
L-opacity: Linkage-Aware Graph Anonymization

Sadegh Nobari¶ Panagiotis Karras§ HweeHwa Pang¶ Stéphane Bressan†
¶SMU School of Information Systems

Singapore
§Rutgers Business School

USA
†NUS School of Computing

Singapore

ABSTRACT
The wealth of information contained in online social networks has
created a demand for the publication of such data as graphs. Yet,
publication, even after identities have been removed, poses a privacy
threat. Past research has suggested ways to publish graph data in a
way that prevents the re-identification of nodes. However, even when
identities are effectively hidden, an adversary may still be able to
infer linkage between individuals with sufficiently high confidence.
In this paper, we focus on the privacy threat arising from such link
disclosure. We suggest L-opacity, a sufficiently strong privacy
model that aims to control an adversary’s confidence on short multi-
edge linkages among nodes. We propose an algorithm with two
variant heuristics, featuring a sophisticated look-ahead mechanism,
which achieves the desired privacy guarantee after a few graph
modifications. We empirically evaluate the performance of our
algorithm, measuring the alteration inflicted on graphs and various
utility metrics quantifying spectral and structural graph properties,
while we also compare them to a recently proposed, albeit limited
in generality of scope, alternative. Thereby, we demonstrate that
our algorithms are more general, effective, and efficient than the
competing technique, while our heuristic that preserves the number
of edges in the graph constant fares better overall than one that
reduces it.

Categories and Subject Descriptors
G.2.2 [Graph Theory]: [Graph algorithms, Path problems]; K.4.1
[Computers and Society]: [Privacy]

General Terms
Algorithms, Experimentation, Theory

1. INTRODUCTION
Data sets storing information about persons and their relationships

are abundant. Online social networks, e-mail exchange records, col-
laboration networks, are some examples. Such data can be modeled
in graph form, which, when published, can provide valuable infor-
mation in domains such as marketing, sociology, and fraud detection.

(c) 2014, Copyright is with the authors. Published in Proc. 17th Inter-
national Conference on Extending Database Technology (EDBT), March
24-28, 2014, Athens, Greece: ISBN 978-3-89318065-3, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

Still, the publication of such graph data entails privacy threats for
the individuals involved. Research on how to mitigate these privacy
threats while still enabling the publication of useful information
about the network is now taking shape [2, 30, 14, 31, 12, 5, 16, 27,
29, 7, 4, 3, 32, 25, 13, 6, 23, 26, 22].

A privacy threat involves the leakage of sensitive information.
This information may involve the identity of a node (i.e., person) in
the network, in which case we talk of identity disclosure. The bulk
of previous research has focused on the privacy threat arising from
such re-identification of the node representing a certain individual
in the network [31, 12, 5, 16, 32, 25, 13]. The common theme in
such works is the idea that each node should be rendered, by some
notion, indistinguishable from k − 1 other nodes in the network;
this idea is inspired from the precept of k-anonymity, a principle
suggested for the anonymization of relational data [21].

Nevertheless, a privacy threat may also involve the information
about connections between individuals in a network. In this case,
we talk about linkage disclosure. Unfortunately, the protection
against identity disclosure does not imply protection against linkage
disclosure as well.

42 54

34

12

24

63 71
1‐3

3‐4

3‐42‐4

2‐4
4‐4

4‐4

2‐4
2‐4

4‐4

Figure 1: An Example Graph

For illustration, the graph in Figure 1 represents a social network,
where each vertex stands for a person and each edge denotes a
friendship connection. Vertices are numbered, while subscripts on
their number labels indicate their degrees (e.g., vertex 2 has degree
4, therefore it is inscribed with the label 24). Edges are labeled by
the degrees of the vertices they connect, in ascending order (e.g., the
edge between vertex 34 and vertex 63 is labeled as a 3− 4 edge).

We assume an adversary who attempts to re-identify the vertex
corresponding to an individual in the graph via its degree; thus, a
node’s degree forms the adversary’s background knowledge. Such
an adversary may also try to infer the length of the connection
between two particular individuals. Furthermore, assume that an
adversary knows that Charles is in the network with four friends,
Agatha has four friends, Timothy three, Cynthia two, and Oliver
one. Then, looking at Figure 1, the adversary will infer that each
of Charles and Agatha are to be found among the vertices 24, 34,
and 54, which form a triangle. Thus, regardless of the particular

 

 

583 10.5441/002/edbt.2014.52



valid assignment, it has to be the case that Charles and Agatha are
friends. Furthermore, given the graph structure, it must be the case
that Timothy and Cynthia are connected by a path of length 2, hence
have one friend in common (Timothy is identified as vertex 63, and
Cynthia as either vertex 12 or 42). One can also deduce that Oliver
is Cynthia’s friend, as he is identified with vertex 71.

From the preceding discussion it follows that a network prevent-
ing identity disclosure (by rendering vertices indistinguishable as
in [31, 12, 5, 16, 32, 25, 13]) may still allow the disclosure of a
linkage between two vertices of interest. In other words, an adver-
sary may infer that a certain linkage between two entities of interest
exists in the graph, regardless of which among many (e.g., k) indis-
tinguishable nodes represents each of these two entities; in effect,
sensitive information is leaked. Zhang and Zhang [29] were the first
to make this cardinal observation, and provided a solution for the
ensuing edge anonymity problem; however, their analysis does not
move beyond single-edge connections, while the proposed solutions
lack computational efficiency. Cheng et al. [6] reiterated the same
observation (namely, protection against identity disclosure does
not protect against linkage disclosure), and looked at the general
problem of preventing the disclosure of a multi-edge connection;
to overcome the problem, they suggest a method that divides the
graph into k disjoint subgraphs, and renders those isomorphic to
each other; thus, the full network becomes k-isomorphic. While
this method achieves the objective of thwarting attempts to infer a
multi-edge linkage between two entities of interest, it severely alters
the nature of the published network from a connected graph to an
assortment of k identical disjoint graphs; thus, by k-isomorphism,
we do not publish an anonymized version of the whole network,
but only 1

k
thereof. Other approaches have also specifically studied

ways to conceal linkages or interactions among entities [30, 27, 4,
6]; however, such approaches are either based on clustering nodes
into super-nodes [30], and/or deal with a bipartite interaction graph
[4], obliterating the structural information in the network, or follow
a randomization approach without clear privacy guarantees [27].

In this paper we revisit the linkage anonymization problem. Our
approach is positioned between the two extremes found in [29] and
[6]. In contrast to [29], we do not consider only single-edge links
to be important; an adversary who can confidently infer that two
individuals in a social network are connected by a multi-edge path
still infers valuable sensitive information about them. Still, contrary
to [6], we do not attempt to totally extinguish the potential for the
inference of an arbitrarily long linkage path.

Real-world networks are connected; any two individuals in them
are bound to be linked by a sufficiently long path. The length of this
path is usually rather small, not exceeding six steps. Milgram’s small
world experiment [17] suggested that social networks of people in
the United States are characterized by short node-to-node distances,
of approximately three links, on average, without considering global
linkages; Watts [24] recreated Milgram’s experiment on the Internet
and found that the average number of intermediaries via which an e-
mail message can be delivered to a target was around six; Leskovec
and Horvitz [15] found the average path length among users of an
instant-messaging system to be 6.6. Goel et al. [11] tested the
extent to which pairs of individuals in a large social network can
actually find the shortest paths connecting them; they introduced a
rigorous way of estimating true chain (i.e., search distance) lengths
in a messaging network, and found that roughly half of all chains
can be completed in 6-7 steps. Most recently, Backstrom et al. [1]
reported that the average distance in the entire Facebook network of
active users was 4.74.

In view of this connectedness of real world networks, we de-
duce that no privacy is compromised by revealing the existence of

a path among two entities in a network; thus, setting a target of
thwarting the inference of any linkage whatsoever, as in [6], not
only irretrievably alters the nature of the network, but also sets an
unnecessarily high privacy objective. Instead, we propose that the
focus of a privacy concern should be on averting the disclosure of
the existence of a short path, as opposed to the existence of any path.
Following this reasoning, we define L-opacity, a privacy principle
based on the notion that an adversary possessing certain structural
background knowledge should not be able to infer that the distance
between two entities in a network is equal to or less than a chosen
threshold L with confidence higher than a threshold θ. Our aim is
to prevent such confident inferences by incurring a minimal amount
of modification on the network.

2. RELATED WORK
The discussion on graph anonymization was initiated by Back-

strom et al. [2], who pointed out that an adversary can infer the
identity of nodes in an de-annotated graph by solving a restricted
graph isomorphism problem. However, [2] proposed no technique
for publishing a graph in a privacy-preserving manner.

