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ABSTRACT
Spatial-keyword queries on road networks are receiving in-
creasing attention with the prominence of location-based
services. There is a growing need to handle queries on road
networks in distributed environments because a large net-
work is typically distributed over multiple machines and it
will improve query throughput. However, all the existing
work on spatial keyword queries is based on a centralized
setting. In this paper, we develop a distributed solution to
answering spatial keyword queries on road networks. Exam-
ple queries include “find locations near a supermarket and a
hospital,” and “find Chinese restaurants within 500 meters
from my current location.” We define an operation for an-
swering such queries and reduce the problem of answering a
query into computing a function of such operations. We pro-
pose a new distributed index that enables each machine to
independently evaluate the operation on its network frag-
ment in a distributed setting. We theoretically prove the
space optimality of the proposed index technique. We con-
duct experiments with a distributed setting. Experimen-
tal results demonstrate the promising performance of our
method.
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1. INTRODUCTION
Keyword search on road networks is an indispensable func-

tion for many applications such as Google Earth and Ya-
hoo! Maps. This motivates the extensive study of spatial
keyword queries (e.g., [3, 9, 24, 2]). Most of the existing
work on spatial keyword queries is based on the assump-
tion that spatial objects are located in a Euclidean space
and keywords (labels or categories) are associated with the
objects. A representative type of spatial-keyword query is
to find a set of objects that are within a specified spatial
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range while close (measured by Euclidean distances) to the
query location. Although Euclidean distance assumption is
made in most of the studies on spatial keyword querying,
the Euclidean distance can be a bad approximation of the
road network distance between two locations. For instance,
around a lake, the shortest road network distance between
two locations on the opposite banks of the lake will be very
different from the Euclidean distance of the two locations.
However, it is more challenging to compute the road network
distance for the spatial-keyword queries. Very few proposals
consider a spatial network [20] for spatial-keyword queries.

It is common to find distributed real-life network datasets,
such as Facebook, Google Maps and Yahoo! Maps, that are
stored at data centers, which typically host a cluster of ma-
chines. In this case, it is imperative to develop distributed
techniques to support spatial-keyword queries. Moreover,
many applications (e.g., a web-oriented architecture sup-
porting spatial-keyword querying) may need to handle heavy
query load and large road networks. To handle this, it is
natural to develop distributed techniques to support spatial-
keyword queries on road networks to improve the through-
put of query processing. However, all the existing proposals
on spatial-keyword querying focus on the centralized en-
vironment. None of the techniques in the existing work
fits for a distributed setting on road networks. Actually
it has been a challenging problem to develop distributed
techniques for querying networks even if keywords are not
considered, which often exhibits poor locality and incurs ex-
pensive network communication cost [17] (See Section 2.3).

In this paper, we aim to develop distributed techniques to
handle a class of spatial-keyword queries on road networks,
which consists of two types of queries, namely spatial group
keyword query (SGKQ), and Range Keyword Query (RKQ).
We next illustrate them with three example queries.

Q1 A real estate agent wants to locate sites that are close
(e.g., within 1km) to daily facilities such as a super-
market, a gym and a hospital;

Q2 An investor wants to open a new pizza shop in a shop-
ping mall that must be at least 1km far away from any
of the existing pizza shops;

Q3 A tourist wants to find a restaurant offering both seafood
and Chinese food within 500 meters from his hotel.

The first two queries are SGKQs and Q3 is an RKQ.
SGKQ is to find locations that are close to or far away from
locations each containing a query keyword. RKQ is to find
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locations that are within a range of query location and con-
tain the query keywords. We observe that a spatial keyword
query typically contains a set of query keywords and we need
to find the locations that contain the keywords or are close
to (or far away from) locations containing all/some of the
keywords. For instance, in Q1, the keywords are supermar-
ket, gym and hospital.

One challenge of distributedly processing such queries is
that nodes containing keywords can be in different fragments
from a result node. Take Q1 as an example, we need to
compute the network distance between a result node and
nodes containing any of the three query keywords, which
may be distributed in different fragments/machines. This
will incur many rounds of communications among machines.

To this end, we develop a two-step framework and a new
indexing technique. The two-step framework is based on an
operation, called keyword coverage, that extracts the set of
nodes within certain distance from a specific keyword. In
the first step, we compute keyword coverage for each query
keyword. For example, in Q1, we find the set of locations
that are within 1km from any node containing keyword su-
permarket ; we also do this for keywords gym and hospital,
respectively. The second step is the aggregation on keyword
coverages. For example, for Q1, the results can be obtained
by the intersection operation on the keyword coverages of all
keywords in Q1. The other example aggregation operators
include union and subtraction. Hence, we reduce the prob-
lem of answering a query into the evaluation of a function
of keyword coverage operations. It is easy to evaluate the
second step distributedly. However, it is challenging to dis-
tributedly process the first step. To address the challenge,
we develop a new distributed index technique for each frag-
ment of a road network. The distributed index enables to
perform the two-step framework in a distributed manner
without incurring communication between machines
for answering the two types of spatial-keyword queries. We
also prove that the size of the index is optimal.

The main contributions of this work are listed as follows:

• We consider two types of spatial-keyword queries on
road networks. We define the keyword coverage op-
eration, and reduce the problem of answering these
queries into evaluating a function of such operations.
We design a novel distributed index to enable dis-
tributed query processing for such queries. The index
enables us to eliminate the communication between
machines. This is a very attractive feature for dis-
tributed graph query processing. We also prove the
space optimality of the proposed distributed index.

• We propose a solution to answering querying utiliz-
ing the proposed index. The proposed methods can
be implemented on a general coordinator-based share-
nothing distributed computing platform.

• We analyze the time complexity and the load balance
of our approach.

• We conduct experiments on a distributed coordinator-
based cluster to demonstrate the superior efficiency of
our method.

The rest of this paper is organized as follows. Section 2
describes the problem definition. Section 3 and Section 4
introduce the index-based approach, which is the core part
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Figure 1: Road network illustration.

of this paper. Section 5 discusses the extension of the ap-
proach. Section 6 is the performance evaluation. Section 7
surveys the related work. Section 8 concludes the paper.

2. PROBLEM STATEMENT

2.1 Road Networks
We consider a road network graph, denoted as G, which

is an edge-weighted undirected graph. Our method can be
easily adapted for the directed graph. There are two types
of nodes in G. One type represents road junctions and the
other represents objects (e.g., points of interest). For the
latter type of nodes, each of them is associated with text
description. Edges represent the road segments. The weight
of an edge (A,B) represents the length of the path from node
A to node B, and (A,B, d) refers to edge (A,B) with weight
d. A road network segment is illustrated in Fig. 1. The
words in the brackets near the nodes are keywords. Nodes
A, B, C andD correspond to objects and each contains some
keywords; Node E is a junction node and does not contain
any keyword. The formal definition of a road network is as
follows.

Definition 1 (Road Network). A road network G
(V, E ,W,K,L) is a weighted graph, where V, E are the node
set and edge set, respectively; W is a mapping from E to real
values, denoting the edge weights; K is a vocabulary of key-
words; L is a mapping from a node in V to a set of keywords
(or an empty set) in K.

