
Continuous Quantile Query Processing
in Wireless Sensor Networks

Johannes Niedermayer1, Mario A. Nascimento2, Matthias Renz1,
Peer Kröger1 and Hans-Peter Kriegel1

1Institute for Computer Science, LMU, Munich, Germany
2Dept. of Computing Science, University of Alberta, Canada
{niedermayer, renz, kroeger, kriegel}@cip.ifi.lmu.de

mario.nascimento@ualberta.ca

ABSTRACT
A major concern when processing queries within a wireless
sensor network is to minimize the energy consumption of
the network nodes, thus extending the networks lifetime.
One way to achieve this is by minimizing the amount of
communication required to answer queries. In this paper
we investigate exact continuous quantile queries, focusing
on the particular case of the median query. Many recently
proposed algorithms determine a quantile by performing a
series of refining histogram queries. For that class of queries,
we recently proposed a cost-model to estimate the optimal
number of histogram buckets within an algorithm for mini-
mizing the energy consumption of a query. In this paper, we
extend that algorithm for continuous queries. Furthermore
we also offer a new refinement-based algorithm that employs
a heuristic to minimize the number of message transmis-
sions. Our experiments, using synthetic and real datasets,
show that despite its theoretical runtime complexity our
heuristic solution is able to perform significantly better than
histogram-based approaches.

1. INTRODUCTION
Wireless Sensor Networks (WSNs) are usually defined as

large-scale, wireless, ad-hoc, multi-hop unpartitioned net-
works of homogeneous, small, static nodes deployed in an
area of interest [25]. A single sensor node consists of one
or more sensors, e.g., for temperature, acceleration, and
light intensity, in combination with a microprocessor, a small
amount of memory and a radio transceiver. By using these
components, a node can take measurements of its surround-
ings, derive further information from the collected data, and
send the resulting values to a root node via a path of adja-
cent nodes. Applications of WSNs include monitoring vol-
cano activity [29], building structures [12] or natural habitat
monitoring [18].

The lifetime of WSNs is typically limited by the amount
of energy each individual node requires for its correspond-

(c) 2014, Copyright is with the authors. Published in Proc. 17th Inter-
national Conference on Extending Database Technology (EDBT), March
24-28, 2014, Athens, Greece: ISBN 978-3-89318065-3, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

ing function, because sensor nodes usually rely on battery
power. Due to several practical reasons e.g. remote loac-
tions, often batteries cannot be easily replaced or recharged.
Hence, the energy consumption of each node must be re-
duced as much as possible in order to increase the lifetime
of the entire network.

Aggregate queries, e.g., average, minimum, maximum and
count are useful when analysing large quantities of data,
which is something a WSN is expected to produce over time.
In-network aggregation can be optimized to decrease the en-
ergy consumption of such types of aggregate queries in a
WSN [17]. Essentially, such optimizations avoid sending all
values to the sink (root) node. However in order to solve
more complex aggregate queries such as finding the median
or quantiles of the node values, it is still necessary to trans-
mit all values to the root node and compute the result in a
centralized manner.

This class of queries are particularly useful in the sense
that they are robust with respect to outliers and/or even-
tually some missing values. Due to the queries robustness
to outliers, the effect of defective nodes producing incor-
rect measurements is mitigated. In contrast, aggregates
such as the average can lead to siginificantly different results
in the presence of outliers. Exemplarily, in a set of values
3, 3, 3, 3, 103 with 103 representing an outlier, the median
query would return 3, while the average would be 23. The
effect of missing values is quite interesting when considering
WSN data, as some observed data values may eventually
not be transmitted due to link failure.

This paper addresses the median and more generally the
quantile query in hierarchical WSNs, i.e., computing a quan-
tile of all sensor values in the network where the network
topology is given by a tree. The WSN’s base station, i.e.,
where the query’s answer is expected, serves as the tree’s
root node. The contributions of this paper are as follows:

• We extend our recently proposed cost model-based al-
gorithms for snapshot quantile queries [21] to solve
continuous quantile queries .

• We propose, as a main contribution, a heuristic algo-
rithm that exploits the temporal correlation of values
for reducing the number of refinement rounds.

• We show that our heuristic solution typically performs
much better than histogram-based approaches, often
consuming significantly less energy than theoretically
optimal solutions, while still retrieving correct results.

247 10.5441/002/edbt.2014.24

The remainder of this paper is organized as follows. Sec-
tions 2 and 3 introduces basic concepts and discusses related
work concerning quantile queries in WSNs. Section 4.1 ex-
tends the cost model-based algorithm from [21] to contin-
uous queries. In Section 4.2 we propose our heuristic ap-
proach that exploits the temporal correlation of consecutive
quantiles. An extensive performance analysis in Section 5
evaluates our results. Section 6 concludes this paper.

2. PROBLEM DEFINITION
A WSN can be modeled as a graph Gp = (N ∪ {r}, Ep),

where the set of vertices is composed of the set of all sensor
nodes, N , and the (distinguished) root node (sink) r. The
set Ep = {{ni, nj}|dist(ni, nj) ≤ ρ∧ni, nj ∈ (N∪{r})∧ni 6=
nj} describes the radio connections between nodes, with ρ
being the radio range of all nodes and dist(ni, nj) being the
distance between ni and nj , e.g. the Euclidean distance. We
further assume that each ni ∈ N can reach r over multiple
hops, i.e., there exists at least one path from each node ni to
r. Gp describes the physical neighborhood of nodes. How-
ever, since we will address the problem of quantile queries in
hierarchical WSNs, the set of physical connections Ep has
to be reduced to a set of logical connections El ⊆ Ep such
that Gl = (N ∪ {r}, El) is an acyclic connected graph. Fur-
thermore we assume the simplification that messages can
be transmitted reliably from node to node. The root node
r has a special status since it has access to an infinite en-
ergy supply and additionally does not have any sensor for
measuring specific parameters, i.e., measurements are only
taken by nodes ni ∈ N . For clarity reasons, we assume that
each node ni measures a single value vt(ni) at each discrete
time stamp t. An extension of the concepts proposed in this
paper to nodes producing multiple values at a time is trivial
since additional values could be interpreted as received from
artificial child nodes.

Let us now introduce the quantile query:

Definition 2.1 (φ-quantile query). Given an input
parameter φ ∈]0, 1[, a φ-quantile query returns the element
with rank k = dφ|N |e.

The median query is the special and most important case
of a quantile query where k = d|N |/2e. However, the solu-
tion we present is in fact independent of the value of k, i.e.,
it can be used to solve the more generic quantile queries as
well by simply setting k to the desired value.

A continuous φ-quantile query continuously updates a quan-
tile over time. We exploit this continuity property, aiming
at reducing the overall energy consumption of the network
since quantiles are often temporally correlated.

A table containing the notation used in this paper can be
found in Table 1.

3. RELATED WORK

3.1 Overview
Algorithms for finding quantiles and medians in WSNs

can be classified as approximate solutions, probabilistic al-
gorithms, and exact methods. Since this work addresses
exact solutions for computing quantiles, we will concentrate
on exact solutions.

