. This problem has re-
ceived a great deal of attention by the data mining research
community in the last decade. Regardless of this effort, the
field is still far from maturity: influence maximization is
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still an ideal problem, mainly studied from the algorithmic
standpoint, under strong assumptions and with a large gap
from real-world applicability.

A first observation is that the majority of research in the
field assumes that the input social graph comes already with
the influence strength associated to each link. However, this
is not the case in real-world social networks. Following this
observation, various researchers [2, 3, 4] have turned their at-
tention to the problem of learning social influence strength.
Given (1) the social graph and (2) a log of past propagation
traces (for instance, the history of sales of some products to
the users in the social network) and assuming a propagation
model which governs the manner in which influence-driven
propagations occur, the problem is to learn the parameters
of the model, i.e., the influence probability associated to
each arc.

In real life, however, social networking platforms are
owned by a third party such as Facebook or Twitter (we
refer to the network owner as the host). The proprietary
social graph is an important asset with inestimable value,
thus the host keeps it secret for obvious reasons of commer-
cial benefits, as well as due to privacy legislation12. For the
very same reasons, the service provider that is interested
in setting up the viral marketing campaign (e.g., an e-book
store), must keep his historic sales data secret. Therefore,
we face a scenario in which two distinct parties (the host H
and the service provider P ) hold, one each, the two pieces
that constitute the input to the problem of learning the in-
fluence strength: H has the social graph, while P holds the
log of past propagation traces.

Viral marketing is offered byH as a service to P [5, 6]: this
might be in the form of advertising space, paid by P to H
on a pay-per-impression basis. H attempts to optimize the
placement of advertisements in order to maximize influence
diffusion. This optimization is provided as a service to P ,
with the primary goal of making the social network more
attractive as a marketing platform.

However, in order to solve the influence maximization
problem and to set up the viral marketing campaign, it is
first needed to learn the influence strength. It is in the in-
terest of both H and P to learn peer influence accurately
so that the viral marketing campaign is more likely to be
successful.

So how can H and P learn the influence strength while
keeping their data secret? This is the problem that we study
in this paper.

1
http://techcrunch.com/2013/01/24/my-precious-social-graph/

2
http://mashable.com/2012/07/27/twitter-instagram-find-friends/
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Beyond the mere privacy issues, the problem that we
study is also motivated by the accuracy of the influence
learning task. It has been already observed [7, 8] that the
propagation models have a very large number of parameters
(the influence strength of each of the social links), which
makes the learning task prone to overfitting. In order to re-
duce the risk of overfitting, larger logs of past propagations
(i.e., more data) are preferable. Therefore, it would make
perfect sense if various service providers, P1, . . . , Pm, which
are interested in doing viral marketing with H, would put
their data together (in a secure way) in order to arrive to
more accurate estimates of the social influences.

When we consider the case of multiple service providers
conjoining their propagations, a distinction between two
cases is in order. In the first case, each service provider
sells different items: this means that the propagation of an
item is completely contained in one provider’s data. We re-
fer to this setting as the exclusive case. In the second, the
so-called non-exclusive case, the same item may be offered
by different providers. This means that the trace of a prop-
agation of an item might be partitioned between datasets of
different parties. Consider, for instance, a case where user v
was influenced by her friend u in H’s social network to buy
a specific book. However, while u bought the book from the
book store P1, v got hers from a different store P2. If the two
stores would not share their sales data, none of them would
have any evidence of u influencing v on buying that book. In
order to obtain a complete propagation trace, it is necessary
for such service providers to conjoin their data. This means
that having more parties participating in the secure compu-
tation of social influence results not only in a larger corpus
of data, but also in “better”, more complete data. Since those
parties cannot disclose the activity logs of their customers
to each other, such conjoining of data must be carried out
in a private manner.

The two main contributions of this paper are:

• Secure multiparty protocols that allow a group of ser-
vice providers and a social network host to jointly com-
pute the link influence strengths, in either the exclusive
or the non-exclusive case (Section 5).

• Secure multiparty protocols to compute directly a user
influence score, for each user in the social network, in ei-
ther the exclusive or the non-exclusive case (Section 6).

These, in turn, build upon the following more fundamental
contributions:

• Two general-purpose secure arithmetic protocols: one
for computing integer additive shares of a sum of private
inputs, and another for computing the quotient of two
private integers (Section 4).

We analyze the privacy of each of the proposed protocols
under the standard assumption that the participating play-
ers are semi-honest, i.e., they respect the protocol, but try
to learn as much as they can from their own view of the
protocol on the private information held by other players.3

Analyzing and sharing user activity on modern social me-
dia and e-commerce platforms raises important privacy is-
sues. Understanding such issues and devising adequate tech-
nological solutions is crucial, both from the legal point of
view and that of social acceptance of techniques such as vi-
ral marketing. Without this, the real-world applicability of
such practice is in jeopardy. To the best of our knowledge,
we are the first to tackle these important privacy issues and
to propose concrete solutions.
3See [9, 10] for a discussion and justification of that assumption.

2. BACKGROUND AND RELATED WORK
Learning link influence strength. As stated in the intro-
duction, a basic computational problem in the area of viral
marketing is that of selecting the set of users to be targeted
by the campaign [11, 12], which was formalized by Kempe et
al. [1] as a discrete optimization problem, named influence
maximization : given a social network where each link is as-
sociated with an estimate of influence strength, and a budget
k, find k nodes that provide the maximum expected spread,
i.e., the expected number of active nodes at the end of the
process. Part of the contribution of Kempe et al. [1] was to
provide a simple (but computationally prohibitive) greedy
algorithm with approximation guarantees. Following that
seminal work, considerable effort was devoted to developing
methods for improving the efficiency of influence maximiza-
tion. Most of those studies assume a weighted social graph
as input and do not consider the problem of computing the
link influence strength, e.g. [13, 14].

Saito et al. [2] were the first to study how to learn the
link influence probabilities from a set of past propagations.
They neatly formalized the likelihood maximization prob-
lem and then applied Expectation Maximization (EM) to
solve it. Although elegant, their formulation has some limi-
tations when it comes to practice. First, real data needs to
be heavily discretized to meet the assumed input format [15].
Second, the EM-based method is particularly prone to over-
fitting [7]. Finally, it is not very scalable as it needs to
update the influence probability associated to each arc in
each iteration.

For these reasons and for the sake of simplicity, we avoid
the complexity of the EM-based approach when learning the
influence probabilities for the influence maximization prob-
lem, and instead we follow a simpler definition by Goyal et
al. [4], which also considered temporal decay of influence.
We provide the details of this definition in Section 3.1.

Learning user influence score. The whole learning
framework underlying the influence maximization problem
(i.e., first learn an influence probability for each link, then
apply an algorithm to discover influential users) might
be considered cumbersome and inefficient. An alternative
might be to just mine the social graph together with the
log of available propagations in order to assign a score of
influence to each user. Goyal et al. [16, 17] defined a no-
tion of leadership based on how frequently a user exhibited
an influential behavior. In particular, the size of the prop-
agation sub-graph “below” a certain user u was used as a
measure of u’s influence. The same measure was used by
Bakshy et al. [18] in the context of Twitter. We consider
also this measure of influence (formally defined in Section
3.2).

Privacy preserving data mining has mainly been stud-
ied under two distinct settings. In the first setting, the data
owner and the data miner are two different entities, and the
goal is to protect the data records from the data miner. The
main approach in this context is to apply data perturbation
[19, 20]. The idea is that the perturbed data can be used to
infer general trends in the data, while revealing (almost) no
information on the original records.

In the second setting (which is the one considered in this
paper), the data is distributed among several parties who
aim to jointly perform data mining on the unified corpus
of data that they hold, while protecting the data records of
each of the data owners from the other data owners. This is
a problem of secure multi-party computation (SMC). In the
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general setting of SMC, there are several parties (or play-
ers), P1, . . . , Pn, where each party Pi holds a private value
xi. The goal is to compute the value f(x1, . . . , xn), where
f is some publicly known function of n variables, so that
each party does not learn anything about the private inputs
of the other parties, except the information that is implied
by his own input and the output result f(x1, . . . , xn). The
problem of secure two-party computation was solved by Yao
[21] for any function f that can be represented by a binary or
an algebraic circuit. While generic protocols, such as Yao’s
and its extensions to any number of players, apply in theory
to a wide class of functions, their applicability in practice is
limited to functions that have a compact representation as a
circuit, due to their high computational and communication
complexities. The aim of further studies in this field is to
find more efficient solutions for specific problems of SMC:
e.g., decision trees [22], clustering [23], and association rule
mining [24, 25, 26]. It should be noted that some relaxations
of the notion of perfect privacy are usually inevitable when
looking for practical solutions, provided that the excess in-
formation is deemed benign (see examples of such protocols
in e.g. [9, 24, 25, 27]). For each of the protocols that we
present in this paper, we bound the excess information that
it may leak to the interacting players and explain why such
leakage of information is benign, or how it may be reduced.

