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ABSTRACT
We identify an opportunity to share data among mobile apps hosted
in the cloud, thus helping users improve their mobile experience,
while resulting in cost savings for the cloud provider. In this work,
we propose a platform for sharing data among mobile apps hosted
in the cloud. A “sharing” is specified by a triple consisting of: (a)
a set of data sources to be shared, (b) a set of specified transforma-
tions on the shared data, and (c) a staleness (freshness) requirement
on the shared data. The platform addresses the following two main
challenges: What sharings to admit into the system under a set of
specified constraints, how to implement a sharing at a low cost while
maintaining the desired level of staleness. We show that reductions
in costs are achievable by exploiting the commonalities between the
different sharings in the platform. Experimental evaluation is per-
formed with a cloud platform containing 25 sharings among mo-
bile apps with realistic datasets containing user, social, location and
checkin data. Our platform is able to maintain the sharings with very
few violations, even under a very high update rate. Our results show
that our method results in a cost savings of over 35% for the cloud
provider, while enabling an improved mobile experience for users.

1. INTRODUCTION
Mobile applications (apps) compete in an increasingly crowded

marketplace, with possibly thousand of apps performing similar or
identical functions. In this crowded marketplace, developers can dif-
ferentiate their apps by offering features that make the user’s mobile
experience more personalized. For instance, apps like SpotiSquare
connect with Foursquare venues to determine the current location
(venue) of the user, and then choose a music playlist depending on
users’ current context (e.g., eating dinner, exercising, driving etc.).
To create such an experience requires that the app has access to ad-
ditional information (i.e., datasets) about its user. The following
example shows possible interactions among three apps, showcasing
the benefits of sharing user information.

EXAMPLE 1. Consider the three apps — Opentable (restaurant
reservation), Plango (calendar) and Sonar (friends location monitor-
ing). Appointments of users requiring dinner reservations are shared
by Plango with Opentable, which can then suggest restaurant options
to users. Sonar can suggest a nearby restaurant as a meeting place
by sharing their location information with Opentable. Mobile users
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get a seamless experience as the three apps now behave as a single
entity.

Interestingly, with the increasing use of cloud-based resources,
many of these apps may be hosted in the same cloud infrastructure
(e.g., Amazon EC2). To enable such rich interactions, mobile apps
should make their datasets available for sharing, as a way of encour-
aging other apps to build complementary features. At the same time,
apps can consume several datasets from other apps in the cloud in-
frastructure. We identify two key considerations in sharing data that
is important to mobile app developers.

• App developers want reliable access to datasets and do not
want to deal with the complexity of creating and maintaining
mechanisms (e.g., APIs [1, 4] or web services [2]) for sharing
data. Furthermore, they desire a service that is flexible enough
to meet their needs while providing guarantees on the quality
of the service.

• App developers want timely access to datasets. Mobility of
users imposes limits on how much staleness app developers
can tolerate on the datasets. This is because many types of
user-related data get progressively less valuable with time. For
instance, the location of a mobile user that is 50 seconds stale
may be of limited use to a navigation app; however, 10 sec-
onds stale data may be suitable.

In this paper, we propose a data sharing service in the cloud called
SMILE (Sharing MIddLEware). The service provider, who manages
the cloud infrastructure, offers data sharing as service and like any
commercial business makes money by delivering services according
to agreed upon quality of service levels. Data sharing is achieved
by a mobile app developer (henceforth referred to as a consumer)
specifying a sharing. A sharing must identify datasets of interest,
the desired transformations on the data, and a staleness requirement.
The consumer and the provider enter into a Service Level Agreement
(SLA). The SLA is a contract specifying that the provider will en-
sure reliable access to the consumer on the shared data at the risk of
paying a penalty if it is not maintained at the agreed upon staleness.

To successfully achieve data sharing on a large scale, two practical
problems need to be solved by the provider. First, it is important to
determine if a new sharing can be admitted (i.e., accepted) into the
system and maintained at the appropriate staleness. This may not
always be possible, especially if the datasets are updated at a high
rate and the sharing needs to be maintained at a low staleness. If a
sharing is incorrectly admitted, it will result in significant losses for
the provider since the SLA may specify penalties for the provider in
case the sharing misses the staleness requirement. Second, imple-
menting the sharings is not free in the sense that the provider has to
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pay for the resources (i.e., CPU, Disk, Network) consumed in the
cloud. Reducing provider cost is another important consideration.

The two practical problems we outlined above pose significant
technical challenges that we address in this paper.

1. Maintaining the shared datasets at required staleness: The
shared datasets are maintained as materialized views (MVs)
and are always kept under the staleness specified in the SLAs.
This is challenging because the sharings involve multiple
datasets with varying staleness requirements. Note that there
are many other ways (e.g., APIs, web services) of enabling
sharing in the cloud; a discussion on the various methods and
the pros-and-cons of each is given in [25].

2. Testing for admissibility: As noted above, there is a need
for an effective method to decide whether to accept or de-
cline a sharing agreement under multiple constraints, such as
the given staleness, SLA penalty and platform cost considera-
tions.

3. Cost reduction for the provider: To reduce cost, the plat-
form provider needs to identify commonalities across multi-
ple sharings with different staleness requirements, in order to
save computational effort.

These three problems may not be specific to data sharing for mobile
apps only, but also applicable to other areas. However, we observe
that mobility makes these problems challenging and the solutions
much more relevant in real world settings.

Some of these problems have been previously considered in the
context of MV maintainance [5, 16, 23, 24] and multi-query opti-
mization [11, 26]. However, prior work either considers the me-
chanics of MV maintainance [24] and refresh rates [16], or cost sav-
ings by removing commonalities [23, 26], but not staleness and cost
requirements simultaneously. While important, the feasibility and
economic value of sharing as well as infrastructure and privacy con-
siderations are considered by [9, 13, 25], thus it is not the focus in
this work.

In this work, we focus on the practical and technical challenges
of enabling data sharing for mobile apps in the cloud. Mobility pro-
vides a perfect use-case scenario as it aligns with the three elements
of our problem setup: it is cloud-based, requires reliable access to
rich information, and has strict staleness requirements on datasets.
To our knowledge, this work represents the first systematic, cloud-
based platform for enabling data sharing with staleness guarantees.
We make the following contributions in this paper.

1. A declarative sharing platform, which is fully implemented as
a part of industrial system, with staleness guarantees on the
sharings (Section 3).

2. A method of determining the admissibility of sharings ensures
that the system only admits those sharings that it can maintain
(Section 6).

3. A method for reducing the cost of maintaining the sharings by
amortizing work across multiple sharings, where each sharing
has its own constraints (Section 7).

4. Experimental evaluation is performed on a cloud platform
with 25 sharings posed on realistic user, location, social, and
checkin datasets. Our results show that the SMILE platform
can maintain a large number of sharings with very low SLA
violations, even under a high rate of updates. By amortizing
work across multiple sharings, SMILE is able to achieve a cost
savings of over 35% for the provider (Section 9).

2. RELATED WORK
While there has been some work on sharing in a mobile environ-

ment, they consider sharing either in an adhoc setting, such as be-
tween two mobile users [19], or among a group of mobile users [22].
A middleware for connecting mobile users and devices has been pro-
posed [27] for providing various mobile services, such as manage-
ment, security, and context awareness, but not for sharing.