Approximate algorithms such as [26, 6, 10, 8, 16, 24] re-
turn quantile estimates within user-defined error bounds,

Table 1: Table of Notation

N Set containing all network nodes,
without root node r.

|N | Number of nodes in the network.
ni A network node, ni ∈ N .
r The root node; N ∩ {r} = ∅.
φ ∈]0, 1[The value of the φ-quantile.
k k = dφ|N |e
rmin < rmax Minimum and maximum possible value.
r Number of values in an integer range,

r = rmax − rmin + 1.
vmin, vmax The smallest (largest)

existing node measurement.
t A discrete time stamp.
vt(ni) The measurement (value)

of node ni at time t.
vtk The resulting φ-quantile

(k-th value) at time t.
Bi Bucket i of a histogram.
[Bi.lb, Bi.ub[Range of bucket Bi, Bi.lb, Bi.ub ∈ N.
Bi.count Counts the number of measurements in

[Bi.lb, Bi.ub[.
b The number of buckets in a histogram.
bexactopt The optimal number of buckets.

blbopt Approximation of bexactopt .
sh Header size of a message [bit].
sp Payload size of a message [bit].
sb Size of a bucket [bit].
sr Size of a refinement payload [bit].
sv Size of a measurement [bit].
s Size of a message, s = sh + sp [bit].
l, g, e State variables (counters)

for POS, HBC, and IQ.
lt, eq, gt State variables (intervals)

for POS, HBC, and IQ.
a, b Counters for the IQ approach.
A,R IQ: Sets transmitted during validation

(A) and refinement (R).
Ξ IQ:The interval where values

are transmitted directly.

ξl, ξr Offset of the bounds of Ξ from vt−1
k .

typically by creating quantile summaries. Such quantile
summaries can only be computed if the resulting value does
not have to be the exact quantile because an accurate quan-
tile summary will always contain all values, which is clearly
not efficient.

Probabilistic algorithms do not provide strict error bounds,
instead they guarantee that the result is within a given error
bound with a given probability. One method for computing
probabilistic quantiles is sampling [4]. For WSNs, special-
ized sampling algorithms such as described in [1, 5, 14] can
be applied. Shamir [22] used approximate counting to com-
pute a probabilistic median. The authors of [30] employed
order statistics to estimate quantiles. Note that exact solu-
tions can usually be made probabilistic by querying only a
subset of nodes, e.g. by employing a layered architecture as
described in [28].

TAG [17] provides the possibility to compute the exact

248

median with a worst-case complexity in per-node transmit-
ted values ofO(|N |). For such a query all values are collected
by the root node and the median computation is performed
centrally. In [23], the authors suggested a specialized routing
tree that is built according to the value distribution in the
network in order to improve the performance of queries like
min, max, top-k queries and the quantile query. Greenwald
and Khanna [10] handle the case where an exact quantile has
to be determined by applying an extension to their approx-
imate quantile summary algorithm. They solve the given
problem by transmitting O(log3(|N |)) values.

Many existing solutions employ histograms with b buck-
ets, however none of those employs cost models to estimate
the optimal number of buckets, as it is done in our approach.
For instance, in [22] and POS [9] the authors propose per-
forming a binary search, which is the special case of b = 2,
leading to O(log2(r)) refinement iterations where r denotes
the universe of all possible values. The authors of [19] also
propose to perform a binary search; their continuous so-
lution is similar to POS, however similar to our Interval-
based Quantiles (IQ) algorithm the number of refinement
iterations is reduced to one. However in contrast to this
solution we aim at completely avoiding refinements by em-
ploying heuristics. Liu et al. [16] suggested to determine
b by taking the message size into account; the number of
refinements in this scenario drops to O(logb(r)) with one of
their refinement strategies. Further publications [3, 2] use
techniques similar to ours to compute quantiles in WSNs,
however they neither use a formal cost model nor investi-
gate the performance of histogram-based approaches in re-
alistic scenarios, comparing to heuristic solutions; indeed we
will show in this paper that heuristic solutions are often the
best choice. Kuhn et al. [14] do not equidistantly divide
the universe of possible values into b subintervals but in-
stead sample measurements from the network and count the
number of measurements between two consecutive samples
in the received ordered list of values. The number of refine-
ments with this approach does not depend on r, however
it depends on the number of measurements in the network,
i.e., |N |, and, therefore, the number of refinements on av-
erage becomes O(logb(|N |)). Since this algorithm is based
on a snapshot scenario, we will not further address it in this
paper. Finally, the authors of [15] investigated the complex-
ity of median queries in terms of time, message and energy
complexity by employing the algorithms of Kuhn et al.

3.2 POS
Both our suggested algorithms reuse some of the research

efforts made in [9]. Since the knowledge of this algorithm is
fundamental for understanding our continuous algorithms,
we will review it within this section.

POS is a binary-search-based continuous approach that
uses the most recently computed quantile as a filter to reduce
the number of message transmissions during the next round.

During the initialization round t = 0, POS computes the
first quantile by using an aggregation technique equivalent
to TAG [17], i.e., all measurements are forwarded to the root
node. After the root node computes the quantile value vtk,
this value is broadcasted into the tree in order to provide
all nodes with a filter for the next round. Complementary
to vtk the root node stores some additional state information
after each round t, namely the number of values greater
than, equal to, and smaller than vtk; we denote them as g,

Figure 1: Validation - which nodes should send val-
idation packets? Arrows describe the motion of a
value and additionally indicate if a validation mes-
sage has to be sent or not.

Figure 2: Deciding whether or not a node has to
respond to a refinement request.

e, and l respectively. Hence, in the beginning of a round
t, the root node knows the intervals ltt−1 =] − ∞, vt−1

k [,
eqt−1 = [vt−1

k , vt−1
k], gtt−1 =]vt−1

k ,∞[and additionally the
outdated number of measurements in each of these intervals.
Since vtk is known to each node at the end of a round, every
node can compute these intervals as well, but e, g and l are
not known to them.

The following rounds are split up into two stages, valida-
tion and refinement. Validation is performed at the begin-
ning of each round t. Starting at the leaf nodes, each node
checks if the interval containing the new reading is different
from the interval that contains the reading of round t − 1
(see Figure 1); in this case the quantile value might change
and therefore a validation message is necessary.

Validation messages contain four counters describing the
movement of values, intolt, intogt, outoflt, outofgt and there-
fore they can be easily merged by intermediate nodes in a
TAG-like manner by simply adding up corresponding coun-
ters. The root node can use the received counts to update its
state variables g = g−outofgt+intogt, l = l−outoflt+intolt
and e = |N |−g−l. If g and l are still correctly distributed —

for the median it is necessary that g ≤ |N|
2
∧ l ≤ |N|

2
— then

vt−1
k is still a valid quantile. However, if g or l becomes too

large, the refinement protocol has to be executed. This is
done by performing a binary search in the range [vt−1

k ,∞] if
the new quantile is greater than the last one or in the range
[−∞, vt−1

k] if the new quantile is less than the last one. The
root node broadcasts the midpoint of the refinement inter-
val which is interpreted as the new quantile vestk by each
node. If the value of a node switched its interval, e.g. if it
moved from ltt−1 to gtest, but not if it moved from gtt−1 to
gtest, a message equivalent to the ones transmitted during
validation is sent (see Figure 2). The root node can then
update g, l and e again and stop if vestk is a valid quantile;
in this case vtk = vestk . If it is not, another refinement has to
be performed that halves the range of possible values again.
Note that the new quantile does not have to be broadcasted
in this scenario since it is already known to each node from
the last refinement.

