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ABSTRACT
Multi-Version Database Management Systems (MV-DBMS)
are wide-spread and can effectively address the characteris-
tics of new storage technologies such as Flash, yet they are
mainly optimized for traditional storage. A modification of
a tuple in a MV-DBMS results in a new version of that item
and the invalidation of the old version. Under Snapshot
Isolation (SI) the invalidation is performed as an in-place
update, which is suboptimal for Flash. We introduce Snap-
shot Isolation Append Storage – Vectors (SIAS-V), which
avoids the invalidation related updates by organising tuple
versions as a simple linked list and by utilizing bitmap vec-
tors representing different states of a single version. SIAS-V
sequentializes writes and reduces the write-overhead by ap-
pending in tuple-version granularity, writing out only com-
pletely filled pages, and eliminating in-place invalidation.

In this demonstration we showcase the SIAS-V imple-
mentation in PostgreSQL side-to-side with SI. Firstly, we
demonstrate that the I/O distribution of PostgreSQL un-
der a TPC-C style workload, exhibits a dominant small-
sequential write pattern for SIAS-V, as opposed to a ran-
dom write dominated pattern under SI. Secondly, we demon-
strate how the dense packing of tuple-versions on pages un-
der SIAS-V reduces significantly the amount of data written.
Thirdly, we show that SIAS-V yields to stable write per-
formance and low transaction response times under mixed
loads. Last but not least, we demonstrate that SIAS-V also
provides performance improvements for traditional HDDs.

1. INTRODUCTION
Multi-Version approaches to database systems correlate

well to the asymmentric properties of new storage technolo-
gies such as Flash. On asymmetric storage reads (especially
random ones) are much faster than writes, compared to
symmetric storage where both perform equally well. Under
Multi-Version Concurrency Control (MVCC) or its subclass
Snapshot Isolation (SI) [1] reads are never blocked; hence ad-
vantage of the high read performance can be taken. Writes
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Figure 1: Version Organization in SI and SIAS-V

produce a new physical version of the data item, which can
be written out of place, yielding more Flash-friendly I/O
patterns.

MV-DBMS introduce more complexity incurred by the
version management overhead: (i) on the read side it re-
lates to validity and visibility checks; (ii) on the write side it
relates to version organisation and write I/O. Read opera-
tions fetch the latest version of the data item, a transaction
is allowed to see. The version visibility is determined us-
ing timestamps based on transactional time. Each version
maintains a creation and an invalidation timestamp, which
correspond to the ID of the creating/modifying transaction.
Upon an update of a data item a new version is created/in-
serted and the old version is invalidated by stamping it with
an invalidation timestamp. Under traditional SI both the
old (invalidated) and the newly created version need to be
written back (the former ’in-place’), causing Flash-adverse
random write patterns.

In this demonstration we showcase a new approach called
SIAS-V, which algorithmically avoids in-place invalidation
of versions by creating a simple linked list of all versions of
a data item and additionally storing a visibility and valid-
ity bit for each version using bitmap vectors. SIAS-V ad-
dresses the read/write asymmetry of Flash, leveraging their
fast random read rate and circumventing overwrites. Fig-
ure 1 depicts a short example (extended in Section 3): three
transactions T1, T2 and T3 update tuple a, creating versions
a0, a1 and a2 respectively. While under original SI, T3 modi-
fies a2 and a1, under SIAS-V T3 creates and appends a2, and
also sets the bit values in the newly introduced bit vectors
B0 and B1 indicating visibility and validity respectively.

2. RELATED WORK
The general Snapshot Isolation (SI) algorithm is intro-

duced and discussed in [1]. Specifics of a concrete SI imple-
mentation (PostgreSQL) are described in detail in [6, 10].
The general SI algorithm [1] assumes a logical version or-
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ganisation as a double-linked list and the maintenance of
creation and invalidation timestamps on the data-item ver-
sion itself, while making no assumption about the physi-
cal organisation. An improvement of SI called SI-CV, co-
locating versions per transactions on pages has been pro-
posed in [5]. SIAS-V organizes data item versions in simple
chronologically ordered backwards-linked chains. Alterna-
tive approaches have been proposed in [3, 8] and explored
in [9, 2] in combination with MVCC algorithms and spe-
cial locking approaches. The high-performance MVCC al-
gorithm employed in Hekaton [8] assumes that a creation
and invalidation timestamp are maintained on every version
and utilises both to perform visibility checks or correct val-
idation upon transaction commit. We assume that SIAS-V
is applicable in such settings.

