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ABSTRACT
Skyline queries are useful for finding interesting tuples from
a large data set according to multiple criteria. The sizes of
data sets are constantly increasing and the architecture of
back-ends are switching from single-node environments to
non-conventional paradigms like MapReduce. Despite the
usefulness of skyline queries, existing works on skyline com-
putation in MapReduce do not take full advantage of paral-
lelism but still run significant parts serially. In this paper,
we propose a novel approach to compute skylines efficiently
in MapReduce. We design a grid partitioning scheme to di-
vide the data space into partitions, and employ a bitstring to
represent the partitions. The bitstring is efficiently obtained
in MapReduce, and it clearly helps prune partitions (and
tuples) that cannot have skyline tuples. Based on the grid
partitioning, we propose two MapReduce algorithms to com-
pute skylines. Both algorithms utilize the bitstring and dis-
tribute the original tuples to multiple mappers and make use
of them to compute local skylines in parallel. In particular,
MapReduce Grid Partitioning based Single-Reducer Skyline
Computation (MR-GPSRS) employs a single reducer to as-
semble the local skylines appropriately to compute the glob-
al skyline. In contrast, MapReduce Grid Partitioning based
Multiple Reducer Skyline Computation (MR-GPMRS) fur-
ther divides local skylines and distributes them to multiple
reducers that compute the global skyline in an independent
and parallel manner. The proposed algorithms are evalu-
ated through extensive experiments, and the results show
that MR-GPMRS significantly outperforms the alternatives
in various settings.

1. INTRODUCTION
Given a set R of multi-dimensional tuples, a skyline

query [4] returns a subset SR that contains all the tuples
in R that are not dominated by any others in R. The dom-
inance relationship between two tuples is defined as follows.

Definition 1. (Tuple Dominance) Tuple ri dominates
tuple rj if and only if ri is not worse than rj for all dimen-
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sions and ri is better than rj for at least one dimension.

We call this conventional definition tuple dominance to
distinguish it from the partition dominance that is to be
defined in Section 3.1 for partitions of the data space. In
the tuple dominance, whether a dimensional value is better
or worse than another for one dimension is determined by
the semantics of the dimension and/or the configuration of
the skyline query. Typically, a value v1 has to be either
larger or smaller than another value v2 for v1 to be better
than v2. Without the loss of generality, this paper assumes
that a smaller value is better. We use ri ≺ rj to denote that
ri dominates rj .

Skyline queries have a wide variety of applications that are
characterized by multi-criteria decision as the core problem.
Processing skyline queries, also known as skyline computa-
tion, is computationally costly. To decide whether a tuple is
in the skyline or not, many tuple dominance checks may be
needed and each check may involve all d dimensions. Sky-
line computation is both IO-consuming and CPU-intensive
in the centralized settings. Therefore, for the sake of overall
efficiency, it is interesting to compute skylines in the dis-
tributed and/or parallel settings.

According to a recent survey [10], a considerable num-
ber of approaches have been proposed for skyline process-
ing in distributed and/or parallel environments. However,
very few [6, 20] have studied skyline computation in the
MapReduce platform, although it is being increasingly used
to process massive data for its scalability and fault-tolerance.
The availability of scalable MapReduce systems, such as
Hadoop [2], makes it desirable to leverage such systems for
large-scale parallel skyline computation. It is noteworthy
that the existing techniques for distributed and parallel sky-
line computation follow a paradigm radically different from
MapReduce, as they require arbitrary inter-node communi-
cation and coordination.

On the other hand, the existing MapReduce skyline algo-
rithms [6,20] are not well designed in that they do not take
full advantage of parallelism but still run significant parts
serially. The main difficulty lies in that global skyline tuples
cannot be decided solely based on local information of each
individual data partition and hence the lack of inter-mapper
and inter-reducer communication in MapReduce limits the
parallelism of the computation.

In this paper, we propose a novel approach to compute
skylines efficiently in MapReduce. We design a grid parti-
tioning scheme to divide the data space into partitions, and
use a compact bitstring to represent the partitions. The
bitstring is efficiently obtained in MapReduce, and it not
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only gives all nodes an overview of the input data but also
helps prune data partitions that cannot have skyline tuples.
Based on the grid partitioning, we propose two MapReduce
algorithms to compute skylines. Both algorithms utilize
the bitstring and distribute the original tuples to multiple
mappers and make use of them to compute local skylines
in parallel. In particular, MapReduce Grid Partitioning
based Single-Reducer Skyline Computation (MR-GPSRS)
employs a single reducer to assemble the local skylines ap-
propriately to get the global skyline, whereas MapReduce
Grid Partitioning based Multiple Reducer Skyline Compu-
tation (MR-GPMRS) further divides local skylines and dis-
tributes them to multiple reducers that compute the inde-
pendent parts of the global skyline in parallel.

We make the following contributions in this paper.

• We design a compact bitstring representation for a grid
based data space partitioning scheme.

• We propose two MapReduce skyline algorithms by u-
tilizing the bitstring to prune data and parallelize pro-
cessing.

• We give a model to estimate the costs of the proposed
skyline algorithms in MapReduce.

• We evaluate the effectiveness and efficiency of the pro-
posals through extensive experiments.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the related work. Section 3 details the grid
partitioning scheme and the bitstring. Section 4 presents the
MapReduce Grid Partitioning based Single-Reducer Skyline
Computation (MR-GPSRS) algorithm. Section 5 elaborates
on the MapReduce Grid Partitioning based Multiple Reduc-
er Skyline Computation (MR-GPMRS) algorithm. Section 6
gives a model to estimate the costs for the algorithms. Sec-
tion 7 reports on the experimental studies. Section 8 con-
cludes the paper and discusses future work.

2. RELATED WORK
In this section, we briefly review MapReduce and the ex-

isting works on skyline computation in MapReduce.

2.1 The MapReduce Framework
MapReduce is a framework for distributed computing. As

illustrated in Figure 1, it is based on a Map and a Reduce
function [9]. The Map function is invoked for each record in
the input file and it produces a list of key-value pairs, i.e.,
Map(k1, v1)→ list(k2, v2). The Reduce function is then in-
voked once for each unique key and the associated list of val-
ues, and produces key-value pairs that are the part result of
the MapReduce job, i.e., Reduce(k2, list(v2))→ list(k3, v3).
All lists of (k3, v3) from all calls of Reduce constitute the
complete result for the entire input to MapReduce. Several
MapReduce jobs can be chained together, later phases being
able to refine and/or use the results from earlier phases.

A distributed file system is used to store the data pro-
cessed and produced by the MapReduce job. An input file
is split up, stored, and possibly replicated on the differen-
t nodes in the cluster where MapReduce is running. The
nodes are then able to access their local splits when process-
ing data. When the data from the Map function has been
processed by the different nodes, the results are shuffled be-
tween the nodes so the required data can be accessed locally

Reduce1

Map1

Reduce2

Map2

Reducek

Mapn...