Cox et al. introduced some additional improvements as
well. First of all, the refinement bounds ∞ and −∞ are by
far not optimal. However an additional variable hint can

249

be transmitted in validation messages that bounds the new
quantile better than −∞ or ∞; for the calculation of the
hints we refer to the original paper. This hint replaces ∞
and −∞ during refinement which can significantly reduce
the length of the refinement interval and therefore reduce
the number of refinements.

It is also possible to avoid further refinements if the num-
ber of values in the refinement interval becomes low. In this
case, POS requests all values in the remaining interval di-
rectly. Note that with this improvement a final broadcast
becomes necessary to update the filter of all nodes.

4. ALGORITHMS
Next we describe the two algorithms for continuous quan-

tile queries proposed in this paper. The first one, based
on histograms is asymptotically optimal under the (simpli-
fying) assumptions made, while the second one, a heuristic
solution, performs better in realistic settings.

4.1 A Histogram-Based Algorithm
As we have already shown, POS performs a binary search

in the determined refinement interval. However, as we have
shown in [21], a binary search is non-optimal from an energy
consumption point of view. Therefore, in this section, we
apply the cost model proposed in [21] to POS, improving
the efficiency of that approach.

The cost model proposed in [21] generally aims at reduc-
ing the sending energy of hotspot nodes. To do so, the cost
model computes a lower bound of the optimal number of

buckets as blbopt = e
W (

2×sh+sr
sb×e

)+1
, with sh the size of header

and footer of a message, sr the size of a refinement request,
sb the number of bits used to encode a bucket, and W (x)
the Labert W function [7]. While this cost is only a lower
bound of the actual cost, experiments have shown that this
approximation already leads to a good estimate of the opti-
mal number of buckets. The solution for finding the exact
number of buckets can be found in [21].

In [21] we followed the assumption that the root node
does not have any previous knowledge of the value distri-
bution. However, it is often suitable to perform an initial
query, e.g. equivalent to the one in [21] and then, during con-
secutive query rounds, use the knowledge of the last round
to tighten the search range. Therefore we suggest the His-
togram Based Continuous (HBC) algorithm, for performing
continuous quantile queries. It is based on both POS [9] and
the cost-model based approach from [21].

4.1.1 The HBC Algorithm
After the initial query, the root node broadcasts the cal-

culated k-th value vt−1
k into the network as suggested by

POS (see Section 3.2). As we assume temporal correlation
between consecutive rounds, this value is also a good pre-
diction of future quantiles. Therefore, this value is used by
network nodes as a filter during the next round. The valida-
tion convergecast in the beginning of the next round t uses
this filter and is equivalent to POS [9] validation (see Section
3.2), counting values that have been larger (smaller) and are
now smaller (larger) than the filter vt−1

k . After validation,
the root node knows a hint and the updated variables g,
l, and e. Based on g, l, and e, the root node can decide
whether the new value of the quantile is greater than, equal
to, or less than the old value. If vtk = vt−1

k , no refinement is

necessary. Otherwise, the root node can compute an interval
[lb, ub[that contains the k-th value. This interval is either
[hint, vt−1

k [if vtk < vt−1
k or [vt−1

k + 1, hint+ 1[if vtk > vt−1
k .

The root broadcasts a refinement request containing this in-
terval into the tree. Based on this refinement request, each
node nj divides the range [lb, ub[received from the root into b
buckets and sort its value v(nj) into the histogram bucket Bi

if Bi.lb ≤ v(nj) < Bi.ub holds. A histogram is then trans-
mitted to the respective parent node where histograms are
aggregated until they reach the root node. Given the aggre-
gated histogram and the variables g, e, l from POS, the root
node can compute the bucket Bj that contains the new k-th
value; the calculations can be easily derived from POS. Bj

is then refined iteratively equivalent to the non-continuous
solution from [21] by sending a refinement request contain-
ing the bounds [Bj .lb, Bj .ub[into the network and receiving
the corresponding histogram from the network. The refine-
ment finishes if Bj .ub − Bj .lb = 1; in this case the quantile
is uniquely determined. Finally, the root node broadcasts
the new value of the quantile, vtk, into the tree if vtk 6= vt−1

k ,
in order to update the filter of network nodes.

Note that within our implementation, we did not recom-
pute b during each round since we observed that the differ-
ence in performance was marginal. Furthermore, the im-
provements proposed in [21] can also be applied to this
continuous algorithm, such as compressing histograms by
removing empty buckets and sending values directly if the
refinement interval is nearly empty.

4.1.2 Eliminate Threshold Broadcasts
Our continuous approach (but not POS) always has to

broadcast the newly determined k-th value if it differs from
the quantile determined during the last round. In order to
eliminate this additional broadcasting, the following exten-
sion can be applied.

Equivalent to POS, a root node using the continuous his-
togram based algorithm stores the three variables l, e and g.
These variables count the values in the intervals]−∞, vtk[,
[vtk, v

t
k] and]vtk,∞[, respectively, after round t. Since vtk is

not known to each node it has to be broadcasted. However,
during every refinement the bounds of the refined bucket
Bi.lb and Bi.ub are broadcasted into the tree anyway, and
they restrict the position of the k-th value nicely. In or-
der to avoid the threshold broadcasting, the intervals can be
altered to]−∞, lb[, [lb, ub[and [ub,∞[where lb and ub de-
note the lower and upper bound contained in the last refine-
ment request. During validation, each node sends an update
equivalent to POS if its value jumped from one of these in-
tervals into another; the necessary adaptions to achieve this
are trivial and the computation of the hint can be adapted
as well. If l ≥ k, then the interval containing the quantile is
[hint, lb[. For the case that l < k ∧ l + e ≥ k the refinement
interval is [lb, ub[, and the refinement interval [ub, hint] is
chosen if l + e < k.

In addition to the eliminated threshold broadcasting, this
solution provides a good estimate if the k-th value changes
only a bit during two consecutive rounds - in this case only
the interval [lb, ub[has to be refined. However, if the k-th
value does not change during two consecutive rounds this so-
lution will typically have to perform additional refinements
in comparison to the basic solution. Also note that this
extension can not be simply combined with the last one.

250

4.2 A Heuristic Algorithm
The algorithm suggested in the last section depends on

the universe of values, yielding a worst-case complexity of
O(b ∗ logb(r)) per-node transmitted values. In this section
we introduce a heuristic approach, Interval-based Quantiles
(IQ), for continuous quantile queries that depends on the
number of measurements |N | with a worst-case complexity
of O(|N |) per-node transmitted values. Although this ap-
proach depends linearly on |N |, it can outperform POS and
even HBC in many cases, especially if the observed quantile
changes slowly over time. Due to the similar structure of
POS, HBC and IQ it is possible to switch between these ap-
proaches without reinitializing the network and always use
the best algorithm within a given environment, however we
leave heuristics to select the best solution for future research.