The length of a path is the total weight of all the edges on
the path. The shortest path between two nodes A and B,
denoted as A! B, is the path with the minimum length
between A and B. The shortest path between node A and
node set S, denoted as A! S, is defined as the path with
the minimum length among all the shortest paths, each cor-
responding to a shortest path from A to a node in S. The
shortest path between node A and keyword ω, denoted by
A! ω with a bit abuse of notation, is defined as the short-
est path between A and the node set that comprises all nodes
containing keyword ω. The distance between two nodes A
and B, denoted as d(A,B), is the sum of weights in path
A! B. Similarly, the distance between node A and node
set S, denoted as d(A,S), is the sum of weights in A! S.
The distance between node A and keyword ω, denoted as
d(A,ω), is the sum of weights in A! ω.

2.2 Problem Definition
We introduce two types of spatial-keyword queries on road

networks, namely spatial group keyword query, and Range
Keyword Query, and then define our problem.
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Definition 2 (Spatial Group Keyword Query ).
Given query keywords ω1, . . . , ωk and a distance r, for a spa-
tial group keyword query SGKQ(ω1, . . . , ωk, r), node A is one
of its results iff d(A,ωi) ≤ r, ∀1 ≤ i ≤ k.

The query Q1 in Introduction is an SGKQ. Next, we give
another example SGKQ based on Fig. 1, which is to find
locations, each of which is within 3km of both a museum
and a school.

Example 1 (SGKQ: Q4). In Fig. 1, given keywords,
“ museum” and “ school”, and a radius 3, query SGKQ ({
“ museum”, “ school”}, 3) returns {B,E} because B and E
are within a distance of 3 to both keyword “ museum” (node
D) and “ school” (node A).

We further extend the definition of the SGKQ for a more
general form of SGKQ in two ways: 1) The distance be-
tween a result and a query keyword is larger than a distance
threshold, i.e., d(A,ωi) > r. An example of the extended
form of query is Q2 in Introduction. In Q2, a result should
be faraway from pizza shop (at least 1km) and it should
contain keyword “shopping mall”. 2) The distance between
a result and one of query keywords is smaller than a distance
threshold, i.e., d(A,ωi) ≤ r, ∃1 ≤ i ≤ k. An example query
is

Q5: “finding the locations that are within 0.5km of either
a university or a park.”

Next, we define the second type of query we handle in this
work, called Range Keyword Query.

Definition 3 (Range Keyword Query). Given a
query location l, query keywords {ω1, . . . , ωk} and a distance
r, for a range keyword query RKQ(l, ω1, . . . , ωk, r), node A
is one of its results iff d(l, A) ≤ r and A contains ωi, ∀1 ≤
i ≤ k.

The query Q3 in Introduction is a Range Keyword Query,
where the query location is “his hotel” and the query key-
words are “restaurant, seafood and Chinese food.” We next
introduce another example based on Fig. 1.

Example 2 (RKQ: Q6). In Fig. 1, an example RKQ
query is to find museum of within 4km of location B, where
the query location is “B” and the query keyword is “museum,”
which is denoted by RKQ(B,{“ museum”},4). It returns node
D because node D contains the keyword “ museum” while the
distance from node B to D is less than 4.

To the best of our knowledge, no study considers SGKQ;
The RKQ has been studied in Euclidean distance space in
several existing studies, but has not been studied in a road
network setting.

Problem Statement Given N partitions of a graph G dis-
tributed in N separate machines, and an SGKQ or RKQ
query Q, our problem is to return results for query Q in the
distributed setting. Here, we consider a general coordinator-
based distributed setting, which comprises N computing re-
sources (e.g., machines). One of the N resources acts as a
coordinator C. The query is submitted to the coordinator
C. The communication cost of assigning tasks from coordi-
nator to each machine and the cost of returning results from
each machine to the coordinator are unavoidable. Apart
from this, we aim to eliminate communication cost between
machines at query time.

2.3 Remark
It is observed in [17] that graph algorithms often exhibit

poor locality and hence, may incur prohibitive overhead on
network traffic. In the SGKQ or RKQ query, we need to
compute the road network distance between two nodes. If
the two nodes are not in the same machine (subgraph) or
any node in shortest path between the two nodes is not in
the same machine as the two nodes, we may need commu-
nications between machines. One naive way is to ship rele-
vant subgraphs to the same machine. This, however, incurs
expensive communication cost and cannot exploit parallel
computation.

The general graph processing engine, Pregel [17] is based
on the general bulk synchronous parallel (BSP) model. In
each iteration of the BSP execution, Pregel applies a user-
defined function on each vertex in parallel. The communica-
tions between vertexes are performed with message passing
interfaces. There also exist distributed algorithms for spe-
cific problems, such as shortest path algorithm. Some im-
plementations divide the Dijkstra algorithm into a number
of phases for parallel computation [16] and a recent imple-
mentation [23] resorts to graph partitioning and runs the
Dijkstra in each partition. However, they also need multiple
rounds of communications between machines. The general
graph processing engine [17] and the distributed algorithms
for the shortest path query [16, 23] are not suitable for an-
swering the SGKQ or RKQ query that have keyword restric-
tions. Moreover, they still need many rounds of communi-
cations.

In contrast, we aim to evaluate the SGKQ or RKQ query
in one round with 0 communication cost except for sending
results. This is challenging for a graph query. To achieve this
goal, we next show how do we reduce the evaluation of our
SGKQ or RKQ queries into the evaluation of an operation
and propose an index structure to enable each machine to
evaluate the operation independently.

3. NPD-INDEX STRUCTURE
We define an operation and present how to reduce query

evaluation into the operation evaluation in Section 3.1. Then
we present the proposed index structure for evaluating the
operation in Sections 3.2–3.4. The index structure enables
each machine to be able to independently compute the op-
eration and answer queries. We also show that the proposed
distributed index is optimal in both size and communication
cost in Section 3.5.

3.1 Primitive Operation
We first define an operation called Keyword Coverage.

Based on the operation, we define a type of function and
show that the function can be used to answer SGKQ and
RKQ queries in a distributed setting.

Definition 4 (Keyword Coverage). Given a keyword
ω and a radius r, the keyword coverage R(ω, r) is defined as
a node set, such that a node A ∈ R(ω, r) iff d(A,ω) ≤ r.

Example 3 (Keyword Coverage). In Fig. 1,
R(“school”, 3) = {A,B,E} due to d(A,“ school”) ≤ 3,
d(B,“ school”) ≤ 3 and d(E,“ school”) ≤ 3. Note that node A
is also in R(“ school”, 3) as it contains the keyword “ school”.

With the keyword coverage operation, an SGKQ (ω1, . . . ,

ωk, r) can be answered by evaluating
⋂k

i=1(R(ωi, r)), i.e., the
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intersection of results of keyword coverage operations. The
query in example 1 can be computed by R(“museum”, 3)∩
R(“school”, 3).

The two extended SGKQ given in Section 2.2 can be com-
puted by utilizing the keyword coverage operation. For
Query Q2 in Introduction, we can use subtraction opera-
tor in evaluating the result to the query, which can be de-
picted as R(“shopping mall”,0)−R(“pizza shop”,1km). For
the other extended SGKQ “finding the locations that are
within 0.5km of either a university or a park”, it can be
computed by the union operation of two keyword coverage
operations, i.e., R(“university”,0.5km)

⋃
R(“park”,0.5km)

Next, we show that Range Keyword Query can also be
evaluated with the keyword coverage operation using Ex-
ample 2. We treat each node id as a keyword, and then we
set the distance radius to 4 for the keyword “B”. For the
keyword “museum”, we set its distance radius to 0 to make
sure a result object contains the keyword. Finally, we can
apply the intersection operator on the variables of the D-
function to get the final results. Therefore, in this example,
RKQ Q6 is evaluated by R(“B”, 4) ∩R(“museum”, 0).