...

Input

Output

Figure 1: MapReduce process

when the Reduce function is invoked. The operations of da-
ta split, storage, and replication are automatically done by
the MapReduce infrastructure without user intervention.

It can be necessary to replicate data across nodes. In
Hadoop [2], the implementation of MapReduce we use, the
Distributed Cache can be used for this purpose. When
a MapReduce job starts, data written to the Distributed
Cache is transferred to all nodes, making it accessible in the
Map and Reduce functions. This paper assumes that the
Distributed Cache, or something similar, is available.

2.2 Skyline Computation in MapReduce
Considerable amounts of works [3,5,8,11,13,16,18,19,21]

have been proposed for skyline processing in parallel and
distributed computing environments. A non-exhaustive re-
view can be found in a survey [10]. However, such works are
not suitable for MapReduce. The skyline algorithms in such
works rely heavily on flexible inter-node communications to
coordinate distributed and/or parallel processing among n-
odes, whereas MapReduce does not support inter-mapper
or inter-reducer communications and mapper/reducer com-
munication is strictly constrained by the key-value form. A
recent work [1] also applies grid-based partitioning for par-
allel skyline queries; however, it uses computational models
that are substantially different from MapReduce.

Zhang et al. [20] adapt three centralized skyline algorithm-
s to the MapReduce framework. The MapReduce - Block
Nested Loop (MR-BNL) algorithm partitions each data di-
mension into two halves, distribute the resulting data parti-
tions to mappers, and compute local skyline on each mapper
using the Block Nested Loop (BNL) [4] skyline algorithm.
Finally, all local skylines are sent to a single reducer to com-
pute the global skyline. The MapReduce - Sort Filter Sky-
line (MR-SFS) algorithm has the same overall process as
MR-BNL but it applies the presorting technique [7] to com-
pute local skylines. In addition, the MR-Bitmap algorithm
uses the bitmap algorithm [14] to determine dominance in
skyline computation on each node. Although MR-Bitmap is
able to use multiple reducers for global skyline computing,
it can only handle data dimensions with limited number of
distinct values.

Chen et al. [6] adapt the angular partitioning tech-
nique [17] and propose the MapReduce - Angle (MR-Angle)
skyline algorithm. Angular partitioning divides the data s-
pace using angles, motivated by the observation that skyline
tuples are located near the origin. In MR-Angle, angle based
data partitions are distributed to mappers for local skyline
computation, and a single reducer is used to find the global
skyline.

This work distinguishes from existing proposals [6, 20] by
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three important points. First, this work employs a gener-
alized grid partitioning schema to partition the data space,
and designs a bitstring structure to represent the grid par-
titioning. It is noteworthy that the bits in our bitstring in-
dicate empty partitions and dominated partitions, whereas
the bit flags used in [20] are merely codes for data partitions
but not for data contents. As a result, our design allows
early and much more aggressive pruning of unpromising da-
ta partitions before all partitions are sent to mappers for
local skyline computation. Second, this work makes use of
multiple reducers to parallelize the global skyline comput-
ing. Third, unlike MR-Bitmap, this work is able to handle
data dimensions with arbitrary number of distinct values.
In the experimental studies, we compare our algorithms to
MR-BNL and MR-Angle. We skip MR-SFS as it is less effi-
cient than MR-BNL; we skip MR-Bitmap because it cannot
apply to the continuous numeric data domains that we work
on in this research.

Park et al. [12] propose another MapReduce skyline al-
gorithm SKY-MR. Before starting MapReduce, SKY-MR
obtains a random sample of the entire data set and builds a
quadtree for the sample to identify dominated sampled re-
gions. In contrast, the bitstring used in this work does not
require sampling, and it is built in parallel by MapReduce.

3. GRID PARTITIONING AND BITSTRING
To compute skylines efficiently in MapReduce, it is criti-

cal to utilize the parallelism provided by the paradigm. For
that purpose, we use a n×n grid to partition the data space
such that the skyline computation is parallelized on differ-
ent partitions. The partitioning also allows us to prune un-
promising partitions that cannot contain any skyline tuples,
which further speeds up the skyline computation.

In this section, we detail the grid partitioning scheme and
its bitstring representation. Section 3.1 presents the par-
titioning scheme, Section 3.2 describes the bitstring and a
MapReduce algorithm for generating the bitstring, and Sec-
tion 3.3 discusses how to decide the value of n in the grid
partitioning. Table 1 lists the notations used in this paper.

Table 1: Frequent Notations

Symbol Interpretation
R A set of tuples
SR The skyline of R
r, ri, rj, t A tuple in R
n Partitions per dimension (PPD)
d Dimensionality of R
p, pi, pj A partition of the data space
P A set of partitions
m The number of mappers
BS A bitstring for the grid partitioning
IG A group of independent partitions

3.1 Grid Partitioning of Data Space
We employ an n× n grid to partition the data space. As

a result, each dimension is divided into n parts and there
are nd partitions in total for a d-dimensional space. We
refer to n as partitions per dimension (PPD), and use P to
denote the set of all nd partitions. A naive method computes
the local skylines for all the nd partitions and merges them
correctly to get the global skyline as the final result.

As a matter of fact, it is not necessary to compute all the
nd local skylines. Similar to the dominance relationship be-
tween two tuples, dominance relationship can also be defined
for two partitions. The main difference here is that the dom-
inance relationship between two partitions is based on their
corner points because each of them may have many points.
Given a partition p, we use p.max and p.min to denote it-
s maximum corner and minimum corner respectively. The
maximum corner of a partition is defined as the partition’s
corner that has the highest (worst) values on all dimension-
s. Likewise, the minimum corner of a partition is defined as
the corner that has the lowest (best) values on all dimen-
sions. In the context of skyline computation, the dominance
relationship between the partitions p1, p2, . . . , pnd ∈ P can
be exploited to exclude unpromising partitions that cannot
contain skyline tuples. In the following, we give the relevant
definitions for partitions.

Definition 2. (Partition Dominance) A partition pi
dominates another partition pj, denoted by pi ≺ pj, if and
only if pi.max dominates pj .min. In other words, pi ≺ pj ⇔
pi.max ≺ pj .min.

Accordingly, we have the following lemma. Its correctness
can be easily proved according to the transitivity proper-
ty [4] of tuple dominance. This lemma allows us to prune
an entire partition like pj without computing its local sky-
line.

Lemma 1. Given two partitions pi and pj, if pi ≺ pj,
then any tuple in pi dominates all tuples in pj, i.e., ∀ri ∈ pi
and ∀rj ∈ pj we have ri ≺ rj.

We also adapt the definitions of dominating region [11]
and anti-dominating regions [15] for partitions in our setting.

Definition 3. (Dominating Region) A partition pi’s
dominating region, denoted as pi.DR, contains all partitions
that are dominated by pi, i.e., pi.DR = {pj | pj ∈ P ∧ pi ≺
pj}.