A particular graph anonymization technique was first proposed
by Zheleva and Getoor [30]. This technique assumes that only a
subset of the graph’s edges are sensitive and attempts to conceal
them via clustering nodes, randomly removing non-sensitive edges,
and reporting only the number of edges between groups. Korolova
et al. [14] consider the problem posed by an adversary breaking into
user accounts of an online social network and trying to re-assemble
the network graph from a set of local neighborhoods.

Two recent works address problems of preventing structural re-
identification of a node by adversaries who know a target’s local
neighborhood. Zhou and Pei [31] study the problem on node-labeled
graphs; they propose the notion of k-neighborhood anonymity for
such graphs, achieved by generalizing node labels and inserting
edges so that each node’s (one-step) local neighborhood is rendered
isomorphic to at least k − 1 others. Hay et al. [12] address the
same problem on unlabeled graphs. They propose the notion of
k-candidate anonymity, which requires that at least k nodes match a
neighborhood-structure query on the graph, aiming to resist attacks
from adversaries possessing knowledge of an individual’s neigh-
borhood structure. Still, they do not propose algorithms aiming to
guarantee the privacy principle they introduce; as an anonymization
method, they only propose grouping nodes into partitions and pub-
lishing the number of vertices and edge density in each partition,
as well as the edge density across partitions. Unfortunately, this
method fails to preserve much of the graph’s structural informa-
tion. In similar spirit, Campan and Truta [5] propose a method that
divides vertices (labeled by attributes) into clusters of at least k
entities, and collapses each cluster to a single vertex.

Motivated by [2] and [12], Liu and Terzi [16] were the first to
suggest an anonymization technique tailored for simple graphs with
unlabeled nodes and uniform edges. Under the assumption that an
adversary possesses knowledge of a node’s degree, their anonymiza-
tion method first transforms a graph’s sorted degree sequence into
a k-anonymous one, in which each degree value appears at least k
times, using the algorithm in [10]; then, guided by the k-anonymous
degree sequence, it inserts edges into the graph to render it k-degree
anonymous, i.e. ensure that any degree value is shared by at least k
nodes.

Ying and Wu [27] show that the topological similarity of nodes
can be used to recover original sensitive links from a randomized
graph. As discussed, Zhang and Zhang [29] observed that even
if a graph preserves vertex anonymity, it may not preserve edge
anonymity; they suggest the privacy notion of τ -confidence, which

584



limits an adversary’s confidence that a single edge exists between
the vertices corresponding to two individuals, and suggest heuristics
to achieve this objective by edge swaps and removals.

Cormode et al. [7] propose a family of safe (i.e., attack-proof)
anonymizations for bipartite graph data that fully preserve the (unla-
beled) graph structure, while anonymizing the mapping from entities
to nodes of the graph. This approach is taken further by Bhagat et
al. [4], who pay attention to the rich interaction information in a
social network; they suggest anonymization methods based on care-
fully grouping entities of the network’s bipartite interaction graph
into classes, while masking the mapping between entities and the
nodes that represent them in the graph, in a way that fulfills a safety
condition. Recently, Bhagat et al. [3] have also proposed meth-
ods to anonymize a dynamic social network while new nodes and
edges are inserted, leveraging link prediction algorithms to model
the network’s evolution.

Both Zou et al. [32] and Wu et al. [25] suggest methods to
transform a data graph so that each node in the resulting graph is
structurally indistinguishable from k−1 other nodes, thus achieving
protection against identity disclosure. This property is called k-
automorphism in [32] and k-symmetry in [25]. The anonymization
algorithm in [32] uses graph alignment and edge insertion as its
main operation, while the one in [25] is based on making duplicate
copies of vertices in the network. He et al. [13] suggest an akin
anonymization method, which first partitions a graph into local
structures of size d, then divides these structures into groups of k
structures each, and locally transforms the structures within each
group so as to render them isomorphic to each other; the privacy
this method achieves is named kd graph anonymity.

Cheng et al. [6] reiterated the observation that protection against
identity disclosure, as provided in [32, 25, 13], does not guarantee
protection against the disclosure of sensitive linkages. To overcome
this problem, they suggest a method that adopts the strategy of ren-
dering sets of nodes structurally indistinguishable from each other,
yet also thwarts attempts to infer a linkage between nodes. This aim
is achieved by dividing the graph into k disjoint subgraphs, render-
ing it k-isomorphic. Unfortunately, even while this method achieves
the objective of protection against link disclosure, it severely alters
the nature of the published network from a connected graph to an
assortment of k identical disjoint graphs.

Recently, Yuan et al. [28] have examined the privacy protection
problem with a new twist, in which they consider that most of the
nodes in the network face no privacy threats related to structural
knowledge at all, while only a few nodes have such needs, arising
from an adversary’s knowledge of degrees and edge labels. The
problem of linkage disclosure is mentioned in [28], albeit the sug-
gested privacy methods do not provide protection against it.

3. MOTIVATING EXAMPLES
In the following we bring some examples and arguments that

further justify the privacy model we propose, in particular our use
of a path length threshold L and a confidence threshold θ, as well
as our model of adversary knowledge.

First, in the DBLP coauthorship graph, HweeHwa Pang is con-
nected to Elisa Bertino. A path between them is: H. Pang → S.
Nobari→ A. Ailamaki→ P. Karras→ S. Bressan→ E. Bertino. If
this path of length 5 were the shortest path from HweeHwa to Elisa,
we propose that it would not be a very serious privacy breach if an
adversary inferred its length; two authors in the same community
are bound to be connected by such a path. However, there is another
path: H. Pang→ K.-L. Tan→ E. Bertino. This path shows a more
intimate connection between those authors. Thus, pragmatically,
starting out from the observation of the small-world phenomenon,

(a) θ = 100%

(b) θ = 50% (c) θ = 0%

Figure 2: Example illustrating the θ parameter

we conclude that it is more relevant to prevent the inference of
short-path connections than of all connections.

Second, assume a social network service intends to publish data
about individuals and their networks. The data in question shows
a close connection between Albert and an old high school friend,
Bruce. Since high school, Bruce’s life has been quite different from
Albert’s; Bruce has recently been convicted for drug trafficking.
Under these circumstances, Albert, who has not been in contact
with Bruce for years, may reasonably prefer that his connection
to Bruce be not revealed to the public, especially not while he is
making arrangements for his forthcoming wedding. Thus, Albert
has a privacy concern about the revelation of a short path connecting
him to Bruce. A longer path connecting Albert to Bruce, even if
confidently inferred, would not cause a major privacy concern. In
similar fashion, it is a fundamental assumption of ours that a privacy
threat arises out of inferring a short path and does not arise out of
inferring a long path. Our work rests on this assumption.

Third, assume a graph in which a node represents a person and a
link between two persons shows they are acquainted. We suggest
that this graph may be published with names removed, while an
adversary may have background knowledge about the number of
acquaintances each person has in the network. That adversary may
then be able to associate a criminal to two nodes (C1 and C2), as
illustrated in Figure 2. The same adversary may associate a target
individual to three other nodes (S1,S2 and S3). If all of S1, S2, and
S3 are found to be connected by a path of length≤ L to bothC1 and
C2, then the probability that the target is connected to the criminal
is 100%, i.e. θ = 100% (Figure 2a). If all of S1, S2, and S3 are
found to be connected to only C1, then the effective probability that
the target is connected to the criminal is 50%, i.e. θ = 50% (Figure
2b). Last, if none of S1, S2, and S3 is found to be connected to any
of C1 and C2, then θ is 0% (Figure 2c). The θ threshold we employ
bounds the adversary’s confidence in an inferred linkage as in this
example.

Last, a few words are due about our adversary model. We assume

585



an adversary who possesses knowledge of target nodes’ degrees.
This knowledge exemplifies a kind of structural information the
adversary can possess so as to identify nodes; we use this kind of
knowledge as a first proposal, noting that research on preventing
identity disclosure started out with such background knowledge
before expanding into more arcane cases of structural knowledge
[16]. We envisage that future work can likewise expand into other
types of structural knowledge, while our privacy model definition
covers any way of classifying nodes into types.

4. PROBLEM DEFINITION
In this section we formally define the privacy protection problem

we set out to solve in this paper, provide some results on its hardness,
and clarify our data publication model.

We assume that a social network is modeled by a simple graph
(i.e., an undirected, unweighted graph, without self-loops or multiple
edges). Let G(V,E) be such a simple graph, where V is the set of
nodes and E the set of edges in G. The degree dv of a vertex v ∈ V
is the number of edges to which v is adjacent. For a pair of vertices,
vi, vj , the geodesic distance (GD) between them is the length `ij of
a shortest path connecting them.