Sharing using MVs adds interesting dimensions to a well stud-
ied problem domain. An MV maintenance process traditionally is
broken into a propagation step, where updates to the MV are com-
puted and an apply step, where updates are applied to the MV. First
of all, the autonomy of the tenants means that synchronous prop-
agation algorithms [10], where all sources are always at a consis-
tent snapshot, are unsuitable for our purposes. Furthermore, to deal
with the autonomy of the tenants, one has to resort to a compen-
sation algorithm [28], where the propagation is computed on asyn-
chronous source relations [5, 24, 29]. In particular, MVs over dis-
tributed asynchronous sources have been studied in the context of
a single data warehouse [5, 29] to which all updates are sent. The
key optimization studied in [5, 29] is in terms of reducing the num-
ber of queries needed to bring the MVs to a consistent state in the
face of continuous updates on the source relations. [24] shows how
n-way asynchronous propagation queries can be computed in small
asynchronous steps, which are rolled together to bring the MVs to
any consistent state between last refresh and present. Reducing the
cost of maintenance plans of a set of materialized view S is explored
in [20], where common subexpressions [23] are created that are most
beneficial to S. Their optimization is to decide what set of common
subexpressions to create and whether to maintain views in an incre-
mental or recomputation fashion. Staleness of MVs in a data ware-
house setup is discussed in [16], where a coarse model to determine
periodicity of refresh operation is developed.

As we will see later in the paper, our setup is different from [5,29]
in the sense that multiple MVs are maintained on multiple machines
in our multitenant cloud database. Moreover, different update mech-
anisms with different costs and staleness properties can be generated
based on where the updates are shipped as well as where the inter-
mediate relations are placed, making the problem harder than [5,29].
Next, [24] assumes that all the source relations are locally avail-
able on the same machine, which makes the application of their ap-
proach to our problem infeasible without an expensive distributed
query. We combine propagation queries from [24] with join order-
ing [11, 18], such that propagation queries involving n source rela-
tions are computed in a sequence involving two relations at a time,
requiring no distributed queries. In particular, we first ensure that
the update mechanisms can provide SLA guarantees, after which
common expressions among the various sharing arrangements are
merged to reduce cost for the provider, which is similar in spirit
to [20, 23]. Our work adds several additional dimensions to [20, 23]
in terms of placement of relations, capacity of machines, SLA guar-
antee, and cost.

In contrast to [16], which determines the periodicity of the re-
fresh operation of MVs maintained in a warehouse, our work is dis-
tinguished in the following way. Our work develops refresh cycles
for multiple MVs from distributed sources with different staleness
requirements while simultaneously reducing the total maintenance
cost. This is significantly more complicated than the simple setup
in [16] where they develop a simple model for determining a single
refresh periodicity between a RDBMS and data warehouse without
considering cost.

Our work is related to traditional view selection problems [6] in
the sense that the set of sharing arrangements could have been ob-
tained via the application of a view selection algorithm taking the
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consumer workload as input. Our problem shares common aspects
with the cache investment problem [14] in terms of placement (what
and where to be cached) of intermediate results and the goodness
(another notion of staleness) of cache. Cache refresh in [14] piggy
banks on queries, whereas we establish a dedicated mechanism to
keep the MVs at the desired staleness. Our work shares common
elements with [15] in the sense that merging data flow paths with
common tuple lineage is similar to the way we perform plumbing
operations on a sharing plan.

A related data sharing effort in the cloud is the FLEXSCHEME [8],
where multiple versions of shared schema are maintained in the
cloud, with the focus on enabling evolution of shared schema used
by multiple tenants. Data markets [9] for pricing data in the cloud
looks at the problem from tenant and consumer perspectives, but we
look at the problem from the provider’s perspective. A similar but
not identical problem is reducing the cost for the consumers (i.e., fair
pricing of common queries) [9] and sharing work across concurrent
running queries [26]. Although we only concern ourselves with the
staleness of the data as the only quality measure of the data being
shared, other considerations such as data completeness, accuracy are
also applicable here [7]. In our problem, the challenge is to maintain
the sharing arrangements always maintained on agreed upon terms
(i.e., SLAs), while keeping down the infrastructure costs. Satisfying
these dual goals makes the sharing problem challenging from the
provider’s perspective.

3. PRELIMINARIES
The provider has to consider a set S of sharings {S1, S2 · · ·Sm},

for inclusion in the sharing platform. Here, we consider the case
where there are no existing sharings in the system, yet the solution
we develop is equally applicable to the case when the platform al-
ready has several prior sharings. Our solution that we later develop
will identify which of the sharings in S should be admitted into
the sharing framework, while at the same time minimizing provider
cost and meeting SLA requirements. Each Si specifies the applica-
ble datasets, transformations, staleness requirements and penalties
as described next.

To specify a sharing Si, a consumer starts by identifying datasets
(i.e., base relations) of interest, or subsets of datasets. Next, the con-
sumer must determine a way to combine these datasets by specifying
transformations on the data. In this work, we restrict the transforma-
tions on the base relations to include the following three operators.

1. Choose a subset of tuples using a selection predicate

2. Choose a subset of the attributes

3. Combine base relations using a common key

In other words, the transformation can be specified using a Select-
Project-Join (SPJ) query that is applied on the base relations. The
consumer next specifies a staleness requirement t expressed in time
units (e.g., 20 seconds) on the shared data as well as any applica-
ble penalty pens. A sharing in SMILE is enabled by the creation
of a materialized view (MV), which describes the transformations
over the base relations. For each sharing Si, the system creates a
MV which is always maintained within a staleness of t time units as
specified by Si. This means even though the base relations are inde-
pendently updated, the state of the MV is always consistent with the
state of the base relations within t seconds.

As an illustration of defining a sharing, we revisit Example 1 and
provide a more concrete example of a sharing that the Opentable
(i.e., restaurant) app may define using the SMILE platform.

EXAMPLE 2. Plango (i.e., Calendar app) makes the base re-
lation of User_Events of events extracted from users’ calendar
available for sharing. Opentable has its own relation User_Accts
of users that use the app. It specifies a sharing, “I want to know
about dinner events for the users who use my app within 10 seconds
of a new event being recorded so that I could offer recommenda-
tions to them.” The base relations are User_Events and User_-
Accts, and the transformations are specified as the following SPJ
query: EventType=“dinner" from a join of User_Events
and User_Accts. The staleness t is specified as 10 seconds and
the penalty pens is $.001 per late delivery of a tuple.

After the sharing Si is defined as per the above example, it is
given to the provider for deciding admissibility and implementation
in the platform, which is described in Section 6.

4. SMILE ARCHITECTURE
Figure 1 shows the architecture of the system. There is a set of

machines available to implement the sharings. Each machine runs a
single database instance (Postgresql in our case). The SMILE plat-
form consists of three main components — (a) delta capture, (b)
sharing optimizer, and (c) sharing executor — that perform the fol-
lowing functions, respectively: (a) capture changes (i.e., delta) on
the base relations as updates are applied on them; (b) generates plan
for moving these updates from the base relations to the MVs; and
(c) schedules the movement of these updates by taking system fluc-
tuations into account. We briefly describe the three main system
components below.
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Figure 1: Architecture of the sharing platform

4.0.1 Delta Capture and Timestamps
As the base relations are updated, a delta capturing mechanism

(i.e., tuple creation, deletion or updates) records the modified tu-
ples. Our mechanism uses the Streaming Replication facility [3] in
Postgresql to capture the deltas. This module in Postgres allows
the Write Ahead Log (WAL) to be streamed on to another Post-
gresql instance in recovery mode so that a nearly identical replica
of a database can be maintained. Our module fakes itself as a Post-
gresql instance and obtains a WAL stream. The modified tuples are
extracted from the stream, unpacked and written to the disk.

Every base relation R is associated with a delta relation, denoted
by ∆R that records the modified tuples as update queries are applied
on R. The tuples in ∆R are populated by the delta capturing mod-
ule. The MVs in the system also contain corresponding delta tables.
If R is a MV then ∆R contains both prior updates as well as those
that have not yet been applied to R. The tuples in ∆R of a MV is
populated, moved and applied by the sharing executor.
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Every relation, delta of a relation or MV in our platform records
its last modification timestamp. The timestamps are generated using
a distributed clock [17] that is periodically synchronized. Each tuple
in the delta also records an associated timestamp. Maintaining the
sharings at their appropriate level of staleness is achieved by keep-
ing track of the last modification timestamps of the base relations
and comparing them to the timestamp of the MV. The SMILE sys-
tem maintains an up-to-date timestamp information on each sharing,
hence is aware of the current staleness of all the sharings. Updates
are moved from the base relations to the MV in a way that ensures
that the sharings do not miss their SLAs.