Let X denote a keyword coverage set. The aforementioned
examples show that we can reduce the evaluation of an
SGKQ or RKQ into a function F(X1, . . . ,Xk) = X1θ1, . . . ,
θk−1Xk, where θi (1 ≤ i ≤ k − 1) is one of {∪,∩,−} (i.e.,
union, intersection, and subtraction). We call the function
F distributable-function (D-function). We next show that
D-function F can be evaluated distributedly with an exam-
ple.

Example 4. Let U be the node set in Fig. 1, which is
{A,B, C,D,E}; U1 = {A,B} and U2 = {C,D,E} are two
fragments of U . Let F(X1,X2) = X1 ∩ X2. Given two
sets X1 = {A,B,C,D} and X2 = {B,C,D,E} and the
function F(X1,X2), clearly we can compute F(X1,X2) =
{A,B,C,D} ∩ {B,C,D,E} = {B,C,D}. On the other
hand, we can compute F(X1,X2) in a distributed way by
F(X1,X2) = F(X1 ∩ U1,X2 ∩ U1) ∪F(X1 ∩ U2,X2 ∩ U2)
= F({A,B}, {B}) ∪ F({C,D}, {C,D,E}) = {B} ∪ {C,D}
= {B,C,D}.

Consider a graph whose node set is U and its m fragments,
each of which has a node set Ui (i = 1, ...,m). We have the
following lemma that the evaluation of D-function F can be
done distributedly.

Lemma 1. For any Xj ⊆ U , 1 ≤ j ≤ t, we have:
F(X1, . . . ,Xt) =

⋃
1≤i≤m

F(X1 ∩ Ui, . . . ,Xt ∩ Ui)

proof : By Set’s generalized distributive law,

F(X1 ∩ Ui, . . . ,Xt ∩ Ui) = (X1 ∩ Ui)θ . . . θ(Xt ∩ Ui)
=(X1θ1 . . . θt−1Xt) ∩ Ui.

So ⋃
1≤i≤m

F(X1 ∩ Ui, . . . ,Xt ∩ Ui)

=
⋃

1≤i≤m

((X1θ1 . . . θt−1Xt) ∩ Ui)

=(X1θ1 . . . θt−1Xt) ∩ (
⋃

1≤i≤m

Ui) = (X1θ1 . . . θt−1Xt) ∩ U

=X1θ1 . . . θt−1Xt = F(X1, . . . ,Xt) �

In Lemma 1, D-function F takes t sets X1, . . . ,Xt as vari-
ables (t is also a variable). It says that the function F can
be evaluated in each fragment (on a machine). The lemma
is based on the assumption that we have an approach to
computing the set variables Xj (1 ≤ j ≤ t) with respect to
each fragment Ui (1 ≤ i ≤ m) i.e., Xj ∩Ui (1 ≤ i ≤ m). We
will study this in the next subsection.

In what follows, we will take SGKQ as the default query to
present our method. We present how to extend the method
to handle the other types of queries in Section 5.4.

In summary, answering an SGKQ query involves two steps:
1) evaluating the keyword coverage for each query keyword
for each machine; 2) intersecting the keyword coverages for
each machine. The second step is trivial compared to the
first step. Hence, we concentrate on the first step.

3.2 Index Overview
In this subsection, we present indexing techniques that

enable each machine to compute the keyword coverage for
its fragment independently

For distributed algorithms, one way to maximize paral-
lelization is to explore what can be computed locally and
reduce the communication cost [18]. Following the principle,
we aim to develop techniques such that for each fragment
P we are able to evaluate the distance between any node
associated with certain query keyword and any node inside
P, without incurring communication with other ma-
chines. However, this objective is challenging due to the fol-
lowing reasons: to compute the keyword coverage for nodes
in a fragment, we need to compute their network distance
from the nodes associated with the query keyword, which
can be in any fragment distributed in the whole network G;
thus it seems unavoidable to communicate with other ma-
chines to compute the keyword coverage for a fragment.

To this end, we propose an index, called N ode-Partition-
D istance (NPD) index, to store useful distances so that each
fragment can independently compute the exact distance
between any node associated with certain query keyword
and any node inside P.

We first define some notations. An edge belongs to a
fragment if its end nodes are in that fragment. part(A)
denotes the fragment containing node A. If the end nodes
of an edge belong to different fragments, then they are portal
nodes. We denote the set of portal nodes in a fragment P
as port(P). We build an index file for each fragment. We
denote the index for a fragment P as IND(P). Fragment P
and its index IND(P) are combined to evaluate the keyword
coverage on fragment P, for query keywords.

The index IND(P) contains two components: SC(P) (short
for ShortC ut) and DL(P) (short for D istance List). SC(P)
includes the useful distances between nodes within P, while
DL(P) includes the useful distances between nodes outside
P and the nodes inside P.

For presentation convenience, we assume the uniqueness
of the shortest path between two nodes in this section. We
discuss how to remove the assumption in Section 5.3. In
the next two subsections, we present the two components of
NPD-index.

3.3 SC Component
Before presenting SC, we introduce three notions, namely,

shortcut edge, shortcut path and complete fragment. A short-
cut edge is a manually added edge (X,Y, d(X,Y )) that short-
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cuts X! Y , where (X,Y, d(X,Y )) is not an original edge
in G. For example, in Fig. 2, (C,F, d(C,F )) is a short-
cut edge; it is not an original edge and it shortcuts C !
F = ((C,D), (D,E), (E,F )). We say the shortcut edge
(X,Y, d(X,Y )) corresponds to X! Y .

Given a shortest path X! Y , if we replace some edge-
disjoint sub-paths with their corresponding shortcut edges,
we get a shortcut path of X! Y . For example, in Fig. 2,
((A,C), (C,F )) is a shortcut path of A ! F because it
contains a shortcut edge (C,F ) that shortcuts a sub-path
C! F . We define complete fragment as follows.

Definition 5 (Complete Fragment). A complete frag-
ment of P, denoted by P ′, comprises P and some shortcut
edges whose end nodes are in P, such that any shortest path
within P ′ is either exactly the shortest path in G or the short-
cut path of the shortest path in G.

Hence, with a complete fragment P ′, the distance between
every pair of nodes in P can be computed.

Now, we are ready to present the SC component. SC(P)
comprises a set of shortcut edges whose end nodes are in
P, such that P∪SC(P) will be a complete fragment of P.
If all the shortcut edges whose end nodes belonging to P
are put into SC(P), P∪SC(P) certainly forms a complete
fragment. However, this will result in a large SC(P) and
many shortcuts are unnecessary to be put into SC(P). For
example, if every edge of a shortest path is within P, then
P itself is sufficient for computing the distance between the
start node and the end node, and hence there is no need
to put into SC(P) the shortcut edge corresponding to the
shortest path. In addition, as will be theoretically analyzed
in Section 5.1, minimizing the size of SC(P) benefits the
time complexity of our method.

