
Fast Mining of Interesting Phrases
from Subsets of Text Corpora

Deepak P Atreyee Dey Debapriyo Majumdar
IBM Research - India

Bangalore, India.
{deepak.s.p,atreyee.dey,debapriyo}@in.ibm.com

ABSTRACT
We address the problem of mining interesting phrases from
subsets of a text corpus where the subset is specified using
a set of features such as keywords that form a query. Pre-
vious algorithms for the problem have proposed solutions
that involve sifting through a phrase dictionary based in-
dex or a document-based index where the solution is linear
in either the phrase dictionary size or the size of the doc-
ument subset. We propose the usage of an independence
assumption between query keywords given the top corre-
lated phrases, wherein the pre-processing could be reduced
to discovering phrases from among the top phrases per each
feature in the query. We then outline an indexing mecha-
nism where per-keyword phrase lists are stored either in disk
or memory, so that popular aggregation algorithms such as
No Random Access and Sort-merge Join may be adapted
to do the scoring at real-time to identify the top interesting
phrases. Though such an approach is expected to be approx-
imate, we empirically illustrate that very high accuracies (of
over 90%) are achieved against the results of exact algo-
rithms. Due to the simplified list-aggregation, we are also
able to provide response times that are orders of magnitude
better than state-of-the-art algorithms. Interestingly, our
disk-based approach outperforms the in-memory baselines
by up to hundred times and sometimes more, confirming
the superiority of the proposed method.

1. INTRODUCTION
From a generic corpus of text documents such as collec-

tions of documents from social media or news sources that
encompass a variety of topics, it is often necessary to drill-
down to topic-specific subsets of interest. Such drill down is
usually accomplished by using keyword queries (e.g., set of
text documents that contain one of a few keywords), and less
commonly, using metadata queries (e.g., set of news docu-
ments tagged with a specific topic). Analysts are often inter-
ested in getting a feel of the topic-specific corpus using infor-
mation such as characteristic keywords or phrases. A com-

(c) 2014, Copyright is with the authors. Published in Proc. 17th Inter-
national Conference on Extending Database Technology (EDBT), March
24-28, 2014, Athens, Greece: ISBN 978-3-89318065-3, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

mon tool that is employed to aid such analysis is to derive
a small set of characteristic tags or words that best describe
the collection and visualize them using tag-clouds or sets of
hot keywords[1]. While word and tag information do pro-
vide useful information that characterize the text document
subset, variable-length phrases mined from the body of the
text documents in the chosen collection could provide richer
information since phrase-level mining could potentially un-
earth names of people and organizations, marketing slogans
and much more[2]. This observation sparked interest in min-
ing interesting phrases from dynamically derived document
subsets, i.e., the problem of real-time discovery of interest-
ing phrases from document datasets that are chosen by a
user based on keyword-queries or metadata facets through
an IR-like query interface.

Notion of Interestingness: While interestingness may
be thought of as directly linked to the abundance of the
phrase in the chosen document sub-collection, a purely fre-
quency based scoring is likely to score phrases composed
of stopwords highly. However, this is easily overcome by
normalizing the score by the corpus-wide frequency of the
phrase, leading to an interestingness measure as follows:

ID(p,D′) =
freq(p,D′)
freq(p,D)

(1)

where D and D′ are meant to refer to the entire cor-
pus of documents and the chosen sub-collection respectively.
The interestingness ID(., .) of the phrase p is defined as the
frequency of the phrase in the chosen sub-collection (i.e.,
freq(p,D′)), normalized by its frequency in the entire cor-
pus of documents denoted by freq(p,D). Though there are
alternative formulations for interestingness such as pointwise
mutual information[19], recent work has focused on scor-
ing phrases using the above normalization-based model[2,
8]. The normalization using global frequency helps in de-
prioritizing phrases that are abundant all over D, and not
just in D′. For example, while choosing a subset of docu-
ments related to database research from among a more gen-
eral corpus comprising of computer science research papers,
phrases such as complexity analysis would be de-prioritized
by the normalization in favor of database specific ones such
as query optimization despite the former kind of phrases be-
ing common in database papers as well.

Selecting the Sub-Collection: Though previous work
on interesting phrase mining allow for D′ to be any arbi-
trary subset of the corpus D (e.g.,[2, 8]) in principle, it is
not very useful to select subsets of unrelated documents from
D. Thus, for all practical purposes, D′ is formed by select-

193 10.5441/002/edbt.2014.18

Table 1: Methods for Selecting Sub-Collections

Feature Operator References
Keywords AND/OR [15, 2, 8]
Metadata Facet AND [15, 2]

ing subsets of documents that have a common feature such
as a word or a metadata value (e.g., tag, topic, date etc.);
followed by aggregating such collections across multiple fea-
tures using and or or operators to form a single collection.
Infact, all previous work on mining interesting phrases have
evaluated their techniques on sub-collections that were con-
structed using the above model as illustrated in Table 1.
For example, venue:sigmod and year:1997 represent distinct
sub-collections that satisfy the indicated metadata features,
and these could be aggregated using an intersection (AND)
to form a single collection of sigmod papers from 1997.

Our Contributions: We address the problem of dis-
covering interesting phrases from document sub-collections
that are formed by an aggregation of sub-collections each
defined by the inclusion of a specific keyword or metadata
facet. Though previous techniques have used arbitrary sub-
collections constructed using such a framework in their em-
pirical evaluation, their techniques per se do not exploit the
property. Thus, such techniques either start their search
from a global set of pre-compiled interesting phrases to nar-
row down to the phrases that are interesting for the sub-
collection, or start from the chosen set of documents D′ and
mine for phrases therein. The former approach obviously
leads to a worst-case linear complexity of O(|P|) where P
refers to the global set of interesting phrases (which is typ-
ically many times the number of documents in the corpus),
whereas the latter leads to a worst case complexity that is
linear in the size of the chosen document sub-collection (i.e.,
|D′|). Clearly, either of these are very expensive and are
impractical if we need to achieve real-time responses. We
propose indexing globally interesting phrases on the key-
words (or facets), so that upon a query where the doc-
ument collection D′ is defined by ′a′ OR ′b′, the phrase
lists corresponding to a and b could be accessed and inter-
esting phrases could be mined therein. This paradigm of
starting the search process from the features that defines
the sub-collection leads to drastic improvements in response
times since the number of features that define a specific
sub-collection D′ may be very few; for example, web search
queries typically comprise of 2-3 keywords[16]. Our contri-
butions are the following:

• We outline the assumption of conditional independence
of the query keywords given phrases that are deemed
to be interesting for a sub-collection (defined on the
query keywords), and motivate why it is expected to
hold in most cases.

• Towards harnessing the independence assumption in
phrase scoring, we propose keyword-specific phrase list
indexes to hold pre-computed conditional probabilities
between words and phrases. We develop a technique
that leverages the conditional independence assump-
tion to mine interesting phrases from sub-collections
using such keyword-specific phrase indexes.

• Through an extensive empirical evaluation on real-

Table 2: Notations
Notation Meaning
D Corpus of Documents
D′ Selected subset of Documents
Q Query used for selecting

D′ from D
W Set of features from D

Set of phrases from D
P to be considered for

Interesting Phrase Mining
d Any document from D
p Any phrase from P
w Any feature from W

world datasets, we analyze the accuracy and establish
the superiority of our technique over state of the art
techniques for interesting phrase mining.