Definition 4. (Anti-dominating Region) A partition
pi’s anti-dominating region, denoted as pi.ADR, contains
all partitions that may have tuples that dominate pi.max,
i.e., pi.ADR = {pj | pj ∈ P ∧ pj .min ≺ pi.max}.

An example is shown in Figure 2 where the data space is
partitioned by a 3× 3 grid. For partition p4, its dominating
region is {p8} and its anti-dominating region is {p0, p1, p3}.
If we know that partition p4 is not empty, i.e., it contains
at least one tuple in R, partition p8 can be safely pruned
without local skyline computation. On the other hand, we
only need to compare p4’s local skyline to those of p0, p1,
and p3 in order to merge it into the global skyline.

Therefore, it is important to discover whether a partition
is empty or not. We proceed to design an effective and effi-
cient mechanism to capture such information in MapReduce.

3.2 Bitstring Representation and Generation
In the grid partitioning, the only partitions of interest are

those that are not empty with respect to the given tuple set
R. We represent the n×n partitioning scheme as a bitstring
BSR(0, 1, 2, . . . , nd − 1) where for 0 ≤ i ≤ nd − 1

BSR[i] =

{
1, if pi 6= ∅;
0, otherwise.

(1)
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Figure 2: An example of grid partitioning

The resulting bitstring can be in either row-major or
column-major order. The only difference is how the index
(i) of a partition in the bitstring is calculated. The column-
major order is used in this paper. We refer to the running
example shown in Figure 2, where non-empty partitions are
marked with crosses and partition indexes are given in inte-
gers from 0 to 8. As a result, the bitstring is 011110100.

The next problem is how to generate such a bitstring BSR

efficiently for a given tuple set R. In MapReduce, we can
parallelize the bitstring generation through multiple map-
pers. The idea is as follows. First, the original tuple set R
is divided into disjoint subsets R1, R2, . . . , Rm and each of
them is sent to a corresponding mapper. Subsequently, a
mapper receiving Ri (1 ≤ i ≤ m) obtains a local bitstring
BSRi according to the grid partitioning scheme and Equa-
tion 1. Further, all such local bitstrings are sent to a single
reducer where the bitwise or operator is applied to all of
them to obtain BSR, i.e., BSR = BSR1∨BSR2∨. . .∨BSRm .

After the global bitstring BSR is obtained, it is possible to
prune unpromising partitions by traversing BSR. This can
be done according to the dominating relationships for parti-
tions defined in Section 3.1. In particular, if pj ≺ pi for par-
titions pi, pj ∈ P , we reset BSR[i] to 0 to exclude partition
pi from further consideration in the skyline computation.
This way can result in fewer partitions and data tuples to
be involved in the skyline computation. Finally, the reducer
generates a bitstring BSR where for 0 ≤ i ≤ nd − 1

BSR[i] =

{
0, if pi = ∅ or ∃pj(pi ∈ pj .DR);
1, otherwise.

(2)

The flow of the bitstring generation in MapReduce is illus-
trated in Figure 3. Algorithms 1 and 2 are for the mappers
and the reducer respectively.

...

R

BSR

R1 BSR1 R2 BSR2 Rn BSRm

BSR1∪BSR2∪...∪BSRm BSR

Figure 3: The flow of bitstring generation in MapReduce

Algorithm 1 Mapper of the bitstring generation

Input: A subset Ri of the data set R, the dimensionality
of the data set d, and the PPD n.

Output: A bitstring BSRi for all the nd partitions with
respect to Ri.

1: Initialize a bitstring BSRi with all nd bits set to 0
2: for each tuple t ∈ Ri do
3: Decide the partition pj that t belongs to
4: BSRi [j]← 1

5: Output(null, BSRi)

Algorithm 2 Reducer of the bitstring generation

Input: The set of all local bistringsBSs, the dimensionality
of the data set d, and the PPD n.

Output: A bitstring BSR for all the nd partitions with re-
spect to R.

1: Initialize a bitstring BSR with all nd bits set to 0
2: for each bitstring BSRi ∈ BSs do
3: BSR ← BSR ∨ BSRi

4: for each i from 0 to nd − 1 do
5: if BSR[i] = 1 then
6: for each partition pj ∈ pi.DR do
7: BSR[j]← 0

8: Output(null, BSR)

3.3 Choosing the Number of Partitions per
Dimension

The Partitions per Dimension (PPD) is an important pa-
rameter for the proposed MapReduce skyline algorithms be-
cause PPD determines the number of tuples per partition
(TPP) and thus the workloads for mappers and reducers in
skyline computation. If TPP is too small, comparing grid
partitions to check partition dominance is not worthwhile
compared to checking the tuple dominance within each of
those partitions. Conversely, if TPP is too high, the grid
partitioning is too rough and checking partition dominance
cannot prune many partitions. It is not a trivial task to set
an appropriate PPD for grid partitioning.

Therefore, we propose a heuristic here for choosing the
number n for PPD. Let c be the cardinality of tuple set R,
d be the dimensionality, and TPP is the desired number of
tuples per partition. Assuming an independent distribution
of all tuples in the data space, we have the following equation

c

nd
= TPP (3)

From this, n is resolved as:

n = d

√
c

TPP
(4)

To derive n according to Equation 4, we need the ideal
value for TPP, which however depends on various factors
including data characteristics (cardinality, dimensionality,
distribution, etc.) and mapper/reducer capacities. There-
fore, we turn to an indirect way of deciding n that makes
estimates for TPP.

Specifically, we extend the MapReduce steps for grid par-
titioning (Section 3.2 and Figure 3) as follows. As the re-
ducer cannot trigger the mappers to redo the grid partition-
ing, we make the mappers do a series of partitioning and
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generate a series of local bitstrings accordingly, using dif-
ferent PPD values from 2 to nm = d

√
c. The series of local

bitstrings, denoted as BS2
Ri
, BS3

Ri
, . . . , BSnm

Ri
on the i-th

mapper, are all sent to the reducer. The reducer merges
the local bitstrings that result from the same PPD value
and gets nm − 1 global bitstrings BS2

R, BS
3
R, . . . , BS

nm
R .

In particular, BSj
R = BSj

R1
∨ BSj

R2
∨ . . . ∨ BSj

Rm
, where

2 ≤ j ≤ nm. For each BSj
R, the reducer counts the non-

empty partitions as ρ and make an estimate for TPP as
TPPe = c/ρ. On the other hand, we have TPP= c/jd ac-
cording to Equation 3. For all global bitstrings BSj

Rs, we

check |TPPe − TPP| = |c/ρ − c/jd| and find the one BSñ
R

that results in the minimal absolute difference. This global
bitstring (and the grid partitioning scheme indicated by it)
is to be used in the subsequent MapReduce skyline compu-
tation.