4.0.2 Sharing Optimizer
Given a set S of new sharings, the sharing optimizer generates an

update mechanism for each sharing in S using a three step procedure
described below.

a. A sharing Si in S can be admitted if the system can maintain
Si at the desired level of staleness. This determination is nec-
essary to prevent the system from entering into SLAs that it
cannot satisfy (Section 6).

b. If Si is admissible, we generate its sharing plan such that it
can move updates from the base relations to the MV within
the time specified in the staleness SLA. Moreover, the sharing
plan is also cost effective in terms of its infrastructure resource
consumption (Section 6).

c. Once the individual sharing plans of all the sharings in S are
determined, commonalities across sharings are identified and
removed to produce a single global sharing planD that imple-
ments all the sharings (Section 7).

4.0.3 Sharing Executor
The sharing executor is the execution engine of the system which

maintains the sharings at or below the required staleness level. The
sharing executor is an implementation of an asynchronous view
maintenance algorithm [24].

The sharing executor computes the current staleness of a sharing
by taking the difference between the maximum of the timestamps of
all the base relations to that of the MV. The executor keeps track of
which of the sharings will soon miss their staleness SLA. It sched-
ules the updates to be applied on the MV so that its staleness is
reduced. Each machine in the infrastructure runs an agent that com-
municates with the sharing executor via a pub/sub system (e.g., Ac-
tiveMQ). The agents send periodic messages to the sharing executor
with the last modification timestamps of the base relations and the
MVs.

Our implementation of the executor is lazy by design in the sense
that it does not refresh unless it is absolutely necessary or the sharing
will miss its SLA. This way, the executor bunches as much work as
possible thereby reducing redundant effort. The refresh is neither too
early nor too late, but finishes just before a sharing is about to miss
its staleness SLA. We provide more details on the sharing executor
in Section 8.

5. SHARING PLAN
The update mechanism of a sharing is implemented as a sharing

plan, which is analogous to a query execution plan in databases. We
will henceforth refer to it simply as a plan in the rest of the pa-
per. The plan is expressed in terms of four operators that form the
transformational path for the updates from the base relations to the
MV. This is represented using a Directed Acyclic Graph (DAG) such

that the vertices are relations or deltas of relations tied to a partic-
ular machine, and the edges apply transformational operators. The
plan is expressed using the following four edge operators, that 1)
apply updates (DeltaToRel) , 2) copy updates between machines
(CopyDelta) , 3) join updates (Join), and 4) union (i.e., merge) up-
dates (Union).

As the plan operates on base relations that are asynchronously
updated, the input vertices to an operator may have different times-
tamps. An operator takes any mismatch in the timestamps into
account by rolling back all the input vertices to the minimum of
the timestamps among its inputs. This is referred to as compensa-
tions [28]. Rolling back the timestamp of a relation or a MV is
possible due to the delta relations associated it. The operators for
applying, copying and merging updates are based on their standard
interpretations, except that they additionally apply compensations to
the inputs as the first step. Our join operator performs a compensa-
tion which is an implementation of the algorithm from [28].

We will not provide the implementational details of the operators
but instead show an example of a plan that performs a relational join
on two asynchronous base relations A and B on different machines.
The plan is referred to as “in-place” as it does not involve making
the copies of the base relations. The vertices and the edge operators
in the plan periodically move the updates from the base relations to
the MV to keep it maintained incrementally.

DELTA CAPTURE DELTA CAPTURE 

COPY  
UPDATES 

Machine m1 Machine m2 

ΔA 

ΔA A ΔB B 
ΔB 

 
Δ(A⋈ΔB) 

 
Δ(ΔA⋈B) 

 
Δ(ΔA⋈B) 

  
Δ(A⋈B) 

 

 
A⋈B 

 

JOIN 
JOIN 

APPLY UPDATES 

COPY  
UPDATES 

Machine m3 

 
Δ(A⋈ΔB) 

 

COPY 
UPDATES 

UNION 
UPDATES 

Figure 2: One possible plan involving an in-place join of a base
relation A on machine m1 and B on machine m2 such that the
resulting MV A 1 B is placed on machine m3

EXAMPLE 3. Figure 2 shows the plan of a sharing Si that per-
forms a transformation A 1 B on two base relations, A and B.
The plan is a DAG consisting of 12 vertices and 10 edges. The ver-
tices are either base relations (e.g., A, B or its copies), MVs (e.g.,
A 1 B) or delta relations (e.g., ∆(∆A 1 B)). The edges cor-
responds to operators that either apply, copy, merge, join updates,
to complete the transformation path from the base relations to the
MV. Note that select and project predicates can be specified in Si’s
transformation. All the four edge types can apply select and project
predicates to their inputs if one is specified in addition to their usual
functionalities. We handle these predicates by using the pushdown
heuristic [11].

Given a sharing that specifies a set of transformations on the base
relations, the plan generation algorithm enumerates all the plans that
implement the sharing. However, not all of the plans satisfy the
constraints we develop in the reminder of this section. In particular,
we concern ourselves with two key properties of a plan, namely its
critical time path and dollar costs, which are described below.

691



5.1 Critical Time Path
The critical time path of the plan is the longest path in terms of

seconds that represents the most time consuming data transforma-
tion path in the plan. Note that the plan is admissible only if the
length of its critical time path is less than the required staleness of
the sharing, or else the system cannot maintain it.

The sharing optimizer estimates the critical time path of a plan
using a time cost model for each operator. The model estimates the
time taken for each operator given the size of the updates. Note that
finding the longest path between two vertices on a general graph
is an NP-hard problem, but the plans are DAGs, on which longest
path calculation is tractable. The system implements the procedure
CP(p) that takes a sharing plan p and outputs its critical time path
in seconds. For example, in the plan p shown in Figure 2, CP(p)
computes the time taken along the longest transformation path from
A or B to the MV A 1 B. Section 9 provides additional details on
how we developed the time cost model for the four operators.

5.2 Cost Model
The cost of the plan, expressed in dollars per second, is com-

puted by the amount of CPU, network, and disk capacity consumed
to setup the sharing and maintain it at the required staleness. The
provider periodically moves the updates to the MVs and buys CPU,
disk and network capacities from the Infrastructure as a Service
(IaaS). This cost can be further divided into two categories: resource
usage (i.e., CPU, disk capacity, network capacity) and penalty due
to possible SLA violations.

Resource Usage. There are existing analytical models that esti-
mate the usage of various resources for maintaining a MV, based on
update rate, join selectivity, data location, etc. (e.g., [21]). This
analytical model is implemented as a resCost function that com-
putes the cost of the resources consumed by a plan. Furthermore,
the resource usage should also vary with the staleness SLA of the
sharing. When the required staleness is much longer than the criti-
cal time path, e.g., the critical time path is 1 second and the staleness
requirement is 30 seconds, the sharing executor has much flexibil-
ity in deciding when to update the MV. Specifically, given a new
tuple to the base relations, the service provider can push it to the
MV immediately, or wait for as long as 29 second before pushing it.
On the other hand, when the staleness becomes close to the critical
time path, there is much less flexibility since other sharings in the
infrastructure may compete for resources.

In order to reduce the negative interaction at low staleness values,
the resources allocated to the plan are over-provisioned by a factor
that is inversely proportional to the required staleness. This simple
strategy ensures that the negative interactions are mostly avoided at
low staleness values.