3. PROBLEM DEFINITION
In this section we define the data model, the computation

of influence strength for each social link (following [4]) and
the node influence score (inspired by [16, 18]).

We consider a social network, which is a graph G = (V,E)
where the nodes are users and the links denote some rela-
tion between the users. When the relation is symmetric
(such as the “friendship” relation in Facebook) the graph is
undirected; when the relation is asymmetric (such as the
“following” relation in Twitter) the graph is directed. We
shall assume hereinafter that the graph is directed4 and a
link (u, v) ∈ E indicates the fact that v is a follower of u,
i.e., v is notified about u’s activities, or in other terms, u
can influence v.

We are also given a relation L(User;Action;T ime), that
we call action log. Each record in that log is a tuple of the
form (v, α, t) which indicates the fact that user v performed
action α at time t. We assume that: (a) the projection of L
on the first column is contained in the set V of nodes of the
social graph G = (V,E);5 (b) the set of all possible actions is
denoted A; and (c) time is represented by positive integers.
Moreover, we assume that any given user performs any given
action at most once. (Hence, if a user bought, for example,
the same book twice, we consider only the first purchase.)

There are m service providers, P1, . . . , Pm, and each Pk,
1 ≤ k ≤ m, owns an action log Lk that consists of the actions
performed at the site of that service provider. The unified
log is L =

⋃m
k=1 Lk. These m service providers, together

with the host, wish to compute the link influence strength
(as defined in Section 3.1) and the user influence score (as
defined in Section 3.2) in a secure manner.
4Undirected graphs will be thought of as directed graph
where each undirected edge {u, v} is replaced by the two
directed arcs (u, v) and (v, u).
5In practice, the service providers may have users that are
not members of the social network. Such users may be ig-
nored since questions of influence are relevant only in a social
framework.

3.1 Link influence strength
Assume that V = {v1, . . . , vn}. Here we define the in-

fluence probabilities pi,j for all {(i, j) : (vi, vj) ∈ E}. The
value pi,j is an estimate to the probability that user vj will
perform some action if vi performs that action. The esti-
mate is based on the past activity of those users as reported
in the action logs. To define pi,j , we introduce the following
notations:

• ai is the number of tuples in L in which the first com-
ponent is vi. It equals the number of actions that vi
did.

• bhi,j is the number of actions α such that L includes
a record (vi, α, t) as well as a record (vj , α, t

′), where
t < t′ ≤ t+ h, for some integer h ≥ 1. It represents the
number of times in which vj followed vi in doing some
action, assuming a memory window of width h.

• chi,j is the number of actions α such that L includes
a record (vi, α, t) as well as a record (vj , α, t + h). It
is the number of times in which vj followed vi in doing
some action exactly h time steps after vi performed that
action.

One way of defining pi,j is by picking some value of h and
then set

pi,j =
bhi,j
ai

. (1)

Namely, it is the fraction of times in which vi succeeded in
influencing vj (to follow him within h time steps). A more
generalized definition would be

pi,j =

∑h
`=1 w`c

`
i,j

ai
, (2)

where 0 < w` and
∑h
`=1 w` = h. The definition in equation

(1) is a special case of the definition in equation (2) when
w` = 1 for all 1 ≤ ` ≤ h. By taking w1 > · · · > w`, one
may achieve a temporal decay effect; namely, the faster vj
follows vi in doing an action, the more we consider vj ’s action
to be a result of vi’s influence on him. In either of these
definitions, pi,j is set arbitrarily to zero if the denominator
ai is zero (since if vi performed no action, we have no way
of determining his influence on others).

3.2 User influence score
Above we defined a way to compute the influence proba-

bility for each link, which is a needed input for the influence
maximization problem [1]. When focusing on links, one only
needs to count the episodes of influence, i.e., the number of
actions that “travelled” along the link. Then the influence
maximization framework will take care of combining this
information to find out influential users.

We next define an alternative to the influence maximiza-
tion framework: a score of influence for each node, obtained
directly by mining the social graph together with the log of
past propagation traces. In this case, we cannot just con-
sider how a node u influences its immediate neighbors; we
must take into account how u’s influence transitively affects
the neighbors of u’s neighbors, thus propagating in the net-
work. This is captured in the next definitions.

Definition 3.1. Given an action α ∈ A, its propagation
graph PG(α) = (V,E(α)) is a labeled graph where there is
an arc (vi, vj) ∈ E(α), with label ∆t, if (vi, vj) ∈ E and
(vi, α, ti), (vj , α, tj) ∈ L with ∆t := tj − ti > 0.
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Definition 3.2 (User influence sphere). Given an
action α ∈ A and a maximum propagation time threshold τ ,
the τ -influence sphere of a user vi ∈ V , denoted Infτ (vi, α),
is the set of nodes reachable from vi in PG(α) by a path
whose sum of labels is at most τ .

Finally, we are ready to define the user influence scores.

Definition 3.3 (User influence score). Given a
social graph G = (V,E), an action log L, and a time
threshold τ , the τ -influence score of a node vi ∈ V is the
average size of all its τ -influence spheres,

score(vi) =

∑
α∈A |Infτ (vi, α)|

ai
, (3)

where ai is the number of actions performed by vi. (If ai = 0,
then score(vi) is set to zero.)

In Sec. 5 we describe secure distributed protocols for com-
puting the link influence strength as defined in Sec. 3.1,
while in Sec. 6, we describe secure distributed protocols for
computing user influence scores as defined above.

4. SECURE ARITHMETIC PROTOCOLS
In this section we present two general-purpose secure

arithmetic protocols that will be used in the subsequent
sections: a secure protocol for computing integer additive
shares of a sum of private inputs (Section 4.1) and a secure
protocol for computing the quotient of two private integers
(Section 4.2).

4.1 Secure computation of integer additive
shares of a sum of private integers

Let P1, . . . , Pm be m players, each holding a private inte-
ger xk ∈ [0, A], such that x :=

∑m
k=1 xk ≤ A. Protocol 2

enables them to compute integer additive shares of x; specif-
ically, at the end of the protocol, player P1 holds a random
integer s1 ∈ [0, S − 1], where S is some large integer that is
set upfront, and P2 holds the integer s2 = x− s1.

First, we consider a simpler problem where, for the same
setting as described above, P1 and P2 wish to compute
two modular additive shares of x. Protocol 1, due to Be-
naloh [28], is a well-known perfectly secure protocol that
solves that problem.

Protocol 1 - Secure computation of modular additive shares
of a sum of private inputs.

Input: A,S ∈ Z+ such that S � A.
An integer xk ∈ [0, A] for each player Pk, 1 ≤ k ≤ m,
such that x :=

∑m
k=1 xk ≤ A.

Output: P1 gets a random s1 ∈ [0, S − 1];
P2 gets s2 ∈ [0, S − 1] such that s1 + s2 = x mod S.

1: Each player Pk, 1 ≤ k ≤ m, selects m random values
xk,j ∈ ZS , 1 ≤ j ≤ m, such that

∑m
j=1 xk,j = xk mod

S.
2: Pk sends xk,j to Pj , for all 1 ≤ k 6= j ≤ m.
3: Pj computes sj =

∑m
k=1 xk,j mod S, for all 1 ≤ j ≤ m.

4: Players P3, . . . , Pm send s3, . . . , sm to P2.
5: P2 updates s2 ← s2 + s3 + · · ·+ sm mod S.