We proceed to propose a rule of constructing SC(P), The-
orem 1 shows that the construction will result in a complete
fragment. We also prove that the construction is optimal in
term of the size of the generated complete fragments.

Rule 1. We add a shortcut edge (A,B) with weight d(A,B)
to SC(P) iff: (1) A ∈ P and B ∈ P; (2) (A,B, d(A,B)) is
not an edge in the road network graph G; (3) The shortest
path from A to B does not contain any other node of P;

Theorem 1. P∪SC(P) is a complete fragment.

proof : For any two nodes A ∈ P and B ∈ P, the shortest
path A! B is divided into inner part and outer part, where
inner part refers to the sub-paths consisting of edges which
belong to P and outer part refers to the sub-paths consisting
of edges that are not in P (See Fig. 2). According to the
condition (3) of Rule 1, any outer part corresponds to (i.e.,
is shortcut by) a shortcut edge in SC(P). In addition, any
inner part can be directly accessed within P. It follows that
any shortest path within P∪SC(P) is a shortcut path of the
shortest path in G. �

To prove the optimality of the construction rule in terms
of the size of generated SC(P), we introduce the notion of
standard shortcut set, to depict the difference between an
original fragment and its complete fragment.

A standard shortcut set describes a subset S of the set
{(X,Y,d(X,Y ))|X ∈ P, Y ∈ P} such that P ∪ S is a com-
plete fragment of P. We show that Rule 1 is optimal (in
terms of the number of added edges) with Theorem 2, among
all the standard shortcut sets.

A

C

E

G

B

H

inner part

outer 

part

Shortcut edge

D

F

I

Figure 2: Illustration of inner part and outer part
in A! B.

Definition 6 (Standard Shortcut Set). A standard
shortcut set with respect to fragment P is a shortcut edge set
S ⊆ {(X,Y, d(X,Y ))|X ∈ P, Y ∈ P}, such that P ∪ S is a
complete fragment.

According to Theorem 1, SC(P) is a standard shortcut set.
Furthermore, we prove that, among all the standard shortcut
sets for P, SC(P) is space optimal by Theorem 2.

Theorem 2. Among all standard shortcut sets for frag-
ment P, the size of SC(P) (constructed following Rule 1) is
the minimum.

proof: For any standard shortcut set S with respect to P, it
is sufficient to show that SC(P)⊆ S. Therefore we need to
show that for any (A,B, d(A,B)) ∈ SC(P), (A,B, d(A,B))
also belongs to S. We assume by contradiction that (A,B,
d(A,B))
/∈ S. Since P ∪ S is a complete fragment, the shortest path
between A and B in P ∪ S must be A ! B or one of
its shortcut path. Furthermore, (A,B, d(A,B)) ∈SC(P) ⇒
(A,B, d(A,B)) /∈ P ⇒ (A,B, d(A,B)) /∈ P ∪ S (the last
step is due to the assumption). Then, the shortest path be-
tween A and B in P ∪S contains at least one internal node,
which belongs to P. On the other hand, the internal nodes
in A! B are all outside of P, causing a contradiction to
the fact that the shortest path between A and B in P ∪ S
must be A ! B or one of its shortcut path. Hence, the
assumption is incorrect and follows the theorem. �

3.4 DL Component
The component SC(P) is used to compute the distance

between two nodes within fragment P. In contrast, DL(P)
guarantees the correct evaluation of the distance between
any node A /∈ P and any node B ∈ P. Intuitively, A! B
must intersect P by a portal node. Hence an straightforward
idea is to store all the distances between any node outside
of P and every node in port(P). However, this approach
shall include many unnecessary distances. For instance, in
Fig. 3, the shortest path from node A to C passes node B,
while B and C are both portal nodes of P. In this case, the
distance d(A,C) is unnecessary to be recorded if d(A,B) has
been recorded, as d(B,C) can be computed with the edges in
P∪SC(P). Therefore, we need only to record the length of
any shortest path, which does not contain an internal node
(on the path) of P.

We organize DL(P) into an entry-value form so that it
can be indexed by the entry. In particular, for all A ∈ P, it
has the following (entry→ value) mapping format:
(A,P)→ {(N1, d1), (N2, d2), . . . , (Ns, ds)}.
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(A,P) is the index entry. {(N1, d1), (N2, d2), . . . , (Ns, ds)}
is a list of node-distance pairs where Ni (1 ≤ i ≤ s) are
portal nodes of P, and di = d(A,Ni). Recall that our
objective is to guarantee the correct evaluation of d(A,B)
(∀A /∈ P, ∀B ∈ P), with {(N1, d1), (N2, d2), . . . , (Ns, ds)}
and P∪SC(P) (denoted by P ′). Note that A ! B must
pass certain portal nodes, it suffices to record only the dis-
tance between A and its nearest node in P along A! B,
as the remaining part can be computed within P ′. An ex-
ample is shown in Fig. 3 where the red curve represents a
fragment P. In the figure, only the distances between A and
red square nodes are recorded in DL(P) as they are the first
intersection nodes with P and the shortest paths started
from node A. Specifically, (B, d(A,B)) is in the list mapped
to entry (A,P) while (C, d(A,C)) is not. We summarize
Rule 2 for constructing DL(P) as follows:

Rule 2. For entry (A,P), {(N1, d1), (N2, d2), . . . , (Ns, ds)}
conforms to: (1) Ni ∈ port(P), ∀1 ≤ i ≤ s; (2) The short-
est path from A to Ni only intersects P by Ni itself; (3)
di ≤ di+1 (1 ≤ i ≤ s− 1).

3.5 Optimality for Communication Cost and
Size of NPD-index

Optimality for Communication Cost Theorem 3 estab-
lishes that the NPD-index of each fragment is sufficient for
computing distances between nodes in the fragment and any
other nodes in graph G. In other words, Theorem 3 says that
each fragment is visited once only and fragments run inde-
pendently without communication between each other.

Theorem 3. For any fragment P, the distance from any
node A ∈ G to any node B ∈ P can be computed with the
edges in P∪SC(P)∪DL(P).

proof: We consider two cases A ∈ P and A /∈ P. For the
first case, by Theorem 1, P∪SC(P) is a complete fragment,
then the distance from A to any node in P can be com-
puted by P∪SC(P). For the second case, we denote the
nearest node from A that are both in A ! B and in P
as node C. According to Rule 2, d(A,C) is recorded in
DL(P). In addition, d(C,B) can be computed by P∪SC(P)
as P∪SC(P) is a complete fragment. Therefore, the dis-
tance d(A,B) can also be computed in this case, due to
d(A,B) = d(A,C) + d(C,B). �
Optimality for Index Size We proceed to prove that the
NPD-index is optimal in terms of size among the indices that
are able to guarantee the correctness of distance computa-
tion. We first define a standard fragment index that suffices
to compute network distances.

Definition 7 (Standard Fragment Index). A stan-
dard fragment index with respect to fragment P is a shortcut
edge set I ⊆ {(X,Y, d(X,Y ))|X ∈ G, Y ∈ P} such that ev-
ery distance between a node A ∈ G and a node B ∈ P can
be evaluated by P ∪ I, where “d(A,B) can be evaluated by
P ∪ I” is either of the following two cases:

i (A,B, d(A,B)) ∈ P ∪ I.

ii There exists an internal node C ∈ A! B such that
both d(A,C) and d(C,B) can be evaluated.