Notations: To help the narrative, we now introduce some
notations in Table 2 that will be used in the rest of the paper.
While D and D′ have already been introduced to stand for
the document corpus and the selected sub-collection respec-
tively, W and P will be henceforth used to refer to the set
of features (words and metadata facets) and phrases among
documents in D respectively. Of these, P, as is the case in
many previous works such as [2], is not meant to include
all phrases, but, only those word n-grams of up to 6 words
which occur in more than a pre-specified number (usually, 5
or 10) of documents in D. Since our method makes use of
the features that are used to define the construction of D′
from D, we introduce the notation Q to refer to the set of
features (e.g., keywords etc.) that implicitly specify D′.

2. PREVIOUS ALGORITHMS
Previous approaches addressing the same problem have

used list-based indexes that are common in techniques for
Information Retrieval. Table 3 provides a summary of the
three existing techniques particularly targeted at the prob-
lem of mining interesting phrases from sub-collections. All
of these use list-based indexes, but differ in the construc-
tion of the indexes. In [15], the index comprises of P lists,
with the ith list comprising of information on the documents
that contain the ith phrase; these lists are ordered in the de-
creasing order of cardinalities, with the first list comprising
of information for the most abundant phrase. Upon selec-
tion of D′, the interestingness of a phrase p may be eval-
uated by intersecting the list corresponding to p with D′.
However, the technique works in two-phases, and the first
phase simply chooses to ignore lists that have lengths lesser
than the intersection cardinality of an already seen phrase.
The second phase scores the phrases using a normalization-
based interestingness score. It may be noted that, due to
the normalization in the score computation, some phrases
that have been discarded due to not having a long enough
list may have a higher interestingness than those chosen for
consideration from the first phase; this disconnect between
the first-phase filtering and second-phase scoring leads to an
approximation in the results. The techniques in [2] and [8]
both employ document specific forward lists in their indexes.
Thus, there is a list for every document in D that comprises

194

Table 3: Techniques for Interesting Phrase Mining

Technique #Lists in Index Length of Lists #Lists Accessed Approximate
Scoring?

Simitsis et. al.[15] P, one list per p #Docs containing p upto P Yes
Bedathur et. al.[2] D, one list per d (Phrases in d) ∩ P D′ No
Gao & Michel[8] D, one list per d (Phrases in d) ∩ P D′ No
Our Technique W, one list per word Upto (Phrases in D(w)) ∩ |P| |Q|, #words in Q Yes

of the list of phrases from P that appear in the document.
Upon identification of a sub-collection D′, the lists for each
document in D′ is inspected, and merge-joined1 so that the
phrase frequency information may be obtained and scored
to identify interesting phrases. The work that proposed the
forward index framework [2] lists several optimizations that
could be done to speed-up the mining process; for example,
the fact that the presence of a phrase in a document implies
the presence of its prefix can be leveraged to reduce the set
of phrases that get explicitly stored in the forward index. [8]
proposes clever organization of the forward lists as well as
pruning strategies to improve upon the previous work. As
an example, the common subsequence in the phrases ABC
and CDE (considering alphabets as tokens/words) that ap-
pear in the same forward list could be indexed such that the
common subsequence need not be stored twice. For both [2]
and [8], the method needs to access each of the D′ lists.

3. PROBLEM DEFINITION
We now describe the problem formally. Given a static

corpus of D documents, our problem is to identify the top-
k interesting phrases from dynamically selected document
collections. Each such dynamically specified document col-
lection, denoted by D′, is specified by the user using a query
Q = [{q1, . . . , qk}, O] where qis represent features such as
keywords or metadata facets and O denotes an operator used
to aggregate feature-specific document collections. The con-
struction of D′ is formally specified as:

D′ for [D, Q] =

{⋃
i docs(D, qi) if O = OR⋂
i docs(D, qi) if O = AND

(2)

docs(D, qi) above denotes the subset of documents in D
that have the feature qi. Given a specification of D′, the
desired result is the set of the k most interesting phrases as
determined by Equation 1. Formally,

R(D,D′, k) = argmax
P⊆P ∧ |P |=k

∑
p∈P

ID(p,D′) (3)

Informally, the result set R(D,D′, k) comprises of the k
phrases from P that have the highest scores according to
the interestingness measure, ID(.,D′). Though we would
ideally like to compute the exact set of k phrases that have
the highest scores, the approach that we present in the next
section discovers a close approximation of R(D,D′, k) by
harnessing certain assumptions that help achieve massive
gains in response times.

1http://en.wikipedia.org/wiki/Sort-merge join

4. OUR APPROACH
In this section, we present our approach for mining in-

teresting phrases from document sub-collections. Firstly,
we present our phrase scoring formulation and the condi-
tional independence assumption that we make use of, in our
method. Secondly, we describe the construction of the list
based indexes that our approaches work on. Thirdly, we out-
line the algorithms that use the independence assumption
and the indexes to identify the top-k interesting phrases;
these are modeled on the threshold algorithm family ini-
tially proposed for middleware[7]. Lastly, we analyze the
computational complexity of our approach in a lead up to
the section on empirical evaluation.

4.1 Phrase Scoring under Conditional Query
Word Independence

At the core of any top-k algorithm is the scoring mecha-
nism for candidates. Here we outline the scoring mechanism
that we use, in our approach for interesting phrase mining.
We design a scoring function where the score of a phrase p
is computed as the probability of occurence of the phrase in
the chosen sub-collection D′ normalized by its probability
of occurence in the entire corpus (i.e., D). This is almost
identical in construction to the standard formulation of the
interestingness measure in Equation 1. Notationally,

SD(p,Q) =
PD′(p)

PD(p)
=

PD′(p)

P (p)
(4)

where D′ is implicitly defined by the combination [D, Q].
As indicated in the rightmost form, we simply drop the suf-
fix when the probability is used to denote the corpus-wide
probability. For notational convenience, we re-write the nu-
merator as being the conditional probability of p given the
query:

PD′(p) ≡ P (p|Q) ≡ P (p|[{q1, . . . , qr}, O])

Re-writing this using Bayes’ theorem:

P (p|[{q1, . . . , qr}, O]) =
P ([{q1, . . . , qr}, O]|p)× P (p)

P ([{q1, . . . , qr}, O])

Since we deal with one query at a time, and intend to score
all phrases based on the chosen query, the denominator that
denotes the probability of the query can be dropped since
that simply scales down the probability of each phrase by
the same amount. Thus,

P (p|[{q1, . . . , qr}, O]) ≈ P ([{q1, . . . , qr}, O]|p)× P (p)

Before further simplification, it is useful to note that the
scoring function has a much simpler formulation due to the

195

corpus-wide phrase probability getting cancelled out from
the numerator and the denominator.

SD(p,Q) =
P ([{q1, . . . , qr}, O]|p)×���P (p)

���P (p)

= P ([{q1, . . . , qk}, O]|p)

(5)

We now break down the composite probability term that
comprises of many query keywords, to simpler terms each
of which pertain to the scoring wrt one of the keywords.
Evidently, this breakdown depends on the operator O.

P ([{q1, . . . , qr}, O]|p) =

{
P ((∩iqi)|p) if O = AND

P ((∪iqi)|p) if O = OR
(6)

In the above, we overload notations and use qi to refer to
docs(D, qi) (Ref. Eq. 2); since we do not explicitly model
docs(., .) in our formulation, there is no notational conflict in
the ensuing discussion. We now introduce an independence
assumption that guides further simplification of the form in
Equation 6.