We consider that each vertex is characterized by certain properties,
which may render it identifiable in the published graph. For the sake
of generality, our model is agnostic about what these properties may
be. For our purposes, it is sufficient to assert that one can identify
pairs of distinct vertices belonging to certain types. Pair types are
meant to be of interest to the data vendor and/or considered vulnera-
ble for identification by an adversary. We outline the properties of a
node-pair type T as follows:

DEFINITION 1. Given a simple graph G, a collection of vertex-
pair types C is defined. For each vertex-pair type T ∈ C, a distinct
vertex-pair (vi, vj), vi, vj ∈ V , with distance `ij , belongs to T .
Then, we write (vi, vj) ∈ T ; for brevity, we also write `ij ∈ T
to denote that there exists a vertex-pair with distance `ij in type
T . Each vertex can belong to one or more vertex-pairs, while each
vertex-pair belongs to at most one type. It is not required that every
definable vertex-pair (v, w) belongs to a type; some vertex-pairs
may be indifferent to us, belonging to no type at all.

In the following, we use the notation T to refer both to a vertex-
pair type and to the set of vertex-pairs of that type. It follows that
the cardinality of the set T is equal to the number of distinct vertex-
pairs (v, w) having type T . We define the L-opacity of type T as
follows.

DEFINITION 2. Given a simple graph G and a vertex-pair type
T ∈ C, the L-opacity of T , LOG(T ), is the ratio of the number
of vertex-pairs in T with distance at most L, |{`ij ∈ T |`ij ≤ L}|,
to the number of all vertex-pairs in T , including pairs of mutually
unreachable vertices:

LOG(T ) =
|{`ij ∈ T |`ij ≤ L}|

|T |

We wish to render inferences involving linkage disclosure harder
and less confident. That is, we would like a graph to obey the
following property.

DEFINITION 3. Given a graph G(V,E) and a collection C of
types of interest defined on G, G satisfies L-opacity (is said to be
L-opaque) with respect to a threshold θ, if and only if, for every
vertex-pair type T ∈ C, LOG(T ), does not exceed a threshold θ,
0 ≤ θ ≤ 1, that is:

LO(G) = max
T ∈C
{LOG(T )} < θ

Again, for the sake of simplicity, when the value ofL is clear from
the context, we refer to the LO(G) value as the opacity ofG. Given
an L-opaque form Ĝ of a graph G, an adversary cannot infer that a
vertex-pair of a predefined type T ∈ C of interest have distance at
most L with certainty more than θ. Our aim is to bring the published
graph to such a form by inducing a minimum amount of distortion to
it. The basic distortion operations we employ are edge removal and
edge insertion, transforming the edge set E of the original graph G
to the set Ê in the anonymized graph Ĝ. We measure the amount
of distortion D as the graph edit distance between G and Ĝ, i.e.
the symmetric difference between the edge sets |E∆Ê|, normalized
over the number of edges of the original graph. In other words the
total proportion of the missing and inserted edges over |E|:

D(E, Ê) =
|E ∪ Ê − E ∩ Ê|

|E| (1)

In effect, we define our L-opacification problem as follows:

PROBLEM 1. Given a graph G(V,E), a collection C of types of
interest defined on G, an integer L and a threshold θ, transform G
to an L-opaque form Ĝ(V, Ê) with respect to θ, so that D(E, Ê) is
minimized.

Eventually, our goal is to select a set of edges Ê that renders
Ĝ(V, Ê) L-opaque (i.e., the proportion of vertex-pairs with distance
L or less within every vertex-pair type T defined therein is at most
θ) and minimizes D(E, Ê). This is a combinatorial optimization
problem. An exhaustive-search solution would be to try out all pos-
sible sets Ê, check which ones yield an L-opaque graph Ĝ(V, Ê),
and opt for the one that minimizes D(E, Ê); this approach would
result to an optimal solution. However, there are O

(
2|V |

2)
possible

sets of edges Ê to try, while each check would require at least an
O
(
|V |3

)
all-pairs-shortest-path computation. Indeed, Theorem 1

shows that this problem is NP-hard.

THEOREM 1. L-opacification is NP-hard.

PROOF. We show that we can reduce the NP-hard 3-SAT prob-
lem [9] to the L-opacification problem in polynomial time. The
3-SAT problem is a version of the satisfiability problem in which
every clause has 3 variables, as follows:

Input: {C,B}, where C = {C1, C2, . . . , CS} is a collection of
clauses, each clause being the disjunction of 3 literals over the finite
set of N Boolean variables B = {v1, v2, . . . , vN}.

Output: Decides whether there is an assignment of truth values
to B that makes every clause of C true.

Given any instance of the 3-SAT problem, we construct an in-
stance of the L-opacification problem as follows. First we construct
a graph G(V,E) based on the given 3-SAT problem. For each
boolean variable v ∈ B we insert two edges (vi, vj), (v′i, v

′
j) in E.

We classify these two edges as belonging to the same type, namely
type (Av, Bv). Then, for each clause Ck in which v participates
without negation we create a pair of vertices (Ak, Bk), such that
Ak is an one-hop neighbor of vi and Bk an one-hop neighbor of vj .
Thus, we say that clause Ck is appended to edge (vi, vj). Besides,
we classify each such vertex-pair as belonging to type (Ak, Bk). In
effect, we create a vertex-pair of type (Ak, Bk), connected via a
path of length 3 passing through edge (vi, vj). The same appending
occurs for all other variables in clause Ck and any other clause.
Likewise, for each clause Ck in which a variable v participates with
negation, as ¬v, a pair of vertices of type (Ak, Bk) is created and
appended to edge (v′i, v

′
j) as above. Having defined vertex-pair

types of interest as above, we define the L-opacification problem

586



for the ensuing graph G with L = 3 and θ = 1. We turn this
optimization problem to a decision problem by asking whether it
can be solved via the removal of no more than N edges.

Notably, for each variable v ∈ B, the opacification of its associ-
ated vertex-pair type, (Av, Bv), requires the removal of at least one
of the two edges of that type, hence we need to perform at least N
removals. Thus, if the problem is solvable at all, it will be solved
by exactly N edge removals, i.e. by the removal of one and only
one edge associated with each variable v, i.e. either edge (vi, vj)
or the edge (v′i, v

′
j). Besides, given that L = 3, for each clause

Ck, the opacification of its associated vertex-pair type, (Ak, Bk),
necessitates the removal of at least one of the edges in the paths
from a vertex denoted as Ak to one denoted as Bk, namely at least
one of the N removed edges should be in such a path.

We consider the action of edge removal in L-opacification to
represent the action of truth assignment in 3-SAT. Then the above
requirements translate to the following:

1. Each of the N variables, v, is set to be either true or false,
namely true if edge (vi, vj) is removed, and false if edge
(v′i, v

′
j) is removed.

2. Each clause Ck must have at least one of its literals set as
true, namely a literal corresponding to a removed edge in a
path from an Ak vertex to a Bk vertex.

In effect, if we can decide whether the L-opacification problem
we have devised can be solved with exactly N edge removals, then
we can answer the original 3-SAT problem as well.

For instance, consider the following 3-SAT clauses:

(a ∨ ¬b ∨ c)1 ∧ (¬a ∨ ¬c ∨ d)2 ∧ (a ∨ b ∨ ¬d)3∧
(a ∨ ¬b ∨ ¬c)4 ∧ (¬b ∨ c ∨ d)5 ∧ (¬a ∨ b ∨ ¬d)6

The subscript of every clause in this statement indicates the clause
number. Figure 3 shows the graph constructed for the correspond-
ing L-opacification problem. In this figure, vertex labels indicate
the vertex-pairs to which these vertices belong. For example, the
negated variable ¬a appears in clauses C2 and C6, hence vertex
pairs of type (A2, B2) and (A6, B6) are appended to edge (a′i, a

′
j).

As we have discussed, our analysis, and hence our hardness result,
applies with any choice of properties that may be used to define
vertex-pair types of interest. However, it has been noted that the
degree of a vertex in the original graph is the most elementary
structural information about a vertex in a de-annotated graph that an
adversary can use to re-identify that vertex [16]. Thus, in the rest
of this paper we choose to focus on the repercussions of using the
original degree as the vertex property we work with. Based on this
strategic choice, a pair type T is associated with a certain pair of
degrees, not necessarily distinct, (d1, d2) with distinct vertex-pairs,
(v, w) belonging to T , where v has degree d1 and w has degree d2
in the original graphG. We emphasize that our solution is concerned
with degrees of vertices in the original graph only, even while such
degree may be altered in the published form of the graph. In our
publication model, the graph is simply published along with the
original degree information. This publication model preserves the
utility emanating from such degree information, even though ver-
tices may appear with different degrees in the anonymized form; at
the same time, it does not raise any privacy concerns, as our privacy
model is already tailored for adversaries having such knowledge.
Besides, this publication model eschews the redundant complication
of having to consider artificially changing node degrees throughout
the operation of our algorithms.