The intention of this approach is to avoid the overhead
for performing several refinements while heuristically mini-
mizing the number of transmitted values at the same time.
It increases the number of values transmitted during valida-
tion, and performs at most one refinement if the validation
packet did not contain enough information to compute the
exact quantile.

Equivalent to POS, IQ is based on the observation that
a physical phenomenon often changes gradually over time,
i.e., the results vt−1

k and vtk of two consecutive rounds dif-
fer only slightly (granted the term “slightly” depends on
the measured data). This observation is often refered to
as temporal correlation. Given POS, if vt−1

k = vtk a re-
finement is not necessary, because the root node can de-
rive that the quantile did not change by analyzing the in-
formation from received validation messages. However, if
in an integer setting there is for example vt−1

k = vtk + 1,
POS will have to perform a refinement. Depending on the
hint, determining the new k-th value can take several refine-
ment rounds and these refinements increase the communica-
tion cost. To avoid these refinements, we define an interval
Ξ = [vt−1

k +ξl, v
t−1
k +ξr], vt−1

k ∈ Ξ where values are transmit-
ted directly. The values ξl and ξr are determined at runtime.
If Ξ is chosen wisely, the new k-th value is contained in Ξ,
but Ξ is also small enough to avoid overhead for unneces-
sarily transmitted values. If vtk ∈ Ξ, a refinement can be
avoided since the value is transmitted to the root node dur-
ing validation. If vtk 6∈ Ξ a refinement is necessary, but in
order to finish the refinement as fast as possible we send val-
ues directly during refinement as well, i.e., a round finishes
after at most two convergecasts.

A more formal description of the algorithm can be found
in Algorithm 1. For the sake of brevity we constrain this
formal description to the control loop at the root node; the
behaviour at the network nodes is straightforward.

4.2.1 Initialization
The initialization can be performed by using TAG or by

using a histogram-based solution like the one described in
[21]. After initialization, v0k is broadcasted and g, e, l (see
Section 3.2) are initialized at the root node equivalent to
POS. The initialization algorithm is independent from our
solution, therefore every solution that allows to compute
v0k, g, l, and e is applicable. Since POS uses TAG during
initialization, we will use the same algorithm.

Additionally to the POS state variables, the interval Ξ has
to be initialized as well. Ξ will later represent the changing
pattern of the underlying physical phenomenon, and there-

Algorithm 1 IQ-Algorithm at the Root-Node

Perform initialization of g, l, and e equivalent to POS;
initialize ξ
Disseminate (v0k, ξ) into the network
for each round t do

Receive validation messages from children
Update e, g, l and hint equivalent to POS
Compute the set of values in Ξ received by child nodes,
i.e. A = ∪iAi, sorted in ascending order
if l < k ∧ l + e ≥ k then
vtk = vt−1

k

end if
if l ≥ k then

a = |{x ∈ A|x < vt−1
k }|

if l − a < k then
vtk = A[a− (l − k)− 1]
e = |{A[i]|A[i] = vtk}|
l = k − |{A[i]|i < a− (l − k)− 1 ∧A[i] = vtk}|
g = |N | − l − e

else
{l − a ≥ k}
Refinement: request the fl = l−k−a largest values
in]−∞, vt−1

k + ξl[
vtk = fl-th largest value in the set R of received
refinement responses
e = |{x ∈ R|x = vtk}|
l = k − (|R| − fl + 1)
g = |N | − l − e

end if
else

if l + e < k then
b = |{x ∈ A|x > vt−1

k }|
if l + e+ b ≥ k then
vtk = A[|A| − l − e− b + k − 1]

else
{l + e+ b < k}
Refinement: request the fg = k−l−e−b smallest
values in]vt−1

k + ξr,∞[
vtk = fg-th smallest value in the set R of received
refinement responses
l = l + e+ b + |R| − |{x ∈ R|x = vtk}|
e = |{x ∈ R|x = vtk}|
g = |N | − l − e

end if
end if

end if
if vtk 6= vt−1

k then
Disseminate vtk into the network

end if
end for

fore adapt to the behaviour of the k-th value. If there is
an upward trend, then vt−1

k will be close to the left interval
bound of Ξ and if there is a downward trend vt−1

k will be
close to the right bound. But unfortunately during initializa-
tion nothing is known about the behaviour of the measured
phenomenon, therefore we assume that vtk ≈ vt−1

k . In this
case Ξ should not contain too much values – otherwise the
validation would become very expensive –, but it should also
contain at least some values in order to avoid later refine-
ment. Since the root node knows at least parts of the value
distribution when using TAG, or more precise at least the

251

k smallest values [v1, ..., vk]1, it can use this information to
initialize Ξ. We suggest either to compute ξ = c∗ vk−v1

k
(c is

a constant to tweak the number of values transmitted during
validation) or the median of distances between consecutive
values. The latter one could be used to reduce the impact of
outliers, for example when the physical phenomenon shows
a normal distribution. These outliers would increase the
length of Ξ such that validation becomes more expensive.
For an initialization that is based on a b-ary search a tech-
nique similar to the average could be used by selecting a
representative refinement interval and dividing its length by
the number of candidates contained in the interval.

The filter broadcast after initialization contains a tuple
(v0k, ξ). Receiving nodes store v0k and set ξl = −ξ, ξr = ξ.

4.2.2 Update Rounds
Validation. During validation in round t the transmit-

ted state variables outoflt, intolt, outofgt, intogt are cal-
culated equivalent to POS, but the validation packet con-
tains an additional multi-set A containing all values in the
interval Ξ = [vkt−1 + ξl, v

k
t−1 + ξr], ξl ≤ 0, ξr ≥ 0. If a

leaf node’s (ni) value falls into Ξ, but if vt(ni) 6= vt−1
k ,

it adds its own value to A independent to whether or not
it would have transmitted a POS validation packet. If at
least some information has to be sent, a node sends a packet
(outoflt, intolt, outofgt, intogt, A) to its parent.

The multi-sets Ai received from children of an intermedi-
ate node can be merged by simply unioning these multi-sets;
merging the remaining variables works equivalent to POS.
Note that this technique leads to a worst-case complexity
of O(|N |) per-node transmitted values since in the worst
case an intermediate node has to forward all values from its
subtree.

Given the validation packets from its children, the root
node can finally compute the global values for outoflt, intolt,
outofgt, intogt, and A (and the global hint). It updates e,
g, l and determines the interval that contains the new k-th
value, i.e., lt =]−∞, vt−1

k [, eq = [vt−1
k , vt−1

k] or gt =]vt−1
k ,∞[

as described in Section 3.2. Finally, the root node can make
a refinement decision and refinement similar to [19].

Refinement for vtk ∈ eq. If the k-th value did not
change, i.e., vtk = vt−1

k and therefore l < k ∧ l + e ≥ k,
then no refinement is necessary, and vtk does not have to be
broadcasted since it is already known to all nodes.