4. GRID PARTITIONING BASED SINGLE-
REDUCER SKYLINE COMPUTATION
IN MAPREDUCE

In this section, we present a MapReduce algorithm MR-
GPSRS: Grid Partitioning based Single Reducer Skyline
computation algorithm. It accepts a tuple set R and a corre-
sponding bitstring BSR as input, employing multiple map-
pers and a single reducer to compute the skyline SR for R.
During the computation, it makes use of the bitstring BSR

for pruning. The overall flow of MR-GPSRS is illustrated in
Figure 4.

...

R, BSR

SR

R1 SR1 R2 SR2 Rn SRm

BSR

SR1∪SR2∪... 

SRm       SR

BSR BSR BSR

Figure 4: The flow of MR-GPSRS

The Map step of MR-GPSRS is shown in Algorithm 3. It
takes a subset Ri of R and the global bitstring BSR as input,
and processes each tuple t in Ri as follows. First, it finds
the partition pj that contains t (line 3). Tuple t is further
processed only if pj ’s corresponding bit in the bitstring is
1 (line 4). In particular, pj ’s corresponding local skyline
Spj is either initialized as {t} (lines 5–6) or updated with
respect to t (line 8). The update is done by Algorithm 4
that works like the BNL algorithm [4]. It adds t to the local
skyline if t is not dominated by current local skyline tuples;
it also removes those local skyline tuples that turn out to be
dominated by t.

After all tuples in Ri are processed, variable S contains
a series of local skylines (Sps) each of which corresponds to
an unpruned partition p that contains tuple(s) in Ri. Giv-
en two involved partitions pi and pj , it is possible that pi’s
corresponding local skyline Spi have some tuples that dom-
inate those in pj ’s corresponding local skyline Spj , and vice

versa. In order to remove such false positives1, we call an-
other function ComparePartitions (Algorithm 5) for each Sp

in S (lines 9–10). Finally, the local skylines organized as S
is output (line 11).

Algorithm 5 takes a local skyline Sp for partition p and
a set S of local skylines for other partitions as input. For
each local skyline Spi in S (line 1), the algorithm checks if
the partition pi is in p.ADR (line 2). If positive, Spi may
have tuples that dominate those in Sp and those dominated
tuples are removed from Sp (line 3). After the whole S is
checked, the algorithm returns Sp without any false positives
with respect to S.

Algorithm 3 Map of MR-GPSRS

Input: A subset Ri of R, and the bitstring BSR.
Output: Ri’s local skyline SRi (in the form of a set of local

skylines Spj s for non-empty partitions pjs).
1: S ← ∅
2: for each tuple t ∈ Ri do
3: Decide the partition pj that t belongs to
4: if BSR[j] = 1 then
5: if Spj = ∅ then
6: Spj ← {t}; Add Spj to S
7: else
8: Spj ← InsertTuple(t, Spj )

9: for each local skyline Sp ∈ S do
10: Sp ← ComparePartitions(Sp, S \ {Sp})
11: Output(null,S)

Algorithm 4 InsertTuple

Input: A tuple t, and a set s of local skyline tuples
Output: The updated local skyline, i.e., Ss∪{t}.
1: check = true
2: for each tuple t′ ∈ s do
3: if t′ ≺ t then
4: check = false
5: break
6: if t ≺ t′ then
7: remove t′ from s
8: if check then
9: add t to s

10: return s

Algorithm 5 ComparePartitions

Input: A local skyline Sp for partition p, and a set of local
skylines S for other partitions

Output: A reduced Sp such that all its tuples dominated
by a local skyline tuple from S are removed.

1: for each local skyline Spi ∈ S do
2: if partition pi ∈ p.ADR then
3: remove from Sp all those tuples that are domi-

nated by tuples in Spi

4: return Sp

The Reduce step of MR-GPSRS is shown in Algorithm 6.
It receives the local skylines S1, S2, . . ., Sm from all map-

1False positives refer to those local skyline tuples that are
excluded from the global skyline.
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pers and merges them into the correct global skyline. For
the sake of simple presentation, each Sk (1 ≤ k ≤ m) can
be regarded as an array (Sk

p0 , S
k
p1 , . . . , S

k
p
nd−1

). Each ele-

ment Sk
pi (0 ≤ i ≤ nd − 1) is part of Rk’s local skyline

corresponding to partition pi. Note that some of those el-
ements in such an array can be empty. The first part of
Algorithm 6 (lines 1–6) effectively merges all such k arrays
into one (Sp0 , Sp1 , . . . , Sp

nd−1
) where Spi is the skyline of⋃

1≤k≤m Sk
pi .

In a similar way to lines 9–10 in Algorithm 3, the second
part of Algorithm 6 (lines 7–8) calls function ComparePar-
titions for each Spi , which removes the false positives from
Spi with respect to all other Spj s (0 ≤ j ≤ nd−1 and j 6= i).
Finally, the global skyline is obtained and output (line 9).

Algorithm 6 Reduce of MR-GPSRS

Input: The local skylines S1,S2, . . . ,Sm from all mappers.
Output: The global skyline SR.
1: for each partition p ∈ P do
2: Sp ← ∅
3: for each local skyline Sk from S1 to Sm do
4: Get the local skyline Sk

p for partition p from Sk
5: for each tuple t ∈ Sk

p do
6: Sp ← InsertTuple(t, Sp)

7: for each partition pi ∈ P do
8: ComparePartitions(Spi , {Sp0 , . . . , Spi−1 , Spi+1 ,
. . . , Sp

nd−1
})

9: Output(null,
⋃

p∈P Sp)

5. GRID PARTITIONING BASED MULTIPLE-
REDUCER SKYLINE COMPUTATION
IN MAPREDUCE

MR-GPSRS relies on a single reducer for computing the
global skyline, which becomes a bottleneck when the skyline
is larger. The problem can be alleviated by utilizing the
grid partitioning technique to identify subsets of partitions
for which the global skyline can be computed independently.
As a result, multiple reducers can be used, each responsible
for computing an independent part of the global skyline.

In this section, we propose MR-GPMRS: Grid Partition-
ing based Multiple-Reducer Skyline computation algorithm.

5.1 Overall Idea
The grid partitioning scheme allows for identifying inde-

pendent groups: Sets of partitions that can be processed
independently to obtain the skyline of those partitions.

Definition 5. (Independent Partition Group) A set
of partitions PI is an independent partition group if and only
if the following holds: ∀p ∈ PI ⇒ p.ADR ⊆ PI .

Given a tuple set R and a set of partitions Px, we use RPx

to denote the subset of all tuples that fall in the partitions
in Px. Independent groups guarantee a very useful property
as described in the following lemma.

Lemma 2. If PI is an independent partition group, then
RPI ’s local skyline must be a part of the global skyline, i.e.,
SRPI

⊆ SR.