SLA Penalty. At low staleness values the natural fluctuations in
the update rates may cause a plan to miss the SLA. This is because
the plan estimates the critical time path using the average arrival rate,
but in practice this is an over simplification as the updates frequently
vary. So, we have to estimate how much of penalty may be incurred
given the required staleness, which also has to be factored into the
cost. We estimate this by assuming a Possion arrival of updates, and
modeling the plan as a M/M/1 queuing system. Given the arrival rate
of each base relations, we can estimate the arrival rate of tuples in
the MV based on the selectivity of joins. The average service time of
the M/M/1 queue corresponds to the most time consuming operator
in the plan.

For an M/M/1 queue with arrival rate λ and service rate µ, the
percentage of items with sojourn time t larger than the staleness SLA
s is P (t > s) = e(λ−µ)·s. Thus the dynamic cost of a plan p with
staleness s is calculated as:

COST(p) = resCost(p) · (1 +
CP (p)

s
) + e(λ−µ)·s · pens (1)

resCost(p) is the cost of resource usage. As discussed be-
fore, to avoid SLA violation due to multiple sharings compet-
ing for resource, we over-provision the resource by a factor of
CP (p)/s where CP (p) is the length of the critical time path of
p. e(λ·a−µ)·s ·pens is the estimated penalty of missing the staleness
SLA due to higher-than-expected tuple arrival rate, where pens is
the penalty of missing the staleness SLA for a single tuple.

6. SHARING OPTIMIZER
The goal of the sharing optimizer is to produce a low-cost admis-

sible plan. Satisfying the dual constraints of finding an admissible
plan that is provably cheapest amongst all plans is a hard problem.

A sharing Si specifies SPJ transformations on a set of base rela-
tions. As the base relations are hosted on different machines, there
are several ways of combining them as well as where to place the
intermediate results. This results in plans with varying dollar cost
and critical time paths. For instance, performing many operations
in parallel on different machines may produce a plan with a small
critical time path. But such a plan may have a high dollar cost due to
high infrastructure costs involved in using many machines. On the
other hand, operations can also be performed sequentially to reduce
the dollar cost but at the expense of a high critical time path.

Among the generated plans those that have a critical time path
greater than the SLA of Si cannot be maintained by the system at the
desired staleness level, and hence are not admissible. The admissi-
bility of plans forms the hard constraint of our problem in the sense
that the system should not admit a sharing that cannot be handled
by the system. At the same time, it also should not deny admitting
sharings that otherwise should have been admissible.

The sharing optimizer is based on the polynomial time heuristic
solution developed for System-R [11] and its analogous distributed
variant R∗ [18]. Our approach relies on generating, using a dynamic
programming approach, the cheapest possible plan in terms of dollar
costs, regardless of its critical time path and another plan with the
smallest critical time path, regardless of its dollar costs. We refer to
these plans as Dynamic Programming Dollar (DPD) and Dynamic
Programming Time (DPT), respectively. The DPD and DPT plans
have the following properties:

1. DPT is a plan with a low critical time path that is not optimized
on the operating dollar cost. If DPT is not admissible, then the
sharing can be safely rejected by the provider as there cannot
be a plan with a lower critical time path.

2. DPD is a plan with a low operating dollar cost that is not op-
timized on the critical time path. If DPD is admissible, then it
is also of the cheapest cost.

We provide a dynamic programming formulation to produce DPT
and DPD in Section 6.1, and provide a plan generation algorithm in
Section 6.2.

6.1 Dynamic Programming Formulation
We cast the problem of generating a plan as a bottom-up dynamic

programming formulation given by JOINCOST in Algorithm 1. Con-
sider a sharing that specifies a join sequence on the base relations.
For example, Figure 2 shows a join sequence of length two using the
two base relations, A and B.

Let Si be a sharing in S such that SRC(Si) is the set of source
vertices of Si and MV(Si) is the vertex corresponding to the MV
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Figure 3: Four ways of joining A and B, (a) in-place (no copies of A or B), (b) copy B (c) copy A, (d) copy A and B.

of Si. SLA(Si) is the staleness SLA of Si. MAC(Si) denoted the
set of dedicated machines available to host the sharing. Below, the
short-hand notation <v,m> denotes any vertex v (i.e., relation, MV
or a delta of a relation) in the plan that is placed on a machine m.

We capture the state of the problem up on creating a join sequence
R on a machinem (i.e., <R,m>) as (D<R,m>, CAP<R,m>) such that:

1. D<R,m> is the cheapest plan among all those that produce R
on machine m. The cheapest plan is chosen by applying a
cost function COSTCALC, which takes a plan as input and
produces a cost value. Later, we will specify two implemen-
tations of COSTCALC that will produce the DPT and DPD
plans.

2. CAP<R,m> is the remaining capacity in the infrastructure (e.g.,
CPU, disk, network capacities) after discounting the capacity
consumed by D<R,m>.

We generate the join sequence R at machine m bottom-up by
enumerating all the states corresponding to: a)R−a on any machine
in MAC(Si), b) with any remaining capacity. R − a refers to a
join sequence R without a base relation a. D<R,m> is generated by
adding vertices and edges required to join R − a with a to the plan
from the prior state. Among the plans generated this way, we choose
the plan with the smallest value produced by COSTCALC.

Such a formulation is used by JOINCOST to obtain the plan of any
arbitrary join sequence R on mi ∈ MAC(Si), which is formed by
joining R − a on mj ∈ MAC(Si) (i.e., <R− a,mj>) with a base
relation a on machine mk ∈ MAC(Si) (i.e., <a,mk>).

At a high level, given two relations A on machine m1, and B on
machine m2, we consider four ways of producing A ./ B on a ma-
chine m3, which are illustrated in Figure 3. In particular, Figure 3a
shows the case where A ./ B is produced without copying any of
the base relations (i.e., in-place join). Figure 3b–c show the cases
when one of the base relations is copied. Figure 3d shows the case
when both A and B are copied to m3, and then an in-place join is
performed. Note that the four cases (a)–(d) in the JOINCOST for-
mulation (lines 8–11) correspond to the four ways of joining two
relations A and B in Figure 3.

JOINCOST uses an in-place join and a copy procedure to update
the plan D<R−a,mj> to produce R on machine mi. We explain be-
low the procedure of creating a copy of a relation and joining two
relations using A and B in place of R− a and a, respectively.

To copy of <A,m1> to form <A,m2> requires the addition
of one vertex and two edges – vertex <A,m2> and CopyDelta
between <∆A,m1> and <∆A,m2>, and DeltaToRel (apply up-
dates) between <∆A,m2>. An in-place join between <A,m1> and
<B,m2> to produce <A ./ B,m3> can add up to 8 vertices and 8
edges, as shown in Figure 3 depending on whether m1, m2 and m3

are all distinct machines.
After adding the necessary vertices and edges, the capacities of

machines involved are modified using the resCost function defined

Algorithm 1 sub JOINCOST(<R,mi>)
1: for all join sequences R− a do
2: for mj ∈ set of available machines do
3: (CAP<R−a,mj>, D<R−a,mj>) = JOINCOST(<R− a,mj>)
4: for mk ∈ set of available machines do
5: CAP′← CAP<R−a,mj>

6: D′← D<R−a,mj>

7: Choose cheapest case among (a)–(d), update CAP′ and D′

8: Case (a): In-place join of <R− a,mj> with <a,mk>
9: Case (b): Copy <R− a,mj> to <R− a,mk>. In-place join of

<R− a,mk> and <a,mk>
10: Case (c): Copy <a,mk> to <a,mj>. In-place join of

<R− a,mj> with <a,mj>.
11: Case (d): Copy <R− a,mj> to <R− a,mi>. Copy <a,mk>

to <a,mi>. In-place join of <R− a,mi> and <a,mi>
12: Update CAP<R,mi>, D<R,mi> with D′ and CAP′ if COSTCALC(D′)

is cheaper.
13: end for
14: end for
15: end for
16: return CAP<R,mi>, D<R,mi>

previously. If there is no capacity left in m1 or m2, COSTCALC
function would cost such a plan at∞ indicating that the plan is in-
feasible.