It is easy to see that the two shares s1 and s2 satisfy
s1 + s2 = x mod S. Moreover, since each player Pk breaks
his input xk into a sum of m random shares, the value of s1

(as well as that of s2) can be any of the elements in [0, S−1]

with equal probabilities. Since player Pk is exposed only to
one additive share in the input x` of P`, he learns nothing on
that input, 1 ≤ k 6= ` ≤ m. Finally, since every player Pk,
k 6= 2, receives just one additive share in x, while P2 receives
only m − 1 of the additive shares of x (s2, s3, . . . , sm), no
player learns any information on x (beyond what is implied
by his own input).

Now, we wish to turn Protocol 1 into a protocol that com-
putes integer additive shares of x. Protocol 1 computes mod-
ular shares s1 and s2 such that s1 +s2 = x mod S. Hence, if
we view those shares as integers from [0, S − 1], then either
s1 + s2 = x or s1 + s2 = S + x. Therefore, all we need to do
is to decide whether

s1 + s2 < S . (4)

If inequality (4) holds, then s1 and s2 are already integer
additive shares of x; otherwise, s1 and s2 − S are integer
additive shares of x. Hence, Protocol 1 could be extended
by verifying inequality (4) and, consequently, replacing s2

with s2 − S if needed. To that end, P1 and P2 may engage
in a secure multiparty protocol for verifying (4). This is an
instance of the millionaires’ problem, that was introduced
by Yao [21]. Alas, all known protocols that solve this basic
problem invoke costly sub-protocols for oblivious transfer
[29]. In Protocol 2 we suggest a much simpler solution which
depends on the existence of a curious-but-honest third party.
That third party could be P3 (if m > 2) or H (the host).

Protocol 2 - Secure computation of integer additive shares
of a sum of private inputs.

Input: A,S ∈ Z+ such that S � A.
An integer xk ∈ [0, A] for each player Pk, 1 ≤ k ≤ m,
such that x :=

∑m
k=1 xk ≤ A.

Output: P1 gets a random s1 ∈ [0, S − 1];
P2 gets s2 = x− s1.

1: The players perform Protocol 1, after which Pi holds si,
i = 1, 2, such that s1 + s2 = x mod S.

2: P2 generates uniformly at random an integer r ∈ [0, S−
A− 1].

3: P1 sends s1 to P3

4: P2 sends s2 + r to P3.
5: P3 computes y = s1 + s2 + r.
6: P3 informs P2 whether y ≥ S or not.
7: if y ≥ S then
8: P2 updates s2 ← s2 − S.
9: end if

Protocol 2 is based on the idea that in order to determine
which equality holds, s1 + s2 = x or s1 + s2 = S + x, it
suffices to add to s1 + s2 an integer r ∈ [0, S − A − 1] and
then check whether the resulting sum (y in Step 5) is greater
than or equal to S. If s1+s2 = x (in which case s1 and s2 are
already integer additive shares as needed) then s1 + s2 ≤ A;
in that case y = s1 + s2 + r ≤ A+ (S−A− 1) = S− 1, and,
consequently, P2 leaves s2 as is. If, however, s1 +s2 = S+x,
then y ≥ S; in that case, P2 replaces s2 with s2−S, so that
s1 and s2 become integer additive shares of x (Steps 7-8).

Protocol 2 is “almost” perfectly secure in the following
sense.

Theorem 4.1. At the end of Protocol 2 none of the play-
ers learns anything about the inputs of the other players. As
for the sum x:
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(a) Player P2 may learn either a lower bound on x, in
probability x/S, or an upper bound, in probability (A−x)/S,
or nothing at all, in probability (S −A)/S.

(b) Player P3 may learn either a lower bound on x, in
probability at most A/(S−A), or an upper bound, in proba-
bility at most A/(S −A), or nothing at all, in probability at
least (S − 3A)/(S −A).

(c) All other players learn nothing about x.

Proof. The proof follows the real vs. ideal paradigm. In
this paradigm, we consider the real-world model, in which
the protocol is executed, versus an ideal model, involving a
trusted third party who executes the computational task. If
the view of any real-world adversary can be simulated by an
ideal-world adversary, the protocol is perfectly secure.

Consider first any player Pk where k 6= 2, 3. The view of
such a player in Protocol 2 is exactly like his view in Protocol
1. As the view of each of the players in Protocol 1 consists of
shares that distribute uniformly at random over ZS , it can
be simulated by an ideal-world simulator. Hence, it suffices
to focus on P2 and P3 who are the only players whose view
in Protocol 2 differs from that in Protocol 1. P3’s view in
Protocol 2 contains (in addition to his view in Protocol 1)
the value of y = s1 + s2 + r (Step 5). P2’s view in Protocol
2 contains the answer to whether y ≥ S or not (Step 6).
Since those two pieces of information cannot be simulated,
we need to analyze what can be inferred from them.

We start with P3, who learns the value of y. If y < S he
infers that y = x+ r; otherwise he infers that y−S = x+ r.
In any case, he learns the value x+ r := z. Since x = z − r
and 0 ≤ r ≤ S −A− 1, it follows that

z − (S −A− 1) ≤ x ≤ z . (5)

Since it is known upfront that 0 ≤ x ≤ A, the upper bound
in (5) reveals new information on x only when z < A. For

every i ∈ {0, 1, . . . , A − 1}, Pr(z = i) =
∑i
j=0 Pr(x = j) ·

Pr(r = i−j). Since r distributes uniformly on [0, S−A−1],

it follows that Pr(z = i) = 1
S−A

∑i
j=0 Pr(x = j) ≤ 1

S−A .

Hence, Pr(z < A) =
∑A−1
i=0 Pr(z = i) ≤ A

S−A . Therefore,
P3 may learn a non-trivial upper bound on x in probability
no greater than A/(S − A). Similarly, we can show that he
may learn a non-trivial lower bound in probability no greater
than A/(S−A). The last two probability inequalities imply
that in probability at least (S− 3A)/(S−A), the value of z
does not allow P3 to exclude any possible value of x in the
range [0, A]. In addition, the value of z does not induce an
a-posteriori belief probability distribution on x that differs
from the belief probability distribution that P3 had prior to
seeing z, owing to the uniform random manner in which the
masking value r is chosen.

We now turn to P2. If he learns that s1 + s2 < S, then
P2 also learns that x = s1 + s2 in Z, whence 0 ≤ s1, s2 ≤ x.
Since s2 is a sum of random ZS-shares of xk, 1 ≤ k ≤ m, it
is uniformly distributed over ZS . Since the case s1 + s2 < S
occurs only if s2 ∈ {0, 1, . . . , x}, its probability is (x+ 1)/S.
In that case, P2 may infer that x ≥ s2. That lower bound
is non-trivial only when s2 > 0. Hence, P2 learns a (non-
trivial) lower bound on x in probability x/S.

If P2 learns that s1 +s2 ≥ S, it can happen only if both s1

and s2 are strictly greater than x (since if, say, s1 ≤ x, then
s2 = x−s1 ≤ x). Hence, in that case x ≤ s2−1. Only when
s2 ≤ A, the upper bound is non-trivial. Therefore, P2 learns
a (non-trivial) upper bound on x in probability (A − x)/S.
When s2 > A, P2 can learn nothing on x.

Hence, P2 learns nothing on x when s2 = 0 or when
s2 > A. Since s2 distributes uniformly in ZS , P2 learns
no information at all in probability (S −A)/S.

To summarize, the only potential leakages of information are
to only two players. Those potential leakages of information
are only with respect to x (but not with respect to the pri-
vate inputs of other players), and only in the form of a lower
or an upper bound. Moreover, the probability of those po-
tential leakages to occur can be made negligible since A is a
given integer and S can be chosen arbitrarily large.

Later on, in Section 5, we need to compute additive shares
in a large number of counter values (ai and bhi,j that were
introduced earlier in Section 3.1). Instead of invoking Proto-
col 2 separately for each of those computations, we perform
them in parallel. That enables us to reduce the communica-
tion costs, as well as to improve the privacy of the protocol.
Specifically, the parallel execution of computing the addi-
tive shares for all of those counters essentially removes the
potential leakage of information to P3 that was described in
Theorem 4.1. (See more details in Section 5.)

4.2 Secure division of private integers
The secure computation problem that we address here

involves three players: P1, P2, and H. Each of the first two
players holds an integer ai that is taken from a range [0, A].
They wish to let H compute the real quotient q := a1/a2

(where q is interpreted as zero if a2 = 0), without disclosing
the values of a1 and a2 to H, beyond what is implied by q.
(Note that we are interested here in computing a1/a2 as the
real quotient of two integers. This problem differs from the
problem of computing a1 ·a−1

2 where a1 and a2 are viewed as
elements in a finite field; the latter problem may be solved,
e.g., by means of homomorphic encryption.)