By definition, a standard fragment index guarantees the cor-
rect computation of d(A,B) (∀A ∈ G, ∀B ∈ P), and thus

start node

A

B

C

partition 

P

D

E

pred(D)

pred(C)

shortest paths

Figure 3: Rule 2 illustration: the DL component
records only red nodes (square) that are nearest to
node A on the shortest paths started from A.

meets the query need of SGKQ. In addition, the standard
fragment index characterizes all the indices that are a sub-
set of a broad set {(X,Y, d(X,Y ))|X ∈ G, Y ∈ P} and are
able to guarantee the correct computation.

By Theorem 3, we know IND(P)=SC(P)∪DL(P) is a
standard fragment index. Theorem 4 guarantees IND(P)
achieves the minimum size among all standard fragment in-
dexes. We introduce Lemma 2 to prove Theorem 4.

Lemma 2. If d(A,B) can be evaluated by a standard frag-
ment index with respect to fragment P, then B ∈ P.

proof: By the condition (ii) in the definition of standard frag-
ment index, d(A,B) can be recursively divided into d(A, u1),
d(u1, u2), . . ., d(ui, B), where each of them is recorded in
P ∪ I. Since the last (shortcut) edge, (ui, B, d(ui, B)), be-
longs to P ∪ I, then node B must belong to P, noting that
the second node in P ∪ I is in P. �

Theorem 4. Among all the standard fragment indexes
with respect to P, IND(P) achieves the minimum size where
the size is measured by the number of distances being recorded.

proof: For any standard fragment index I with respect to
P, we want to show that IND(P)⊆ I. Therefore, we need to
show that for any (A,B, d(A,B)) ∈ IND(P), (A,B, d(A,B))
also belongs to I. We assume by contradiction that (A,B,
d(A,B)) /∈ I. Since IND(P)∩P = ∅, then (A,B, d(A,B)) /∈
P. Considering the assumption, we have (A,B, d(A,B) /∈
P ∪ I. Moreover, as (A,B, d(A,B)) ∈ IND(P), the second
end node B must belong to P according to the construc-
tion rules. So by the definition of standard fragment index,
d(A,B) can be evaluated by P∪I. Due to (A,B, d(A,B)) /∈
IND(P) (condition i not satisfied), it follows that condi-
tion ii should be satisfied, i.e., there exists an internal node
C in A ! B such that d(A,C) and d(C,B) can both be
evaluated by P ∪ I. Now we can generate a contradiction.
On one hand, by Lemma 2, node C should belong to P as
d(A,C) can be evaluated by P∪IND(P). On the other hand,
node C does not belong to P by Rule 1 and Rule 2, which
causes a contradiction. So the assumption is incorrect and
(A,B, d(A,B)) should also belong to I, which follows the
theorem. �

3.6 Remark
The precomputed distances are also employed in existing

work. However, their objectives and approaches are signifi-
cantly different compared with NPD-index. First, some ex-
isting algorithms utilizes partition-based methods [11, 10] to
speed up the centralized computation. They first partition
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Figure 4: Index construction illustration: the Di-
jkstra search starts from node A, records distances
according to Rule 1 / Rule 2 in SC / DL.

graphs and then record (1) the distances between the bound-
ary nodes from different partitions and (2) the distances be-
tween a node and all the boundary nodes of the partition
containing the node. In these methods, the distance be-
tween two nodes is computed via the boundary nodes of the
both partitions containing them. These approaches need
extensive interactions between partitions—They [11, 10] are
designed for the centralized setting, and are not suitable for
the distributed setting. In contrast, In the NPD-index, the
distance between a source node and a target node can be
computed by only the boundary nodes of the fragment con-
taining the target node. In other words, the distance can be
computed within the fragment containing the target node,
and no communication is required between fragments.

Second, precomputed distances are also employed in short-
cut based shortest path algorithms [21, 22]. However, those
algorithms are not based on fragments, and their ideas are
totally different from NPD-index.

3.7 Additional Pruning
In practice, the r value in SGKQ will not be too large,

as the nodes that are too far away from the keyword nodes
are of no interest in keyword search. Therefore, we set a
parameter maxR = λ×e, where e is the average edge length
and λ is a factor. We assume that all r values should be at
most maxR. Under this assumption, we only retain the
distances that are at most maxR in SC(P) and DL(P). For
example, a node Ni in list {N1, N2, . . . , Ns} for index entry
(A,P) is retained only if d(A,Ni) ≤ maxR.

An SGKQ mainly involves computing keyword coverages.
Thus, we can do further optimizations by reformatting the
graph slightly: assigning each keyword ω a virtual keyword
node W , and connecting node W with any node that con-
tains a keyword ω with the edge weight as 0. The direction
of the virtual edges are from node W to the nodes containing
ω. By doing so, focus on keyword nodes, instead of every
node in the graph. Specifically, we prune all the entries in
DL such that the node in the entry is not a keyword node.

4. INDEX CONSTRUCTION AND QUERY-
ING

4.1 Parallel Fragment-wise Index Construction
A straightforward method to construct the DL compo-

nent is to run Dijkstra algorithm starting from each keyword
node, to search their first intersection nodes with every frag-
ment along the shortest paths. Such method has two major
drawbacks:

• the computation of the DL component and the SC
component cannot be computed simultaneously, as the
SC component is not only related to keywords nodes.

• the construction process is not fragment-wise.

Ideally, the index construction can be fragment-wise. In
other words, one machine only takes charge of one fragment,
and thus the index for the other fragments does not need to
store in this machine. To this end, we propose a “backward
search” scheme to construct the index. In particular, Dijk-
stra algorithm is run only with portal nodes as the source
nodes. For a source portal node B, if the shortest path
A! B does not contain any other node in P, then d(A,B)
will be recorded at entry (A,P) of DL(P) (if A /∈ P and A
is a keyword node) or SC(P) (if A ∈ P). Figure 4 shows
an example that d(A,C) is recorded in DL mapped by entry
(A,P) and d(A,D) is recorded in SC(P). Alg. 1 presents the
pseudo code for index construction for fragment P and re-
turns SC and DL. To chase the visited fragments for a short-
est path, we define variable visitedParts. The visitedParts
value changes when the shortest path tree from the source
node grows. In pseudo code, each portal node is processed
one by one (line 1). For the processing of each portal node,
line 2–3 initialize the variables. Line 4–16 combines a Dijk-
stra search and our rules. In particular, line 7–9 describes
Rule 2, line 10–11 describes Rule 1, and line 12–16 describes
the edge relax for Dijkstra search.