Refinement for vtk ∈ lt. If vtk ∈ lt, i.e., l ≥ k, there are
two cases possible. Let a = |{x ∈ A|x < vt−1

k }| denote all
values in A that are smaller than the last quantile vt−1

k (see
Figure 3). Then if l− a < k the new k-th value is contained
in A. If measurements in A are sorted in increasing order,
the k-th value can be determined by taking A[a−(l−k)−1].
Let us assume without loss of generality that all values in A
are distinct. Then l− k describes all values vi ∈]−∞, vt−1

k [
with vi > vtk, therefore a − (l − k) denotes the values vi ∈
[vt−1

k + ξl, v
t−1
k [with vi ≤ vtk. Since A’s first element is

indexed with 0, 1 has to be subtracted. Updating e, l, and
g is straightforward.

The second case where l − a ≥ k is more costly since in
this case the interval]−∞, vt−1

k + ξl[has to be refined. The
root node broadcasts a refinement request asking for the
fl = l − k − a + 1 largest values in]−∞, vt−1

k + ξl[(or the

1This is the case if |N | is known to the root node before
the algorithm executed. The basic TAG approach would
transmit all |N |, and not only the k smallest values.

Figure 3: Notation used for explaining the validation
and refinement phase of IQ. a, b, g, l, and e describe
the number of values in a sub-interval of [rmin, rmax].

interval [hint, vt−1
k + ξl[, if POS-like hints are used). Again,

l−k describes all values vi ∈]−∞, vt−1
k [with vi > vtk. From

these l−k values a are already known. Since we do not only
want to retrieve the values vi > vtk but also vtk itself, we have
to send another value.

This technique is based on the assumption that vt−1
k − ξl

is already a good estimate of the new quantile, and therefore
fl < k. To indicates that the refinement has to be performed
in the interval]−∞, vt−1

k + ξl[, −fl can be transmitted.
Given the refinement request, leaf nodes return their value

if it is contained in]−∞, vt−1
k + ξl[(or [hint, vt−1

k + ξl[). In-
termediate nodes add their value to the refinement response
when necessary and remove all but the fl largest values from
the refinement response. Note that if non-unique values are
allowed then all values equal to the fl-th largest value in the
refinement response have to be transmitted, in this case the
refinement response might contain more than fl values.

The root node can take the fl-th largest from all received
values R, this is the new k-th value vtk. It can also compute
e = |{x ∈ R|x = vtk}|, l = k − (|R| − fl + 1) and g = |N | −
l − e.

Refinement for vtk ∈ gt. If there is l + e < k, then
the k-th value is contained in the interval]vt−1

k ,∞[. The
refinement works similar to the case above: let b = |{x ∈
A|x > vt−1

k }|. Then if l + e + b ≥ k the new k-th value
is contained in A. If measurements in A are sorted in in-
creasing order, the k-th value can be determined by taking
A[|A| − l − e− b + k − 1].

However if l+e+b < k a refinement has to be performed.
The refinement requests contains a value fg = k−l−e−b and
requests the fg smallest values in the interval]vt−1

k + ξr,∞[
(or]vt−1

k +ξr, hint] for POS-like hints). Again, intermediate
nodes forward only the fg smallest values, remaining values
are dropped by aggregating nodes.

The root node determines the fg (and possibly more if
non-unique values are allowed) smallest values R in the re-
ceived set of values, sets the fg-th smallest value as vtk, and
sets the value of l to l = l + e+ b + |R| − |{x ∈ R|x = vtk}|,
e = |{x ∈ R|x = vtk}| and g = |N | − l − e

Filter Broadcasting. If the k-th value changes between
two consecutive rounds it has to be broadcasted since it
can not be derived by nodes from refinement requests in a
POS-like manner. Therefore the root node broadcasts vtk if
vtk 6= vt−1

k . Intermediate nodes and leaf nodes update their
filter to the new quantile and use the received quantile to
update ξl and ξr. Note that after round t the quantile vtk
must be contained in [vtk + ξl, v

t
k + ξr] and therefore it is

necessary that ξl ≤ 0 and ξr ≥ 0. It would be possible to
remove this constraint, however our research showed that, in
our settings, this increases the complexity of the algorithm
without a major change in performance, therefore this will
not be addressed in this paper.

To compute Ξ, we suggest to store the m most recent k-th
values and set

252

Figure 4: Development of Ξ and vtk Over Time

ξl = min(
t

min
i=t−m+2

{vik − vi−1
k }, 0)

ξr = max(
t

max
i=t−m+2

{vik − vi−1
k }, 0)

where m is a system tweaking parameter. This increases
the absolute value of ξl if there is a downward trend, because
in this scenario vik − vi−1

k becomes negative. If there is an
upward trend ξl becomes zero, because if there is an upward
trend it does not make sense to transmit measurements with
a value less than the old quantile. For ξr the behaviour is
vice versa: With an upward trend the value of ξr increases,
but with a downward trend it becomes zero.

Figure 4 visualizes the development of Ξ (dark grey area)
and vtk (black line) in an air pressure data-trace over 125
rounds. The light grey area in the background denotes the
range between the smallest and largest measurement in the
network. White fields close to the black line denote refine-
ments – they visualize the interval between Ξ and the new
threshold. Usually no refinement is necessary to compute
the new quantile. However after initialization (round 1),
and if the underlying trend changes (for example round 95 in
Figure 4), it takes some time until Ξ adapted to the altered
conditions. Therefore, if there are short-lived trends, the
number of refinements and therefore the energy consump-
tion increases. Additionally the energy consumption of this
algorithm depends on the number of values in Ξ. If Ξ en-
closes a lot of values, either because the length of Ξ becomes
very large because the quantile fluctuates a lot, or because
the density of values in Ξ is just high due to the underlying
value distribution, the performance of this algorithm suffers
as well.

5. PERFORMANCE EVALUATION

5.1 Test Setup
The performance analysis was performed by using a Java

coded framework. Given a set of input variables, several
simulation runs, all of them consisting of an equal number
of rounds, were performed. Performance indicators such as
the number of transmitted messages, the number of trans-
mitted values, the maximum per-node energy consumption,
and the network lifetime were calculated by computing the
average of the given indicator over all rounds and simulation
runs. For the sake of brevity, we will only focus on the net-
work lifetime and maximum per-node energy consumption
in this paper due to the optimization goals of our algorithms.
During a simulation run all compared algorithms used the
same physical and logical network topology. The topology
was changed between two consecutive simulation runs. On
real world data sets the topology was only changed by se-
lecting another root node; all nodes’ position was fixed. The

Figure 5: Synthetic Data: Interpolated Noise

synthetic dataset also enabled the possibility to reposition
the nodes between two simulation runs.

5.1.1 Node Distribution
Nodes were distributed in a rectangular area according

to the underlying dataset. After distribution, the physical
neighbours of each node were computed by finding all nodes
in a specified radius – the radio range ρ – in the neighbour-
hood of the node. This information was then used to create
a routing tree by reducing the overall set of physical connec-
tions between nodes to a small subset of logical connections.
For our simulations, we used a Shortest Path Tree. For each
node it is only possible to send messages to its children or
to its parent.