Similar chronological-chain version organization has been
proposed in the context of update intensive analytics [7]. In
such systems data-item versions are never deleted, instead
they are propagated to other levels of the memory hierar-
chy such as hard disks or Flash SSDs and archived. Any
logical modification operation is physically realized as an
append. SIAS-V on the other hand provides mechanisms
to couple version visibility to (logical and physical) space
management. Another difference is that SIAS-V uses trans-
actional time (all timestamps are based on a transactional
counter) in distinction to timestamps that correlate to log-
ical time (dimension). Stonebraker et al. realized the con-
cept of TimeTravel in PostgreSQL [11]. In [4] we evaluate
SIAS and append based storage management approaches on
Flash.

3. SIAS-V ALGORITHM
This section provides a short overview of the SIAS-V al-

gorithm and prototype, implemented by modifying an out
of the box PostgreSQL 9.0.4.

Individual tuple versions are appended to a page of the
corresponding relation, which is either written after it gets
full or after a threshold is reached. SIAS-V uses the same
steal–no-force approach as PostgreSQL and no additional
retaining mechanisms are employed to keep newly added
pages in the buffer. In the following we discuss the simpli-
fied visibiliy check in SIAS-V as depicted in Algorithm 1. It
determines the visibility of a tuple version Xv for a trans-
action T . In Snapshot Isolation the visibility check is seen
as a local decision (per tuple version). SIAS-V introduces a
change of paradigm and decides on the data item as a whole
(all tuple versions).

The validity bitmap vector which is denoted by B1 is
mandatory for the SIAS-V algorithm. It logically partitions
the database into valid and invalid tuple versions. A tuple
version is considered invalid if and only if it has a valid (com-
mitted) successor. The most recent valid version of each
tuple chain is called the entrypoint and serves as a start-
ing point for the visibility check. In order to find a visible
version, the corresponding chain is traversed backwards. As
soon as the visible version is found, the chain traversal can
be interrupted. Bitmap vector B0 is optional and represents
an optimization that maintains visibility information (dead
tuples) and acts as a tuple version mask, filtering tuple ver-
sions which are invisible to all running transactions.

For each version a corresponding entry in B0 and B1 ex-
ists. The check immediately returns true if the transaction
itself created the tuple version (line 1). If the version is

Algorithm 1 SIAS-V Visibility Check

1: if (X.txmin == t.tid) then
2: return true;
3: else if (!B0[X.id]) then
4: if (X.txmin > T.id) then
5: return false;
6: else if (X.txmin < T.id) then
7: if (!B1[X.id] AND isCommitted(X.txmin))

then
8: return true;
9: else

10: Tuple XNew = getSuccessorV ersion(X);
11: if (XNew.txmin < T.tid AND
12: isCommitted(XNew))
13: return false; else return true; end if
14: end if
15: end if
16: end if
17: return false;
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Figure 2: Bitmap Vectors with Tuple Versions

marked as invisible in B0, the check returns false (line 3).
If the transaction’s ID is smaller than the tuple version’s
creation ID then the version is not visible (line 4). If the
version’s ID is smaller than the transaction’s ID (line 6) the
tuple version has to be valid and committed to be visible
(line 7). If the tuple version is not valid it may be visible if
the committed successor in the chain is not visible (succes-
sor was created after the start of the transaction) else it is
invisible (lines 10,12,13).

A fetch of a successor version is the most costly operation
and involves searching - this case can only occur when ac-
cessing an invalidated tuple directly (not starting with the
entrypoint). SIAS-V adapts access methods to avoid such
accesses as discussed in Section 3.1.