Protocol 3 - Secure computation of the quotient of private
integers.

Input: Pi has an integer ai ∈ [0, A], i = 1, 2.
Output: H gets q := a1/a2 if a2 > 0 and q = 0 if a2 = 0.

1: P1 and P2 jointly generate a random real number M ∼
Z, where Z is the distribution on [1,∞) with pdf (prob-
ability density function) fZ(µ) = µ−2.

2: P1 and P2 jointly generate a random real r ∼ U(0,M).
3: P1 sends ra1 to H.
4: P2 sends ra2 to H.
5: if ra2 6= 0 then
6: H computes q = ra1/ra2.
7: else
8: H computes q = 0.
9: end if

Protocol 3 solves that problem. In order to discuss its
privacy, we first prove the next theorem.

Theorem 4.2. Let X be a random variable that takes
values in [0, A], and let fX(x) denote its pdf. Let R be a
uniform random variable on (0, µ), for some real number
µ > 0, and let Y = XR. Then for all x > 0 and y > 0,
fX(x|Y = y) = Gµ(x, y) where

Gµ(x, y) :=


0 y > µx

fX (x)
x·α(y,µ)

y ≤ µx
, (6)

and α(y, µ) :=
∫ A
y/µ

fX (t)
t
dt.
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Proof. The definition of Y as the product of X and
R, where R is a uniform random variable on (0, µ), im-
plies that fY (y|X = x) = 0 if y > µx, while fY (y|X =
x) = 1

µx
otherwise (fY being the pdf of Y ). Therefore,

fY (y) =
∫ A

0
fY (y|X = t)fX(t)dt =

∫ A
y/µ

fX (t)
µt

dt. Our claim

now follows from Bayes Theorem, by which fX(x|Y = y) =

fY (y|X = x) · fX (x)
fY (y)

,

Let us fix 1 ≤ i ≤ 2 and let X denote the random vari-
able that governs the value of ai. Assume that H has an
a-priori belief probability fX(x) regarding the value of X.
In Protocol 3, H learns the value y := rx, where x = ai.
That value of y enables H to extract an a-posteriori belief
probability regarding the value of x = ai, as follows. If H
had known the value of M that was chosen as an upper
bound for r, then given y = rx, he could be able to infer, by
Theorem 4.2, that fX(x|Y = y) = GM (x, y). In particular,
since GM (x, y) is nonzero only when x ≥ y/M , he would
be able to infer that x ≥ y/M . That is a non-trivial lower
bound since the expected value of y is Mx/2, and therefore
the expected value of the lower bound that H can derive
is x/2. However, P1 and P2 choose M randomly from the
distribution Z on [1,∞). That selection of M leaves every
x > 0 as a possible pre-image, given the value of y = rx > 0,
as we show next.

Hereinafter, we concentrate on the case that interests us,
where X is a discrete random variable that takes values in
the set of integers {0, 1, . . . , A}. In that case, fX(x) is a

discrete distribution of the form fX(x) =
∑A
k=0 fkδ(x− k),

where δ(·) is the Dirac delta function. For such discrete dis-
tributions, any value of y > 0 leaves all values of x as possible
pre-images, unless x is a-priori known to be an impossible
value:

Theorem 4.3. Given y > 0, fX(x|Y = y) > 0 if fX(x) >
0, and fX(x|Y = y) = 0 if fX(x) = 0.

Proof. We distinguish between two cases: y ≤ A and
y > A. In the first case, every value of µ ≥ 1 is possible; in
the second case, the value of y reveals that µ must have been
at least y/A. Therefore, the a-posteriori distribution of µ,
given the value of y, remains Z in the first case, with the pdf
fZ(µ) = µ−2, but in the second case it is the distribution on
[y/A,∞) with the rescaled pdf y

A
· fZ(µ). Hereinafter, Φ(µ)

is the a-posteriori pdf of µ.
By the complete probability theorem,

fX(x|Y = y) =

∫ ∞
1

fX(x|Y = y,Mi = µ)Φ(µ)dµ

=

∫ ∞
1

Gµ(x, y) · Φ(µ)dµ .

Using Equation (6), we infer that

fX(x|Y = y) =
fX(x)

x
·
∫ ∞

max{1,y/x}

Φ(µ)dµ

α(y, µ)
. (7)

We need to show that this probability is well defined and
positive for all x ∈ {1, . . . , A} with fX(x) > 0. Since

fX(x) =
∑A
k=0 fkδ(x− k), we have

α(y, µ) =
A∑

k=dy/µe

fX(k)

k
. (8)

As y/µ ≤ y/(y/x) = x ≤ A, the above sum contains at
least the term fX(A)/A. Without loss of generality, we may
assume that fX(A) > 0 (since A may be taken as the max-
imal integer for which fX(A) > 0). Hence, α(y, µ) > 0
for all µ > y/x. Therefore, the integrand in Equation
(7) is well defined and positive over the domain of inte-
gration. (The integral is improper, but it is finite since
the denominator is bounded from below by fX(A)/A and∫∞

max{1,y/x} Φ(µ)dµ <∞.) That completes the proof.

Perfect privacy would be achieved if fX(x|Y = y) =
fX(x), namely, if the a-posteriori belief probability regard-
ing the value of x would be the same as the a-priori one. Our
mechanism does not provide that. The value y = 0 reveals
that x = 0, while any value y > 0 induces an a-posteriori
belief probability that differs from fX(x). Albeit not perfect,
this is a significant level of privacy.

In our context, x = a2 is the number of times that a
particular user did some action, while x = a1 is the num-
ber of times in which one user followed his friend in doing
some action. In that case, the value x = 0 would be consid-
ered insensitive, since, typically, the sensitive information
is performing an action, not the opposite. As for y > 0,
while it induces an a-posteriori belief probability that dif-
fers from fX(x), Theorem 4.3 implies that all values of x are
“suspicious”, and that offers a significant shield of privacy.
The next theorem spells out explicitly the a-posteriori belief
probability.

Theorem 4.4. Let ψ(j) := 1/
∑A
k=j fX(k)/k and

Ψ(x) :=
∑x
j=1 ψ(j) for every integer 1 ≤ j ≤ A. Then,

for every x ∈ {1, . . . , A}, the following holds: if y ≤ A,

fX(x|Y = y)

fX(x)
=


Ψ(x)
xy

x ≤ y

Ψ(byc)
xy

+
ψ(dye)(1−byc/y)

x
x > y

, (9)

while if y > A then

fX(x|Y = y)

fX(x)
=

Ψ(x)

Ax
. (10)

Proof. By Equation (8), α(y, µ) = 1
ψ(dy/µe) . We claim

that this equality implies that

I :=

∫ ∞
y/x

µ−2dµ

α(y, µ)
=

Ψ(x)

y
. (11)

Indeed, the interval of integration can be split into x in-

tervals: I =
∑x
j=1

∫ y/(j−1)

y/j
µ−2dµ
α(y,µ)

. Along the j’th integral

of integration, dy/µe = j, whence 1/α(y, µ) = ψ(j) there.
Therefore,

I =
x∑
j=1

ψ(j)

∫ y/(j−1)

y/j

µ−2dµ =
x∑
j=1

ψ(j)

y
=

Ψ(x)

y
.

The first case in Equation (9) follows from Equations (7)
and (11), since in that case Φ(µ) = µ−2 and the lower limit
of the integral in Equation (7) is max{1, y/x} = y/x. The
proof of Equation (10) is similar, where the only difference
is that in that case (in which y > A), Φ(µ) = y

A
µ−2, whence

we get eventually y
A
· Ψ(x)
xy

= Ψ(x)
Ax

.

It remains to prove the second case in Equation (9) where
x > y and, therefore, the lower limit of the integral in Equa-
tion (7) is max{1, y/x} = 1. In that case, we split the inter-
val of integration as follows: [1,∞) = [1, y/byc)∪[y/byc,∞).
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By Equation (11), the integral over [y/byc,∞) equals Ψ(byc)
y

.