5.1.2 Synthetic Dataset
The synthetic dataset was created on the fly when per-

forming a simulation run. Nodes were distributed in an
area of 200m in width and length. For initialization of the
values we used an image containing interpolated noise to
simulate the spatial correlation of values in reality. An ex-
ample of such interpolated noise can be found in Figure 5.
Each node’s position in the 200m×200m area was mapped
to the corresponding coordinates in the picture, and the re-
sulting greyscale value was used as the node’s initial value.
Because the input image only produced 256 different values,
we added some additional noise by using a pseudo random
number generator. The noise magnitude was set to less than
1

256
of the image’s range in order to keep the overall distri-

bution of values in the image. The resulting greyscale value
was then scaled to a given integer range.

For the continuous query setting we allowed some kind of
trend, and therefore there had to be space to the upper and
lower end of the domain such that values could increase or
decrease over time. Therefore the initial range of values was
set to about a third of the whole range during initialization.

The resulting data was used to initialize the nodes’ values.
For computing consecutive values, temporal correlation of
values had to be taken into account. Temporal correlation is
not unusual, e.g. when tracking temperature or air pressure
over time. To simulate this behaviour, we used a sinusoidal
function with additional noise. The noise was set to 10% of
the range of the initial value distribution by default.

5.1.3 Real Datasets
Additionally we tested our algorithms with a more real-

istic pressure dataset from [27]. The pressure dataset was

253

derived from data collected by the Live from Earth and Mars
project2 by extracting data traces for 1022 nodes. Unfortu-
nately this dataset did not contain information about the
spatial distribution of the data. In order to create a realistic
setting for this dataset where neighbouring nodes produce
similar values, we used a self-organizing map (SOM) ap-
proach similar to [13]. Feature vectors of size one were used
as input of the SOM, containing the first measurement of
each node, and the output was the position of each node.

5.1.4 Cost Function
To determine the energy consumption of a node within

a sensor network, we used a well known cost function that
was for example used in [11]. It distinguishes between three
different modes: sending a message, receiving a message and
sleeping. The costs for sending a message is computed by
the function s ∗ (α+ β × ρq) where s denotes the size of the
transmitted packet, α is a distance independent constant, β
is a distance dependend constant multiplied by ρq, with ρ
the radio range of a node. Equivalent to [11] we assumed
α = 50nJ/bit, β = 10pJ/bit/m2 and q = 2. The energy
consumption for receiving data was computed by the func-
tion s ∗ γ, γ = 50nJ/bit. We set the energy consumption in
sleeping mode to 0 since the sleeping cost depends highly
on the underlying MAC layer, e.g. the scheduling strategy.
The initial energy supply of each node was set to 30 mJ. The
maximum payload size smax

p was set to 128 bytes, the header
length sh was set to 16 bytes by default. These values were
derived from, but simplify the IEEE 802.15.4 standard3.

When sending a packet, the consumed energy is deducted
from the sender’s energy supply. If a node sends a message,
energy is also subtracted from the receiving node(s) energy
supply since we assume that due to a scheduling strategy
each node knows when it might receive a message.

5.1.5 Performance Metrics
As performance metrics we employed the maximum per-

node energy consumption on the one-hand side and the net-
work lifetime on the other hand. The maximum energy con-
sumption per node describes the energy of the node that
consumes most energy, i.e. a hot spot node that runs out
of power first. To measure the network lifetime we decided
to measure the number of rounds until the first node runs
out of energy. For additional experiments on the number of
transmitted values and the number of transmitted messages
we refer to [20].

5.1.6 Algorithm Setup
We are going to compare TAG [17], POS [9], and LCLL

[16] with our solutions HBC and IQ. HBC has been in-
troduced in Section 4.1, additionally we used the heuristic
from [21] that retrieves values directly, and the improve-
ments from Section 4.1.2. Instead of transmitting two hints
containing the minimum and the maximum measurements
that changed their state (see POS), we sent the maximum
difference between the last quantile and the minimum and
maximum instead. This leads to a reduction of transmitted
values during validation, but it can increase the size of the
refinement interval. IQ was implemented as suggested in
Section 4.2 with the same hints as HBC.

2http://www-k12.atmos.washington.edu/k12/
grayskies/nw weather.html
3c.p. http://standards.ieee.org/about/get/802/802.15.html

POS was configured to transmit values directly during re-
finement, if all values in the refinement interval fit into a
single message. Since smax

p was set to 128 bytes by default,
64 two-byte measurements could be transmitted. In vali-
dation messages, two hints containing the minimum and a
maximum of all values that changed their state were sent.

LCLL was implemented with recursive Hierarchical Re-
fining (LCLL-H) and Slip Refining (LCLL-S). Hierarchical
Refining leads to a worst-case behaviour of O(logb(r)) re-
finements while Slip Refining yields only linear worst-case
performance. However, since Slip Refining performs very
well if the distance between two consecutive quantiles is low,
we implemented this approach as well.

Furthermore we improved LCLL’s validation stage. In
the original implementation each node sorts its value into
the corresponding bucket and forwards it to its parent node.
Since this behaviour leads to high overhead for sending nodes,
we chose to implement a different technique: If a node’s
value stays in the same bucket as during the last round, no
update is sent. However if a node’s value slipped to another
bucket between two rounds, two buckets are transmitted.
The last bucket of the node is reduced by 1 to show that
the node left this bucket. The count of the new bucket is
increased by one to indicate the new bucket. This technique
can significantly decrease the number of message transmis-
sions since nearly all nodes with measurements in the bound-
ary buckets do not have to transmit anything during vali-
dation. LCLL was also improved by applying improvements
suggested in [21], and a node did only transmit its value
during a refinement if it was contained in the refinement in-
terval, but not if it was contained in a boundary bucket. b
was set according to the message size as suggested by [16].

For TAG we assumed that the root node knows the num-
ber of nodes in the network. Therefore k can be broadcasted
during query dissemination and only k values have to be for-
warded by intermediate nodes to retrieve the k-th value at
the root node. Note that we cut off the graphs of TAG if its
maximum per-node energy consumption was too high.

5.1.7 Variable Setting
Given a set of input variables, we performed 20 simulation

runs with 250 rounds each. The independent variables were
set according to Table 2. We varied the number of nodes
(|N |), the noise of the sinusoidal function (ψ), the period
(τ) of the sinusoidal function, and the radio range (ρ) of a
node. The requested quantile was fixed to the median, i.e.,
(k = d|N |/2e).

Table 2: Independent variables. Bold text: default
values.

Variable Values
|N | 125, 250, 500, 1000, 2000
ψ 0, 5, 10, 20, 50 percent
τ 250, 125, 63, 32, 8 rounds
ρ 15, 35, 60, 85 m

5.2 Evaluation Results

5.2.1 Varying the Number of Nodes (|N |)
With increasing node count |N | (Figure 6), the maximum

per-node energy consumption grows for all approaches. The
vast majority of their increase in energy consumption comes

254

Figure 6: Synthetic Dataset, Varying |N |

from the growing number of values an intermediate node has
to receive. With higher |N | the network becomes more dense
because the area containing the nodes does not change. This
leads to intermediate nodes having more children, and more
children imply more message receptions.

Note that the maximum per-node energy consumption of
LCLL-S scales very good with |N |. This is mainly the case
because the refinement interval of this approach is very se-
lective. Therefore an intermediate node only has to receive
a few values from children even with large |N |, although the
number of refinements of LCLL-S is much higher than for,
e.g. LCLL-H. Unfortunately for small |N | this technique
leads to a worse performance because the many refinements
can not be justified by only a small amount of nodes that
answer to refinement responses.