Algorithm 1 NPD-Index Construction

function Index Construct({n1, . . . , ns})
variables:
{n1, . . . , ns} - portal nodes of P;
pred[i] - the shortest path predecessor of node i;
visitedParts[i] - visited fragments along the shortest path
(end nodes excluded) from the source node to node i;
part[i] - the fragment containing node i;

1: for each ni

2: initialize visitedParts to be empty
3: insert ni with weight 0 into priorityqueue H
4: while H not empty and top weight of H ≤ maxR
5: p = pop(H)
6: merge visitedParts[pred[p]] into visitedParts[p]
7: if p is a keyword node
8: if P 6= part[p] and part[p] /∈ visitedParts[p]
9: add pair (p, d(ni, p)) into entry (ni, part[p]) in DL

10: if p ∈ port(P) and part[p] /∈ visitedParts[p]
11: add edge (p, ni, d(ni, p)) into SC
12: for each q ∈ neighbor(p)
13: if d(ni, q) > d(ni, p) + d(p, q)
14: d(ni, q) = d(ni, p) + d(p, q)
15: update pred[q] = p
16: insert (q, d(ni, q)) into H

When the list of node-distance pairs for an entry in DL
has been computed, the pairs are sorted in an increasing
order of distance. We do not include this operation in the
pseudo code as it is very simple. The process makes the
construction naturally parallel. For example, the construc-
tion of the index on different fragments can be handled by
different machines, based on the application requirements.

4.2 Distributed SGKQ Querying
According to Theorem 3, the evaluation of SGKQ query

can be performed in a fragment-wise manner, using the in-
dex at each fragment alone without incurring communica-
tion between fragments. This lays the foundation of our
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Figure 5: Illustration of the method for one frag-
ment. A virtual node (red triangle) connects to
every node (black circle) containing certain query
keyword, by a virtual distance 0. The keyword cov-
erage is computed by the Dijkstra algorithm with
the virtual node as the source. The intersection of
the coverages is the final result (shade).

method that can be naturally performed in the distributed
setting. In the sequel, we only specify how the evaluation is
done in a specific fragment P as the computation process is
the same in other fragments. We call the computation on a
fragment a task. Every task proceeds by steps as follows:

Step 1 Read complete fragment. Each task reads the edges
of P ′ = P∪SC(P).

Step 2 Search from index. Searches the list of node-distance
pairs for entry (ωi,P) in DL(P), where ωi is the i-
th query keyword. Among the returned node-distance
pairs, we retain the pairs with distance values at most
radius r.

Step 3 Extend P ′. Add directed shortcut edges to fragment
P, where each of those shortcut edges corresponds to a
node-distance pair in the retaining list output by Step
2. The direction of the added shortcut edges is from
keyword nodes to other nodes.

We denote the extended fragment generated by the three
steps as P0. Now, to evaluate the result nodes in P is equiv-
alent to evaluating the result nodes in P0 (By theorem 3).

We present a simple approach to answer an SGKQ Q in
a fragment. For each query keyword ωi (1 ≤ i ≤ k), we
denote the set of nodes containing the keyword ωi as node
set Si. To facilitate the distance computation between a
node and Si. We add a virtual node Vi with a distance
of 0 connected to every node in Si. The direction of the
virtual edges is from node Vi to nodes in Si, and thus we
have d(A,Si) = d(A, Vi). Note that, we let the virtual edges
be directed to avoid traveling back from the nodes in Si

to the virtual node Vi. For example, in Fig. 5, the path
A → V2 → B should not be considered in Dijkstra search,
otherwise the distance between node A and B will be set to
0, which is incorrect.

Next, for each keyword ωi in query Q, we employ the
Dijkstra algorithm [7] with Vi as the source to compute the
keyword coverage R(ωi, r). Finally, the query result can be
obtained by intersecting all R(ωi, r) (1 ≤ i ≤ k). In Fig. 5,
red nodes (triangle) are virtual nodes of node set S1 and S2,
they act as the source nodes of the Dijkstra algorithm.

Based on the aforementioned method, the pseudocode of
NPD-index-based query computation is shown in Alg. 2. A
query example is shown in Fig. 6.
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partition P
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E

musuem

50

50

SGKS(school,museum,80)Query:
Recorded in DL
Recorded in SC

30 30

40

50

Query result in P

Figure 6: An SGKQ query is performed. First, com-
plete fragment P∪SC(P) are extended with addi-
tional edges from DL(P) (bold green dot lines); Sec-
ond, keyword coverages from query keywords mu-
seum and school are searched on the extended frag-
ment. The result is the intersection of the coverages.

Algorithm 2 NPD-index based SGKQ query processing

function query(P)
variables: P - a graph fragment

1: read edges in P∪SC(P)
2: for each keyword node ωi

3: List=search(entry (ωi,P)) in index file IND(P)
4: for each node-distance pair (q, dq) in List
5: if dq ≤ r
6: add directed edge (p, q, dq) to fragment P
7: search keyword coverage Ri = R(ωi, r) in the new frag-

ment using Dijkstra algorithm
8: return ∩Ri

5. ANALYSIS AND EXTENSIONS

5.1 Complexity
Since the computation cost in every fragment is identical,

we take a fragment P for the cost analysis. We divide the
cost analysis in P into 2 parts.

First, for each query keyword ω, the keyword coverage
R(ω, r) in P is figured out with P∪IND(P). Hence the
computation cost is no more than that of executing a Dijk-
stra algorithm from the virtual keyword node W (for ω) on
P∪IND(P). We denote the number of node-distance pairs
in DL(P) mapped from the entry (ω,P) is α and the number
of edges in SC(P) is β. Hence the size of additional edges
added to P is α+β, and the number of explored nodes dur-
ing executing Dijkstra algorithm is |P ∩ R(ω, r)|. It follows
that the complexity of computing keyword coverage R(ω, r)
in P is O(α+ β + |P ∩R(ω, r)|log(|P ∩R(ω, r)|)).

Second, computing the intersection among (R(ω, r) ∩ P)
(for every query keyword ω) can be finished by visiting each
(R(ω, r)∩P) once. Therefore, the computation cost of part
1 is dominant.

By these analysis, we have the following result:

Theorem 5. The time complexity of Alg. 2 for answer-
ing the SGKQ query in fragment P is
O(

∑
1≤j≤k (αj + β + |P ∩R(ωj , r)|log(|P ∩R(ωj , r)|))), where

β = |SC(P)| and αj is the number of node-distance pairs in
entry (ωj ,P) in DL(P); ωj (1 ≤ j ≤ k) is a query keyword.
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Analysis of Theorem 5. In distributed computing, the re-
sponse time is determined by the slowest task, which is given
in Theorem 5 for our problem. Observe that part of the time
complexity, O(

∑
1≤j≤m |Pi ∩R(kj , r)|(log(|Pi ∩R(kj , r)|))),

will become smaller as the number of fragments become
larger. The remaining part, i.e.,

∑
1≤j≤k (αj + β) ≤ kβ +∑

1≤j≤k αj ≤ k|IND(P)|, is bounded by the index size. Our
experiments show that the index size on every fragment is
rather small (See EXP. 1).

5.2 Load Balance
To discuss the load balance of our approach, we assume a

simple task assignment strategy: an un-assigned task must
be assigned to certain idle machine if there are idle machines.
This strategy, although simple, is considered to be one of the
most general strategies in distributed computing. Note that,
when more sophisticated load balance strategy is employed,
the correctness of the following discussion still holds. We

define the unbalance factor to be U = max1≤i 6=j≤c
cost(Mi)
cost(Mj)

,

where Mi is the i-th machine and c is the number of ma-
chines that have been assigned with tasks. Intuitively, U is
the maximal workload ratio between two machines Mi and
Mj . U = 1 means perfect balance while U >> 1 means
unbalance. We give the following theorem to describe the
relationship between U and the task costs.