As for the interval [1, y/byc), along it we have dy/µe = dye.
Hence, the remaining integral is∫ y/byc

1

µ−2dµ

α(y, µ)
= ψ(dye)

∫ y/byc

1

µ−2dµ = ψ(dye)(1−byc/y) .

Hence, the integral in Equation (7) equals in this case
Ψ(byc)
y

+ ψ(dye)(1 − byc/y). That completes the proof of

the second case in Equation (9).

Note that any value of y > A generates the very same a-
posteriori belief probability (given in Equation (10)), regard-
less of the value of x; that effect is a result of our selection
of the probability distribution Z in Protocol 3.

In Section 7.2 we perform extensive experimentation that
demonstrates the privacy preservation offered by Protocol 3.

5. SECURE PROTOCOLS FOR LINK IN-
FLUENCE STRENGTH

The players H (the host) and P1, . . . , Pm (the service
providers) wish to compute jointly influence probabilities
pi,j for all {(i, j) : (vi, vj) ∈ E}, as defined in Section 3.1.
Their goal is to perform those computations while preserv-
ing their private information. The private information of Pk,
1 ≤ k ≤ m, is his private log Lk. The private information of
H is the arc structure E. As discussed in the Introduction,
we consider two cases: (1) the exclusive case, where each ac-
tion is supported exclusively by one of the players, and (2)
the non-exclusive case, where each action can be supported
by more than one player.

5.1 The exclusive case
We first consider the simpler definition (Equation (1)) and

discuss later the definition in Equation (2). As defined in
Section 3.1, ai is the number of actions that user vi per-
formed, while bhi,j is the number of actions that vj did fol-
lowing vi. For each 1 ≤ k ≤ m, let ak,i denote the number
of records in Lk that involve vi. Since we assumed that
each user may perform any given action at most once, then
ai =

∑m
k=1 ak,i. (This equality holds in both the exclusive

and non-exclusive cases.) Let bhk,i,j denote the number of
actions α such that Lk includes a record (vi, α, t) as well as
a record (vj , α, t

′), where t < t′ ≤ t+ h. Then in the exclu-
sive case, where each action α can appear in only one of the
logs, we have bhi,j =

∑m
k=1 b

h
k,i,j .

Protocol 4, which involves the service providers and the
host, enables the latter to compute the influence probabili-
ties pi,j , for all arcs (vi, vj) ∈ E, according to the definition
in Equation (1). First, H hides his edge set within a larger
set of edges, E′, which he sends to P1, . . . , Pm (Steps 1-2);
the edges in E′ \ E are selected uniformly at random from
the set of all pairs (vi, vj) /∈ E, where vi 6= vj .

Then, the service providers perform Protocol 2 for ai and
bhi,j for all pairs of nodes that appear in the augmented edge
set E′ (Steps 3-4). Note that Protocol 2 is designed to com-
pute integer additive shares for a single sum. Here, we per-
form that protocol in parallel for n+ |ΩE′ | sums (all ai and
bhi,j counters). Several comments are in order regarding the
implementation of Steps 3 and 4:

• Letting A = |A| be the total number of possible actions,
then all counters are integers between 0 and A; the value
of S � A that is used in Protocol 2 is chosen jointly by
the service providers.

Protocol 4 - Secure computation of link influence proba-
bility.

Input: H owns the social graph, G = (V,E), where V =
{v1, . . . , vn}. Pk, 1 ≤ k ≤ m, owns an action log Lk.

Output: H gets pi,j for all (i, j) ∈ E.

1: H generates a set E′ ⊂ V × V such that E′ ⊃ E and
|E′| ≥ c|E| for some given constant c > 1.

2: H sends ΩE′ := {(i, j) : (vi, vj) ∈ E′} to Pk, 1 ≤ k ≤ m.
3: P1, . . . , Pm perform Protocol 2 in parallel for ai =∑m

k=1 ak,i, for all 1 ≤ i ≤ n. At the end of that protocol,

P1 has si1 and P2 has si2 such that si1 + si2 = ai.
4: P1, . . . , Pm perform Protocol 2 in parallel for bhi,j =∑m

k=1 b
h
k,i,j , for all (i, j) ∈ ΩE′ . At the end of that proto-

col, P1 has si,j1 and P2 has si,j2 such that si,j1 +si,j2 = bhi,j .
5: For each 1 ≤ i ≤ n, P1 and P2 jointly generate inde-

pendent random real numbers Mi ∼ Z, where Z is as in
Protocol 3.

6: For each 1 ≤ i ≤ n, P1 and P2 jointly generate indepen-
dent random real numbers ri ∼ U(0,Mi).

7: P1 sends ris
i
1 for all 1 ≤ i ≤ n and ris

i,j
1 for all (i, j) ∈

ΩE′ to H.
8: P2 sends ris

i
2 for all 1 ≤ i ≤ n and ris

i,j
2 for all (i, j) ∈

ΩE′ to H.
9: For each (i, j) such that (vi, vj) ∈ E, H computes pi,j =

(ris
i,j
1 + ris

i,j
2 )/(ris

i
1 + ris

i
2) (where the quotient is set

to zero if the denominator is).

• Steps 3 and 4 appear in Protocol 4 as two separated
steps just for the sake of clarity; in implementing the
protocol we propose to handle all n+ |ΩE′ | counters in
parallel.

• In Steps 3-4 of the parallelized Protocol 2, P1 and P2

send to P3 the values s1 and s2 + r that correspond to
each of the n+ |ΩE′ | counters. In doing so, P1 and P2

chose a random permutation of the n + |ΩE′ | counters
which they keep secret from P3; then, P1 uses that per-
mutation to permute the sequence of n + |ΩE′ | values
of s1 that he sends to P3, and P2 does the same for
his sequence of s2 + r values. This way, even though
some of the (s1, s2 +r) pairs may be used by P3 to infer
lower or upper bounds on the corresponding counters
(as shown in Theorem 4.1), he will not be able to tell
which of the counters those pairs correspond to. Hence,
by using such a secret permutation, the potential infor-
mation leakage to P3 becomes useless.

At this stage, P1 and P2 hold random additive shares in
ai (the number of actions that vi performed in total) and
bhi,j (the number of times where vj followed vi) for all users
1 ≤ i ≤ n and all edges in E′. They now wish to let H
compute the quotient bhi,j/ai, being a measure of the influ-
ence that vi has on vj , without leaking to him information
on ai and bhi,j beyond what is implied by the quotient. To
that end, P1, P2 and H engage in a variant of Protocol 3,
where the multipliers ri are chosen independently for each
user vi (Steps 5-9). (It is a variant of Protocol 3 since here
the masking random value ri multiplies the shares of the
numerator bhi,j and the denominator ai, rather than directly

bhi,j and ai).
It is clear that Protocol 4 is correct and complete in the

sense that it ends with H having pi,j = bhi,j/ai for all arcs in
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E. (Indeed, (ris
i,j
1 +ris

i,j
2 )/(ris

i
1 +ris

i
2) = (si,j1 +si,j2 )/(si1 +

si2) = bhi,j/ai.)
A protocol for computing the link influences by Equation

(2) goes along the same lines, since also in that definition
the numerator is a sum of private values which each Pk has,
1 ≤ k ≤ m. Hence, the only modification in Protocol 4 is
in Step 4, where the players invoke Protocol 2 to compute
additive shares in

∑h
`=1 w`c

`
i,j ; all other steps remain the

same.