B1A1

A3

A4

B3

B4

a
B2A2

A6 B6

¬a

B3A3

A6 B6

b
B1A1

A4

A5

B4

B5

¬b

B1A1

A5 B5

c
B2A2

A4 B4

¬c

B2A2

A5 B5

d
B3A3

A6 B6

¬d

Aa Ba
ai aj a'i a'j

Aa Ba

Ab Bb

Ac Bc

Ad Bd

b'i b'j

c'i c'j

d'i d'j

Ab Bb
bi bj

Ac Bc
ci cj

Ad Bd
di dj

Figure 3: Graph for the given 3-SAT problem in Theorem 1

As the problem is intractable, we now direct our efforts towards
devising an efficient solution assisted by heuristics.

5. L-OPACIFICATION ALGORITHM
In a nutshell, our L-opacification algorithm follows a greedy

rationale, trying to make a good choice of an edge to remove or
insert. In the default mode of operation, it works by making moves
involving one edge at a time. Still, its greedy logic is not irretrievable.
If there is no beneficial move involving one edge to be made, then
it considers a pair of two edges for its next step, and so on up to
a threshold. We call this threshold look-ahead parameter, la. In
contrast to [29], with L = 1 and for la > 1, we can find a solution
for a graph where [29] cannot or find an L-opaque graph with much
less amount of distortion, as the look-ahead parameter lets our
algorithms expand their search space.

We discuss two variants of this algorithm. The former tries to
achieveL-opacity by removing edges. The latter attempts to counter-
balance every edge removal by a corresponding insertion. Before
we enter into details, we describe some fundamental operations
involving the computation of probability values.

i 1 2 3 4 5 6 7
1 0 1 1 2 2 2 3
2 0 1 1 1 2 3
3 0 2 1 1 2
4 0 1 2 3
5 0 1 2
6 0 1
7 0

degree, i 4 4 2 4 3 1
2 3 4 5 6 7

2 1 1 1 0 0 0 0
4 2 1 1 1 0 0
4 3 0 1 1 0
2 4 1 0 0
4 5 1 0
3 6 1

(a) All-pairs shortest paths (b) Boolean values of `ij ≤ L

Figure 4: Path length matrices

5.1 Basic Operations
In order to decide whether a graph G satisfies L-opacity, we need

to compute the number and lengths of geodesic distances of each
type T ∈ C. To perform this computation, we start out by running
Floyd-Warshall’s O(|V |3) all-pairs-shortest-paths algorithm [8] on
G, assuming each edge has weight 1. The output of this algorithm
on the graph of Figure 1 is the triangular matrix A of Figure 4a.

587



Cell Aij , i ≤ j, contains the geodesic distance (GD) `ij between
vertices vi and vj . We call this matrix the distance matrix of G.

5.1.1 Opacity Value Computation
The information that is interesting for us is whether a GD value

`ij in the matrix of Figure 4a satisfies the `ij ≤ L predicate for
a given L. For the sake of illustration, we present, in Figure 4b,
a boolean triangular matrix that shows whether `ij satisfies this
predicate for our running example and L = 1. This matrix does
not feature elements for i = j, since we do not consider paths from
a vertex to itself. We represent the matrix concisely, omitting the
row for i = 7 and the column for j = 1. We also annotate to this
matrix information about the degree of each vertex vi in the original
graph. Having this degree information and matrix A of Figure 4a,
we can straightforwardly derive, for each pair type T , the number
of GDs in T of length `ij ≤ L, as well as the number of those
whose length is `ij > L. The matrices in Figure 5a,b show the
results for the running example. In particular, the matrix in Figure
5a, which shows, for each pair type T , the number of GDs in T of
length `ij ≤ L, is denoted as L. This is the main matrix we need to
compute in order to derive a graph’s overall opacity value.

T 1 2 3 4
1 0 0 1 0
2 0 0 4
3 0 2
4 3

T 1 2 3 4
1 0 2 0 3
2 1 2 2
3 0 1
4 0

T 1 2 3 4
1 0 0 1 0

2 0 0 2
3

3 0 2
3

4 1
(a) `ij ≤ L (b) `ij > L (c) Opacity Matrix

Figure 5: GD numbers and Opacity Matrix

Having the GD numbers with respect to the length threshold L
calculated above, we can easily derive an opacity matrix, i.e., the
matrix of LOG(T ) values for each T ∈ C. Figure 5c shows the
result. For example, there are three GDs of type P{3,4} (i.e., paths
between a vertex of degree 3 and one of degree 4), namely the
geodesic distances between vertex v6, on the one hand, and vertices
v2, v3, and v5, on the other hand. Out of these three GDs, two
(namely `3,6 and `5,6) satisfy the `ij ≤ L predicate (see the matrix
of Figure 5a), while one (namely `2,6) does not (see the matrix
Figure 5b). Thus, the L-opacity of P{3,4} in G is LOG = 2

3
, as the

opacity matrix of Figure 5c shows.
Eventually, we can calculate the maximum L-opacity among all
T ∈ C, namely maxT ∈C {LOG(T )}. In this case, the value is 1,
i.e., G satisfies L-opacity only with respect to θ = 1. Algorithm
1 shows a pseudo-code for this computation. In this pseudo-code,
dk denotes the degree of vertex k in the original graph and NV (d)
denotes the number of vertices with degree d.

Algorithm 1: maxLO Algorithm
Input: G(V,E);D = [d0, . . . , d|V |−1]; L parameter
Output: maxT ∈C {LOG(T )}

1 maxLO = 0; L = 0;
2 Calculate distance matrix ofG, A;
3 foreach `ij ∈ A do
4 g = min{di, dj}; h = max{di, dj};
5 if `ij ≤ L then
6 Lgh = Lgh + 1;
7 foreach P{g,h} ∈ L do
8 if g = h then
9 LOG(P{g,h}) =

2×Lgh
NV (g)×(NV (g)−1)

;
10 else
11 LOG(P{g,h}) =

Lgh
NV (g)×NV (h)

;
12 maxLO = max{maxLO,LOG(P{g,h})};
13 Return maxLO;

5.1.2 Distance Matrix Computation
As we have seen, a basic operation, which we will have to perform

repeatedly in our heuristics, is the calculation of the distance matrix
of a graph G, for which we can employ Floyd-Warshall’s all-pairs-
shortest-paths algorithm for an undirected graph (i.e., a triangular
adjacency matrix). As our problem entails the distance calculation
between all pairs of vertices [18], techniques developed for the
point-to-point shortest path problem and its approximate variant
[19] are not applicable to it.

The Floyd-Warshall algorithm starts out with the adjacency matrix
of G, and leads to the respective distance matrix by allowing the
paths under consideration (between i and j, handled by the two
inner loops) to use one more intermediate vertex (k, handled by the
outer loop) at each iteration. Since the distance matrix is triangular,
Ak

ij is interpreted as Ak
ji when j < i. We do not indicate this

distinction in the pseudo-code for the sake of simplicity. Eventually,
the algorithm accurately calculates all geodesic distances in G in an
elaborate computation. However, we do not need all these distances
to be explicitly calculated. For our purposes, it suffices to calculate
those distances that have value less than or equal to L. Thus, we can
render the computation more efficient by pruning those parts that
involve distances already longer than or equal to L. We also prune
redundant cases when the two inner loops of the algorithm would
check for a path that involves the considered intermediate vertex (k)
as either origin or destination (i.e., i or j).

Algorithm 2: L-pruned Floyd-Warshall Algorithm
Input: G(V,E): An undirected graph; L threshold;
Output: distance matrix ofG(V,E) for path lengths≤ L

1 A0 = adjacency matrix ofG(V,E);
2 for k = 0; k < |V |; k = k + 1 do
3 for i = 0; i < |V | − 1; i = i+ 1 do
4 if (i 6= k) ∧ (Ak

ik < L) then
5 for j = i+ 1; j < |V |; j = j + 1 do
6 if (j 6= k) ∧ (Ak

kj < L) then
7 if Ak

ik + Ak
kj ≤ L then

8 Ak+1
ij = min(Ak

ij ,A
k
ik + Ak

kj);

9 Return A|V |;

Algorithm 2 forms an improvement over the naive straightfor-
ward application of Floyd-Warshall’s algorithm. However, it still
performs many redundant operations, as it sequentially scans each
row and column of the triangular adjacency matrix, and repeatedly
checks whether the scanned distance values are less than L.