Proof. ∀t ∈ SRPI
, we need to prove t ∈ SR. We prove

it by contradiction. Suppose ∃t ∈ SRPI
and t 6∈ SR. In SR,

there must be at least one tuple t′ that dominates t. We
have t′ 6∈ RPI ; otherwise, we would have t 6∈ RPI .

Let the partition containing t be p, and the one containing
t′ be p′. According to Definition 4, p′ ∈ p.ADR. As t ∈
SRPI

, we have t ∈ RPI and p ∈ PI according to the meaning
of RPI . As PI is an independent partition group, we have
p′ ∈ PI . Again, by the meaning of RPI , we have t′ ∈ RPI .
Thus, contradiction is reached and the lemma is proved.

This lemma allows us to use multiple reducers to compute
local skylines in parallel. Specifically, we group non-empty
grid partitions in P into g independent partition groups
PI1 , PI2 , . . . , PIg . Accordingly, each mapper divides its local
skyline SRi into g subsets SRi,1, SRi,2, . . . , SRi,g, and sends
each of the g subsets to a corresponding reducer. To ease
the presentation, we look at the j-th reducer. It receives
local skyline subsets SR1,j , SR2,j , . . . , SRm,j , each from a

corresponding mapper. We use ŜR,j to denote the union

SR1,j ∪ SR2,j ∪ . . . ∪ SRm,j . Note that ŜR,j ⊆ RPIj
and

ŜR,j ⊇ SRPIj
because local skyline computations on map-

pers cannot have false negatives2 but false positives. As a

result, the local skyline of ŜR,j is SRPIj
and thus a part of

the global skyline. Upon receiving ŜR,j (1 ≤ j ≤ g), the
j-th reducer computes and outputs the local skyline SRPIj

independently as it is a part of the global skyline due to the
reasoning above. In this way, the computations of reducers
are parallelized without involving a final single reducer for
eliminating false positives. The overall flow of MR-GPMRS
is illustrated in Figure 5, where SRPIj

is referred to as Sj

(1 ≤ j ≤ g) for simplicity.

...

...

R, BSR

S1∪S2∪...
∪Sg      SR

R1 SR1
BSR R2 SR2

BSR Rn SRm
BSR

SR1.2∪SR2.2∪... 
∪SRm.2       S2

BSR

SR1.g∪SR2.g∪... 
∪SRm.g       Sg

BSR

SR1.1∪SR2.1∪... 
∪SRm.1       S1

BSR

Figure 5: The flow of MR-GPMRS

5.2 Generation of Independent Partition
Groups

In this section, we discuss how to generate independent
partition groups for a given set of grid partitions P . We
need the following definition.

Definition 6. (Maximum Partition) A non-empty
partition pm ∈ P is a maximum partition if and only if the
following holds: ∀p ∈ P ⇒ pm /∈ p.ADR.
2False negatives refer to those global skyline tuples that are
excluded in local skylines.
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Maximum partitions help the generation of independent
groups as follows. Starting from the partition in P with the
highest index, we look for maximum partitions. When a
maximum partition pm is encountered, we use it as a seed
and get all partitions that may have tuples dominating those
in pm, i.e., pm.ADR. We thus get the union of {pm} and
pm.ADR as one independent group. We then set the bits
for all used partitions to 0, and start to look for the next
maximum partition and so on so forth. The generation is
formalized in Algorithm 7. The correctness of this algorithm
can be proved by the properties of Definitions 4, 6, and 6.
We omit the proof here due to the page limit.

Algorithm 7 GenerateIndependentGroups

Input: The set P of grid partitions, and the bitstring BSR.
Output: A set of independent partition groups IG.
1: IG← ∅
2: while BSR 6= 0 do
3: Get the partition pm with the largest index m from
P

4: ig ← {pm} ∪ pm.ADR
5: for each partition pi ∈ ig do
6: BSR[i]← 0

7: Add ig to IG

8: return IG

An example is shown in Figure 6 where non-empty parti-
tions are shaded. Partition p6 is the first maximum parti-
tion encountered by the generation algorithm as it is not in
he anti-dominating region of any other partitions. Thus,
the independent group from p6 and p6.ADR = {p3} is
IG1 = {p3, p6}. Next, maximum partition p4 is encountered
and independent group IG2 = {p1, p3, p4} is generated. Fi-
nally, maximum partition p2 results in the last independent
group IG3 = {p1, p2}. It may be necessary to replicate some
partitions, e.g., partitions p1 and p3 in Figure 6, among the
independent groups as they lie in the anti-dominating re-
gions of partitions in multiple groups. However, independent
groups cannot be subsets of each other.

Figure 6: An example of generation of independent groups

5.3 The MR-GPMRS Algorithm
Like the MR-GPSRS algorithm, the MR-GPMRS algo-

rithm also accepts a tuple set R and a corresponding bit-
string BSR as input. Its Map step is described in Algorith-
m 8, and its Reduce step is in Algorithm 9.

The first part (lines 1–10) of Algorithm 8 is the same as the
counterpart of Algorithm 3, computing the local skylines for
each involved grid partition. After that, the bitstring BSR

is used to generate the independent groups (line 11). Note
that this step is the same on all mappers, so that the in-
dependent groups are generated consistently by all of them.
Otherwise, inconsistency of independent groups across map-
pers would cause wrong skyline results on reducers. The last
part (lines 12–19) of Algorithm 8 distributes the local sky-
lines to corresponding reducers according to the independent
groups. The description given in Section 5.1 has the simpli-
fying assumption that the number of independent groups
equals that of reducers. Algorithm 8 lifts the assumption
and sends independent groups to reducers in a round-robin
way.

Algorithm 8 Map of MR-GPMRS

Input: A subset Ri of R, the bitstring BSR, and the num-
ber of reducers r.

Output: Ri’s local skyline SRi (in the form of a set of local
skylines Spj s for non-empty partitions pjs).

1: S ← ∅
2: for each tuple t ∈ Ri do
3: Decide the partition pj that t belongs to
4: if BSR[j] = 1 then
5: if Spj = ∅ then
6: Spj ← {t}; Add Spj to S
7: else
8: Spj ← InsertTuple(t, Spj )

9: for each local skyline Sp ∈ S do
10: Sp ← ComparePartitions(Sp, S \ {Sp})
11: IG← GenerateIndependentGroups(S, BSR)
12: i = 0
13: for each independent partition group ig ∈ IG do
14: Si ← ∅
15: for each partition p ∈ ig do
16: Get local skyline Sp from S
17: Si ← Si ∪ Sp

18: Output(i % r + 1, (Si, ig))
19: i+ +

The Reduce step of MR-GPMRS in Algorithm 9 is overall
similar to that of MR-GPSRS in Algorithm 6. Nevertheless,
unlike Algorithm 6 that organizes local skylines with respect
to all partitions in set P , Algorithm 9 only involves parti-
tions in the input independent group ig. Thus, the workload
of the single reducer is distributed to multiple reducers inde-
pendently. This independency and parallelism significantly
improves the overall skyline computation efficiency.