4.1.1 The Query Word Independence Assumption
Take the example of a query for the Reuters-21578 dataset2,

trade reserves for which economic minister is the top inter-
esting phrase according to the interestingness measure in
Equation 1. Since the phrase has high interestingness for
the query, it is obviously expected to be well-correlated with
the query words. For such phrases, we assume that given the
occurence information of the phrase economic minister, the
occurence of the keywords trade and reserves are condition-
ally independent of each other. Let us consider an AND
query composed of query terms q1 and q2 and any phrase p:

P (q1, q2|p) =
P (q1, q2, p)

P (p)
=

P (q1|q2, p)× P (q2|p)×���P (p)

���P (p)

The second simplification is done by using the Chain Rule3.
Now, for a phrase that has a high interestingness for the
query, its occurence already provides significant evidence on
the occurence of each query word. Thus, we postulate that
the occurence information of q2 is of very low incremen-
tal utility in determining P (q1|q2, p) when p is among the
top interesting phrases for the query. Coming back to our
example, the argument translates to saying that given the
occurence information of economic minister in a document,
the occurence or non-occurence of the word reserves provides
very little additional information to estimate the occurence
of the word trade. More formally, our assumption is that:

∀p, ID(p,D′)→ 1.0, P (q1|q2, p) ≈ P (q1|p)

i.e.,

∀p, ID(p,D′)→ 1.0, P (q1, q2|p) ≈ P (q1|p)× P (q2|p)

More generally stated, for a query Q = [{q1, . . . , qr}, AND],

∀p, ID(p,D′)→ 1.0, P ((∩iqi)|p) ≈
∏
i

P (qi|p) (7)

2
http://www.daviddlewis.com/resources/testcollections/reuters21578/

3http://en.wikipedia.org/wiki/Chain rule (probability)

Usage of the Independence Assumption: Though
our assumption above is expected to correctly estimate the
interestingness for top phrases correlated with the query
words, the simplification of the formulation under the inde-
pendence assumption is very attractive, for computational
reasons. Moreover, we do not know the top phrases be-
forehand, to know whether the independence assumption
would hold for a particular candidate phrase. The only po-
tential hazard in usage of the independence assumption for
all phrases during the phrase discovery process is whether
not-so-good phrases could overtake the scores of the good
ones. In our two-word query example, this could happen if:

P (q1|pni)× P (q2|pni) >> P (q1, q2|pni)

for a non-interesting phrase pni (wrt the query qi and q2).
In particular, our formulation does not suffer if the indepen-
dence assumption underestimates the value of P (q1, q2|pni),
but, does suffer when the LHS4 in the equation above signif-
icantly overestimates the RHS. Using the chain rule simplifi-
cation above, our potentially hazardous condition translates
to:

P (q1|pni)× P (q2|pni) >> P (q1|q2, pni)× P (q2|pni)

i.e.,

P (q1|pni) >> P (q1|q2, pni)

Consider the case where pni is not very well correlated
with either q1 or q2. In the case where there is no correlation
between any pair in the triplet {q1, q2, pni}, the LHS would
evaluate to the RHS and thus the hazardous inequality above
wont fire. In the case where q1 is correlated with q2 and pni

is correlated with neither, the probability of occurence of
q1 actually increases with the occurence of q2, and thus the
LHS could evaluate to a score lesser than the RHS. Thus, we
postulate that we are probably safe under most reasonable
scenarios.

As discussed above, we use the independence assumption
across all phrases in P in our phrase scoring method. Since
the simplifications beyond Eq. 6 are operator specific, we
describe the AND and OR operator cases in separate sub-
sections below.

4.1.2 The AND Operator
Resuming from Equation 6 and applying the independence

assumption from Equation 7,

SAND
D (p,Q) =

∏
i

P (qi|p)

where SAND
D (., .) is used to represent the scoring function

for AND queries. Re-writing it in log terms converts this
into a sum form as follows:

SAND
D (p,Q) =

∑
i

log(P (qi|p)) (8)

4.1.3 The OR Operator

4left-hand side part of the equation

196

Consider a three word OR query composed of words {q1, q2, q3}.
Now, to compute the score for the union, we could sim-
ply take the sum of the terms corresponding to the indi-
vidual qis, and then subtract the intersections for every 2-
word combinations such as [q1, q2] and [q1, q3] since they get
counted twice in the sum of terms. Evidently, the subtrac-
tion discounts the score corresponding to the triplet [q1, q2, q3]
as many times as it was added, and thus needs to be added
back. Thus, the three word query evaluates to the following
when computed according to Equation 6.

SOR
D (p, [{q1, q2, q3}, OR]) = (P (q1|p) + P (q2|p) + P (q3|p))−

(P (q1, q2|p) + P (q1, q3|p) + P (q2, q3|p)) + P (q1, q2, q3|p)

(9)

Generalizing this to any query Q = [{q1, . . . , qk}, OR],

SOR
D (p,Q) = (−1)0

∑
i

P (qi|p) + (−1)1
∑

i,j,i 6=j

P (qi, qj |p)+

. . . + (−1)k−1P (q1, . . . , qk|p)

(10)

Applying the independence assumption to the above, the
terms involving the joint probabilities can be simplified:

SOR
D (p,Q) = (−1)0

∑
i

P (qi|p)+

(−1)1
∑

(i,j),i 6=j

∏
x∈{i,j}

P (qx|p) + . . . + (−1)k−1
k∏

i=1

P (qi|p)

(11)

The term with the co-efficient (−1)x represents the sum
of kCx+1 terms, each of which are the product of (x + 1)
probability terms. Thus, the absolute value and hence the
influence of the term in the score SOR

D (., .) is likely to reduce
with increasing x. We could thus approximate SOR

D (., .) by
discarding the terms beyond a threshold value of x. For
example, if we cut-off at x ≥ 1, thus retaining only the first
term, the formulation becomes:

SOR
D (p,Q) =

∑
i

P (qi|p) (12)

We will use the above formulation for OR queries in the
rest of the paper.

4.2 Disk-resident List Indexes
Much like previous methods for interesting phrase mining,

we employ list-based indexes in our approach. For most
cases where large datasets are to be dealt with, the indexes
become very large and need to be disk-resident. We use two
kinds of disk-resident indexes, (1) for storing phrases, and
(2) for storing word-specific lists of scored phrases.

4.2.1 Phrase List
The phrase list stores the lexical representation of each

phrase from P that satisfies the minimum frequency thresh-
old (Ref. Section 2). Each entry in this list is of length s
bytes, with shorter phrases being padded with zeros upto
s bytes. This imposes a restriction that we cannot handle
phrases containing more than s characters; thus, s may be

set to be sufficiently high to accomodate even long phrases.
We use an s value of 50, and this was seen to cover all the
phrases that we encountered in the text corpora that we ex-
perimented with. We use the position of the phrase in the
list to denote the ID of the phrase. Thus, to find the phrase
with ID = i, we would check for the stretch of bytes spanning
from Offset [(i− 1)× s+ 1] through [i× s]; an illustration of
the phrase list and the offset calculation appears in Figure 1.
Having defined this ID → phrase mapping using the Phrase
List index, we can now use these indexes to represent phrase
scores in the word-specific lists that we describe next.