We can further improve on Algorithm 2 by avoiding these re-
peated scans. In a pre-processing step, we scan the adjacency matrix
A and build linked lists that connect those cells of the matrix that
contain distance values `ij < L (i.e., in the original state of the ma-
trix, value 1) along each row and column of A. In effect, each cell
Aij such that `ij < L gets two pointers, to its successor cells along
the same row and column, with distance values less than L. Our
pointer-based version of the Floyd-Warshall algorithm rides these
linked lists, and appropriately amends them whenever it creates a
new cell of distance value less than L. Thus, repeated sequential
checks are avoided; sequential scan operations are performed only
in the pre-processing step, and during linked-list amendments, when-
ever a new distance value less than L is created. This pointer-based
L-pruned Floyd-Warshall algorithm is shown in Algorithm 3; in the
pseudo-code, nexti (nextj) is the next cell along the same column
(row). We distinguish between the outer and the inner loop of the
conventional Floyd-Warshall algorithm using the notations out and
in for the cells they handle, respectively, in order to avoid any con-
fusion caused by the notations i and j (where i denotes a row and j
a column of the matrix). As A is triangular, the only distinguishing
mark of these two loops is the fact that one functions as the outer

588



and the other as the inner one; otherwise, both loops traverse both
columns and rows of the matrix; at the kth iteration of the k-loop,
the inner loops jointly traverse the kth column and kth row of A,
turning from the former to the latter when they reach the diagonal
of the matrix.

Algorithm 3: Pointer-based L-pruned F-W Algorithm
Input: G(V,E): An undirected graph; L threshold;
Output: distance matrix ofG(V,E) for path lengths≤ L

1 A = adjacency matrix ofG(V,E);
2 for k = 0; k < |V |; k + + do
3 out = first cell of column/row k of A with value< L;
4 while out 6= NULL do
5 if out.i 6= k then
6 in = out→ nexti // next cell along column
7 else
8 in = out→ nextj // next cell along row
9 while in 6= NULL do

10 if in.value+ out.value ≤ L then
11 new = Acoordinates of in, out that are 6=k;
12 sum = in.value+ out.value;
13 if sum < new then
14 if (sum < L) ∧ (new ≥ L) then
15 update connections of cell new;
16 new = sum;
17 if in.i 6= k then
18 in = in→ nexti;
19 else
20 in = in→ nextj;
21 if out.i 6= k then
22 out = out→ nexti;
23 else
24 out = out→ nextj;
25 ReturnA;

Algorithm 4: Edge Removal Algorithm
Input: G(V,E) : An undirected graph; L threshold; confidence threshold θ;
Output: L-opaque graph ofG′(V,E′) wrt θ

1 G′(V,E′) = G(V,E);
2 Calculate degrees of vertices inG,D;
3 while (LO(G′) > θ) ∧ (E′ 6= ∅) do
4 best_lo =∞ // lowest opacity value
5 foreach edge eij ∈ E′ do
6 E′ = E′ − eij // try removing eij
7 lo = LO(G′) // achieved L-opacity
8 if lo < best_lo then
9 best_lo = lo; best_pop = N (lo);

10 chosen_edge = eij ; t = 1;
11 if (lo = best_lo) ∧ (N (lo) < best_pop) then
12 best_pop = N (lo);
13 chosen_edge = eij ; t = 1;
14 if (lo = best_lo) ∧ (N (lo) = best_pop) then
15 Generate uniform random ρ ∈ [0, 1);
16 t = t+ 1;
17 if ρ < 1

t then
18 chosen_edge = eij ;
19 E′ = E′ + eij // recover checked edge
20 E′ = E′ − chosen_edge // remove chosen edge
21 ReturnG′(V,E′);

5.2 Edge Removal
Our first approach aims to render an input graph G L-opaque via

edge removal operations. Given a graph G(V,E), our edge removal
algorithm tries to arrive at an L-opaque graphG′(V,E′) by greedily
removing some of the edges from E. At each step, the algorithm
chooses to remove the edge that achieves the lowest opacity value,
LO(G′) = maxT ∈C {LOG′(T )}, in the ensuing graph. Should
more than one edge achieve the same opacity value, we opt for
the edge that minimizes the number of pair types T that obtain the
maximum opacity. We define a functionN as:

N (p) = |{T ∈ C|LOG(T ) = p}|

We opt for the edge that minimizesN
(
LO(G′)

)
after its removal.

The rationale for this choice is that it is preferable to have less than
more degree-pairs that reach the highest opacity value. Should more
than one edge achieve the same value in that function as well, we
pick one of them uniformly at random, while maintaining a counter
of such instances. As we witnessed in our experimental study, this
state of affairs arises quite often. The pseudocode is shown in
Algorithm 4. In the edge removal algorithm with look-ahead (not
depicted) we delay this random decision until after checking all
the possible combinations of size up to the given la threshold. In
order to check the combinations of edges, the algorithm starts by
combinations of size 1 and after each step increments the size. To
be concrete, the algorithm uses a recursive function to generate all
the possible combinations of a specific size; in order to save space
for every generated combination, it checks the result of removing a
combination on the fly.

5.3 Edge Removal and Insertion
Our heuristic based on edge removal alone may successfully

achieve the desired L-opacity constraint, yet it does so solely by
truncating edges of the input graph. Therefore, the more operations
it performs, the more it is bound to diverge from the statistical prop-
erties of the original graph. We devise an alternative heuristic that,
in addition to, and as a counterweight to, edge removal operations,
also performs edge insertion. Following a greedy logic similar to the
one applied on edge removal, at each step the algorithm chooses to
insert the edge that results to a graph of lowest opacity. The heuristic
proceeds by performing removals and insertions alternately, thus
maintaining the number of edges of the original graph; in order
to avoid loops, we never allow the insertion of an edge that has
been previously removed, and vice versa. Algorithm 5 shows the
pseudocode of this heuristic.

The edge insertion process is symmetric to the edge removal
process, which mirrors Algorithm 4, but considers the effects of
inserting instead of removing. Edge Removal/Insertion with look-
ahead is analogous to Edge Removal with look-ahead.

Algorithm 5: Edge Removal/Insertion Algorithm
Input: G(V,E) : An undirected graph; L threshold; confidence threshold θ;
Output: L-opaque graphG(V,E) wrt θ

1 G′(V,E′) = G(V,E);ED = ∅;EA = ∅;
2 while (LO(G′) > θ) ∧ (E′ 6= ∅) do
3 best_lo =∞ // lowest opacity value (removal)
4 foreach edge eij ∈ E′ ∩ Ec

A (not inserted before) do
5 E′ = E′ − eij // try removing eij
6 lo = LO(G′) // achieved L-opacity
7 update best_lo, best_pop, chosen_edge as necessary
8 E′ = E′ + eij // recover checked edge
9 E′ = E′ − chosen_edge // remove chosen edge

ED = ED ∪ {chose_edge} // set of removed edges
10 best_lo =∞ // lowest opacity value (insertion)
11 best_pop =∞ // smallest number of pairs
12 foreach edge eij 6∈ E′ ∪ ED (not removed before) do
13 E′ = E′ + eij // try inserting eij
14 lo = LO(G′) // achieved L-opacity
15 update best_lo, best_pop, chosen_edge as necessary
16 E′ = E′ − eij // recover checked edge
17 E′ = E′ + chosen_edge // insert chosen edge
18 EA = EA ∪ {chosen_edge} // set of inserted edges
19 ReturnG′(V,E′);

5.4 Complexity Analysis
We now analyze the complexity of our Edge Removal and Edge

Removal/Insertion algorithms (Algorithms 4 and 5, respectively).
Algorithm 4 first calculates degrees of vertices by one iteration

over the edges in O(|E|). Then, the algorithm enters two nested
loops (Lines 3-20); the inner loop tries each candidate for removal,

589



Data Set Nodes Links Description
Nodes Links

Google 875713 5105039 Web pages Hyperlinks
Berkeley-Stanford 685230 7600595 Web pages Hyperlinks

Epinions 132000 841372 Users 717667 Trusts and 123705 Distrusts statements
Enron 36692 367662 Email addresses Transferred emails

Gnutella 10876 39994 Hosts in network topology Connections
ACM Digital Library 10000 19894 Authors Co-Authors

Wikipedia 7115 103689 Users and candidates Votes

Table 1: Description of the original datasets

while the outer loop iterates until, in the worst case, no edge is
left; thus these nested loops require O(|E|2) iterations. The most
computationally intensive part of the inner loop (Lines 5-19) is the
computation of the L-opacity achieved after every removal at Line 7,
which invokes Algorithm 1. In its turn, Algorithm 1 elicits aO(|V |3)
calculation of the distance matrix by the Pointer-based L-pruned
F-W algorithm, Algorithm 3. Then, Algorithm 1 goes through two
loops; the former (Lines 3-6) iterates over every pair of vertices
in the distance matrix in O(|V |2); the latter (Lines 7-12) iterates
over each degree pair in O((|dmax| − |dmin|)2) = O(|V |2). In
effect, the complexity of Algorithm 1 is dominated by the O(|V |3)
term. Eventually, the worst-case complexity of Algorithm 4 is
O(|E|+ |E|2 × |V |3) = O(|V |7).

Similarly, the Edge Removal/Insertion algorithm, Algorithm 5,
attempts to either remove or insert each possible edge in the graph at
most once, until no further candidates for either removal or insertion
exist (Lines 2-18). Hence, these loops require O(|V |4) iterations.
At each iteration, Algorithm 5 also invokes the O(|V |3) Algorithm
1; hence, in total, Algorithm 5 also raises aO(|V |7) worst-case time
complexity.