5.4 Implementation Issues
In this section, we discuss two issues that need considera-

tion in the implementation of MR-GPMRS.

5.4.1 Merging Independent Groups
Problems may arise when there are more independent par-

tition groups than reducers. Extra communication cost may
incur as some partitions and their local skylines are sent
multiple times from a mapper to reducers. Also, reducers
may have imbalanced computation load due to the parti-
tions they receive. The round-robin way of distributing the
groups to the reducers, as described in Section 5.3, does not
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Algorithm 9 Reduce of MR-GPMRS

Input: The local skyline parts SR1,j , SR2,j , . . . , SRm,j from
all mappers, and the independent partition group ig.

Output: The skyline of
⋃

1≤i≤m SRi,j .

1: S ← ∅
2: for each partition p ∈ ig do
3: Sp ← ∅
4: for each i from 1 to m do
5: Get the local skyline Si

p for partition p from SRi,j

6: for each tuple t ∈ Si
p do

7: Sp ← InsertTuple(t, Sp)

8: Add Sp to S
9: for each each partition p ∈ ig do

10: ComparePartitions(Sp, S \ {Sp})
11: Output(null,

⋃
p∈ig Sp)

resolve these two problems well.
In our implementation, we merge independent groups

when there are more of them than reducers. One option
of merging is based on optimizing the communication cost.
Specifically, independent groups that have the most parti-
tions in common are merged. This method, however, does
not guarantee the load balance among the reducers as this
can make some reducers receive more different partitions
than others.

An alternative is to merge independent groups based on
the estimated computation cost. Given an independen-
t group IGi = {pm} ∪ pm.ADR, we estimate the compu-
tation cost as the number of partitions in pm.ADR, i.e.,
|pm.ADR|. The intuition behind it is that function Com-
parePartitions(.) (Algorithm 5) in the Reduce step and the
size of pm.ADR is a critical factor for the execution time of
the function.

We conducted preliminary tests to compare the two merg-
ing options. The computation cost based merging results in
more balanced loads among reducers and better overall ef-
ficiency. Therefore, we use this option in our experimental
studies.

5.4.2 Elimination of Duplicates in Skyline Outputs
When grid partitions, and their corresponding local sky-

lines as well, are replicated in different (merged) indepen-
dent groups sent to different reducers, the local skylines for
those partitions are computed and reported in duplicates by
those reducers. In order to eliminate the duplicates in sky-
line outputs, it is necessary to control which reducers output
the local skylines for the replicated partitions.

In the implementation, we choose a particular indepen-
dent group as the responsible group for a partition that has
replicates. We send a designation notification to the reduc-
er when the responsible group is sent out together with the
output from a mapper. Consequently, a reducer only com-
putes and outputs the local skyline for a replicated partition
if it receives the designation notification.

The responsible group is chosen based on the estimat-
ed computation cost. Following the same line of reasoning
in Section 5.4.1, we choose the independent group IGi =
{pm} ∪ pm.ADR with the minimal |pm.ADR|. This is in-
tended to not further burden reducers that already have
higher computation costs.

6. COST ESTIMATION
In this section, we discuss the cost estimation for the pro-

posed algorithms. In particular, we are interested in the
number of partition-wise comparisons performed between d-
ifferent grid partitions in the MapReduce skyline computa-
tion, i.e., how many times the critical operation of function
ComparePartitions(.) (line 3 in Algorithm 5) is executed.
We focus on this function because it is called by both map
and reduce steps and it constitutes the most critical part in
the grid partitioning based skyline algorithms. The nota-
tions used in the cost estimation are shown in Table 2.

To ease the cost estimation, we make two assumption-
s. First, we assume that each grid partition generated in
each mapper is non-empty. Second, we assume that calling
function ComparePartitions(.) by a mapper does not cause
empty partitions. That is to say, comparing different grid
partitions does not prune partitions but only part of the
tuples in them. As a matter of fact, these assumptions stip-
ulate a worst-case scenario and thus the relevant estimate is
an upper bound of the real cost.

We consider the partitions that survive the bitstring based
pruning. A d-dimensional grid has a number of d − 1-
dimensional surfaces equal to d × 2. After the partition
pruning using the bitstring (from Equation 1 to Equation 2
in Section 3.2), half of these surfaces, i.e. d surfaces, are
filled with remaining partitions. The other d surfaces, as well
as the rest of the partitions, are dominated. An example is
shown in Figure 6. In this 3×3 2-dimensional grid, there are
2× 2 = 4 1-dimensional surfaces. In terms of partitions, the
four surfaces are: surf1 = {p2, p1, p0}, surf2 = {p0, p3, p6},
surf3 = {p6, p7, p8}, and surf4 = {p8, p5, p2}. If each parti-
tion was non-empty, then partitions p4, p5, p7, and p8 would
be dominated and pruned by using the bitstring. This would
leave d = 2 intact surfaces, namely surf1 and surf2. The
overlap of remaining surfaces must be considered. In this
example, the overlap between the remaining surfaces surf1
and surf2 is partition p0.

We use prem(n, d) to denote the number of remaining par-
titions after the bitstring based pruning. It can be calculated
by subtracting the number of partitions of a n − 1 × n − 1
grid from that of a n× n grid, because the former captures
the number of pruned partitions in a n×n grid partitioning
scheme. Therefore, we have

ρrem(n, d) = nd − (n− 1)d (5)

In the running example, the pruned partitions, namely
p4, p5, p7, and p8, can be regarded as forming a 2× 2 grid.
So the number of remaining partitions after pruning for the
3× 3 grid is 32 − 22 = 5.

Furthermore, the partition-wise comparisons to be done
for a single partition p depends on its anti-dominating re-
gion, as p is compared against another partition pj only
if pj ∈ p.ADR. We use pdom(n, d) to denote the number
of such partition-wise comparisons for a partition p. This
number is equal to the product of p’s coordinates3 in the
grid minus one:

ρdom(n, d) = p.d1 × p.d2 × . . .× p.dd − 1 (6)

In the running example shown in Figure 6, partition p2 has
coordinates (1, 3) in the grid. The number of partition-wise

3On each dimension, the coordinates start with 1 from the
origin.
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Table 2: Notations for Cost Estimation

Symbol Interpretation
ρrem(n, d) The number of remaining partitions in a grid after bitstring based partition pruning
ρdom(n, d) The number of partition-wise comparisons for a single partition
κ(n, d) The number of partition-wise comparisons for a single surface in a grid
κmapper(n, d) The number of partition-wise comparisons for a single mapper
κreducer(n, d) The number of partition-wise comparisons for the reducer with the highest workload

comparisons for p2 is thus 1× 3− 1 = 2. This is consistent
with the fact that we need to compare p2 with p1 and p0 in
function ComparePartitions(.).