Figure 1: Phrase List Example & Offset Calculation

4.2.2 Word-specific Lists
In our phrase scoring methods as outlined in Equations 8

and 12, we make use of P (qi|p) scores. Phrases with high
values of these scores (for any word qi in the query) are con-
sidered more valuable than the others. Thus, we use a sorted
list representation for storing phrase scores for each word.
As mentioned earlier, we use word to generically refer to any
word or metadata facet that could appear in the query. For
every word q, we maintain a list of [phraseid, prob] pairs
sorted in the non-increasing order of scores. An example
word-specific list is illustrated in Figure 2. The prob field is
used to represent P (q|p) (Ref. Section 4.1) where p is the
phrase that corresponds to the phraseid in the tuple. At the
risk of re-stating the obvious, the following calculation us
used to compute the P (q|p) score:

P (q|p) =
|docs(D, q)

⋂
docs(D, p)|

|docs(D, p)| (13)

When multiple phrases are tied on the same score, they are
ordered in the increasing order of phrase IDs (like Phrases
1134 and 1987 in the example figure). Each pair in the
phrase list occupies exactly dlog(|P|)e + 64 bits. This is
so since the PhraseID can be represented in dlog(|P|)e bits
since there are at most |P| that could appear in the lists, and
a double precision floating point value takes up 64 bits5.
We omit phrases that score 0.0 since they do not add to

5http://en.wikipedia.org/wiki/Double precision floating-
point format

197

the score under our phrase scoring formulation, and could
additionally omit very low-scored phrases if storage space
is at a premium. We will discuss such optimizations in the
experimental section.

Figure 2: An Example Word-specific List

The number of qs for which such lists need to be stored
is of interest to determine the size of the index. If we would
like to allow for querying only based on metadata facets, the
number of lists are likely to be small enough since categorical
metadata facets rarely go beyond a few hundreds in num-
ber; numerical metadata (e.g., price of a product) may be
bucketed appropriately. However, if we would like to allow
for a very expressive query system, it would be necessary to
maintain lists for any word that occurs in the corpus, i.e.,
we would need to accomodate |W | lists. We will analyze
practical index sizes in terms of absolute numbers in the
experimental evaluation.

4.3 Scoring using Disk-resident Indexes
The algorithm for scoring phrases using disk-resident in-

dexes makes use of the No Random Access algorithm[6] for
combining information from multiple subsystems. Let the
lists corresponding to the query word qi be Li; we access
entries from these lists in round-robin fashion in the course
of the algorithm. Thus, the first entries of each of the r lists
(where there are r words in the query) are read, followed by
the second entries and so on. Having read a few entries each
from each of the lists, there would be phrases that are par-
tially seen (seen in some, but not in all of the r lists), fully
seen (seen in all of the r lists already), and unseen (not yet
seen in any of the lists). Given that the lists are sorted in
the non-increasing order of phrase scores as outlined in Sec-
tion 4.2.2, we can define upper bounds of the scores based
on the values encountered so far.

Figure 3: Bounded Candidate Scores Example

Our sum based score formulation in Eq. 8 and 12 makes
it easy to arrive at score bounds for unseen and partially
seen candidates. We illustrate candidate score bounds by
means of an example in Figure 3. Consider an OR query
with two words, where the two lists in the figure have been
read till the red line; till this, P1 has been seen on both the
lists, whereas P5 and P103 have been seen only on one list
each. Given that we have seen scores till 0.0333 on L1, any
hitherto unseen entry in L1 would have a maximum score of
0.0333. We call such bounds based on the last seen values
as global bounds. Thus, the maximum possible score for
P103 based on the currently available information is (0.26+
0.0333) = 0.2933. Consequently, the range of possible scores

Alg. 1 Scoring using Disk-resident Indexes (NRA)

Input. D, Q = [{q1, . . . , qr}, O], k
Output. Top-k Interesting Phrases ≈ R(D,D′, k)

1. ∀ri=1, fetch Li = list corresponding to qi
2. C = {}
3. checknew = true
4. while(not all lists have been fully read)
5. for each list, Li

6. read next [phrase, prob] from Li

7. score = (O = OR)?prob : log(prob)
8. if(phrase ∈ C ∨ (isNew(phrase) ∧ checknew))
9. update bounds for phrase in C
10. update global bounds based on scores seen
11. check if new candidates need to be considered

and update checknew flag
12. prune candidates in C based on new local bounds
13. if(current top− k is final)break
14. return the top− k phrases from C

for P103 would be 0.26 ≤ Score(P103) ≤ 0.2933 (i.e., the
candidate specific bounds). Analogously, the upper bound
for P5 would be (0.113 + 0.0333) = 0.1433. The score of
any fully unseen candidate would hence be limited by an
upper bound of (0.113 + 0.0333) = 0.1433. Consider the
case where k = 2; the two top candidates as of now are
P1 with score 0.15467 and P103 = [0.26, 0.2933]. Since the
upper bound of P5, the only other candidate seen so far, has
an upper bound of 0.1433, it would not be able to overtake
either P1 or P103 (with lower bound of 0.26) whatever be
the content of the remaining lists. Similarly, any hitherto
unseen candidate would also be unable to beat either since
such candidates have a score upper bound of 0.1433. Given
these two conditions, we are now safe to stop reading the
lists and declare that the top two phrases are {P1, P103}.

Algorithm 1 illustrates the complete scoring methodology
using bounds based pruning as illustrated above; we will
refer to this approach as NRA (based on the No Random
Access framework on which it is modeled). The algorithm
maintains the candidate set C and proceeds by reading en-
tries from each list (Line 6), computing the operator-specific
score (Line 7) and using such scores to update the candidate-
specific bounds (Line 8-9) and global bounds (Line 10). If
the lower bound of the current top-k element in C is higher
than the highest possible score of any unseen candidate, the
checknew flag is turned off so that no previously unseen can-
didates would be considered thereafter. Once the iterations
are over, the phrases corresponding to top-k candidates from
C based on their upper bounds are lookedup from the Phrase
List (Section 4.2.1) and can be output as the result set.

Partial Lists for early Termination: Though Algorithm 1
is shown to run till the lists are exhausted, we could choose
to just scan a fraction of the lists for applications that re-
quire very low response times and can manage with coarse
approximations of results. In our experimental evaluation,
we will experiment with partial lists, where a parameter is
used to denote the percentage of lists that would be tra-
versed. If the parameter is set to 10%, our algorithm is
meant to terminate after reading 10% of each list, Li.

198

4.4 In-Memory Operation
In cases where we have enough memory to hold the in-

dexes, or are working with small datasets, or can tolerate
coarse approximations in results through usage of small par-
tial lists, the (partial) lists from Section 4.2 could be held in
memory, and the Algorithm in Section 4.3 could work on the
in-memory lists. However, smaller lists (or small fractions
of large lists) could be organized differently in memory to
enable fast scoring, and thus, low response times. We dis-
cuss such a design of lists, and a scoring algorithm for such
lists in this section.

Figure 4: Example Phrase ID Ordered List

4.4.1 Word-specific ID-ordered Phrase Lists
Instead of ordering word-specific lists (Ref. Section 4.2.2)

based on the scores, we propose ordering them based on the
phrase IDs for this adaptation. Thus, instead of ordering
the [phraseid, prob] pairs on the score, these are ordered in
the increasing order of phrase IDs. As earlier, those with
phrases p with P (q|p) = 0 are omitted from the index. Ad-
ditionally, similar to the discussion in Section 4.3, we can
employ partial lists as needed according to the response time
requirements; these are constructed by truncating the score-
ordered lists to extract the prefix (e.g., a specific percentage
of the lists), which are then re-ordered based on the phrase
IDs. An example Phrase-ID ordered list appears in Figure 4;
since the list is ordered on IDs, the value of prob may vary
haphazardly while progressing down the list. In addition
to such lists, we also use in-memory phrase lists exactly as
outlined in Section 4.2.1 for in-memory operations.