Theorem 6. U ≤ 1 +
max1≤k≤N cost(Pk)

min1≤k≤N cost(Pk)
, where cost(Pk)

refers to the cost of evaluating query results in fragment Pk.

Theorem 6 shows that if the costs of tasks are similar,
then the algorithm will achieve a satisfactory load balance.
Note that the fragment technique we use guarantees a bal-
ance fragment of the road network, thus an acceptable load
balance is achieved by our approach.

5.3 Multiple Shortest Paths Scenario
Previously, we assumed that the shortest path between

any two nodes is unique. Although this assumption often
holds in practice, the proposed index can correctly handle
the multiple shortest paths scenario. In fact, we can change
the algorithm slightly to handle this scenario. In particular,
Rule 1 is changed to Rule 3:

Rule 3. We add a shortcut edge (A,B) with weight d(A,B))
to SC(P) iff: (1) A ∈ P and B ∈ P ; (2) (A,B, d(A,B)) is
not an edge in the road network graph G; (3) Any shortest
path from A to B does not contain any other node of P;

Rule 2 is changed to Rule 4:

Rule 4. Value {(N1, d1), (N2, d2),. . . , (Ns, ds)} for entry
(A,P) conforms to: (1) Ni ∈ port(P), ∀1 ≤ i ≤ s; (2) Any
shortest path from A to Ni only intersects P by Ni itself;
(3) di ≤ di+1 (1 ≤ i ≤ s− 1).

With the techniques in the proofs of Theorems 1 to 4, it is
easy to show that the theorems still hold with above rules
in the multiple shortest paths scenario.

5.4 From SGKQ to Other Queries
We generalize Spatial Group Keyword Query (SGKQ) and

Range Keyword Query (RKQ) into Q-class queries.

Definition 8 (Q-class). Given a weighted graph G, a
set of radiuses {r1, . . . , rk} and a set of keywords {ω1, . . . , ωk},

we consider the class of spatial keyword queries Q such that
Q can be answered by evaluating a D-function F(R(ω1, r1), . . . ,
R(ωk, rk)). We refer to the class of spatial keyword queries
as Q-class.

We proceed to discuss why our approach is feasible for all
the queries in Q-class in two aspects.

• (Property i: Implementation) It is trivial to ex-
tend Alg. 2 to handle other specific queries in Q-class.

• (Property ii: Time complexity) Any D-function
F will not hurt the advantages of our approach, com-
pared to a centralized algorithm.

Satisfying Property i. Note that, varying radiuses for
query keywords causes only trivial parameter changes by
Alg. 2. When the radiuses ri (1 ≤ i ≤ k) are fixed, for any
two query types drawn from Q-class, only the final functions
F are different. By the definition of D-function, as long
as there is a technique that can evaluate the specific D-
function in the centralized setting, this technique can be
directly employed in the distributed setting.

Satisfying Property ii. Irrespective of ri (1 ≤ i ≤ k)
and the D-function F , the cost of evaluating F is linear
to the size of input set, and takes a small portion of cost
compared to evaluating the keyword coverage (super linear
to the size of input set), no matter on the whole network
or on a fragment. Therefore, the correctness of Theorem 5
holds for any Q-class query. By the analysis for Theorem 5
in Section 5.1, the superiority of the distributed computing
in time complexity still holds.

5.5 When r > maxR

The selection of maxR affects the index sizes and index
construction cost, as well as the applicable range of the query
factor r. As we discussed earlier in most real-life queries r
will not be very large, and thus we can set a maxR to be
sufficient large. In the rare cases where the query factor r
is larger than the selected maxR, we can address this by
building a bi-level index such that each machine holds two
sets of indexes. One index is generated by fixing maxR as a
manually selected value (according to the applications) and
the other is built without the maxR restriction. With a
properly selected value of maxR, most queries can be han-
dled by the first index. Meanwhile, the queries with a value
of r larger than the maxR value are handled by the second
index. In fact, even when we remove the maxR (or equally
letting maxR = ∞), the query time will only slightly goes
up (Fig. 9).

6. PERFORMANCE EVALUATION
We study the performance of SGKQ in detail in EXP. 1 –

6. We evaluate the effect of different D-functions in EXP. 7
and the performance of RKQ in EXP. 8.

Experimental Settings. The experiments are conducted
in a cluster consisting of 16 machines, each machine with 4G
memory and installed with Ubuntu Linux. The machines are
interconnected by a 100MB TP-LINK switch.

Datasets. We use 2 real road networks for evaluation,
where BRI (British) and AUS (Australia) are extracted from
openstreetmap 1. Both datasets contain a road network,

1http://www.openstreetmap.org/
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Figure 7: The index size with different maxR
values and the number of fragments.
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Table 1: Datasets
name nodes objects edges keywords

BRI 3,760,213 300,891 9,730,188 57,600
AUS 1,223,171 70,064 3,364,364 18,750

Table 2: Parameters
maxR/avg edge 5, 10, 20, 40

#keywords 3,5,7,9,11
#fragments 2,4,8,12,16

r 40e,maxR,maxR/2,maxR/3,maxR/4

together with a number of objects on the road network. Each
object is tagged with some keywords. In preprocessing, we
take each object as a node and let it connect to its nearest
network node. Summary statistics of the datasets are listed
in Tab. 1. Tab. 2 gives the possible parameter settings,
where the bold ones are the default values.

Each graph is fragmented to N node-disjoint fragments,
aiming at minimizing cross-partition edges for parallel com-
puting. We use distributed graph partitioning algorithms
ParMetis [13] for a balanced fragmenting. We let each ma-
chine (except for the coordinator) handle one fragment.

Generating queries. We select query keywords in a
manner of considering both keyword closeness and frequency.
We first select a circle range centered by a random node.
Then, within the range we choose the keywords according
to their frequency. Keywords with higher frequency have a
larger chance to be chosen. The selection method is reason-
able as keywords are correlated in a range and keywords with
higher frequency are considered to have a higher probability
to be issued by a user.

EXP 1: Storage cost. We measure the average storage
cost for index files on each machine. The storage cost in
each machine is incurred by storing the SC file and DL file.
From Fig. 7 (a) and (b), we can see that the average storage
cost in each machine is within 21MB for BRI, and below
8MB for AUS. Even to set maxR to infinity, the index size
is still acceptable, below 60MB for AUS on each machine
(Fig. 8); and the index size for BRI is below 170M (the
figure is ignored due to the space limitation).

The cost is very small compared to the size of hard disk of
a modern PC. As expected, the average storage cost in each
machine increases when maxR becomes larger. We note
maxR = 40e (i.e., e is the average edge length) is a relatively
large radius. For example, the average edge length of AUS is
more than 1.2 kilometer, therefore, an index with maxR =
40e means it can handle all queries with radiuses within 0–
50 kilometers. We do not observe a regular tendency for the
change of the average storage cost in each machine normally
as the number of machines varies.