As our experimental study will demonstrate, these worst-case
complexity requirements are ameliorated in practice, as the algo-
rithms satisfy their termination conditions without having to exhaus-
tively examine all possible candidate edges. In effect, we achieve
a runtime growth linear in number of nodes, instead of the septic
polynomial complexity predicted in the worst-case scenario.

In both Edge Removal algorithm (Alg. 4) and Edge Removal and
Insertion algorithm (Alg. 5) the input graph in form of adjacency list
is stored in the main memory. In addition to the input graph, we need
to maintain the distance matrix and the Opacity matrix as explained
in the subsection 5.1. Therefore, the total space complexity of both
algorithms is O(|V |2).

6. EXPERIMENTAL EVALUATION
We now experimentally evaluate our heuristics for attaining L-

opacity in terms of the alterations they inflict on the graph they
operate on. Each heuristic, Edge Removal (Rem) and Edge Removal
and Insertion (Rem-Ins), can expand its search space by varying the
look-ahead (la) parameter. Furthermore, we implement the three
heuristics proposed by Zhang and Zhang [29] in order to compare
them against our heuristics. This comparison is only appropriate
when L = 1, as [29] considers only single-edge linkages, while
our model and methods consider connections of length up to L.
Therefore, we cannot conduct comparisons to [29] when L ≥ 2.

Zhang and Zhang in [29] propose GADED-Rand, GADED-Max
and GADES heuristics. GADED-Rand removes a random edge
among the edges participating in disclosure in each step; GADED-
Max removes an edge with maximum reduction of the maximum
link disclosure and minimum increase of the total link disclosures.
The last heuristic, GADES, finds a pair of edges for swapping that
can reduce the maximum link disclosure in each iteration.

We implemented and evaluated all algorithms on an IBM X3550

Data Set Diameter Av. Deg. STDD ACC
Google 22 11.6 16.4 0.6047

Berkeley-Stanford 669 22.1 10.99 0.6149
Epinions 9 12.7 32.68 0.1062

Enron 12 20 18.58 0.4970
Gnutella 9 7.4 3.01 0.0080

ACM Digital Library 400 3.97 6.23 0.5279
Wikipedia 7 29.1 60.39 0.2089

Table 2: Dataset properties

Data Set Nodes Links Diameter Av. Deg. STDD ACC
Google 100 746 7 14.92 11.13 0.76
Google 500 3104 15 12.42 10.54 0.70
Google 1000 6445 25 12.89 12.62 0.70

BS 500 4454 6 17.82 21.50 0.62
Epinions 100 65 4 1.3 0.72 0.04

Enron 100 346 4 6.92 9.28 0.31
Enron 500 5686 4 22.74 25.81 0.37

Gnutella 100 116 6 2.32 3.00 0.05
Gnutella 500 721 8 2.88 3.19 0.09
Gnutella 1000 1852 8 3.71 3.51 0.02

Wikipedia 100 919 3 18.38 15.19 0.54
Wikipedia 500 7244 4 28.98 33.02 0.39

Table 3: Sampled graph properties

Intel Xeon 3.16 GHz 64-bit processor cluster of 64 CPUs / 256 GB
of main memory uniformly distributed among 8 nodes. The nodes
operate CentOS 6.2 with gcc 4.4.6. We repeat each experiment 10
times for each θ value, and select the graph of minimum distortion.

6.1 Description of Data
We use seven real-world data sets. Table 1 shows the size of the

original datasets in terms of vertices and edges, and the domains
these vertices and edges describe. We have randomly sampled the
vertices of six of these seven data sets to derive smaller graphs of
100− 1000 nodes. The edges in the sampled graph are the adjacent
edges of the sampled nodes. These six data sets are obtained from
the Stanford Large Network Dataset1 collection. Our seventh data
set, used in our last experiments, is a extracted by crawling 10, 000
nodes from the ACM Digital Library.

Table 2 presents some of the properties of the original data sets
that we have sampled for use in our experiments. Diameter is the
longest shortest path in a graph; Av. Deg. and STDD stand for
the average and standard deviation of the degrees, respectively, and
ACC stands for a graph’s average clustering coefficient. For each
dataset we take three samples with 100, 500 and 1000 vertices. Table
3 presents properties of these sampled graphs for several sizes.

6.2 Utility metrics
Apart from the distortion measure (Equation 1), we employ two

other measures of alteration and utility, the Earth-Mover’s Distance
(EMD) among distributions [20] and the Clustering Coefficient. We
compute EMD between the degree and geodesic distance distribu-

1Available online at http://snap.stanford.edu/data/

590



0 %

20 %

40 %

60 %

80 %

100 %

0 % 20 % 40 % 60 % 80 % 100 %

E
d

it
 D

is
ta

n
c
e
 r

a
ti

o
 (

d
is

to
rt

io
n

)

Confidence(θ)

Rem la=1 
Rem-Ins la=1 

Rem la=2 
Rem-Ins la=2 
GADED-Rand
GADED-Max

GADES

0 %

20 %

40 %

60 %

80 %

100 %

0 % 20 % 40 % 60 % 80 % 100 %

E
d

it
 D

is
ta

n
c
e
 r

a
ti

o
 (

d
is

to
rt

io
n

)

Confidence(θ)

Rem la=1 
Rem-Ins la=1 

Rem la=2 
Rem-Ins la=2 
GADED-Rand
GADED-Max

GADES

(a) Google, L = 1 (b) Wikipedia, L = 1

0 %

20 %

40 %

60 %

80 %

100 %

0 % 20 % 40 % 60 % 80 % 100 %

E
d

it
 D

is
ta

n
c
e
 r

a
ti

o
 (

d
is

to
rt

io
n

)

Confidence(θ)

Rem la=1 
Rem-Ins la=1 

Rem la=2 
Rem-Ins la=2 
GADED-Rand
GADED-Max

GADES

0 %

20 %

40 %

60 %

80 %

100 %

0 % 20 % 40 % 60 % 80 % 100 %

E
d

it
 D

is
ta

n
c
e
 r

a
ti

o
 (

d
is

to
rt

io
n

)

Confidence(θ)

Rem la=1 
Rem-Ins la=1 

Rem la=2 
Rem-Ins la=2 
GADED-Rand
GADED-Max

GADES

(c) Enron, L = 1 (d) B-S, L = 1

0 %

20 %

40 %

60 %

80 %

100 %

0 % 20 % 40 % 60 % 80 % 100 %

E
d

it
 D

is
ta

n
c
e
 r

a
ti

o
 (

d
is

to
rt

io
n

)

Confidence(θ)

Rem la=1 
Rem-Ins la=1 

Rem la=2 
Rem-Ins la=2 

0 %

20 %

40 %

60 %

80 %

100 %

0 % 20 % 40 % 60 % 80 % 100 %

E
d

it
 D

is
ta

n
c
e
 r

a
ti

o
 (

d
is

to
rt

io
n

)

Confidence(θ)

Rem la=1 
Rem-Ins la=1 

Rem la=2 
Rem-Ins la=2 

(e) Epinions(Trust), L = 2 (f) Gnutella, L = 2

0 %

20 %

40 %

60 %

80 %

100 %

0 % 20 % 40 % 60 % 80 % 100 %

E
d

it
 D

is
ta

n
c
e
 r

a
ti

o
 (

d
is

to
rt

io
n

)

Confidence(θ)

Rem L=1 
Rem-Ins L=1 

Rem L=2 
Rem-Ins L=2 

Rem L=3 
Rem-Ins L=3 

Rem L=4 
Rem-Ins L=4 

0 %

20 %

40 %

60 %

80 %

100 %

0 % 20 % 40 % 60 % 80 % 100 %

E
d

it
 D

is
ta

n
c
e
 r

a
ti

o
 (

d
is

to
rt

io
n

)

Confidence(θ)

Rem L=1 
Rem-Ins L=1 

Rem L=2 
Rem-Ins L=2 

Rem L=3 
Rem-Ins L=3 

Rem L=4 
Rem-Ins L=4 

(g) Epinions(Trust), la = 1 (h) Gnutella, la = 1

Figure 6: Graph edit distance ratio (Distortion) vs. θ

591



 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

0 % 20 % 40 % 60 % 80 % 100 %

E
M

D
 o

f 
d

eg
re

e 
d

is
tr

ib
u

ti
o

n
s

Confidence(θ)

Rem la=1 
Rem-Ins la=1 

Rem la=2 
Rem-Ins la=2 
GADED-Rand
GADED-Max

GADES
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

0 % 20 % 40 % 60 % 80 % 100 %

E
M

D
 o

f 
G

e
o

d
e
si

c
 d

is
tr

ib
u

ti
o

n
s

Confidence(θ)