4.4.2 Scoring using ID-ordered Phrase Lists
Scoring phrases in response to a query using the Phrase

ID-ordered list is fairly straightforward and can be accom-
plished using the Sort-merge Join algorithm6 since the lists
are ordered by the join attribute, the phrase ID; we will call
this approach SMJ and is illustrated in Algorithm 2. The
candidate set is initialized in Line 1. In each iteration, the
list having the least unread phrase ID is read (Line 4-5)
and the candidate set is updated with the newly seen score
(Lines 6-7). When the lists are exhausted, the phrases in C
are ordered based on the scores, and the top-k phrases are
returned as the results (Line 8).

Working with Partial Lists: Each phrase list may be con-
structed by taking a fraction of the corresponding word-
specific lists (Ref. Section 4.2.2) and re-ordering them based
on Phrase IDs. Construction of such partial lists is a construction-
time decision, and once the ID-ordered lists have been con-
structed using a pre-specified fraction (say, 20%) of the word-
specific lists, we cannot, at run-time, decide to work with a
larger or a smaller fraction. This is so since the lists are ID-
ordered, and many highly scored phrases could be towards
the end of the list since the lists are not ordered by scores;
this may be contrasted with NRA that can choose to stop
at different fractions during different runs, since the lists it
works with are ordered based on scores.

6http://en.wikipedia.org/wiki/Sort-merge join

Alg. 2 Scoring using PhraseID-ordered Lists (SMJ)

Input. D, Q = [{q1, . . . , qr}, O], k
Output. Top-k Interesting Phrases ≈ R(D,D′, k)

1. C = {}
2. ∀ri=1, fetch Li = the ID-ordered list for qi
3. while(not all lists are exhausted)
4. index = list containing lowest

phraseid among unread entries
5. read next entry [phrase, prob] from Lindex

6. score = (O = OR)?prob : log(prob)
7. add and/or update score of phrase in C
8. order C based on scores and return top− k

phrases as the result set

4.5 Analysis
We now analyze the running times of the presented ap-

proaches against the input parameters. We denote the length
of the word-specific lists (score or ID-ordered) by l. For the
NRA approach in Section 4.3, the outer loop runs through
the each entry in each of the r lists. In the highly unlikely
case where phrases do not repeat across lists, these could
encompass lr phrases. The candidate set could thus grow
up to a cardinality of lr; as an optimization, we perform the
pruning operations (Line 12) only once in a batch of b itera-
tions (at the cost of delayed pruning within C). While small
batch sizes in the order of thousands could drastically im-
prove run-times, extremely large values can be detrimental
because prunable candidates are unnecessarily held too long
in C. Since the pruning operations are linear in |C|(= O(lr)),
the entire complexity evaluates to O(lr × lr

b
) ≡ O(l2r2/b).

Of these, the number of words in the query, r, is typically
2-5; the list lengths can be pruned to reduce l at the ex-
pense of approximating the results, and the batch size may
be tuned based on response time requirements. The com-
plexity of the SMJ approach fom Section 4.4.2 may also be
derived from a similar construction since the only differ-
ence is the absence of the pruning/book-keeping operations.
Thus, the complexity evaluates to O(lr + k log(lr)), where
the k log(lr) term stands for the final partial sort to derive
the top-k results from the candidate set.

Though the NRA approach is seen to be worse in time
complexity, the pruning phase is expected to allow for early
stopping, thus making it necessary only to see a small frac-
tion of the l entries in each list. SMJ, on the other hand,
cannot stop without scanning each of the l items; this dif-
ference makes NRA suitable for long lists, wheras SMJ is
expected to be very effective for short lists (i.e., low values
of l).

4.5.1 Incremental Operation
Since we maintain conditional probabilities, it is not easy

to maintain the indexes current in the presence of a lot of
document insertions and deletions into the corpus. How-
ever, to avoid re-computing the indexes at every document
update, a separate inverted index can be maintained on the
updated (added or deleted) documents indexed on the fea-
tures and phrases. When a particular phrase is taken for
consideration into the candidate set within SMJ or NRA,
an additional query may be performed on the separate in-
dex to get the delta of the conditional probabilities for the

199

word-phrase pair so that the correct conditional probability
can be used within SMJ or NRA. While this would work cor-
rectly for SMJ, such probability adjustments make NRA’s
pruning phase approximate thus resulting in further approx-
imations of the result. In any case, periodically, the separate
index may be flushed when it grows big enough, and the list-
indexes can be re-computed offline.

5. EXPERIMENTAL EVALUATION

5.1 Datasets and Experimental Setup
We use two datasets in our experimental evaluation; the

Reuters dataset that comprises of 21578 documents and a
much larger Pubmed datasets that has 655k documents. The
Reuters dataset is a collection of newswire articles and is
popular in the data mining community. We use 100 queries
as the query set for Reuters and these are harvested from
among frequent phrases in the corpus. Among the query set
are two queries of six words each, and a further two queries
made up of five words each; the rest are formed of two to
four words. The Pubmed abstracts dataset is a collection of
abstracts from among biomedical literature, and is of a total
size of close to 2GB. Due to the wide diversity of phrases
in the dataset and given the absence of a standard query
set, we randomly picked 10 frequent phrases occuring in
the PubMed abstracts and fetched 10 extended phrases us-
ing Google AutoComplete API7. Since the Google API is
not domain specific, it also threw up a lot of non-biomedical
phrases which were seen to match with very few documents
in the Pubmed dataset; thus, we chose Google API sugges-
tions that were relevant to the biomedical domain and had at
least a dozen matches in the Pubmed dataset and finalized
on a query set comprising of 52 queries.

All methods described in this paper were implemented in
Java (Using Oracle Sun JDK 1.7). The experiments were
run on a Linux 64 bit machine having 16GB of main meme-
ory, quad core Intel Xeon(R) processor with 2.13GHz. We
consistently set the number of interesting phrases parame-
ter, k, to 5, for our experiments.

5.2 Baseline and Comparative Evaluation
In our evaluations in this section, we compare our ap-

proach against the Improved Sequential Pattern Indexing
approach, the latest algorithm among those reviewed in Sec-
tion 2. We refer to this approach as GM based on the initials
of the authors. The criteria for comparison are two-fold; we
first evaluate the quality of the results from our (approxi-
mate) approaches using standard Information Retrieval eval-
uation measures such as Precision, NDCG, MAP and MRR
against the exact results returned by GM. We then compare
GM against our approaches on response times.

Precision, MRR, MAP and NDCG: Precision rep-
resents the fraction of correct results among the top-k (i.e.,
top-5, for our case) results whereas MRR stands for the re-
ciprocal rank of the first correct result (1.0 if the first cor-
rect result is at the top position, 0.5 if at the second and so
on). NDCG and average precision (MAP) are rank-sensitive
measures unlike precision which just counts the fraction of
correct results; for example, if the 2 correct results among 5
results retrieved are the top-2, the NDCG and MAP would
assign a higher score than if they were in the 4th and 5th

7http://gofishdigital.com/autocomplete/

positions. All these measures are in the range [0, 1] with
the 1.0 standing for best conformance with the correct re-
sults. Over the many years, these have become standard
evaluation measures for retrieval evaluation8.

5.3 Result Quality Evaluation
Our techniques for interesting phrase mining, SMJ and

NRA, both strive to discover close approximations of the
exact set of top-k interesting phrases. This is so since both
of them use the independence assumption outlined in Sec-
tion 4.1.1, which may not hold in all cases. It is hence im-
portant to quantify the extent to which usage of the inde-
pendence assumption affects our results. Since SMJ and
NRA differ only in the organization of the lists and the
traversal strategy, these give exactly the same results for
any query-dataset combination. As discussed in Section 4,
both of these approaches can be fed with partial lists that
are formed by choosing a specific fraction of the top-scored
entries in the word-specific phrase lists.