For IQ the sending energy increases similar to POS. Since
we assume the same distribution and trends during all sim-
ulations, the length and position of Ξ is similar for all |N |,
however Ξ contains more values for large |N |, forcing in-
termediate nodes to transmit more values. LCLL-H shows a
similar behaviour concerning the sending energy because the
efficiency of histogram compression drops with |N |. Since
LCLL-H histograms are very large, in our setting 64 buck-
ets, a high value density can lead to a relatively high energy
consumption. Note that the number of refinements does not
change with |N | for LCLL-H; it depends only on the distance
between the old quantile and the new quantile. For LCLL-S
the sending energy increases with |N |, because refinement
responses have to be forwarded by intermediate nodes more
often since the density of values increases.

5.2.2 Varying the Period (τ)
With varying the period (τ) we aimed at investigating the

impact of a highly changing quantile on the introduced so-
lutions. If a period lasts over many rounds, the difference
between two consecutive quantiles is low, but with a large
time interval between consecutive rounds the quantile un-
derlies more extreme changes if the amplitude of the sinus
function is not changed. It is clearly visible that all solutions
perform best for high τ , i.e., a small change in the underly-
ing physical phenomenon. In the following we will explain
the reason for this behaviour.

For POS and HBC the hints are closer to the recent quan-
tile if measurements change only slightly, and therefore the
width of the refinement interval becomes small. This re-

duces the number of candidates and therefore the number
of message transmissions and transmitted values, leading to
a lower energy consumption. Furthermore, the new quantile
often falls into HBC’s eq interval if τ is large. Therefore, val-
ues often can be requested directly after validation instead
of performing expensive refinements bevore sending the val-
ues. However if τ is small, the gain achieved by using this
technique diminishes because the quantile moves too much
as that two consecutive quantiles can be contained in the
same range eq – and this causes additional refinements.

For LCLL-H the number of refinements and therefore the
energy consumption increases if τ becomes small because
the number of refinements of this approach depends loga-
rithmically on the distance between two consecutive quan-
tiles. This is also the reason why LCLL-S depends much
more on τ since its number of refinements depends linearly
on the distance between two quantiles.

Given IQ, the length of the interval Ξ is very small for
large τ and therefore only a few values are transmitted dur-
ing validation, leading to a low energy consumption. How-
ever if the cycle duration is very small, other solutions like
HBC and LCLL-H can outperform IQ because, due to the
large interval Ξ, IQ nodes have to transmit many values.
This underlines the optimality of HBC and LCLL-H that
is directly related to their logarithmic behaviour. However
note that, in contrast to HBC or POS, the number of refine-
ments barely changes with τ if IQ is used. This is the case
because Ξ is chosen in a way that it is large enough to avoid
as many refinements as possible.

5.2.3 Varying the Noise (ψ)
By manipulating the period τ of the sinusoidal function

we explain the impact of large changes in the quantile on the
analyzed algorithms. But it is also possible that the quan-
tile stays nearly constant but the measurements of different
nodes vary a lot, i.e., the effect of changing measurements on
the quantile cancel out. We simulated this by adding noise
(see Figure 8) to the value of each node. Note that noise
only slightly affects the median, however if another quan-
tile like k = 1 would be requested, noise could significantly
change the resulting value.

HBC, POS and IQ nodes send updates if a node’s mea-
surement jumps from one side of the quantile to the other
side between two consecutive rounds, hence the number of
update messages increases with higher noise because more

255

Figure 7: Synthetic Dataset, Varying τ

Figure 8: Synthetic Dataset, Varying ψ

nodes change their state, increasing the energy consumption
of these approaches as well. Additionally, POS hints, which
are also used by HBC and IQ in a slightly different manner,
depend on the maximum distance of values (that changed
their state) to the old quantile. With increasing noise this
maximum distance increases as well and therefore the length
of the refinement interval increases, leading to a larger set
of candidates and increasing the number of refinements for
POS. This effect should be similar to HBC, however the in-
depth analysis of our solution showed another interesting
result: Although with a noise of 0% quantiles never fell in
the interval eq, the probability that the new quantile was
contained in eq was quite high if the noise was set to 50%.
The explanation is straightforward. If there isn’t any noise
then only the sinusoidal function affects the the quantile.
Therefore, if the inclination of this function is too high, the
new quantile will never be contained in eq. However, if there
is noise, there is the possibility that the new quantile is very
close to the recent quantile.

Also note that, for LCLL-H, noise does not have a large
impact on the maximum per-node energy consumption. For
this approach only the changing behaviour of the quantile
is important. Since the changing pattern of the quantile
is only slightly affected by noise, LCLL-H’s performance is
not affected as well. Therefore LCLL-H is a good choice
if the quantile changes slowly but measurements oscillate a
lot. Unfortunately this is not true for LCLL-S. Since this

approach depends highly on the distance between two con-
secutive quantiles even minor changes of the quantile related
to noise can increase the number of refinements. Therefore
the curves for LCLL-H and LCLL-S are not parallel but the
performance of LCLL-S drops to a performance similar to
LCLL-H for high noise.

5.2.4 Varying the Radio Range (ρ)
The graphs visualizing the performance of the compared

solutions with varying radio range ρ show similar results to
the graphs from the snapshot query setting. Since the num-
ber of children of a node grows with ρ, a large fraction of
the increase in energy consumption is related to the increas-
ing number of values a node has to receive. This is also
the reason why LCLL-S performes well for large ρ: due to
its very restricted refinement range only a few nodes report
refinement responses after each refinement request.

5.2.5 Results with the Air Pressure Dataset
We also performed simulation runs with the more realis-

tic air pressure dataset. Since the correlation of consecutive
values plays an important role for continuous approaches, we
performed several simulations where we skipped an increas-
ing amount of samples from the input data. This proceed-
ing is equivalent to sleeping a longer time interval between
two consecutive rounds. Concerning the range of values, we
tested the algorithms within two different settings. The op-
timistic setting takes the minimum (vmin) and maximum

256

Figure 9: Synthetic Dataset, Varying ρ

Figure 10: Air Pressure Dataset Dataset, Varying the Sampling Rate

(vmax) value from the whole dataset and scales all values
such that rmin = vmin and rmax = vmax. The pessimistic
setting assumes higher fluctuations of the measured data
and sets therefore the maximum and minimum air pressure
values ever measured on earth as the range, i.e., rmin = 856
and rmax = 1086. The results of our analysis can be found
in Figure 10. Note that only the graphs visualizing the max-
imum per-node energy consumption are shown for the sake
of brevity.

The results are very similar to the results with varying
period that we analyzed previously. The more skipped sam-
ples, the more the quantile changes, introducing additional
refinements. Note that POS-based approaches are barely af-
fected by the scaling of values since their performance only
depends on the number of values in the refinement interval
that is not influenced by scaling.

However, LCLL-H shows better performance if values are
very close together (pessimistic setting). This is the case
because if values are close together, LCLL-H has to per-
form less refinements as if values are further away from each
other, and refinements are very costly for LCLL-H for two
reasons: First, refinement intervals can become very large
and therefore unspecific. Second, each refinement implies at
least two steps, zooming in and zooming out.