Rem la=1 
Rem-Ins la=1 

Rem la=2 
Rem-Ins la=2 
GADED-Rand
GADED-Max

GADES

(a) EMD of degree distribution (b) EMD of geodesic distribution

Figure 7: EMD of distributions vs. θ

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0 % 20 % 40 % 60 % 80 % 100 %

M
e
a
n
 o

f 
th

e
 d

if
fe

re
n
c
e
s 

o
f 

C
C

s

Confidence(θ)

Rem la=1 
Rem-Ins la=1 

Rem la=2 
Rem-Ins la=2 
GADED-Rand
GADED-Max

GADES

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

0 % 20 % 40 % 60 % 80 % 100 %

M
e
a
n
 o

f 
th

e
 d

if
fe

re
n
c
e
s 

o
f 

C
C

s

Confidence(θ)

Rem la=1 
Rem-Ins la=1 

Rem la=2 
Rem-Ins la=2 

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

0 % 20 % 40 % 60 % 80 % 100 %

M
e
a
n
 o

f 
th

e
 d

if
fe

re
n
c
e
s 

o
f 

C
C

s

Confidence(θ)

Rem L=1 
Rem-Ins L=1 

Rem L=2 
Rem-Ins L=2 

Rem L=3 
Rem-Ins L=3 

Rem L=4 
Rem-Ins L=4 

(a) Wikipedia, L = 1 (b) Epinions(Trust), L = 2 (c) Epinions(Distrust), la = 1

Figure 8: Mean of the differences of Clustering Coefficients vs. θ

tions in the original graph and the altered graph. We emphasize
that we use the EMD measure among distributions only as a way of
assessing the amount of alteration inflicted on a graph. As we have
discussed, our publication model does publish the original degree
of each node, hence that information itself is always preserved.

A clustering coefficient indicates the extent to which nodes tend
to cluster together. It can be measured either as a global metric
for the whole graph, or as a local metric for every vertex. We
measure the local clustering coefficient for each vertex vi, Ci =
|{ejk∈E|eij ,eik∈E}|
|Ni|∗(|Ni|−1)

where Ni is the number of neighbors of vi and
|ejk| is the number of edges among those neighbors. In order to
measure the difference of clustering coefficient between an original
and an anonymized graph, we calculate ∆Ci = |Ci − C

′
i | for every

vertex and report the mean of ∆Ci.

6.3 Comparison on Distortion
We first compare the performance of our two heuristics for differ-

ent look-ahead (la) on the Distortion measure, as a function of the θ
parameter, with the six sampled data sets; the θ and L parameters
together define the privacy condition we wish to achieve. The less
the θ the less the adversary’s confidence of the linkage disclosure,
and hence the more secure the relations are against threats.

Figures 6(a,b,c,d) shows our results for L=1, and Figures 6(e,f)
for L= 2. Notably, the look-ahead assists the Removal/Insertion
heuristic for every L and the Removal heuristic for L ≥ 2. This
advantage appears clearly with the Berkeley-Stanford data, with
which the Removal/Insertion heuristic with one look-ahead (Rem-
Ins la = 1) cannot find a solution, while increasing the look-ahead
to two (Rem-Ins la = 2) allows the heuristic to find solutions
even for θ = 30%. The advantage of look-ahead with edge Re-

moval is seen for the Gnutella network when L=2, while Removal
achieves lower distortion than Removal/Insertion. This experiment
also shows that we can find an L-opaque graph with θ = 50% for
all the datasets with a distortion of less than 20%. Our heuristics,
which opt for an edge that minimizes N

(
LO(G′)

)
(number of

degree-pairs T that obtain the maximum opacity), obtain a clear
advantage in comparison to the heuristics of [29], which aim to
minimize the total increase of the linking probabilities. Besides,
with all datasets, the edge swapping technique (GADES) cannot
find any L-opaque graph unless returning an empty graph.

Charts (g) and (h) in Figure 6 show the amount of distortion for
fixed look-ahead of one when varying the L from one to four for
the two of the sampled datasets. For every L, the Removal heuristic
always finds an opaque graph with lower distortion, which means
less modifications for the same confidence threshold in comparison
to the Removal/Insertion heuristic. These results also suggest that
the impact of L on the amount of distortion is lower for the sparser
graphs (the sample of Epinions(Trust) network has 130 edges while
Gnutella network has 232 edges).

6.4 Comparison on EMD
Next, we compare the performance of the heuristics on the EMD

measure of degree distributions and geodesic distributions, with
regards to the θ, L and la parameters. Figure 7a shows the results
of the EMD between the degree distributions for the Enron network
when L=1. For θ greater than 20%, the Removal/Insertion heuris-
tic results in an L-opaque graph with less EMD in comparison to
the Removal heuristic. This is due to the fact that in the Removal
heuristic, edges are only removed and never inserted, hence the
frequency counts of the high degrees are only decreased. On the
other hand, the Removal/Insertion heuristic allows the reduction

592



 0

 2

 4

 6

 8

 10

 12

 14

0 % 20 % 40 % 60 % 80 % 100 %

R
u
n
ti

m
e
(s

e
c
)

Confidence(θ)

Rem la=1 
Rem-Ins la=1 

Rem la=2 
Rem-Ins la=2 
GADED-Rand
GADED-Max

GADES

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

0 % 20 % 40 % 60 % 80 % 100 %

R
u
n
ti

m
e
(s

e
c
)

Confidence(θ)

Rem la=1 
Rem-Ins la=1 

Rem la=2 
Rem-Ins la=2 
GADED-Rand
GADED-Max

GADES

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

0 % 20 % 40 % 60 % 80 % 100 %

R
u
n
ti

m
e
(s

e
c
)

Confidence(θ)

Rem la=1 
Rem-Ins la=1 

Rem la=2 
Rem-Ins la=2 
GADED-Rand
GADED-Max

GADES

(a) Google (|V |=100) (b) Google (|V |=500) (c) Google (|V |=1000)

Figure 9: Runtime vs. θ

0.01

0.1

1

10

100

1000

10000

Rem L=1 Rem L=2 Rem-Ins L=1 Rem-Ins L=2

R
u

nt
im

e(
se

c)
 lo

g 
sc

al
e

Algorithm

|V|=100

|V|=500

|V|=1000

Figure 10: Runtime comparison

of frequency counts, caused by removal, to be compensated by
insertion. However, after some point (here for θ less than 30%),
removing/inserting pairs of edges eventually increases the EMD.
The Removal/Insertion heuristic preserves the total number of edges,
hence is more likely to preserve the degree distribution of the origi-
nal graph more accurately. By contrast, the heuristics of [29] always
performs poorly. Among them, GADED-Max achieves the best
performance, but is still outperformed by at least one or the other of
our look-ahead-based methods. This advantage can be seen in both
of our look-ahead heuristics for all the datasets.

Figure 7b shows the results for the EMD between the geodesic
distributions for the Enron network when L=1. As θ decreases, the
Removal/Insertion heuristic incurs less modification, as measured by
EMD, to geodesic distances in comparison to the Removal heuristic.
This is due to the fact that the Removal/Insertion heuristic can
compensate some of the geodesics destroyed by edge removal via
edge insertion. However, this compensation does not always carry
on when we further decrease θ, and the EMD of Removal eventually
becomes smaller than that of Removal/Insertion. Overall, our look-
ahead heuristics always outperform those of [29].

Altogether, the EMD of the two distributions follow the same
pattern as the distortion results. Furthermore, the results show that
keeping the number of edges of the graph constant is hard to attain.
This result indicates that Removal/Insertion can be the heuristic of
choice for attaining L-opacity except in settings where the desired
value of θ is not easily attainable for the given value of L; in such
cases, we face the trade-off of either increasing the look-ahead at
the expense of runtime or opting for the Removal heuristic at the
expense of utility. Besides, the charts (e) and (f) in Figure 7b both
indicate that larger L requires more modification to the graph.

6.5 Comparison on Clustering Coefficients
Figure 8 shows the results of the mean of the clustering coefficient

differences between the original graph and the anonymized graph
(explained in the subsection 6.2). This figure shows that for large
value of θ the Removal/Insertion heuristic changes the CC less than

the Removal. Just removing edges, as in the Removal heuristic,
breaks the edges among the neighbors of the vertices and hence
reduces the clustering coefficient. However removing more edges,
will reduce the number of neighbors of the vertices and this is the
reason for the better performance of Removal heuristic for small θ
in comparison to the Removal/Insertion.

Figure 8 also shows that the Removal heuristic finds anonymized
graphs with smaller change to the CC in comparison to the best
competing heuristic of [29], namely GADED-Max.

6.6 Runtime comparison
Figure 9 shows the runtime of sampled graphs of the Google

network with 100, 500 and 1000 nodes. We record the time for
varying θ from 100% to 0% with steps of 10%. As soon as an
algorithm finds a solution with less θ than the previous achieved
θ, we record the time for all the θ values in between as the same
time. Therefore some heuristics present the same time for different
θ values. For the GADES algorithm, a constant time appears simply
due to its inability to find a solution better than an empty graph.