6.2 Plan Generation Algorithm
Finally, we describe an algorithm which takes a sharing Si and

generates two sharing plans depending on the choice of the cost
function, which we had left unspecified earlier. Recall that the DPD
plan has a low dollar cost, whereas the DPT plan has a low critical
time path.

If a DPD plan is needed, COSTCALC uses COST function (de-
scribed in Section 5.2), which computes the cost of a plan in dollars
per second. If a DPT plan is needed, COSTCALC uses the CP func-
tion (described in Section 5.1), which computes the critical time path
of the plan.

The plan generation algorithm computes the cheapest way to build
all join sequences of length 1 < x ≤ |SRC(Si)| in a bottom-up
manner, where SRC(Si) is set of base relations of Si. The algorithm
obtains the cost to construct longer join sequences of length x, using
the output of prior invocations for join sequences of length x − 1.
The algorithm terminates when it produces the join sequences corre-
sponding to the set of transformations specified in the sharing. The
sharing optimizer generates both DPD and DPT plans. If the DPT
plan is not admissible, then it means that there may not exist a plan
of Si that is admissible and hence, Si is rejected by the provider. If
DPD and DPT are both admissible, the sharing optimizer uses DPD
as it has a lower cost than DPT.

7. MULTI-SHARING OPTIMIZATION
If two different admitted sharings share similar vertices and edges,

there could be an opportunity to further reduce the cost. The
provider can take advantage of this commonality by amortizing the
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operating costs across several sharings. The commonality here is
replacing two disjoint sets of vertices and edges belonging to differ-
ent sharings that perform identical or similar transformation with a
common set for multiple sharings.

Although our idea of merging commonalities in plans is similar as
merging common subexpressions in concurrent running query exe-
cution plans [26], there are two main differences. First, our infras-
tructure contains multiple servers and the cost of moving the data
across the servers has to be considered. Second, as we show below,
unlike [26] we do not restrict to only merging identical subexpres-
sions across plans.
D is a global plan obtained by merging the plan of sharings in

S and then discarding duplicate edges and vertices. Note that D
need not be a single connected component. Each vertex (or edge)
v ∈ D records the identity of all the sharings that it serves, such that
SHR(v) records the sharings to which v belongs. Given a vertex (or
a set of vertices) v, let ANC(v) be the set of vertices and edges that
are ancestors of v in D.

Commonalities inD are reduced by applying a plumbing operator
repeatedly until the D does not perform any redundant work. A
plumbing operator takes two sets of vertices v1 and v2 belonging to
plans as inputs. Then, vertices and edges that supply the vertices in
v2 (or v1) are retained but those supplying v1 (or v2) are discarded.
We now discuss the mechanics of a plumbing operator as well as an
algorithm to apply them.

7.1 Plumbing Operations
A plumbing operation p is defined between a set of source ver-

tices SRC(p) and another set of destination vertices DST(p), such
that after the plumbing operation DST(p) gets tuples via SRC(p).
Applying p on D results in a potential cost reduction is due to the
removal of vertices from D, although some expenditure in the way
of additional vertices and edges is made to facilitate the plumbing.
The benefit of p is defined as the dollar cost savings due to the re-
moval of vertices and edges in the plan minus the cost of adding the
additional vertices and edges to implement p. Applying p can poten-
tially increase the critical time path of all sharings in SHR(DST(p)).
This is because they now obtain their tuples via SRC(p), which may
be a longer path in terms of time. We note that p is feasible only if
it has a positive benefit. Moreover, performing p should not cause
the critical time path of any of the sharings in SHR(DST(p)) to ex-
ceed their SLA. We consider the following two kinds of plumbing
operations, which are shown in Figures 4a–b.
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Figure 4: Types of plumbings (a) CopyDelta and (b) Join and (c)
how plumbings can affect one another

1. Copy Plumbing: Takes two delta vertices on different ma-
chines and adds a CopyDelta edge between them.

2. Join Plumbing: Takes two vertices – a delta and a relation
– and performs a join to obtain the destination delta vertex.
For example, ∆(A ./ ∆B) is plumbed using A and ∆B by a
Join edge and up to two CopyDelta edges.

Note that we do not preclude other kinds of plumbing operations
here as long as they do not compromise the correctness of the plan
and result in a cost reduction.

A plumbing operation p is implemented as follows. First, add
the necessary edges and vertices to perform p. For all vertices and
edges v ∈ ANC(DST(p)), remove SHR(DST(p)) from the SHR(v).
For all v ∈ ANC(SRC(p)), add SHR(DST(p)) to SHR(v). Add
SHR(DST(p)) to SHR(SRC(p)) as well. Remove vertices and edges
v ∈ ANC(DST(p)) s.t., SHR(v) = ∅.

7.2 Optimization Algorithm
Given the global planD, we want to identity a set of plumbing op-

erations to perform, that would produce the provably least cost plan
without exceeding the staleness SLA of any of the sharings. The
hardness of this problem comes from the observation that a plumb-
ing can affect the benefit of other plumbings. Figure 4c shows an
example of three plumbings pi, pj and pk that affect one another.
For example, pi cannot be applied if pj has already been applied to
D as applying pj would have removed the vertices in SRC(pi). For
the same reason pj cannot be applied if pk has already been applied.
Finally, the benefit and the increase to the critical time path due to
pi is affected if pk has already been already applied.

An optimal algorithm that chooses a set of plumbings to perform
resulting in a provably cheapest plan is a hard problem. For our pur-
poses here any plan that is cheaper than D is good enough. Our al-
gorithm is referred to as greedy hill-climbing approach as it applies
one plumbing at a time in a greedy fashion, until no more plumb-
ings can be applied to D. This algorithm has at least the desirable
property that it is fast to execute and intuitive to understand.

Given the global plan D, let P be the set of all possible plumbing
operations that can be performed on D. The greedy hill-climbing
algorithm at each iteration first computes P and then applies the
plumbing operation p ∈ P with the maximum benefit. The set of
plumbings P is obtained using a two step process. First, we examine
all pairs of vertices inD to determine if a copy plumbing can be per-
formed between them. Second, we examine all applicable triples of
vertices to determine if a join plumbing can be performed between
them. The benefit and the critical time path increase due to each
plumbing are computed. If a plumbing has zero or negative benefit,
or causes a sharing to miss its SLA, it is discarded from P . The
algorithm terminates when no more plumbing operation can be ap-
plied to D. The resulting global plan forms the input to the sharing
executor. We will show later in Figure 13 that this strategy is quite
effective and results in large savings for the provider.

8. SHARING EXECUTOR
The sharing executor takes a global sharing plan D and maintains

the individual sharings at the appropriate level of staleness. In its
very nature, the sharing executor must be robust to any deviations in
the update rate and the behavior of the machines in the infrastructure.
The sharing executor applies its own set of run time optimizations,
some of which are briefly described. We first describe how staleness
is computed and how the push operator reduces the staleness of a
sharing arrangement. Next, we design a model to determine the most
appropriate time to push the sharings.

8.1 Staleness and Push
Each machine runs an agent which is responsible for sending pe-

riodic timestamps updates to the sharing executor. We refer to these
messages as heartbeats. We implement the following three functions
– TS(.), MINTS(.), MAXTS(.) – that obtain the current timestamp
of a vertex, and the minimum and maximum timestamps of a set of
vertices in the sharing plan. For instance, MINTS(SRC(Si)) and
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MAXTS(SRC(Si)) are the minimum and maximum timestamps of
the sources of Si.

The current staleness of a sharing is defined as the difference be-
tween the maximum of the timestamps of the base relations of Si to
that of the MV of Si. Note that the staleness should always be main-
tained to be less than SLA(Si). This is captured by the following
inequality.