In contrast, LCLL-S refinements are very cheap if the old
and the new quantile are close together, and therefore LCLL-

S is able to outperform IQ in the optimistic setting with
a high sampling rate, although the number of refinements
performed by LCLL-S is larger than in the pessimistic set-
ting. This is the case because in the pessimistic setting
more values fall into the focused window such that more
validation messages are transmitted, increasing the number
of received values for intermediate nodes and decreasing the
performance of LCLL-S.

6. CONCLUSIONS
In this paper we addressed the problem of computing

quantiles in hierarchical WSNs by employing either a b-ary
search and a heuristic solution. When compared to two pre-
viously proposed solutions for processing quantile queries,
using real and synthetic datasets, the b-ary search outper-
formed both, i.e., extended the WSN’s lifetime, in virtually
all cases. However, our heuristic solution was even able to
outperform the optimized b-ary search in many cases, as the
heuristic solution was optimized to reduce the number of
refinements as much as possible. In conclusion, a heuristic
algorithm should be employed when there is some tempo-
ral correlation between consecutive values. In contrast, the
optimized b-ary search is more useful if the temporal corre-
lation between consecutive quantiles is low.

During future research we would like to address the prob-

257

lem of message loss. If messages get lost, a rank error is
introduced and it would be interesting to analyze the be-
haviour of different approaches under loss in order to re-
strict the rank error as much as possible, and to provide a
real-time error estimate at the base station.

Acknowledgements
Research partially supported by DAAD (Germany) and NSERC
(Canada).

7. REFERENCES
[1] H. Akcan and H. Brönnimann. A new deterministic

data aggregation method for wireless sensor networks.
Signal Processing, 87(12):2965–2977, 2007.

[2] K. Ammar and M. A. Nascimento. Histogram and
other aggregate queries in wireless sensor networks. In
Proc. SSDBM, pages 527–536, 2011.

[3] K. Ammar, M. A. Nascimento, and J. Niedermayer.
An adaptive refinement-based algorithm for median
queries in wireless sensor networks. In Proc. MobiDE,
pages 9–16, 2011.

[4] Z. Bar-Yossef, R. Kumar, and D. Sivakumar.
Sampling algorithms: Lower bounds and applications.
In Proc. STOC, pages 266–275, 2001.

[5] B. A. Bash, J. W. Byers, and J. Considine.
Approximately uniform random sampling in sensor
networks. In Proc. DMSN, pages 32–39, 2004.

[6] J. Considine, M. Hadjieleftheriou, F. Li, J. Byers, and
G. Kollios. Robust approximate aggregation in sensor
data management systems. Proc. ToDS, 34(1):Article
6, 2009.

[7] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J.
Jeffrey, and D. E. Knuth. On the lambert w function.
Advances in Computational Mathematics, 5:329–359,
1996.

[8] G. Cormode, F. Korn, S. Muthukrishnan, and
D. Srivastava. Space- and time-efficient deterministic
algorithms for biased quantiles over data streams. In
Proc. of PODS, pages 263–272, 2006.

[9] L. P. Cox, M. Castro, and A. Rowstron. Pos: A
practical order statistics service for wireless sensor
networks. In Proc. of ICDCS, pages 52–64, 2006.

[10] M. B. Greenwald and S. Khanna. Power-conserving
computation of order-statistics over sensor networks.
In Proc. of PoDS, pages 275–285, 2004.

[11] W. B. Heinzelman. An Application-specific Protocol
Architecture for Wireless Networks. PhD thesis,
Massachusetts Institute of Technology, 2000.

[12] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves,
S. Glaser, and M. Turon. Health monitoring of civil
infrastructures using wireless sensor networks. In Proc.
of IPSN, pages 254–263, 2007.

[13] T. Kohonen. Self-Organizing Maps. Springer,
Heidelberg, 2001.

[14] F. Kuhn, T. Locher, and R. Wattenhofer. Tight
bounds for distributed selection. In Proc. of SPAA,
pages 145–153, 2007.

[15] X. Y. Li, Y. Wang, and Y. Wang. Complexity of data
collection, aggregation, and selection for wireless
sensor networks. IEEE TC, 60(3):386 – 399, 2010.

[16] K. Liu, L. Chen, M. Li, and Y. Liu. Continuous
answering holistic queries over sensor networks. In
Proc. of IPDPS, pages 1–11, 2008.

[17] S. Madden, M. J. Franklin, J. Hellerstein, and
W. Hong. Tag: a tiny aggregation service for ad-hoc
sensor networks. SIGOPS Oper. Syst. Rev.,
36(SI):131–146, 2002.

[18] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk,
and J. Anderson. Wireless sensor networks for habitat
monitoring. In Proc. of WSNA, pages 88–97, 2002.

[19] H. E. H. Mustafa, X. Zhu, Q. Li, and G. Chen.
Efficient median estimation for large-scale sensor rfid
systems. IJSNet, 12(3):171–183, 2012.

[20] J. Niedermayer. Quantile Queries in Wireless Sensor
Networks. Diploma thesis, LMU Munich, 2011.

[21] J. Niedermayer, M. A. Nascimento, M. Renz,
P. Kröger, K. Ammar, and H.-P. Kriegel. Cost-based
quantile query processing in wireless sensor networks.
In Proc. MDM, 2013.

[22] B. Patt-Shamir. A note on efficient aggregate queries
in sensor networks. Theor. Comput. Sci.,
370(1-3):254–264, 2007.

[23] R. Prakash, E. Nourbakhsh, and K. Sahu. Data
aggregation in sensor networks: No more a slave to
routing. In Proc. of Allerton, pages 1452–1459, 2009.

[24] S. Roy, M. Conti, S. Setia, and S. Jajodia. Securely
computing an approximate median in wireless sensor
networks. In Proc. of SecureComm, pages 6:1–6:10,
2008.

[25] K. Römer and F. Mattern. The design space of
wireless sensor networks. IEEE Wireless
Communications, 11(6):54–61, 2004.

[26] N. Shrivastava, C. Buragohain, D. Agrawal, and
S. Suri. Medians and beyond: New aggregation
rechniques for sensor networks. In Proc. of SenSys,
pages 239–249, 2004.

[27] M. H. Thanh, K. Y. Lee, Y. W. Lee, and M. H. Kim.
Processing top-k monitoring queries in wireless sensor
networks. In Proc. of SensorComm, 2009.

[28] D. Wang, Y. Long, and F. Ergun. A layered
architecture for delay sensitive sensor networks. In
Proc. of SECON, pages 24 – 34, 2005.

[29] G. Werner-Allen, K. Lorincz, M. Welsh, O. Marcillo,
J. Johnson, M. Ruiz, and J. Lees. Deploying a wireless
sensor network on an active volcano. IEEE Internet
Computing, 10(2):18–25, 2006.

[30] Y. Zhang, X. Lin, Y. Yuan, M. Kitsuregawa, X. Zhou,
and J. X. Yu. Duplicate-insensitive order statistics
computation over data streams. IEEE TKDE,
22(4):493–507, 2010.

258