Example: Figure 2 shows table rel with both bitvectors.
The table keeps 5 data items, represented by 9 versions, each
containing one attribute. E.g. data item a exists in three
versions: {a0; a1; a2}. Version a0 is not visible to any run-
ning transaction, a1 is visible to transactions which cannot
see the most recent version a2. Each data item has one entry
point : {a2; b1; e1; c0;x0}; indicated by a zero bit in B1.

Tuple versions of a relation are appended to a page of
that relation. It can be written to stable storage as soon as
it is filled or a pre-defined threshold is reached. A page is
immutable once it is written (thus it can be garbage collected
once it contains only invalid and invisible versions).

Size: Each entry in each vector needs one bit and the
position of the bit equals the tuple versions’ ID. Hence one
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8KB page is able to maintain 64K entries.

3.1 Operations: Read, Update, Delete
Read: Before a table scan is started a virtual snapshot of

B1 is created. A subsequent merge is unnecessary since the
scan is read only. B1’s copy therefore snapshots the relation
at the time the scan starts. B0 is not copied since changes
to it depend on the oldest still running transaction, hence
false negatives (not visible) are avoided, but false positives
may exist, which are filtered during the visibility check using
B1. B0 is beneficial since versions with their B0 bit set can
be discarded (need not be read or processed). Valid tuple
versions, indicated by a zero in B1, are the entrypoint for
a traversal of the versions representing a data item in dif-
ferent states. Each version maintains a backlink to and the
creation timestamp of its predecessor (see Figure 1). From
each valid version the simplified visibility check (Algorithm
1) is executed. Since the entrypoint is always valid no visible
successor version exists at that time and line 10 can never
be reached, which is also true when traversing the chain
backwards. If the check returns false and there exists a pre-
decessor version p0 to some tuple P it may be visible. p0
only has to be fetched and checked if P does not store the
creation timestamp of p0. E.g. during a scan of rel (Figure
2) SIAS-V accesses the entry points using B1. Block 0x00
is not read since all contained versions are not visible (in-
dicated by B0). When entrypoint a2 is read, the visibility
check is executed. In the worst case a2’s predecessor a1 has
to be read. In contrast, original snapshot isolation fetches
block 0x00 and checks each tuple individually.

Update/Insert: An update is executed as an invalida-
tion and an insertion of a new version. To invalidate a ver-
sion, the respective bit in B1 is set. At the same time the
new version and its corresponding values in both vectors are
inserted. The initial values of the new version are set to
zero in both vectors. The new version receives its own cre-
ation timestamp and maintains a pointer to its predecessor
and the predecessor creation timestamp. The tuple is stored
in a page which is written after it is completely filled or a
threshold is reached.

Delete: A deletion is treated as an invalidation and an
insertion of a special tombstone version indicating the dele-
tion and terminating the version chain. The compensation
version becomes the visible version and serves as the entry-
point. When it becomes the only visible version, the bits
are set in B1 and B0 to render all versions of the data item
invisible - such that no access to the tuple is needed in order
to discard it during the visibility check.

4. DEMONSTRATION
After introducing the audience to the basics of SIAS-V

they select a demonstration scenario out of a set described
in more detail below.

4.1 Invalidation Model and I/O Distribution
Conceptually, SIAS-V introduces a new version organisa-

tion and invalidation model. It leads to SSD-friendly write
patterns by significantly reducing random writes and utilis-
ing out of place updates (Figure 3).

To demonstrate this claim we use a tool called SIAS An-
alyzer (Figure 4) to compare SI and SIAS-V in PostgreSQL
under TPC-C (DBT-2) style workload and to visualize disc
accesses. The audience is shown which blocks of which rela-
tion are written at the current time and at which I/O rate

the requests are processed. These are visualized and the
spatial and the temporal distribution of writes is depicted
(Figure 3) to underline our claims.
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Figure 3: Spatial Distribution of Write I/Os under
SI and SIAS-V. A 100 sec. slice of the TPC-C run.