MAXTS(SRC(Si))− TS(MV(Si)) ≤ SLA(Si).

To reduce the staleness of a sharing Si, the executor schedules a
sequence of PUSH commands in a topological order starting with
SRC(Si), until the timestamp of the MV has a more up-to-date
timestamp. A PUSH command instructs the agent to advance the
timestamp of a vertex in the sharing plan by applying an operator
denoted by its incoming edge. The incoming edge belongs to one of
the four edge types we described in Section 5.

Suppose an agent receives a PUSH command to advance a vertex
v to timestamp t. Suppose that e is an incoming edge of v. The
agent first obtains a write lock on v. It then compares the current
timestamp t′ of v with that of t. If t′ ≥ t then there is no need to
perform any work. If t′ < t, then the agent performs the operation
corresponding to e’s type so that the timestamp of v can be advanced
to t. Once the operation has been performed the agent responds
with a PUSHDONE command, and piggybacks useful statistics such
as time taken to perform the operation and current timestamps. The
executor up on receiving the PUSHDONE proceeds with the outgoing
edges of v.

When it comes to maintaining multiple sharings, the design of a
sharing executor is simplified due to the observation that any shar-
ing in S can be pushed independently of the others in S even though
they may have common edges and vertices. Suppose a vertex is at
a timestamp t and there are two concurrent PUSH commands to ad-
vance it to t1 and t2, t ≤ t1 ≤ t2, respectively. Regardless of the
order in which the two commands are executed, the amount of work
done by e is equal to the work done to advance the timestamp to
t2. This is why the sharing executor does not have to coordinate
PUSH commands between the various sharings that it maintains.
This makes for a simple design of the sharing executor, especially
since the sharings may have different staleness SLAs and may have
to be pushed at different rates.

8.2 Design
Our sharing executor uses a simple model to determine two key

questions: a) Is it time to push Si? b) By how much to advance
the timestamp of MV of Si? To determine these two questions, we
develop a model to determine the most appropriate time to schedule
the push and the timestamp to push the MV to such that the sharing
will not miss its SLA.

A simpler design of a sharing executor pushes all the sharings
in S every second so that they do not violate their SLA. Given the
property that the critical time path of an admissible sharing is less
than its staleness SLA, the push will finish before the SLA is vio-
lated. However, our sharing executor does not push every second
but rather bunches up sufficient work so that the push is issued as
late as possible. Yet, it is scheduled such that the push would be
completed before Si becomes stale.

To develop the model, we modify the critical time path function
CP(Di, x) to take an additional parameter x, which corresponds to
the amount of timestamp to advance the MV of Si. In Section 5.1
when we described how we compute the critical time path of a shar-
ing plan, xwas defaulted to be one but now can take up any arbitrary
value greater than or equal to one. We also added a feedback loop
to the CP function so that it constantly recomputes the time model

to take into account recent system fluctuations. We record the actual
time to perform each of the operators, compare it against estimated
time and periodically recompute the time model. This feedback loop
allows our system to be reasonably robust to data and machine fluc-
tuations.

An appropriate timestamp t to advance the MV of Si should be
greater than the current timestamp of MV but should be less than
or equal to the minimum of the timestamp of the sources of Si. In
particular,

TS(MV(Si)) < t ≤ MINTS(SRC(Si)).

When the push finishes, the MV would be at the timestamp t, while
the timestamp of the sources may all be advanced by CP(Di, t −
TS(MV(Si))). So, the staleness of the sharing at the time the push
finishes would be: MAXTS(SRC(Si)) + CP(Di, t−TS(MV(Si))).
We stipulate that the staleness when the push finishes should be less
than the staleness SLA using the following inequality:

MAXTS(SRC(Si)) + CP(Di, t− TS(MV(Si)))− t ≤ SLA(Si).

On the other hand, the sharing executor does not want to push too
early as well. In other words, the sharing executor is early if the
push command could have waited a bit longer and still could have
completed before Si became stale. This can be stipulated by adding
the additional constraint that:

l ∗ SLA(Si) ≤ MAXTS(SRC(Si))+ ≤ SLA(Si),

CP(Di, t− TS(MV(Si)))− t

where l > 0 (0.8 in our case) is chosen to account for run-time
deviations, such as a queuing delay if the PUSH waits for the ca-
pacity on a machine to be available. An appropriate value of t is
obtained by performing a binary search between TS(MV(Si)) and
MINTS(SRC(Si)) that satisfies the above constraint.

9. EXPERIMENTS
In this section, we present an experimental study to validate the

SMILE sharing platform. We first describe the experimental setup
in Section 9.1. We then evaluate the performance of our system for
varying rate of updates on the base relation in Section 9.2 and vary-
ing SLA in Section 9.3. We examine the effect of varying the num-
ber of machines and the sharings in the infrastructure in Section 9.4.
Next, the efficacy of the hill-climbing algorithm applied to DPT and
DPD is shown in Section 9.5. Finally, we highlight the robustness
of the sharing executor in Section 9.6 by varying the update rates on
the base relations and varying read workload on the MV.

9.1 Setup
Our experimental setup creates a mobile cloud ecosystem con-

taining 25 apps where sharings are specified using user, social net-
work, location, checkin, and user-content datasets; the datasets and
the sharings are representative of those one may find in a mobile
cloud. We collected Twitter tweets from a gardenhose stream, which
is a 10% sampling of all the tweets in Twitter, for a six month
period starting from September 2010. The tweets were unpacked
into nine base relations corresponding to the information about the
user (i.e., users relation), tweets (i.e., tweets relation), social
network (socnet relation), checkins (foursq), and user-content
(i.e., urls, hashtags, curloc, photos relations) associated
with the tweets and the location of the user (i.e., loc relation).
This creates our realistic datasets that capture rich information about
users, locations, social contacts, checkins and the various contents
the users are interest in.
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Table 1: Twitter base relations (left) and the twenty-five sharings (right) used in the evaluations

Base Relations:

users(uid, ...) User info
tweets(uid, uid, ...) Tweets info
socnet(uid, uid2, ...) Social network
loc(uid, place, ...) User address
curloc(tid, lat, lng, ...) User current loc
urls(tid, url, ...) Tweet links
hashtags(tid, tags, ...) Tweet entities
photos(tid, urls, ...) Photo links
foursq(tid, rid, ...) Rest. checkins

Sharings (Apps):

S1 users ./ socnet (twitaholic) S13 foursq ./ users ./ tweets ./loc (locc.us)
S2 users ./ tweets ./ curloc (twellow) S14 tweets ./ loc (locafollow)
S3 users ./ tweets ./ urls (tweetmeme) S15 users ./ loc ./ tweets ./ curloc (twittervision)
S4 users ./ tweets ./ urls ./ curloc (twitdom) S16 foursq ./ users ./ tweets ./ socnet (yelp)
S5 users ./ tweets (tweetstats) S17 users ./ loc (twittermap)
S6 tweets ./ curloc (nearbytweets) S18 users ./ tweets ./ photos ./ curloc (twitter-360)
S7 urls ./ curloc (nearbyurls) S19 users ./ tweets

./ hashtags ./ curloc (hashtags.org)
S8 tweets ./ photos (twitpic) S20 users ./ tweets ./ hashtags

./ photos ./ curloc (nearbytweets)
S9 foursq ./ tweets (checkoutcheckins) S21 users ./ tweets ./ foursq

./ photos ./ curloc (nearbytweets)
S10 hashtags ./ tweets (monitter) S22 foursq ./ curloc (nearbytweets)
S11 foursq ./ users ./ tweets S23 photos ./ curloc (twitxr)

./ curloc (arrivaltracker) S24 hashtags ./ curloc (nearbytweets)
S12 foursq ./ users ./ tweets (route) S25 hashtags ./ users ./ tweets (twistroi)

We specify 25 sharings by combining these 9 base relations in
different ways. A description of the base relations and the 25 shar-
ings used in the evaluation are shown in Table 1. For each of the
25 sharings, we also mention an existing real app that may bene-
fit from such a sharing. For instance, the application twitter-360,
which displays nearby photos may be interested in S18 which corre-
sponds to users ./ tweets ./ photos ./ curloc. By building
an ecosystem around twitter data and choosing sharing that match
the functionalities of existing apps, we are ensuring that our evalu-
ation is as realistic as possible. Our setup consisted of 6 machines,
such that the 25 sharings were arbitrarily assigned to the available
machines. All the machines in our setup ran identical versions of
Postgresql 9.1 database. Our system starts with 7 million tweets
prepopulated into our databases.