5.1.1 The privacy offered by Protocol 4
First, we discuss the privacy that the protocol provides

for the host H; then, we discuss the privacy that it provides
for the service providers P1, ..., Pm.
H aims at protecting the arc structure. Protocol 4

does not provide full protection for that information since
P1, . . . , Pm know that E is a subset of E′. The arc structure
could be fully protected by selecting E′ to be the set of all
pairs of nodes. However, such a selection will impose large
computation and communication costs. In general, by suit-
ably selecting the multiplying factor c, one can directly han-
dle the privacy-efficiency trade-off. Another way to achieve
a perfect hiding of E is by resorting to oblivious transfer pro-
tocols. Specifically, the players could perform Steps 3-4 in
Protocol 4 for all n2−n pairs 1 ≤ i 6= j ≤ n. Then, H could
execute a |E|-out-of-(n2−n) oblivious transfer protocol (e.g.
[30]) vis-a-vis P1 to retrieve, obliviously, the values of si,j1 for

all (i, j) such that (vi, vj) ∈ E, and similarly with P2 for si,j2 .
Alas, such a solution, albeit more secure, is extremely pro-
hibitive since it entails O(|E|n2) modular exponentiations,
and, in addition, it requires P1, . . . , Pm to perform Protocol
2 for all n2 − n pairs (i, j), 1 ≤ i 6= j ≤ n.
Pk, 1 ≤ k ≤ m, wish to protect their private inputs ak,i

and bhk,i,j , as well as the aggregate counters ai and bhi,j . Dur-
ing Protocol 4, P1, . . . , Pm execute independent runs of Pro-
tocol 2 for each of those counters (Steps 3-4). Namely, the
random shares that are generated by the players in each
run of Protocol 2 are independent; consequently, views from
different runs cannot be combined to infer more informa-
tion than what could be extracted from the separate views.
The analysis in Section 4.1 shows that none of those players
learns any information on the private counters of his peers
or on the aggregate counters, apart from P2 and P3 who
may infer a lower or an upper bound on some (very few)
of the aggregate counters. However, the probability of the
latter event can be made as small as desired by increas-
ing S. Specifically, if we wish to restrict the probability
of either P2 or P3 learning any information on any of the
n + |ΩE′ | aggregate counters to be no larger than ε, it is
implied by Theorem 4.1 that all we need to do is to select
S ≥ A · (1 + 2(n+ |ΩE′ |)/ε).

Finally, we consider the possible inferences that H can
extract on any of the counters c ∈ {ai}1≤i≤n∪{bhi,j}(i,j)∈E′ .
For each such c, H obtains in the course of Protocol 4 a
single value of the form rc for some random real number r.
The analysis in Section 4.2 shows that H can only obtain a-
posteriori belief probabilities regarding those counters which
may differ from the corresponding priors. As those posteri-
ors are spread quite evenly on the entire range of possible
positive values of those counters, the utilized mechanism ef-
fectively protects that information also from H.

We note that if H has a prior belief about a relation be-
tween, say, a1 and a2 (e.g., that a1 = αa2 for some α) he will

get two a-posteriori belief probabilities for those counters.
We omit a discussion of such models due to page limitation.

5.2 The non-exclusive case
So far we dealt with a distributed setting in which the

service providers had exclusivity over the actions. Namely,
each action α ∈ A was supported by exactly one of the ser-
vice provides Pk, 1 ≤ k ≤ m. Such an exclusivity assump-
tion does not always hold. For example, an action could be
buying the book “Fifty Shades of Grey”; if P1, . . . , Pd are
all bookstores, then records with that action may appear in
each of the action logs L1, . . . ,Ld. In such a non-exclusive
setting, a preprocessing stage has to be done before the so-
lution that we described above can be executed.

Assume that the set of all possible actions, A, is parti-
tioned into disjoint classes, A =

⋃Q
q=1Aq, where each Aq is

a class of a different type of actions: buying books, seeing
movies, signing petitions, joining social groups, voting, etc.
For each class of actions Aq there exists a subset of service
providers Pq ⊆ {P1, . . . , Pm} that support actions from Aq.
The meaning of that is that any action α ∈ Aq may appear
only in action logs of players from Pq. However, the ac-
tion logs of players from Pq may contain also actions not in
Aq; namely, the subsets Pq, 1 ≤ q ≤ Q, are not necessarily
disjoint. The classes Aq and the corresponding groups Pq,
1 ≤ q ≤ Q, are known to all. In Protocol 5 we describe the
preprocessing procedure for one of the action classes; it has
to be performed for each of the Q classes. After executing
that protocol for, say, action class A1, one of the players in
P1 gets the corresponding aggregated counters, ai[A1] (the
total number of actions fromA1 that were performed by user
vi through any of the service providers in P1) and bhi,j [A1]
(the total number of A1-actions in which vj followed vi, as-
suming a memory window of width h), 1 ≤ i 6= j ≤ n. From
that point on, all players in P1 remove from their action
logs all records that correspond to A1-actions, since all of
those actions are already recorded in the counters ai[A1] and
bhi,j [A1] that the representative player holds. After perform-
ing Protocol 5 for all 1 ≤ q ≤ Q, the players may proceed to
apply Protocol 4 that was described in Section 5.1 for the
exclusive setting.

Without loss of generality, we assume in Protocol 5 that
the class action is A1 and that P1 = {P1, . . . , Pd}. In per-
forming this procedure, the players in P1 are assisted by
a trusted third party P̂ whom they select from among the
other players, {H,Pd+1, . . . , Pm}. They also select one of
them, say P1, as the player that receives at the end of the
protocol the aggregated counters for all A1-actions and uses
them, on behalf of all of them, in Protocol 4.

Protocol 5 is described as a protocol template. In Step 1,
each player in P1 constructs Lk,A1 as the subset of Lk that
consists of all A1-actions, and then removes that subset from
Lk. Each player in P1 then transforms the proprietary A1-
action log, Lk,A1 , into an obfuscated form, denoted L̂k,A1 ,

and sends it to the trusted third party P̂ (Step 2). P̂ uni-
fies all obfuscated logs, and computes the relevant counters
(Steps 3-4). Finally, P̂ sends those counters to P1 who recov-
ers the correct counter values from them (Steps 5-6). Next,
we discuss possible methods for obfuscating the log entries
(Step 2).

A basic method for obfuscating the action log. The
first method hides the user identities and action identifiers,
but retains the time entries. Specifically, the players in P1
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Protocol 5 - Secure computation of the aggregated counters
for a class action
Input: Player Pk, 1 ≤ k ≤ d, has an action log Lk.
Output: P1 gets the counters ai[A1] and bhi,j [A1] for all

1 ≤ i 6= j ≤ n.

1: Each Pk, 1 ≤ k ≤ d, defines Lk,A1 = {(vi, α, t) ∈ Lk :
α ∈ A1} and then sets Lk ← Lk \ Lk,A1 .

2: Each Pk, 1 ≤ k ≤ d, transforms Lk,A1 to L̂k,A1 and then

sends it to P̂ .
3: P̂ computes L̂A1 =

⋃d
k=1 L̂k,A1 .

4: P̂ computes from L̂A1 the relevant counters.

5: P̂ sends the nonzero counters to P1.
6: P1 recovers from the retrieved counters the correct ones
ai[A1] and bhi,j [A1].

agree on secret identifying numbers for the actions in A1

and new user identifiers which are kept secret from P̂ . For
example, they could jointly create secret permutations π on
{1, . . . , n} and σ on A1 and then transform each record of
the form (vi, α, t) to (vπ(i), σ(α), t). Since the time entry

remains unchanged, P̂ can compute all necessary counters
for the permuted user identifiers and then P1 can recover
from them the counters for the original user identifiers.

Without any background knowledge about user activity,
the only information that P̂ can deduce is that some user
did some action at a given time t, but since π and σ are
selected uniformly at random, all users and all actions would
be equally likely. If, on the other hand, P̂ knows that a
specific user vj is significantly more active than other users,
it may be possible to identify, with some probability, the
permuted identifier that corresponds to vj and then observe

vj ’s activity pattern in time. For example, if P̂ can identify
with certainty the permuted identifier of such a target user
vj , then P̂ may deduce the number of A1-actions that vj
performed in each time stamp, but not which actions.

We note that P1 may learn information on activity of users
at other sites. For example, if user vi performed a1

i [A1]
actions of class A1 at P1, then he must have performed
ai[A1]−a1

i [A1] actions of that class at sites P2, . . . , Pd; how-

ever, as P̂ returns to P1 aggregated counters (and not coun-
ters per action), P1 is unable to reveal what actions from
that class took place in those sites.

An enhanced method for obfuscating the action log.
In order to obfuscate also the time information, we propose
the following enhancement of the method above. Assume
that the time frame is 0 ≤ t ≤ T − 1. Let S := T + h. The
P1-players select a random key s ∈ ZS := {0, 1, . . . , T+h−1}
and then encrypt all time stamps using the shift cipher, t 7→
es(t) := t + s mod S. Hence, any record (vi, α, t) in Lk,A1 ,
1 ≤ k ≤ d, is transformed to (vπ(i), σ(α), es(t)). The trusted

party P̂ can still compute all counters ai[A1] and bhi,j [A1],
for the permuted user identifiers, by considering the record
(vπ(j), σ(α), es(t

′)) as a follower of (vπ(i), σ(α), es(t)) if

es(t
′) ∈ {es(t) + τ mod S : 1 ≤ τ ≤ h} . (12)

Indeed, since there are no original records (vi, α, t) with T ≤
t ≤ T+h−1, condition (12) holds if and only if t < t′ ≤ t+h.