Figure 4: Screenshot SIAS Analyzer

4.2 Dense packing and endurance
Due to the SIAS-V invalidation model, new versions can be

densely packed on pages in SIAS-V which leads to less SSD
writes that can also be performed sequentially thus increasing
Flash endurance.

To demonstrate this claim we use the SIAS Analyzer (Fig-
ure 4) and let the audience pick a time frame from the TPC-
C run performed in Scenario 4.1. Next we show the writes
performed by SIAS-V. The audience can observe the sequen-
tial nature of the I/O distribution as well as why this yields
lower Flash block-erase count and increased endurance.

4.3 Write Performance and Low Response Times
SIAS-V offers stable write throughput. It isolates the I/O

read and write streams on an SSD. A Flash SSD device can
deliver predictable performance under mixed workloads.

We demonstrate this claim by defining a One-Tuple-Update-
Micro-Benchmark. It updates a single tuple on every page
the relation occupies. This corresponds to the worst case
update predicate touching a sparse subset of the relation.
In real world terms this corresponds to a budget increase
of all departments that do not exceed a certain maximum
budget. Under SI a significant overhead is incurred when a
few tuples per page get invalidated since the whole page is
marked dirty and is written back in-place causing expensive
random writes.

Under SIAS-V new versions are densely packed (Scenario
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4.2) and appended sequentially. Under SI previous tuple
versions are invalidated yielding unpredictable mixed I/O
load (old versions are random read and random written af-
ter invalidation). During the benchmark run the audience
can vary the number of transactions and experiment with
the benchmark runtime (Figure 5). Based on the high stan-
dard deviation (visualized by the error-bars in Figure 5) the
audience will experience the performance instability of SI
for the selected number of concurrent transactions.
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Figure 5: One-Tuple-Update-Micro-Benchmark:
Avg. runtimes for different benchmark runs and
the standard deviations as error-bars.

SIAS-V exhibits low response times per transaction for
write-intensive and/or mixed-workloads. Response times un-
der SI tend to exhibit higher workload-dependent variance.

We illustrate this claim again using the One-Tuple-Update-
Micro-Benchmark. Since it updates one tuple per page oc-
cupied by the table, it practically implies the following. If a
relation comprises 100 pages and a page contains 200 tuple
versions SI will update 100 pages due to version invalidation
and will add a single new page for the new versions. Con-
versely, SIAS-V, will just append the new versions possibly
adding a new page.

The audience will be able to vary the number of concur-
rently executing transactions to experience (as shown in Fig-
ure 5) that: (i) the response times under SIAS-V are signifi-
cantly lower than under SI; (ii) response times under SIAS-
V are stable. Furthermore, the One-Tuple-Update-Micro-
Benchmark shows the effect of write reduction and dense
packing.

4.4 Dense Packing and Less Read I/O
Under read-only workloads SIAS-V achieves lower scan times
than SI since it requires less read I/O due to SIAS-V dense
packing and version organisation.

We demonstrate this claim with a read-only-benchmark
that is executed on the DB state after Scenario 4.3. Sev-
eral tables in PostgreSQL are concurrently updated by one
transactions each (all tables have non-overlapping storage
areas). The audience will observe the lower completion times
of SIAS-V.

4.5 Advantages on traditional HDDs
SIAS-V also leads to better results on traditional HDDs.
This claim is again demonstrated by running the One-Tuple-
Update-Micro-Benchmark on an HDD. As Figure 6 shows
SIAS-V has performance advantage over SI due to write re-
duction and avoidance of random writes. On SSDs however
the performance benefits of SIAS-V are significantly higher
(compare Figures 5 and 6).
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Figure 6: One-Tuple-Micro-Benchmark on HDD.

5. CONCLUSIONS
In this paper we demonstrate SIAS-V – an approach to

multi-version organisation that algorithmically avoids in-
place invalidation of versions by creating a simple linked
list of all versions of a data item and by additionally storing
a visibility and validity bit for each version using bitmap
vectors. SIAS-V: (i) introduces a new invalidation model
and version organisation; (ii) sequentialises write I/Os; (iii)
packs new versions densely on pages and reduces the total
amount of writes; (iv) yields stable write performance and
low response times.
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