For every query, we collect the top-5 result phrases from
our list-based approach (either SMJ or NRA), and mark
each of them as correct if they either have an actual in-
terestingness of 1.0 (being the absolute maximum interest-
ingness possible) or are among the top-5 most interesting
phrases for that query; interestingness is estimated using
Equation 1. All other results are marked incorrect. Infor-
mation Retrieval measures such as Precision, MRR, NDCG
and MAP quantify the correctness of the results.

We plot the quality measures averaged across queries for
the AND and OR queries against 20% and 50% of the par-
tial lists for Reuters and Pubmed in Figures 5 and 6 respec-
tively. The value in the X-axis represents the configuration
as a [percentage of list, operator] pair; thus, 20-AND stands
for the evaluation of the run on 20% of the partial lists for
the AND operator. It may be seen that we consistently
get very good results even while only processing 20% of the
lists for both the datasets. For the AND query, results on
Reuters are seen to improve from 0.90 to 0.95 for most IR
evaluation measures, while the precision lags a little behind;
the accuracy on the OR query is much better with our eval-
uation measures reaching very close to unity even at 20%.
Our techniques achieve a better result on the larger Pubmed
dataset, with accuracy inching towards the absolute maxi-
mum of unity even for lists of 20% size. The performance on
the OR queries are generally seen to be better than those for
the AND queries, thus suggesting that our scoring mecha-
nism is very close to reality when working with larger sub-
collections. The significantly improved performance on the
larger Pubmed dataset confirms this; these observations are
intuitive since statistical estimates improve with larger sam-
ple sizes. The above figures confirm that the independence
assumption has served us well, with the losses in accuracy
being very negligible and less than 5-10% for most cases.

5.4 Runtimes for In-Memory Operation: SMJ
vs. GM

We now evaluate the performance of the SMJ approach
from Section 4.4.2 against the GM baseline. In SMJ, we
could use partial lists where the top-p% scores from each
word’s list are truncated and re-ordered according to Phase
IDs. Since our approach traverses word-specific lists unlike

8
http://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-ranked-

retrieval-results-1.html

200

Figure 5: Result Quality Evalua-
tion (Reuters)

Figure 6: Result Quality Evalua-
tion (Pubmed)

Figure 7: Running Times (in ms):
SMJ vs. GM (Reuters)

Figure 8: Running Times (in ms):
SMJ vs. GM (Pubmed)

Figure 9: Break-up of Times for
Reuters AND queries (ms)

Figure 10: Break-up of Times for
Pubmed AND queries (ms)

GM that needs to access as many document indexes that
satisfy the query, our approach is expected to perform much
faster than the latter. We plot the various running times
for different percentages of partial lists for SMJ along with
the response times for GM; the Reuters and Pubmed charts
with the running times in log-scale are in Figures 7 and 8
respectively.

For Reuters, SMJ is able to discover results within frac-
tions of a millisecond as long as only one-fifth or less lists
are traversed (i.e., upto 20%), and takes only as much as
3.5ms even when the entire lists are traversed. The AND
and OR queries take similar times since they vary only in
the score aggregation mechanism. This is in sharp contrast
with the GM approach whose response times are of the or-
der of many tens of milliseconds for the AND queries and a
few seconds for the OR query. The difference between the
running times of AND and OR queries is intuitive since the
OR query leads to more documents to be considered since
all documents that contain at least one word in the query
are under consideration, whereas the AND query only needs
to check documents that contain all the words in the query.
The relative trends for the much larger Pubmed dataset are
similar to the ones observed for Reuters with SMJ outper-
forming GM by 2 and 4 orders of magnitude for AND and
OR queries respectively. While the response times for SMJ
remain under a quarter of a second for all configurations,
GM takes as much as tens of seconds to respond to AND
queries and close to half-an-hour to respond to OR queries
making GM inappropriate for any query system with a real-
time usage scenario.

5.5 Disk-based Operation: NRA
We now evaluate the response time of the NRA algorithm

(Ref. Section 4.3) that does scoring using disk-resident lists.
Since there is no disk-based version of GM, we first analyze
NRA in isolation on various metrics such as response time
and disk IO costs. In order to separate out and analyze
the computational and disk costs, we use a simulation of
disk-based runs. Our disk-based simulation uses the same

Table 4: Sample Results

Pubmed AND Query: protein expression bacteria
binding protein hfq

rna binding protein hfq
proteins expressed in bacteria

protein a ccpa
expression in bacteria

Reuters OR Query: trade reserves
economic minister

reserves
taiwan’s foreign exchange reserves

economic planning
economic planning and development

setup described in [4] where the disk IO costs are calculated
based on the log of disk accesses; we use a page size of 32
kilobytes and use a 16 page LRU9 cache which does a 1-
page lookahead on a page access; each sequential access and
random access is accounted for by adding 1ms and 10ms re-
spectively, to the disk IO time. These disk IO costs are in
line with reported numbers for Windows10 and Linux11 op-
erating systems. The disk IO cost computed using the logs is
then simply added to the response time of an in-memory im-
plementation of the NRA algorithm on a machine with large
amounts of memory (enough to hold the disk indexes) to get
the response time of a disk-based implementation [14]. Such
a simulation enables us to profile the disk access costs and
the computation time separately and is hence more useful
than the total response time from a real disk-based imple-
mentation, from an analysis perspective.

Figures 9 and 10 show the average NRA costs for the
AND queries for the Reuters and Pubmed datasets respec-
tively. The figures, in addition to indicating the total re-

9
http://en.wikipedia.org/wiki/Least recently used#Least Recently Used

10http://research.microsoft.com/pubs/69781/tr-2000-55.pdf
11http://www.linuxinsight.com/how fast is your disk.html

201

Figure 11: Percentage of Lists Tra-
versed by NRA

Figure 12: Running Times (in ms):
NRA vs. GM (Reuters)

Figure 13: Running Times (in ms):
NRA vs. GM (Pubmed)

sponse times, also show the breakup of costs as computa-
tional and disk access costs. As could be easily observed
from the figures, disk access is responsible for upto 84−89%
of the response time across the datasets. The trends for tne
OR queries were similar and the charts have been omitted
for brevity. The absolute response times are in order of 20-
40ms for Reuters and 0.1-0.5 seconds on Pubmed, inclusive
of the disk costs. One aspect of interest is the tapering off
of the disk and computation costs at increasing percentages.
For example, while the Pubmed disk access costs increase
from 114ms to 171ms (i.e., a delta of 57ms) while mov-
ing from the 10% configuration to the 20% configuration,
the corresponding increase from 80% → 90% is just 22ms;
the corresponding values of computational cost deltas are
8ms and 2ms. This is illustrative of the pruning effective-
ness since the NRA approach, by virtue of pruning, needs
to go until the 80−90% depths of the lists only for very few
queries. The experimental results indicate that the NRA
algorithm that works on disk-resident lists, is able to deliver
very good response times and is able to revert back with
results within half-a-millisecond for Pubmed queries.

Stopping Condition Effectiveness: Instead of the in-
direct way of judging pruning effectiveness as discussed above,
we now resort to a more direct way of quantifying the depth
to which NRA progresses through the lists. Figure 11 plots
the average fractions of lists traversed for queries on the var-
ious datasets before the pruning condition enables it to stop.
The pruning condition is seen to cause NRA to stop after
reading a little over a quarter of the Pubmed lists, on an
average. On Reuters lists, NRA is seen to go a little further,
to just over 30% of the lists. The pruning condition effec-
tiveness is not seen to vary much between AND and OR,
with the dataset specific fractions being similar across the
two different types of queries.