Table 3: Indexing time per fragment (in minutes)
maxR/avg edge 10 20 40

#fragments=4 19 25.3 25.8
#fragments=8 10.8 14.1 16.6
#fragments=12 8.7 11.9 14.6
#fragments=16 6.2 8.9 11

EXP 2: Indexing time. Indexing time is the time for
constructing indexes. We show the per-fragment indexing
time (AUS) with varying fragments and varying maxR in
Tab. 3. In a nutshell, for a normal network size (such as
AUS) with ordinary parameter settings, the time construct-
ing the index on a fragment is within 30 minutes, which is
surely affordable as the indexing process is done offline.

Next, we evaluate the query performance of our method
and summarize how the performance is affected by differ-
ent factors. In particular, we study the effect of the fol-
lowing factors: the number of fragments, the number of
query keywords, index factor maxR and query parameter
r. Note that, unless stated, except the factor/parameter
examined, the other factors/parameters (resp. varying fac-
tors/parameters) is set by default as in Tab. 2.

EXP 3: Effect of the number of keywords. From
Fig. 10 and Fig. 11, we can see that the run time of both
methods increases with the increase of the number of key-
words. This is reasonable as the more query keywords, the
more keyword coverages should be evaluated and thus the
more computational cost will be incurred. In Fig. 10 and
Fig. 11, we also give the runtime of 1 fragment for refer-
ence. Note that the Q-class spatial-keyword query has not
been studied and there exist no centralized algorithm for it.
However, the distributed method has a much better scala-
bility with the number of query keywords than that the al-
gorithm running one 1 machine. The superiority attributes
to the NPD-index that enables our method to evaluate each
fragment independently. With the NPD-index, the cost in-
curred by spatial keyword query is distributed to different
fragments (machines), resulting in a better scalability.

EXP 4: Effect of r. Query performance is also affected
by r. Figures 14 and 15 show the results when r varies
among [ 1

4
maxR,maxR]. When r is larger, the query re-

sponse time is longer as a larger r means evaluating a larger
keyword coverage. The value of r has much less effect on the
performance of our method than on the centralized method.
This reflects the robustness of our method.

EXP 5: Effect of maxR. The factor maxR affects the
indexing time and size as shown in EXP 1. This experiment
is to evaluate its effect on the query performance. We sum-
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Figure 10: BRI, varying
keywords.
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Figure 11: AUS, varying
keywords.
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Figure 12: BRI, varying
fragments
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Figure 13: AUS, varying
fragments
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Figure 14: Varying r on
BRI.
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Figure 15: Varying r on
AUS.

marize the results in Fig. 9. The results demonstrate that
the maxR value has a very limited effect on the query per-
formance, even when maxR is set to positive infinity. The
result on AUS is qualitatively similarly and is ignored due
to the space limitation.

EXP 6: Effect of the number of fragments. This
experiment aims to evaluate the effect of the number of frag-
ments on the performance of the NPD-index based method.
We vary the number of fragments from 2 to 16. Each frag-
ment is handled by one machine. The results are shown in
Fig. 12 and Fig. 13, which indicate that the response time is
approximately cut by half when the fragments are doubled,
demonstrating a good scalability.

EXP 7: Effect of different D-functions. We evaluate
the effect of different D-functions on performance. We fix
the number of query keywords to 7, and the D-function in
the format of X1θ1X2θ2 . . . θ6X7 is generated by taking θi
(1 ≤ i ≤ 6) from {∩,−}. We vary the ratio of the two set
operators, i.e., intersection ∩ and subtraction −, to generate
6 cases. Figure 16 illustrates the performance of different
cases evaluated on AUS, where the x-axis is the number
of used subtraction operators. We can conclude from the
figure that different D-functions have minor effect on the
overall performance, since in all cases, the cost of evaluating
keyword coverage takes more than 95% of the total cost.
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Figure 16: AUS, differ-
ent D-function
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Figure 17: AUS, RKQ
query

EXP 8: Range keyword query. The range keyword

query (RKQ) is a type of Q-class query and can be handled by
our method. The evaluation results on AUS are illustrated in
Fig. 17. We conclude from the figure that, the performance
of RKQ with our NPD-index based method scales well with
the number of keywords.

7. RELATED WORK
Spatial-keyword queries in Euclidean Space. A type
of popular spatial keyword query is to retrieve all objects
whose text descriptions contain a given set of keywords and
whose locations are within a specified distance of the query
location [4, 5]. This is similar to the RKQ query in this paper
except that the RKQ query considers road network distance
rather than Euclidean distance. Another type of spatial key-
word queries is to find the k objects with the highest ranking
scores, measured as a combination of their distances to the
query location and the relevances of their text descriptions
to the query keywords [6], or find the k most nearest objects
whose descriptions contain query keywords [9].
Spatial-keyword queries in Road Networks. Most of
the existing work on spatial-keyword querying focuses on
Euclidian space. Recently, road network distance is also con-
sidered in spatial-keyword querying [20, 14]. Li et al. [14]
addressed a spatial query that returns nodes satisfying both
the spatial constraints (i.e., within a spatial range from a
specific location) and keyword similarity constraints. The
top-k spatial-keyword query [20] was proposed to find the
k objects with the highest ranking scores, measured as a
combination of their road network distances to the query
location and the relevances of their text descriptions to the
query keywords. However, none of these proposals considers
the SGKQ and they cannot be used to answer the Q-class
query. In addition, a demonstration of the preliminary ver-
sion of this work was presented in [15].
Keyword search over relational databases. Our work
is also related to the research on keyword search over re-
lational databases. By transforming a database to a graph
with tuples as nodes and foreign-key references as edges,
many approaches [1, 8, 10, 12] have been proposed for key-
word search on the database graphs. Ding et al. [8] em-
ployed dynamic programming to optimize the min-cost group
Steiner trees searching. BANKS[1, 12] and BLINKS [10]
search rooted trees with backward search or bidirectional
search techniques to approximate group Steiner tree search-
ing. BLINKS [10] indexes the distances between keywords
and nodes and the distances between nodes and portal nodes
in each fragment of a relational graph. Note that the index
used in BLINKS is significantly different from the proposed
NPD-index—BLINKS index records the intra-fragment in-
formation while the NPD-index focuses on the information
between a fragment and the nodes outside the fragment.
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Moreover, BLINKS’s index is designed for a centralized set-
ting and cannot be used for distributed computing while the
NPD-index is proposed for a distributed setting.
Parallel keyword search over graphs. Our work is re-
lated to parallel keyword search over graphs [19]. Qin et al
focused on the parallel potential on a multi-core platform for
Candidate Network evaluation, and proposed an approach to
distributing SQLs to different cores when considering min-
imizing workload skew, minimizing inter-core sharing and
maximizing intra-core sharing. The problem and approach
are different from ours.
Parallel graph query processing. We have discussed
closely related research on parallel graph query processing
in Section 2.3.

8. CONCLUSIONS
This paper proposes a new distributed index scheme called

NPD-index to answer two types of spatial-keyword queries
on road networks in a distributed setting. We analyze the
optimality and complexity of the proposed method, and
show the rationality of the proposed scheme and algorithms.
To the best of our knowledge, the NPD-index is the first
technique for answering spatial-keyword queries on road net-
works in a general distributed environment. The experimen-
tal studies conducted under a general distributed environ-
ment demonstrate the efficiency of the proposed methods
based on the the NPD-index.

In the future, it would be interesting to extend our method
to handle other types of graphs such as relational database
graphs and social networks. Also, it remains open whether
other types of queries can benefit from NPD-index.
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