Summing up for all partitions in a surface using Equa-
tion 6, we calculate the total number of partition-wise com-
parisons in κ(n, d):

κ(n, d) =
n∑

i1=1

n∑
i2=1

. . .
n∑

id=1

(i1 × i2 × . . .× id − 1) (7)

However, to get the number of partition-wise comparisons
for all surfaces, the overlap between surfaces must be consid-
ered. We calculate the sum as follows. For the first surface,
we calculate the number of partition-wise comparisons ac-
cording to Equation 7. For the second surface, we calculate
the number by subtracting the overlap between it and the
first from the sum according to Equation 7. For the third
surface, we have to subtract the overlap between it and the
first, as well as the overlap between it and the second. In this
way, we calculate the number for the d surfaces as follows.

κ1(n, d) =
n∑

i1=1

n∑
i2=1

. . .
n∑

id−1=1

(i1 × i2 × . . .× id − 1)

κ2(n, d) =
n∑

i1=2

n∑
i2=1

. . .
n∑

id−1=1

(i1 × i2 × . . .× id − 1)

κ3(n, d) =
n∑

i1=2

n∑
i2=2

. . .
n∑

id−1=1

(i1 × i2 × . . .× id − 1)

. . .

κd(n, d) =
n∑

i1=2

n∑
i2=2

. . .
n∑

id−1=2

(i1 × i2 × . . .× id − 1)

As a result, the number of partition-wise comparisons on
a single mapper is estimated as

κmapper(n, d) =
d∑

i=1

si(n, d) (8)

Note that the estimation above applies to the Map step of
both MR-GPSRS and MR-GPMRS. For the single reducer
in MR-GPSRS, its number of partition-wise comparisons is
estimated in the same way due to our two assumptions.

For a reducer in MR-GPMRS, only a single surface has
to be considered. This is because each surface is an in-
dependent partition group that is processed independently
by a corresponding reducer. The reducer with the most
partition-wise comparisons is the one that has the biggest
surface, the one for which no overlap is considered. There-
fore, the number of partition-wise comparisons on a single

reducer in MR-GPMRS is estimated as

κreducer(n, d) = s1(n, d) (9)

In Section 7.5, we experimentally evaluate the cost esti-
mations presented in this section.

7. EXPERIMENTAL STUDIES
In this section, we report the results of experimental stud-

ies on the proposed MapReduce skyline algorithms.

7.1 Experimental Settings
We compare the proposed algorithms MR-GPSRS and

MR-GPSRS with two existing MapReduce skyline algo-
rithms, namely MR-BNL [20] and MR-Angle [6]. All al-
gorithms are implemented in Java.

We use a cluster of thirteen commodity machines to run
the experiments. Twelve of the machines have an Intel Pen-
tium D 2.8 GHz Core2 processor. Three of them have 1
GB RAM, four of them have 2 GB RAM, and five of them
have 3 GB RAM. The last machine has an Intel Pentium D
2.13 GHz Core2 processor and 2 GB RAM. The machines
are connected by a 100 Mbit/s LAN. We use operating sys-
tem Ubuntu 12.04 to run the machines, and Hadoop 1.1.0
to build the MapReduce environment on the cluster. By de-
fault, MR-GPMRS uses one reducer per node in the cluster.

For the tuple set R, we use synthetic data sets of indepen-
dent and anti-correlated distributions. The data are gener-
ated according to the existing methods [4]. The cardinalities
of used R are 1× 105, 5× 105, 1× 106, 2× 106, and 3× 106.
The dimensionality of R is in the range of [2..10].

In most of the experiments, we measure the skyline com-
putation runtime, i.e., the elapsed time from the moment
the computation starts to the moment the global skyline is
fully output. For MR-GPSRS and MR-GPSRS algorithms,
we include the time cost of the bitstring generation in the
runtime.

7.2 Effect of Dimensionality
We first investigate the effect of data dimensionality on the

MapReduce skyline algorithms. For either data distribution,
we use two cardinalities (1× 105 and 2× 106), and vary the
dimensionality from 2 to 10. The results of runtime of all
algorithms are shown in Figures 7 and 8 for independent and
anti-correlated distributions respectively.

For independent data distribution, MR-GPSRS performs
the best according to the results shown in Figure 7. When
the dimensionality is low (from 2 to 5), MR-GPMRS per-
forms slightly worse than the alternatives, as shown in
Figures 7(a) and (c). When the dimensionality increases,
MR-GPMRS performs very steadily, whereas MR-BNL and
MR-Angle deteriorate almost exponentially. In particular,
when the dimensionality is from 7 to 10, MR-GPMRS and
MR-GPSRS perform comparably and both are significantly
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Figure 7: Effect of dimensionality on independent data
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Figure 8: Effect of dimensionality on anti-correlated data

better than the two alternatives, as shown in Figures 7(b)
and (d). These observations indicate that the proposed grid
partitioning scheme is effective in pruning partitions and da-
ta in skyline computation.

The mediocrity of MR-GPMRS in the settings of low di-
mensionality and cardinality is attributed to the small sky-
line sizes in those settings. MR-GPMRS has overheads on
communication and data loading for the parallelism of using
multiple reducers, which do not pay off when the local sky-
lines and the global skyline only occupy a small fraction of
the independent data set. In contrast, when the dimension-
ality increases a larger fraction of tuples enter the skylines
and MR-GPMRS is able to compute the skyline more effi-
ciently by parallel reducers, and thus it starts to outperform
MR-BNL and MR-Angle.

For the anti-correlated data, as shown in Figure 8,
MR-GPMRS is the best in almost all tested settings except
that MR-GPSRS is slightly better when the dimensionality
is less than 5 (see Figures 8(a) and (c)). For anti-correlated
data, a large fraction of the tuples are in the skyline and
the fraction becomes much higher when the dimensional-
ity is larger than 5. As a result, the reducer parallelism
in MR-GPMRS has an advantage in processing much more
skyline tuples. It is clear that MR-GPMRS scales well as the
dimensionality increases for both low and high cardinalities.

In contrast, MR-Angle and MR-BNL cannot terminate
in a reasonable period of time for higher dimensionalities,
and therefore they are excluded in Figures 8(b) and (d).
Furthermore, MR-GPSRS performs significantly slower than
MR-GPMRS for the low cardinality and high dimensional-
ity data sets (see Figure 8(b)). For the higher cardinality,
as shown in Figure 8(d), MR-GPSRS’s inferiority is more
apparent and MR-GPSRS does not terminate in a reason-
able period of time for the highest dimensionality from 8
to 10. The single reducer in MR-GPSRS is not able to effi-
ciently handle the many skyline tuples in higher dimensional
anti-correlated data sets.

In summary, when the dimensionality increases a high-

er fraction of the tuples enter the skyline, and thus
MR-GPMRS’s ability to find the global skyline tuples in
parallel outweighs its increased overhead. For higher dimen-
sionalities and cardinalities, this advantage is even more evi-
dent. In other settings where the skyline tuples only occupy
a small fraction of the entire data set, MR-GPSRS performs
better than MR-GPMRS and using multiple reducers is not
worth the extra overhead in MR-GPMRS.