Alas, such an encryption of the time information does not
stand on its own since P̂ can easily detect the sequence of
h encrypted time stamps es(T ), . . . , es(T + h − 1) in which

there is no activity and, consequently, invert the encryption
and recover the original time stamps. Hence, it is necessary
to add also fake activity to time stamps T, . . . , T + h− 1 in
order to prevent this inference of the original time stamps.
One way of doing that is by adding fake users and use them
to create fake activity that will disable P̂ from inferring the
true time stamps. Since such fake entries in the obfuscated
logs may affect only counters ai[A1] in which i corresponds
to a fake user and counters bhi,j [A1] in which at least one of
i, j corresponds to a fake user, P1 can simply ignore those
irrelevant counters.

To that end, the users decide on a number n′ of fake users
and then hide the true users by selecting a random injection
f : {1, . . . , n} → {1, . . . , n+n′}. Then, each player augments
his A1-action log Lk,A1 by fake records of the form (vi, α, t)
where vi is a fake user.6 Assume that for Pk, 1 ≤ k ≤ d, the
number of actions in Lk,A1 with the time stamp t is wk(t),
and let Wk be max0≤t≤T−1 wk(t). Then for all 0 ≤ t ≤
T − 1 + h, Pk adds to Lk,A1 records of the form (vi, α, t),
where vi is one of the fake users, so that the resulting number
of actions in Lk,A1 with time stamp t is Wk. If all players do

so, the trusted third party P̂ will not be able to distinguish
es(T ), . . . , es(T + h − 1) from es(0), . . . , es(T − 1) since in
each of those encrypted time stamps there will be the same
number of actions. Consequently, given an encrypted time
stamp es(t), all values of 0 ≤ t ≤ T − 1 + h will be equally

likely for P̂ .

6. SECURE PROTOCOLS FOR COMPUT-
ING THE USER INFLUENCE SCORES

Here we discuss the secure computation of user influence
scores according to Definition 3.3.

6.1 The exclusive case
Protocol 6, which we explain below, enables H to com-

pute the propagation graphs PG(α) for all α ∈ A, with
the collaboration of P1, . . . , Pm. After having obtained all
these labeled graphs, H can proceed on his own to compute
Infτ (vi, α) for every desired setting of τ , and for all vi ∈ V
and α ∈ A. As a result, H will be able to compute the
numerator in Equation (3). In order to complete the com-
putation of the user influence scores, H needs also to know
the denominator ai in Equation (3), for all vi ∈ V . That
computation is already covered by Protocol 4.

As in Protocol 4, the arc structure E is obfuscated by hid-
ing it within a larger arc set E′ (Steps 1-2). In addition, H
selects keys in a public key cryptosystem and sends the pub-
lic key to P1, . . . , Pm (Step 3). Then, each player computes
for each action that it supports a corresponding set of time
difference values, ∆α,i,j , for all (i, j) ∈ ΩE′ . The time differ-
ence ∆α,i,j equals tj−ti in case Lk contains records (vi, α, ti)
and (vj , α, tj) and ti < tj ; in all other cases ∆α,i,j = 0. After
computing ∆α, which consists of ∆α,i,j for all (i, j) ∈ ΩE′
(ordered first by i and then by j), Pk encrypts that informa-
tion using the public key κ of H and sends it to P1 (Steps
4-9). P1 accumulates all those encrypted messages from his
peers and sends them to H (Step 10). Finally, H decrypts
those messages (Step 11) and uses them to construct the arc
6
Fake records should be generated carefully, so that statistical pat-

terns such as the number of distinct users who perform actions at the
same time, or the number of distinct actions performed at the same
time, would not differ significantly between the real and fake time
stamps.
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set E(α) in PG(α) for all α ∈ A (Step 12); E(α) consists of
all arcs (vi, vj) ∈ E for which ∆α,i,j > 0 (those are the arc
labels).

Protocol 6 - Secure computation of the propagation graphs
PG(α) for all α ∈ A
Input: H has the social graph, G = (V,E), where V =
{v1, . . . , vn}. Pk, 1 ≤ k ≤ m, has an action log Lk .

Output: H gets PG(α) for all α ∈ A.

1: H generates uniformly at random a set E′ ⊂ V ×V such
that E′ ⊃ E and |E′| ≥ c|E| for some given constant
c > 1.

2: H sends ΩE′ := {(i, j) : (vi, vj) ∈ E′} to Pk, 1 ≤ k ≤ m.
3: H selects a pair of private and public keys in a public

key cryptosystem and sends the public key, κ, to Pk,
1 ≤ k ≤ m.

4: for all 1 ≤ k ≤ m do
5: for all actions α ∈ A that are controlled by Pk do
6: Pk computes ∆α := {∆α,i,j : (i, j) ∈ ΩE′}.
7: Pk sends Mα := Eκ(∆α) to P1.
8: end for
9: end for

10: P1 sends {Mα : α ∈ A} to H.
11: H decrypts Mα and recovers ∆α for all α ∈ A.
12: H recovers the arc set E(α) and the corresponding arc

labels.

We turn our attention to the security of this protocol. As
discussed in Section 5.1, the private information of H, being
the arc structure E, is obfuscated, and the level of obfusca-
tion can be increased, at the cost of increased computational
and communication costs, by increasing c. We next discuss
the private information of Pk, 1 ≤ k ≤ m.

Theorem 6.1. Assuming that the public key cryptosys-
tem is secure, the only potential leakage of Pk’s private in-
formation, 1 ≤ k ≤ m, is to H. H may learn that for some

action α ∈ A, vi
α,∆t−→ vj, but nothing more: neither which

action is α, nor its corresponding service provider, nor when
did vi perform that action.

Proof. Since the public key cryptosystem is assumed to
be secure, and since all messages ∆α are of the same size
(they all include a sequence of |E′| integers), P1 (who does
not posses the decryption key) can learn no information on
the private action logs of the other service providers, Pk,
2 ≤ k ≤ m. It remains to discuss what private information
is leaked to H. H receives all Mα, α ∈ A, from P1, thus
there is no way for H to associate any of those messages
with any of the service providers. In addition, since each
Mα contains just the full set of nonzero time differences for
the action α, but it does not contain any identification of the
action α, H cannot associate any such set with any specific
action. Therefore, Protocol 6 enables H to learn that for

some action α ∈ A, vi
α,∆t−→ vj , but nothing more: α could

be any action, it could be controlled by any of the service
providers, and vi could have performed that action at any
time 0 ≤ t ≤ T − 1−∆t.

6.2 The non-exclusive case
Also here, the non-exclusive case can be reduced to the

exclusive case by performing a preprocessing stage in which

all players that control the same class of actions pull to-
gether the information regarding those actions, with the aid
of a trusted third party. Specifically, let A1 be one of the ac-
tion classes and let P1 be the set of players that control the
actions in A1. Then those players may execute a modified
version of Protocol 5 as follows.

The modified protocol coincides with Protocol 5 in Steps
1-3. We assume that the players in P1 use the basic method
for obfuscating the action logs, as described in Section 5.2;
namely, they obfuscate the user identifiers and actions in
their action logs, using permutations π and σ. (The im-
plementation of the enhanced method of obfuscation in this
context is trickier. We defer the discussion of that imple-
mentation to the full version of this paper.) Then, the

trusted third party, P̂ , uses L̂A1 to compute all relevant
propagation information. Specifically, for each action σ(α)

that P̂ sees in L̂A1 , he constructs a set ∆̂σ(α). That set will
contain a triplet of the form (π(i), π(j),∆σ(α),π(i),π(j) :=

t′− t) whenever L̂A1 contains the records (vπ(i), σ(α), t) and

(vπ(j), σ(α), t′), and t′ > t. After computing ∆̂σ(α)for all

obfuscated actions that appear in L̂A1 , P̂ sends those sets
to P1. Finally, P1 may retrieve from those sets the orig-
inal user identifiers and actions, and, consequently, recon-
struct the sets ∆α as defined in Step 6 of Protocol 6, for all
α ∈ A1. After implementing this preprocessing stage for all
action classes, the players may proceed as described in the
exclusive case in Section 6.1.