Deciding between NRA and SMJ for in-memory
Operations: Since the pruning condition in NRA is seen
to be effective and can enable early stopping unlike the SMJ
which needs to go through entire lists before announcing
the results, it is useful to analyze which is the preferred
method for in-memory operations. Since the per-iteration
computation is simpler in SMJ, it is expected to be effec-
tive when dealing with small fractional lists. Infact, SMJ
beats NRA in in-memory operation response time until a
partial list percentage of 35% for Pubmed, beyond which
the pruning effectiveness of NRA makes it faster than SMJ.
The corresponding value for Reuters is 90% since the word-
specific lists are much smaller, Reuters being a small dataset.
Thus, as long as coarse approximations are good enough and
memory is not at a premium, small partial lists may be con-
structed and re-ordered according to IDs for SMJ to work
on. For longer lists and large datasets, it would be much

better off to employ NRA.
Comparison against in-memory GM: We now com-

pare the response time of the disk-based NRA against the
in-memory GM approach. Though this comparison is un-
fairly biased in favor of GM (since it does not need to do
disk accesses while NRA would have to fetch each entry
from disk incurring extra time), it serves to illustrate that
the quantum of improvements that we achieve by using the
list-based approach are massive. Figures 12 and 13 illustrate
the comparison on the Reuters and Pubmed datasets respec-
tively. For the Reuters dataset, NRA achieves upto 50%
gains in response time over GM on AND queries, whereas
it is seen to be 50 times faster on OR queries. The dif-
ferences in running times are much more pronounced in the
Pubmed dataset with NRA response times being 1/35th and
1/3500th of the GM response times on the AND and OR
queries respectively.

5.6 Example Phrases
Having evaluated the techniques empirically, we now il-

lustrate a few example phrases that were discovered by our
techniques. The capability of the interestingness measure
to unearth such correlated phrases makes it distinct from
other query-based phrase retrieval tasks from the Informa-
tion Retrieval community such as query expansion[18] and
query suggestions[3]. Table 4 lists the top-5 results retrieved
for two queries from our query collection; the first is an
AND query on the Pubmed dataset, protein expression bac-
teria. Despite this being an AND query, each of the top-5
phrases have just one word overlapping with the keywords
in the query. In the second case, that of an OR query on
the Reuters dataset, three out of the top-5 phrases do not
even have one word in common with the words in the query,
but, are evidently very related to the query words them-
selves. Phrases with words from the query itself would have
limited utility due to the redundant information. In cases
where we would like to supress such redundant information
altogether, we could just use a post-retrieval filter to filter
out results with high overlap with the query. As seen from
the results, our technique, by usage of the interestingness
measure formulation, is able to discover phrases correlated
with the query with and without lexical overlap with the
query itself.

5.7 Miscallaneous Analyses
Index Size: The size of the index is of interest to judge

the storage requirements for any disk-based query system.
Since we use feature-specific list indexes, our index sizes are
expected to be higher than the document specific indexes
used by the baseline GM method. We analyzed the word-
specific index list sizes for the words that we used in our

202

Table 5: Index Sizes
Dataset List % Index Size NDCG

AND OR
Reuters 10% 56 megabytes 0.83 0.98

(30 megabytes) 20% 111 megabytes 0.89 0.98
50% 277 megabytes 0.93 0.98

Pubmed 10% 90 gigabytes 0.96 0.99
(2 gigabytes) 20% 179 gigabytes 0.99 0.99

50% 446 gigabytes 1.0 1.0

Table 6: Interestingness Accuracy: Mean Difference
Reuters Pubmed

AND OR AND OR
0.048 0.001 0.021 0.001

query. The average list sizes for Reuters was seen to be
37kb assuming 12 bytes per entry (4 for phrase ID and 8
for storing the probability value), and those for Pubmed
were seen to be 5.4 megabytes. The vocabulary (number of
distinct words) of these datasets were found to be approx-
imately 15k and 170k respectively. As we have seen from
the empirical observations, one-fifth of the index lists are
typically enough to achieve high accuracies. Assuming the
case where we would like to enable querying over all words,
we analyze the index sizes for these datasets on various list
sizes with respect to the accuracy achieved based on empir-
ical observations in Table 5. As may be seen, 250 mb and
90 GB of storage for the Reuters and Pubmed datasets re-
spectively enable achieving very high accuracies (> 0.9 on
NDCG) for the phrase retrieval problem.

Accuracy of estimated Interestingness: The rela-
tive ordering of the top-k phrases arrived at using the inde-
pendence assumption-based formulation is seen to be rather
consistent with the reality, as seen from the quality analy-
ses in Section 5.3. We now analyze the absolute divergence
of our interestingness estimates from the reality. The mean
difference between the estimated and real interestingness of
the result phrases for each dataset, query-type configuration
is listed in Table 6. Consistent with the relative trends in
result quality, the mean difference is seen to be very low
for OR queries and in the 0.02-0.05 range for AND queries.
Thus, it is not only the relative ordering that is getting pre-
served among top phrases, but, the actual interestingness
values are also estimated with very low error rates.

Extension to Metadata Facets: Though we have ex-
perimented solely with keyword queries due to the unavail-
ability of metadata facets in the datasets we used (similar
was the case in the baseline paper [8]), our technique may
be easily extended to metadata facets by creating list in-
dexes for keyword facets. The independence assumption is
intuitively expected to hold as long as the metadata facets
represent coherent sets of documents (e.g., topical metadata
facets such as those that indicate a geographical region of
origin of the article, or category of the article etc.) much
like keywords. However, metadata facets that do not have
this property (e.g., all articles from across geos and across
topics published in 2001) could pose some challenges and the
extent of validity of the independence assumption on those
need to be empirically verified.

5.8 Summary of Experiments
We summarize the results for in-memory operation in Ta-

ble 7. Since the baseline method is only for in-memory oper-

Table 7: Experiments Summary: Quality and Per-
formance in In-Memory Operation

Reuters Dataset
Method List NDCG Runtime (ms)

% AND OR AND OR
GM (Baseline) NA 1.0 1.0 67 2210

NRA 20% 0.89 0.98 1.7 1.4
50% 0.93 0.98 2.7 2.1

SMJ 20% 0.89 0.98 1.0 0.8
50% 0.93 0.98 2.0 1.7

Pubmed Dataset
Method List NDCG Runtime (ms)

% AND OR AND OR
GM (Baseline) NA 1.0 1.0 17817 1770119

NRA 20% 0.96 0.99 96 86
50% 0.99 1.0 99 88

SMJ 20% 0.96 0.99 44 39
50% 0.99 1.0 114 106

ation, we include only the in-memory runtimes in the Table.
As may be easily inferred from the table, our methods are
able to perform orders of magnitude faster than the baseline
algorithm while being able to deliver results at pretty high
accuracy.

In our empirical analyses, firstly, we illustrated that the
approximate top-k interesting phrases discovered by our meth-
ods that rely on the independence assumption mirrors the
actual top-k phrases according to the interestingness criteria
at accuracies of > 90 − 95% on all settings. Secondly, our
running time analysis comparing the in-memory SMJ ap-
proach against the baseline method (GM) shows that SMJ is
always much faster with response time improvements reach-
ing upto two orders of magnitude in many cases. Our disk-
based approach, NRA, was also seen to be always better
than the in-memory baseline approach in terms of response
times, despite the former incurring disk access costs as much
as 8− 9 times of its computational expenses. The stopping
condition in NRA was seen to be effective to the extent that
results could be arrived at even with just traversing 30% of
the lists. Lastly, we illustrated that the index sizes for our
approach are small enough and can be implemented at low
storage costs. As a summary, the massive improvements in
response times achieved by our methods makes it possible
to incorporate interesting phrase mining into real-time query
systems; the previous approaches were probably usable only
as pre-processing or back-end offline batch query processing
systems due to response times reaching several minutes even
on datasets with sub-million documents.