7.3 Effect of Cardinality
In this part of experiments, we investigate the effect of

data cardinality on the MapReduce skyline algorithms. We
run experiments on 3-dimensional and 8-dimensional data
sets of both distributions. We vary the cardinality from
1× 105 to 3× 106. The results are reported in Figure 9.

The results obtained from independent data are shown in
Figures 9(a) and (b). For the dimensionality 3, as shown
in Figure 9(a), MR-GPMRS is the slowest for all cardinal-
ities. This disadvantage is again due to the relative small
skyline size in the independent distribution. On the other
hand, MR-GPSRS has the best runtime for all cardinalities,
whereas MR-Angle ties with it for the cardinalities 1 × 106

and 3× 106.
For the dimensionality of 8, referring to Figure 9(b),

MR-GPMRS and MR-GPSRS run fastest, with MR-GPSRS
being slightly faster. The difference is due to the small sky-
line fraction of the independent data where the multiple re-
ducers do not pay off. The superiority of MR-GPMRS and
MR-GPSRS over the alternatives again show that our design
of the grid partitioning scheme and the bitstring based par-
tition pruning is effective for skyline computation in MapRe-
duce.

The results obtained from anti-correlated data are shown
in Figures 9(c) and (d). Here, MR-GPMRS and MR-GPSRS
are superior for covered settings. For the lower dimensional-
ity of 3, MR-GPSRS is marginally better than MR-GPMRS.
However, for the higher dimensionality of 8, MR-GPSRS is
increasingly worse than MR-GPMRS and fails to terminate
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Figure 9: Effect of cardinality

in a reasonable period of time for the highest cardinalities.
The superiority of MR-GPMRS is again attributed to the
increasing fractions of skyline tuples in the data set.

7.4 Effect of The Number of Reducers
We also investigate the effect of the number of reducers

used in MR-GPMRS. For either data distribution, we use a
8-dimensional data set with the cardinality of 2 × 106. We
vary the number of reducers from 1 (using MR-GPSRS) to
17. Note that Hadoop allows utilizing the multiple cores in
the nodes to implement multiple reducers on the same node.
The experimental results are shown in Figure 10.
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Figure 10: Effect of the number of reducers in MR-GPMRS

For the independent data set, increasing reducers does
not improve the skyline computation runtime. The runtime
almost does not change when the number of reducers is in-
creased. There is actually a small increase when the number
of reducers is increased from 1 to 5, which is caused by the
additional overhead of using multiple reducers.

In contrast, more reducers clearly shortens the runtime
for computing skyline on the anti-correlated data set. The
largest improvement occurs when the number of reducers
is increased from 1 to 5, i.e., switching from MR-GPSRS
to MR-GPMRS, whereas further more reducers help in a
moderate way. Also, the runtime decreases even when the
number of reducers is higher than the number of nodes. In
particular, the performance of MR-GPMRS is the best when
the highest number of reducers, 17 in our setting, are used.

The overall runtime difference on the two distributions is
related to the different skyline sizes of them. The fraction of
skyline tuples in the data set needs to be high enough for the
extra overhead to be offset by the parallelism of multiple re-
ducers in MR-GPMRS. The independent data set used has
a much smaller skyline than the anti-correlated one, which
renders the use of multiple reducers on the former not so

beneficial as on the latter.

7.5 Evaluation of The Cost Estimation
Finally, we evaluate the cost estimation described in Sec-

tion 6. Specifically, we run MR-GPMRS on a series of data
sets with a cardinality of 1 × 106, record the real numbers
of partition-wise dominance comparisons in the execution-
s, and compare them with the numbers suggested by the
estimates derived in Section 6. The results are reported in
Figure 11. The numbers from the real executions are record-
ed for the mapper and the reducer that have the highest
number of comparisons.
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Figure 11: Results on cost estimation

The results about mapper costs are shown in Figure 11(a).
For independent data, the estimated costs for mappers close-
ly match their counterparts from the real execution. This
is not surprising since the cost estimation described in Sec-
tion 6 assumes that data are of independent distribution.
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In contrast, the cost estimation is not that precise for anti-
correlated data since the assumption does not hold. Nev-
ertheless, it is noteworthy that the estimated cost is higher
than the real cost in every case, which means that the esti-
mates can be still be used as an upper bound of the worst-
case costs even for anti-correlated data sets.

Referring to Figure 11(b), the results show that the cost
estimation is more inaccurate for the reducers on both data
distributions. The reason for the higher inaccuracy is that it
is not mathematically feasible to capture how independent
partition groups are generated in the cost estimation. N-
evertheless, the estimated costs can still work as the upper
bound of the worst-case costs for reducers, as suggested by
the results in the figure.

8. CONCLUSION AND FUTURE WORK
In this paper, we propose two novel algorithms, namely

MR-GPSRS and MR-GPMRS, for efficient skyline compu-
tation in MapReduce. The main feature of the algorithms is
that they allow decision making across mappers and reduc-
ers, which is a valuable achievement in MapReduce where
mappers/reducers are stateless and inter-node communica-
tion is not supported. The feature is accomplished by a grid
partitioning scheme for the data space, as well as a bitstring
describing the partitions empty and non-empty states. The
bitstring allows to prune data in the unit of data partitions,
and it enables the mappers and reducers to involve only the
relevant partitions when comparing tuples for dominance
checks. Specifically, MR-GPSRS employs a single reducer
to find the final global skyline, whereas MR-GPMRS avoid
the bottleneck by utilizing the bitstring to partition the final
skyline computation among multiple reducers.

The results of extensive experimental studies show that
MR-GPSRS and MR-GPMRS consistently outperform ex-
isting MapReduce skyline algorithms in terms of efficiency
and scalability. The experimental results also discover the
best scenarios for each proposed algorithms. In particular,
MR-GPMRS performs significantly better when a large frac-
tion of the tuples are in the skyline, while MR-GPSRS per-
forms marginally better when the skyline fraction is small.

Several directions exist for future work. Multiple reducers
in MR-GPMRS do not give the best performance when the
skyline fraction is low in the input data set. To obtain opti-
mal performance on arbitrary inputs, a hybrid method can
be developed by combining MR-GPSRS and MR-GPMRS.
Such a method should be able to switch between the two al-
gorithms automatically, and intelligently decide how many
reducers to use.

This work studies how to make good use of the parallelis-
m of MapReduce for skyline computation, whereas the local
skyline computation on a single node is not the research fo-
cus. It is still interesting to optimize the local skyline com-
putations and explore how such optimizations would affect
the overall performance in the context of MapReduce.

When merging independent groups for less reducers in
MR-GPMRS, the method used in this paper prefers min-
imizing computational cost to minimizing communication
cost. It is interesting to develop a merging method that
balances the two different costs.
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