Remarkably, the best-performing heuristic of [29], GADED-Max,
not only results in graphs of less utility, but is also always slower
than our Removal heuristic. Figure 9 also shows that, as we increase
the la parameter, the runtime of the Removal/Insertion heuristic is
affected significantly, while that of the Removal heuristic is affected
minimally. This large increase in runtime is due to its significantly
expanded search space, which helps the heuristic find a solution of
higher utility at the cost of extra runtime.

We also measure the runtime of the two proposed L-opacification
heuristics for graphs of different sizes. Figure 10 shows the results.
The graphs are sampled from the Gnutella data, tuning the size to
100, 500 and 1000 nodes. We record the runtime of each algorithm
for L thresholds, 1 and 2. As expected, runtime grows with graph
size and L. Moreover, on the same data, the Removal algorithm is
faster than Removal/Insertion; this is due to the fact that, at each
iteration, the Removal/Insertion algorithm needs to try all possible
edges, whose number is larger than that of existing ones.

6.7 Testing Larger Graphs
Our experimental study was hitherto limited to sample data sets of

up to 1000 nodes, on which our algorithms elicit reasonable runtime.
Nevertheless, we argue that our algorithms can be used for larger
data as well, when the need arises, provided sufficient computational
resources. To illustrate this point, we end our experimental study
with an experiment on graph sizes ranging from 1000 to 10000
nodes and 3874 to 39788 edges, sampled from the ACM Digital
Library data set.

We ran our Edge Removal algorithm on these data for L = 1
and θ ranging from 50% to 90% . Figures 11 and 12 show our
runtime and distortion results, respectively. As expected, the runtime

593



0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9 10

R
un

ti
m

e(
ho

ur
s)

Number of Vertices (Thousands)

Θ = 90%

Θ = 80%

Θ = 70%

Θ = 60%

Θ = 50%

Figure 11: Runtime vs. size with variant θ

grows both with data size and with decreasing confidence threshold
θ (i.e., increasing adversary’s uncertainty). Our longest-running
experiment, on the ACM dataset with 10,000 nodes for confidence
threshold θ = 50%, took approximately 16 days. At the same time,
we observe that runtime grows linearly in both size and θ.

This long-running experiment on graphs of increasing size reveals
that, as data size grows, a solution at the same privacy level can be
obtained for less distortion, as shown in Figure 12. Thus, according
to this result, it becomes increasingly attractive for a data vendor to
publish large graphs offering the L-opacity privacy guarantee, since
the same guarantee can be delivered at lower information loss as the
size of the published graph grows. Besides, in order to achieve this
advantage, a data vendor may reasonably be willing to invest the
linearly increasing runtime observed in Figure 11.

0%

1%

2%

3%

4%

5%

6%

1 2 3 4 5 6 7 8 9 10

E
d

it
 D

is
ta

nc
e 

ra
ti

o 
(d

is
to

rt
io

n)

Number of Vertices (Thousands)

Θ = 90%

Θ = 80%

Θ = 70%

Θ = 60%

Θ = 50%

Figure 12: Distortion vs. size with variant θ

7. CONCLUSIONS
In this paper we examined the problem of anonymizing graph data,

with a focus on preventing the disclosure of sensitive information
that pertains to linkages. We formulated a specific yet practically
relevant instance of this problem, in which the aim is to prevent
an adversary who possesses background information about node
degrees in the original network from inferring the existence of
any short-path connection among nodes with high confidence. We
definedL-opacity, a precise and sufficiently strong privacy condition
that encapsulates this requirement, and formulated two effective
and comparatively efficient greedy heuristics that attempt to inflict
minimal alterations on the graph so as to abide by L-opacity.

Our experimental study demonstrates that our heuristic perform-
ing edge Removal/Insertion is better disposed to preserve key prop-
erties of the graph than one that only removes edges, while the latter
is more capable of always arriving at an alteration of the graph that
satisfies the problem constraints. Moreover, we demonstrate that
our two heuristics outperform a recently proposed method which
applies only to a limited version of our problem, in terms of both
the alteration they incur to the original graph and runtime.

8. REFERENCES
[1] L. Backstrom, P. Boldi, M. Rosa, J. Ugander, and S. Vigna. Four

degrees of separation. In WebSci, 2012.
[2] L. Backstrom, C. Dwork, and J. Kleinberg. Wherefore art thou

R3579X?: Anonymized social networks, hidden patterns, and
structural steganography. In WWW, 2007.

[3] S. Bhagat, G. Cormode, B. Krishnam, and D. Srivastava. Privacy in
dynamic social networks. In WWW, 2010.

[4] S. Bhagat, G. Cormode, B. Krishnamurthy, and D. Srivastava.
Class-based graph anonymization for social network data. PVLDB,
2(1):766–777, 2009.

[5] A. Campan and T. M. Truta. Data and structural k-anonymity in social
networks. In PinKDD, 2008.

[6] J. Cheng, A. W.-C. Fu, and J. Liu. k-isomorphism: Privacy-preserving
network publication against structural attacks. In SIGMOD, 2010.

[7] G. Cormode, D. Srivastava, T. Yu, and Q. Zhang. Anonymizing
bipartite graph data using safe groupings. The VLDB Journal,
19(1):115–139, 2010.

[8] R. W. Floyd. Alg. 97: Shortest path. Commun. ACM, 5(6):345, 1962.
[9] M. R. Garey and D. S. Johnson. Computers and Intractability: A

Guide to the Theory of NP-Completeness. Freeman, 1979.
[10] G. Ghinita, P. Karras, P. Kalnis, and N. Mamoulis. Fast data

anonymization with low information loss. In VLDB, 2007.
[11] S. Goel, R. Muhamad, and D. Watts. Social search in "small-world"

experiments. In WWW, 2009.
[12] M. Hay, G. Miklau, D. Jensen, D. Towsley, and P. Weis. Resisting

structural re-identification in anonymized social networks. PVLDB,
1(1):102–114, 2008.

[13] X. He, J. Vaidya, B. Shafiq, N. Adam, and V. Atluri. Preserving
privacy in social networks. In WI-IAT, 2009.

[14] A. Korolova, R. Motwani, S. U. Nabar, and Y. Xu. Link privacy in
social networks. In CIKM, 2008.

[15] J. Leskovec and E. Horvitz. Planetary-scale views on a large
instant-messaging network. In WWW, 2008.

[16] K. Liu and E. Terzi. Towards identity anonymization on graphs. In
SIGMOD, 2008.

[17] S. Milgram. The small world problem. Psych. Today, 2:60–67, 1967.
[18] S. Nobari. Scalable Data-Parallel graph algorithms from generation

to management. PhD thesis, National University of Singapore, 2012.
[19] M. Potamias, F. Bonchi, C. Castillo, and A. Gionis. Fast shortest path

distance estimation in large networks. In CIKM, 2009.
[20] Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover’s distance as

a metric for image retrieval. 40(2):99–121, 2000.
[21] P. Samarati. Protecting respondents’ identities in microdata release.

IEEE TKDE, 13(6):1010–1027, 2001.
[22] Y. Song, P. Karras, S. Nobari, G. Cheliotis, M. Xue, and S. Bressan.

Discretionary social network data revelation with a user-centric utility
guarantee. In CIKM, 2012.

[23] Y. Song, P. Karras, Q. Xiao, and S. Bressan. Sensitive label privacy
protection on social network data. In SSDBM, 2012.

[24] D. J. Watts. Six Degrees: The Science of a Connected Age. W. W.
Norton, 2003.

[25] W. Wu, Y. Xiao, W. Wang, Z. He, and Z. Wang. k-symmetry model
for identity anonymization in social networks. In EDBT, 2010.

[26] M. Xue, P. Karras, R. Chedy, P. Kalnis, and H. K. Pung. Delineating
social network data anonymization via random edge perturbation. In
CIKM, 2012.

[27] X. Ying and X. Wu. On link privacy in randomizing social networks.
In PAKDD, 2009.

[28] M. Yuan, L. Chen, and P. S. Yu. Personalized privacy protection in
social networks. PVLDB, 4(2):141–150, 2010.

[29] L. Zhang and W. Zhang. Edge anonymity in social network graphs. In
CSE, 2009.

[30] E. Zheleva and L. Getoor. Preserving the privacy of sensitive
relationships in graph data. In PinKDD, 2007.

[31] B. Zhou and J. Pei. Preserving privacy in social networks against
neighborhood attacks. In ICDE, 2008.

[32] L. Zou, L. Chen, and M. T. Özsu. k-automorphism: A general
framework for privacy-preserving network publication. PVLDB,
2(1):946–957, 2009.

594