As we vary the rate of arrival of tweets into our system, the rate
of update on the base relations (other than tweets) depends on the
number of tweets seen so far by the system. For instance, at the
beginning any incoming tweet most likely will contain the identity
of a user not previously seen by the system, which would result in the
insertion of a tuple to the users relation. However, after the system
has ingested a sufficient number of tweets, the update rate on the
users relation will decrease as some of the users already would be
present in the users relation. The dependence between the number
of tweets ingested by the system and the chance that an incoming
tweet will result in an insertion to a base relation is expressed in
terms of an update ratio. After 7 million tweets have been ingested
by our system, the update ratio of encountering a previously unseen
user in the next tweet is around 0.3. The update ratio values for some
of the remaining relations were 0.25, 0.02, 0.1, 0.2, for socnet,
loc, curloc and urls, respectively. Using the update ratios, we
can estimate the rate of updates on all the base relations by varying
the rate of incoming tweets in the system.

9.1.1 Snapshot Module
To determine the efficacy of our system, an independent auditing

module in our sharing executor, called snapshot, records the stale-
ness of all the sharings once every 5 seconds. Suppose that a sharing
Sj was found to have a staleness less than the SLA staleness at snap-
shot i. If Sj satisfies the SLA staleness in snapshot i + 1, then the
system is assumed to have maintained Sj at the appropriate level of
staleness for all intermediate time periods between i and i+ 1. The
converse is true if Sj is found to have violated the SLA at snapshot
i+1. The snapshot module also keeps track of the cost, and the num-
ber of tuples moved between snapshots. Additionally, we record the
staleness of all sharings before and after a PUSH operation as well
as the cost incurred and time taken for each PUSH operation.

 0

 1

 2

 3

 4

 5

 0  3000  6000  9000

T
o

ta
l 
P

u
s
h

 T
im

e
 (

s
e

c
o

n
d

s
)

No. of Delta Tuples

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  4000  8000

T
o

ta
l 
P

u
s
h

 T
im

e
 (

s
e

c
o

n
d

s
)

No. of Delta Tuples

(a) (b)

 0

 1

 2

 3

 4

 5

 0  3000  6000  9000

T
o

ta
l 
P

u
s
h

 T
im

e
 (

s
e

c
o

n
d

s
)

No. of Output Tuples

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  3000  6000  9000

T
o

ta
l 
P

u
s
h

 T
im

e
 (

s
e

c
o

n
d

s
)

No. of Output Tuples
(c) (d)

Figure 5: Time cost model of the four edge types, namely a)
DeltaToRel, b) CopyDelta, c) Join, and d) Union

9.1.2 Dollar and Time Cost Models
The infrastructure costs for our cost model was obtained from

Amazon EC2 pricing available on the web1. Our machines are
equivalent to large Linux instances, which cost $0.34/hour. For the
network cost, we assumed that the instances were in different avail-
ability zone but in the same region, which had a transfer cost of $0.01
per GB. For storage, we used EBS storage at $0.11 GB/month.

We developed a time model for each edge type to estimate the
time taken to process tuples, as function of the number of input tu-
ples. Our setup to compute a time model consisted of two machines
with 15 base relations of varying sizes between 200k and 50 mil-
lion tuples, number of attributes from 1 to 7 as well as different
attribute types forming tens of sharings between the base relations.
We pushed a varying number of tuples between 1 and 10k through
each edge in the setup and then measured the time taken to perform
each PUSH operation, which is recorded in Figure 5. It can be seen
that the time taken to push tuples through different edge types is
linear in the number of tuples for all the edge types, although with
different slopes. These plots form the basis of our time cost model.

9.2 Varying Rate
We used 6 machines and 25 sharings as shown in Table 1 with a

1http://aws.amazon.com/ec2/pricing/
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Figure 6: Staleness of twenty-five sharings across snapshots for a rate of 6k tweets/second (left) and the number of tuples moved in
each snapshot (right). Due to space constraints, only two zoomed-in graphs are provided for readability, while the remaining figures
are rendered small to show trends.

SLA of 45 seconds, while varying the rate of tweets from 50 to 6k
tweets/second. At 6k tweets/second (i.e., 3.6 billion tweets/week),
the update rate matches the current known volume of tweets in Twit-
ter [12]. We also replayed gardenhose stream, which roughly corre-
sponds to an average of 100 tweets/second. The rate of arrival for
tweets for a two hour window is shown in Figure 8c. As the garden-
hose is a 1 out of 10 sampling of tweets from the firehose, which is
a stream containing all the tweets in Twitter, we recreated a stream
similar (although by no means equivalent) to firehose by replaying
gardenhose at 10X speed.
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Figure 7: a) Staleness before and after a PUSH on S1, while b)
shows how much is pushed

Figure 6 (left) shows the staleness of a sharing S1 across different
snapshots. It can be seen that the staleness of each of the sharings in-
creases until it comes close to the SLA (i.e., 45 seconds), after which
the staleness sharply reduces to a low value due to a PUSH from the
sharing executor. The staleness before and after a push operation are
shown in Figure 7a, where it can be seen that the PUSH operation
reduces the staleness of S1 to less than 10 seconds, just before the
staleness of S1 was about to exceed the SLA. Figure 7b shows that
every push operation advanced the timestamp of S1 by 25 to 40 sec-
onds, which shows the lazy behavior of the sharing executor. One
thing to note here is that there were only 31 violations for all the 25
sharings for the entire duration of the experiment lasting about 40
minutes. We summarize some of our observations below.

The number of violations with varying incoming rate of tweets as
well as the cost to maintain the sharings in sharing-hour are shown in
Figures 8a–b. The results did not show a well defined trend between
the number of violations and the rate of incoming tweets, except that
the violations were very low, even for 6k tweets/second. First of all,
there were zero violations for the firehose (F) and gardenhose (G)
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Figure 8: (a) Cost and (b) violations per sharing-hour for gar-
denhose (G), and firehose (F) streams and rates from 50 to 6k.
Variations in Gardenhose (G) rate shown in (c)

streams, and about 3 violations per sharing-hour (i.e., per hour per
sharings) for 6k tweets per second. Note that the zero violations for
both the gardenhose and firehose streams were in spite of their un-
predictable arrival rate, which is shown in Figure 8c. At 6k tweets
per second, the cost was about $25 per sharing-hour, although note
that some of the sharings were much more expensive than the others.
In contrast, the average cost for the firehose (F) stream was about $6
per sharing-hour. Secondly, the number of tuples moved per snap-
shot (i.e., 5 seconds) across all the sharings was between 600k and
1.1 million tuples as shown in Figure 6 (right).
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Figure 9: Number of tuples moved in the setup in Figure 6 ex-
pressed as percent reduction from the case when individual shar-
ings are run in isolation

Next, notice in Figure 6 (left) that some sharings, such as S7, S8,
S9, S10, and S23 have a larger gap between the peak staleness value
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and the SLA, whereas others such as S1, S3, S4, and S20 have rel-
atively smaller gaps. The reason for this is that those sharings with
larger gaps benefit from the commonality with other sharings but not
so for those with smaller gaps. To test this hypothesis, we compared
the number of tuples moved for each sharing in the above experi-
mental setup with the number of tuples moved when the sharings
are run in isolation. The number of tuples moved in the former case
is shown as a percentage reduction from the latter case in Figure 9.
It can be seen that sharings with small gaps only benefit modestly
from the presence of other sharings, whereas those with larger gaps
benefit immensely from the presence of other sharings.