7. EVALUATION

7.1 Communication costs
In order to evaluate the performance of our two main

distributed protocols, we analyze their communication
costs:

• NR: Number of communication rounds. (A communi-
cation round is a stage in the protocol in which some
or all of the players send messages to other players, and
the protocol can proceed only after all messages are re-
ceived by their recipients.)

• NM : The total number of messages sent (from any
player to any other player).

• MS: The total size in bits of all NM messages.

7.1.1 Protocol 4
The communication costs of Protocol 4 are analyzed in

Table 1. (Here q := |E′| and f is the size in bits for repre-
senting real numbers.) Each row in the table corresponds to
one communication round. The first column indicates the
corresponding step in the protocol description; the second
column gives the number of messages that are sent in that
round; and the third column gives the size in bits of each
message.

As appears from Table 1, Protocol 4 entails NR = 8 com-
munication rounds. The total number of messages sent is
NM = m2 +m+ 7. As for message sizes, the longest mes-
sages occur in rounds 2,3,4 (assuming that S is chosen to
be a very large integer for enhancing privacy). Since the to-
tal number of messages in those three rounds is m2, we get
that MS = Θ(m2(n+ q) logS). Recall that q = c|E|, where
c > 1. Hence, Protocol 4 involves sending roughly cm2 logS
bits of communication messages for each link.
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7.1.2 Protocol 6
The communication costs of Protocol 6 are analyzed in

Table 2. Here, |κ| and z are, respectively, the size of the
public key and cyphertext in the cryptosystem that H chose,
and Ak is the number of actions that are controlled by Pk,
1 ≤ k ≤ m. (We focus here on the exclusive case, whence
A =

∑m
k=1 Ak). The first two rounds correspond to Steps 2

and 3 in the protocol. In the third round, player Pk, 2 ≤ k ≤
m, sends to P1 the encrypted message Eκ(∆α) for each of the
Ak actions that Pk controls. Hence, we have in this round
m − 1 parallel messages, where the kth message consists of
Ak sub-messages, each of which contains q encryptions of an
integer. Hence, the size in bits of the kth message is qzAk.
The last round corresponds to Step 10 in which P1 sends to
H the aggregation of all encrypted messages.

As appears from the table, Protocol 6 entails NR = 4
communication rounds. The total number of messages sent
is NM = 3m. The overall message size in bits is dominated
by the message size in the last two rounds, which equals
qz(A+

∑m
k=2 Ak) ≤ 2qzA. Hence, Protocol 6 involves send-

ing 2zA bits of communication messages for each link. The
recommended setting of z, when using the RSA cryptosys-
tem, is 1024; when using an elliptic curve cryptosystem, a
recommended setting for z is 256 (FIPS PUB 186-3).

7.2 Privacy offered by the secure division pro-
tocol

Here we conduct experimentation that examines the pri-
vacy preservation offered by Protocol 3. Let us recall the
corresponding privacy setting: X is a discrete random vari-
able that takes values in a domain of integers {0, 1, . . . , A};
in our application, X stands for the number of actions that
some user performed, ai, or the number of actions in which
one user influenced another, bhi,j . The curious-but-honest
party H has an a-priori belief probability fX(·) regarding
the value of X. In Protocol 3, H learns the value y := rx,
where x is the value that X took and r is a random vari-
able that is chosen in Steps 1-2 of the protocol. That value
of y enables H to extract an a-posteriori belief probabil-
ity, fX(·|Y = y), regarding the value of x, as characterized
in Theorem 4.4. Our goal here is to check whether the a-
posteriori belief probability fX(·|Y = y) allows H to guess
x better than the a-priori belief probability fX(·) does. To
that end, we perform the following experiment:

1. Select an a-priori belief probability fX(·) on

{0, 1, . . . , A}, and then compute fX :=
∑A
i=0 ifX(i).

(In all experiments we used A = 10.)

2. Fix x ∈ {1, . . . , A}.

3. Compute Epri := |x− fX |.

4. For j = 1, . . . , 1000 do:

(a) Generate r and compute y = rx.

(b) Compute fX(·|Y = y) and fX(·|Y = y) :=∑A
i=0 ifX(i|Y = y).

(c) Compute Epos := |x− fX(·|Y = y)|.
(d) Set Gj = Epri − Epos.

Here, Epri is the error if H tries to guess that x equals
the mean of the a-priori belief probability fX(·). Epos, on

Table 1: Communication costs of Protocol 4

Communication round Num. messages Message size
Step 2 m 2 dlogneq
Steps 3-4; Prot. 1, Step 2 m(m− 1) (n+ q)dlogSe
Steps 3-4; Prot. 1, Step 4 m− 2 (n+ q)dlogSe
Steps 3-4; Prot. 2, Steps 3-4 2 (n+ q)dlog 2Se
Steps 3-4; Prot. 2, Step 6 1 n+ q
Step 5 2 nf
Step 6 2 nf
Steps 7-8 2 (n+ q)f

Table 2: Communication costs of Protocol 6

Communication round Num. messages Message size
Step 2 m 2 dlogneq
Step 3 m |κ|
Steps 4-9 m− 1 qzAk
Step 10 1 qzA

the other hand, is the error if H tries to guess that x equals
the mean of the a-posteriori belief probability fX(·|Y = y).
The difference Gj is the gain that H obtains, regarding the
value of x, as a result of seeing y = rx. Positive values of
Gj indicate that the value of y in the jth trial helped H to
make a better guess about x; negative values of Gj indicate
the opposite.

We repeated this experiment with several prior belief
probabilities over x ∈ {0, 1, . . . , A}. Due to space limita-
tions, we report here the results with two priors: (a) A uni-
form prior, fX(i) = 1/(A + 1), for all 0 ≤ i ≤ A. (b) A
unimodal distribution that has one maximum at i = A/2:
fX(i) = (i + 1)/(1 + A/2)2 for all 0 ≤ i ≤ A/2 and
fX(i) = (A + 1 − i)/(1 + A/2)2 for all A/2 < i ≤ A. In
each experiment we computed 1000A gain values, {Gj(i) :
1 ≤ i ≤ A, 1 ≤ j ≤ 1000}, where Gj(i) indicates the gain
in the jth trial when the initial value of x was set to x = i.
Figure 1 shows histograms that describe the distribution of
the resulting gains. In each of those histograms, the height
of the bar over an interval [a, b) equals the number of gains
Gj(i) that satisfy a ≤ Gj(i) < b. Each histogram also shows
the average gain over all 1000A trials. As can be seen, the
average gain is positive and very small: the number of tri-
als in which y does help to come up with a better guess
for x is larger than the number of trials in which y yields
worse guesses, but there is no significant bias towards the
first case, and, in addition, the improvement in the quality
of the guess is small. To summarize: from information the-
oretical point of view, y does reveal some information on x;
but from a practical point of view the gain of information is
insignificant.

8. CONCLUSIONS AND FUTURE WORK
Viral marketing is a popular concept in the marketing lit-

erature which is receiving a growing attention for the great
potentiality, and the challenging computational problems as-
sociated. Motivated by the real-world needs and constraints,
in this paper we study the problems of how different parties
can learn, in a privacy-preserving way, (1) the strength of
influence along each link of a social network, and (2) an
influence score for each node. These are fundamental com-
putational problems at the basis of viral marketing. We de-
vise secure multiparty computation protocols for these two
problems and analyze their privacy guarantees.
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Figure 1: Histograms displaying the gain values Gj
for a uniform priors (top) and a unimodal prior (bot-
tom).

To the best of our knowledge, we are the first to discuss
privacy issues of viral marketing and to propose protocols.
This paper represents only a first step in this interesting
and challenging domain. Future research directions include
a solution of other computational problems in the setting
that we discussed herein (like computing the nodes which
maximize the expected spread [1]), or by considering more
elaborated settings. One such setting is that in which all or
some of the users are labeled by attributes (e.g., gender, lo-
cation, occupation) that could be used, in conjunction with
the activity logs, to better estimate the influence strengths
of the links. Another setting is that of multiple hosts, where
the graph data is split between several social networking
platforms.
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