6. RELATED WORK
Discovery of meaningful phrases from a document corpus

has been a popular field of research in text mining. Phrase
retrieval is the core task in various problems such as doc-
ument summarization, query expansion, query autocomple-
tion, faceted search, generating phrase cloud etc. Docu-
ment summarization[11, 5] is the process of reducing a text
document to retain the most important points, for easy pe-
rusal or for scaling up indexing of large document corpora.
The basic idea is to identify the minimal set of meaningful
phrases required for describing a document. Once such in-
teresting phrases are identified, each document can be repre-
sented solely using the set of interesting phrases it contains.

203

Tag Clouds[9] enable visualization of frequent phrases from
a text corpus and is typically used to depict keyword meta-
data (tags) on websites, or to visualize free form text. Apart
from such non-query specific summarization tasks, phrases
are dealt with in various query-specific retrieval tasks cen-
tral to Information Retrieval too. Query expansion[18, 12]
is the task of suggesting meaningful re-formulations of an
input IR query, to aid the user to zero-in onto documents
of interest. Query expansion techniques often rely on in-
teresting phrase discovery as a pre-processing step, so that
phrases that scope down the user query meaningfully can
be fetched in real-time when a user interacts with the sys-
tem. Query suggestion mechanisms that try to aid the user
while typing in a query is a similar task, but, is different in
that it finds phrases that represent meaningful completions
of incompletely specified information needs [3, 13]. Though
broadly similar to such literature in being a phrase discovery
task, our problem is different from the above in that we are
looking to discover interesting phrases that are abundant
in a sub-collection which is specified at query time using
features such as keywords and metadata facets. Such inter-
active drill-down on large collections using features is com-
monly used in faceted search[17, 10] systems such as those
in online shopping portals; however, we focus on drill-down
on text corpora using keyword features.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we considered the problem of mining inter-

esting phrases from document sub-collections specified us-
ing features such as keywords. We proposed the usage of
a conditional independence assumption that assumes that
the keyword features are independent of each other, given
the phrases that are well-correlated with them. We postu-
lated that such a conditional independence assumption may
be used to score all phrases despite the assumption being
expected to hold only for the top correlated ones. The in-
dependence assumption greatly simplifies the phrase scor-
ing process, with scoring being reduced to sum and product
based aggregations of conditional probabilities that could be
pre-computed and stored. We outlined the construction of
disk-based and in-memory word-specific list indexes and al-
gorithms that can use them to discover top-k phrases given
AND and OR queries on specified keywords. We empiri-
cally evaluated the accuracy of the top-k interesting phrases
discovered by our methods against those discovered by an
exact state-of-the-art method, GM. Based on a comparison
on various Information Retrieval evaluation measures, our
methods were seen to discover very close approximations of
the actual top-k interesting phrases, consistently scoring in
the > 90% range on the various evaluation measures em-
ployed. Our simplified phrase scoring process was seen to
serve us well on the performance front too, with our meth-
ods being able to deliver orders of magnitude better response
times than GM. Infact, our disk-based method was seen to
outperform the in-memory baseline approach by up to two-
three orders of magnitude on response times. Our empirical
evaluation thus was seen to confirm that our list-based ap-
proaches would be the preferred approach for the problem of
mining interesting phrases from document sub-collections.
By lowering the response times to the millisecond ranges
from several seconds and minutes through our approaches,
real-time phrase mining is now a feasible task for search-like
interactive systems.

Though we proposed the independence assumption as a
means of solving the interesting phrase discovery problem,
it could have many wide-ranging applications in techniques
that deal with phrases as a first class entity (e.g., query ex-
pansion). Whether it can be used to simplify other kinds of
interestingness formulations (e.g., [15]) could be a potential
direction for future exploration.

8. REFERENCES
[1] N. Bansal and N. Koudas. Blogscope: a system for online

analysis of high volume text streams. In Proceedings of the
33rd international conference on Very large data bases,
VLDB ’07, pages 1410–1413. VLDB Endowment, 2007.

[2] S. Bedathur, K. Berberich, J. Dittrich, N. Mamoulis, and
G. Weikum. Interesting-phrase mining for ad-hoc text
analytics. Proc. VLDB Endow., 3(1-2):1348–1357, Sept. 2010.

[3] S. Bhatia, D. Majumdar, and P. Mitra. Query suggestions in
the absence of query logs. In SIGIR, pages 795–804, 2011.

[4] P. M. Deshpande, D. Padmanabhan, and K. Kummamuru.
Efficient online top-k retrieval with arbitrary similarity
measures. In EDBT, pages 356–367, 2008.

[5] G. Erkan and D. R. Radev. Lexrank: Graph-based lexical
centrality as salience in text summarization. J. Artif. Intell.
Res.(JAIR), 22(1):457–479, 2004.

[6] R. Fagin. Combining fuzzy information: an overview. SIGMOD
Record, 31(2):109–118, 2002.

[7] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. J. Comput. Syst. Sci.,
66(4):614–656, 2003.

[8] C. Gao and S. Michel. Top-k interesting phrase mining in
ad-hoc collections using sequence pattern indexing. In EDBT,
pages 264–275, 2012.

[9] M. J. Halvey and M. T. Keane. An assessment of tag
presentation techniques. In Proceedings of the 16th
international conference on World Wide Web, pages
1313–1314. ACM, 2007.

[10] C. Hostetter. Faceted searching with apache solr. ApacheCon
US 2006, 2006.

[11] R. Mihalcea and P. Tarau. Textrank: Bringing order into texts.
In Proceedings of EMNLP, volume 4. Barcelona, Spain, 2004.

[12] R. Navigli and P. Velardi. An analysis of ontology-based query
expansion strategies. In Proceedings of the 14th European
Conference on Machine Learning, Workshop on Adaptive
Text Extraction and Mining, Cavtat-Dubrovnik, Croatia,
pages 42–49, 2003.

[13] D. P, S. Chakraborti, and D. Khemani. Query suggestions for
textual problem solution repositories. In ECIR, pages 569–581,
2013.

[14] D. Padmanabhan and P. Deshpande. Efficient rknn retrieval
with arbitrary non-metric similarity measures. PVLDB,
3(1):1243–1254, 2010.

[15] A. Simitsis, A. Baid, Y. Sismanis, and B. Reinwald.
Multidimensional content exploration. PVLDB, 1(1):660–671,
2008.

[16] A. Spink, D. Wolfram, M. B. J. Jansen, and T. Saracevic.
Searching the Web: the public and their queries. J. Am. Soc.
Inf. Sci. Technol., 52(3):226–234, Feb. 2001.

[17] D. Tunkelang. Faceted search. Synthesis Lectures on
Information Concepts, Retrieval, and Services, 1(1):1–80,
2009.

[18] O. Vechtomova and Y. Wang. A study of the effect of term
proximity on query expansion. Journal of Information
Science, 32(4):324–333, 2006.

[19] Y. Yang, N. Bansal, W. Dakka, P. Ipeirotis, N. Koudas, and
D. Papadias. Query by document. In Proceedings of the Second
ACM International Conference on Web Search and Data
Mining, WSDM ’09, pages 34–43, New York, NY, USA, 2009.
ACM.

204