9.3 Varying SLA
Table 2: Number of violations per sharing-hour (rounded-up)
for varying SLA between 10 and 60 secs

Staleness SLA 10 20 30 40 50 60 Mix
Violations 4 1 2 1 0 0 0

Our setup consisted of 6 machines, 25 sharings and an incoming
rate of 1000 tweets/second. We varied the SLA between 10 and 60
seconds. Table 2 shows the effect of varying the SLA in terms of
the number of violations. The number of violations is maximum
for SLA = 10 seconds at 4 violations per sharing-hour. In general,
the number of violations for staleness SLA values greater than 10
seconds is extremely low at either 1 or 2. The higher number of
violations for 30 seconds (at 2 per sharing-hour) compared to those
for 20 and 40 seconds (at 1 per sharing-hour) was due to temporary
fluctuations in system resources.
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Figure 10: Cost change for mix SLA compared to uniform SLA

In the above experimental setup, we also examined a case where
we assigned non-uniform SLA (see mix in Table 2) to the 25 shar-
ings. In particular, S1–S7 were assigned a SLA of 10 seconds, S8–
S15 a SLA of 40 seconds, and S16–S25 a SLA of 60 seconds. From
Table 2, we can see that the mix case resulted in zero violations, al-
though having comparable dollar costs to the uniform SLA cases.
Then in Figure 10 we expressed the cost of an individual sharing in
the mix case as a percentage change to the corresponding cost from
the uniform case (i.e., compare costs of S1 from mix with uniform
when SLA was 10 seconds). It is interesting to note that although
the costs of S1–S7 have become marginally more expensive, the cost
of the other sharings (i.e., S8–S15, S16–S25) is now significantly
cheaper. Hence, we can conclude that few sharings with small SLAs
subsidize the operating cost of other (related) sharings.

9.4 Varying Machines and Sharings
In this experimental setup, we varied the machines from 2 to 5,

while keeping the number of sharings fixed at 25 and a SLA of 45
seconds. For every setup, the capacity of the machine was deter-
mined to be the highest rate of tweets that the set of machines can

 2000

 3000

 4000

 5000

 6000

 7000

 8000

2 3 4 5

T
w

e
e

ts
/s

e
c
o

n
d

No. of Machines

Rate vs. Machines

 0

 5

 10

 15

 20

 25

 30

 35

2 3 4 5

T
h

o
u

s
a

n
d

s
 o

f 
T

u
p

le
s
/s

e
c
o

n
d

No. of Machines

Tuples/machine vs. Machines

 2000

 3000

 4000

 5000

 6000

 7000

 8000

20 25 30 40 50

T
w

e
e

ts
/s

e
c
o

n
d

No. of Sharings

Rate vs. Sharings

(a) (b) (c)

Figure 11: Maximum tweet rate for varying (a) machines, (b)
sharings on a setup with SLA = 45 seconds

support without losing the stability of the system. We have built an
appropriate mechanism to monitor the stability of our system, which
is not discussed here due to lack of space. It can be seen from Fig-
ure 11a that increasing the number of machines increases the maxi-
mum rate that can be handled by our system. Moreover, adding an
extra machine increases the processing capacity of our system by at
least 25–30k tuples/sec as can be seen from Figure 11b. Next, we
varied the number of sharings from 20 to 50 keeping the number
of machines fixed at 6 and SLA of 45 seconds, as shown in Fig-
ure 11c. We increased the number of sharings beyond 25 by placing
the same sharing on more than one machine. With increasing num-
ber of sharings, the maximum rate decreases as database and other
system bottlenecks start manifesting due to the increased number of
vertices and edges that the system has to manage.

9.5 Algorithm Comparisons
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Figure 12: Cost of DPT and DPD reduced by applying hill-
climbing algorithm to produce DPT+HC and DPD+HC

We examined the efficacy of the hill-climbing algorithm that we
apply to the DPD and DPT algorithms to reduce the cost for the
provider. For this experimental setup, we used 6 machines, 25 shar-
ings and a rate of 1000 tweets/second. The cost model we considered
was same as before, except that we changed the networking pric-
ing to be within the same availability region in EC2 (i.e., no cost).
We generated DPD and DPT sharing plans for this setup, and then
applied the hill-climbing algorithm to both these sharing plans to
produce DPD+HC, and DPT+HC, respectively. The average cost in
dollars per sharing-second for the four sharing plans in sharing-hour
were as follows — DPT 0.0042, DPD 0.0033, DPT+HC 0.0025,
and DPD+HC 0.0023 as shown in Figure 12. It can be noticed
that DPD+HC has the cheapest cost but is comparable to DPT+HC.
When we compared DPD with DPD+HC, and DPT with DPT+HC,
the difference is quite significant representing a 35% reduction in
cost, thus making a case for our hill-climbing approach.
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Figure 13: Reduction in vertices and edges as plumbing opera-
tions are sequentially applied to DPD and DPT

Figure 13 shows the number of vertices and edges as the hill-
climbing algorithm takes DPD or DPT sharing plan as input and
performs plumbing operations in a sequential fashion. As can be
seen from the figure, the sharing plan is reduced by more than 80
vertices and edges for both DPD and DPT, which represents signifi-
cant savings in terms of cost.

9.6 Robustness of Sharing Executor
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Figure 14: Staleness of S4 across snapshots as the rate and the
workload on the MV abruptly change

This experiment shows the robustness of the sharing executor as
the machine capacities change during run-time. The setup consists
of 4 machines hosting the sharings S1...S4. Figure 14 shows the
staleness of S4 with an SLA of 50 seconds (marked) as recorded
by the snapshot module. The SLA of the remaining 3 sharings was
between 20 and 70 seconds. We applied a read workload on each
of the four MVs corresponding to the four sharings by the way of a
simulated user generating a single query template in a closed loop.
Initially, the incoming rate is set at 50 tweets/second and each of the
MVs is subjected to two users.

As the system is running we abruptly vary the number of users on
each MV as well as the rate of incoming tweets. The number of users
per MV is varied in four phases from 8 to 50, while simultaneously
changing the rate of incoming tweets from 50 to 150 tweets/second.
After the first phase when the number of users was increased from 8
to 16 users, all the machines are heavily loaded. The average stale-
ness value for each phase is also marked in Figure 14.

As the number of users and the rate of incoming tweets increase,
the machines get progressively more loaded. However, it can be seen
from the boundaries of the phase changes in the figure, the sharing
executor quickly adapts to the changing data rate and the increased
workload on the databases. The model in spite of the infrastructure
being loaded never allows the staleness of the sharing to exceed be-
yond 40 seconds. The sharing executor is able to do this by taking
advantage of the slack between the critical time path of the sharing
plan, which is a few seconds and that of the staleness SLA, which
is 50 seconds. Even if the time taken to push the sharing becomes
progressively slower due to the system load, the executor is able to
schedule the updates in a way that the SLAs are not violated.

10. CONCLUDING REMARKS
In this paper we presented a platform that can maintain sharings at

the appropriate level of staleness. Experimental results showed the
effectiveness of our platform in maintaining several sharings with
low violations even under a high update rate. We will examine the
following possible extensions in a future work. The platform can
be extended to support aggregate operators by developing additional
operators. Next, easy addition or removal of sharings on the fly as
the system is running can be provided. Finally, before markets for
sharing data be envisioned, issues related to the pricing of data [9]
have to be addressed.
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