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ABSTRACT
While there is a large and growing body of literature on dif-
ferentially private mechanisms for answering various classes
of queries, to the best of our knowledge“count-range”queries
have not been studied. These are a natural class of queries
that ask “is the number of rows in a relation satisfying a
given predicate between two integers θ1 and θ2?” Such
queries can be viewed as a simple form of SQL “having”
queries. We begin by developing a provably optimal dif-
ferentially private mechansim for count-range queries for a
single consumer. For count queries (in contrast to count-
range queries), Ghosh et al. [9] have provided a differentially
private mechanism that simultaneously maximizes utility for
multiple consumers. This raises the question of whether such
a mechanism exists for count-range queries. We prove that
the answer is no — for count range queries, no such mech-
anism exists. However, perhaps surprisingly, we prove that
such a mechanism does exist for “threshold” queries, which
are simply count-range queries for which either θ1 = 0 or
θ2 = +∞. Furthermore, we prove that this mechanism is a
two-approximation for general count-range queries.

Categories and Subject Descriptors
H.2.0 [Database Management]: General—Security

General Terms
Algorithms, Security

1. INTRODUCTION
Recently, concomitant with the increasing ability to collect
personal data, privacy has become a major concern. In re-
sponse to this concern, the research community has devoted
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considerable attention to differentially private mechanisms
for various classes of queries, including averages, sums, and
counts. However, to the best of our knowledge, there is no
published work on count-range queries

A count-range query tests if the number of rows satisfying
a given predicate is within a specified range — that is, they
ask“is the count within this range?” Count-range queries are
a natural generalization of count queries, and correspond to
a simple form of SQL“having” queries. An obvious differen-
tially private mechanism for evaluating count-range queries
is to count the number of rows satisfying the predicate, then
to add Laplacian noise or geometric noise to the count, and
to return yes if the noisy result is within the range and no
otherwise. Our question in this paper is whether it is pos-
sible to do better. We answer in the affirmative, and give a
different, optimal mechanism; but before doing so, we must
first specify what “better” means.

Of course, privacy is just one aspect of the problem; util-
ity also matters, as adding noise decreases accuracy. We
measure the utility of a differentially private mechanism for
count-range queries in terms of weighted errors. We adopt
a model in which each information consumer provides an
error penalty function that describes that consumer’s per-
ceived utility loss for a given error. For example, for a typical
information consumer, errors that are in some sense “close”
to the true answer may be less harmful than errors that are
“farther” away.

However, different consumers may assign a different impor-
tance (weight) to the same error. In addition, each consumer
may also have arbitrary side information about the data be-
ing queried. In an approach similar to that presented in [9]
for count queries, we model a consumer’s side information
as a prior distribution over the number of rows satisfying
the predicate of a count-range query. We combine a con-
sumer’s error penalty function and prior distribution to give
a weighted error function. Therefore, returning to the issue
of whether or not it is possible to do better than the näıve
approach, the question becomes: given a privacy parame-
ter, a consumer’s weighted error penalty function and prior
distribution, does adding geometric noise to the count and
then checking the range minimize the consumer’s weighted
error? We show that the answer is “no”, and propose a dif-
ferent, optimal differentially private mechanism for count-
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range queries.

With this result, we turn to consider a generalization in
which the differentially private mechanism must serve mul-
tiple information consumers, each asking the same count-
range query and each with their own weighted error function.
A natural question is how to guarantee optimal utility for all
such consumers. A näıve solution is to apply the single con-
sumer mechanism separately for each consumer. However,
this would result in the release of multiple randomizations
of the query result, which would allow consumers to collude
and reduce the effective noise in the answers. We seek a
better alternative.

In the context of count queries (not count-range queries), [9,
10] showed that there is a more sophisticated differentially
private mechanism that is both collusion-resistant and si-
multaneously optimal for every consumer. Their approach
works by first perturbing the result of the count query, and
then individually transforming that noisy result for each
consumer. They proved that when the mechanism is the
range-restricted geometric mechanism [9], the transforma-
tion guarantees optimal utility for every consumer.

Since count-range queries are a natural generalization of
count queries, it is natural to ask if a similar approach
works for count-range queries. We prove that the answer
is no — in fact, we show that there is no differentially pri-
vate mechanism that simultaneously maximizes every con-
sumer’s utility for count-range queries. On a more positive
note, we prove the range-restricted geometric mechanism is
an approximate universally utility maximizing mechanism
for count-range queries, and that the weighted error for any
consumer is at most twice that consumer’s optimal weighted
error.

Next, we consider threshold queries, a natural special case of
count-range queries. Here, by “threshold queries” we mean
queries that test if the number of rows satisfying a predicate
is less/greater than a constant. That is, if a count-range
query asks if the count is between two constants θ1 and θ2,
threshold queries are just count-range queries for which ei-
ther θ1 = 0 or θ2 = +∞. Perhaps surprisingly, we show
that with this apparently small change (requiring that one
of the endpoints of the range in count-range query be zero
or infinity), the range-restricted geometric mechanism guar-
antees optimal utility for every consumer while satisfying
differential privacy.

The rest of this paper is organized as follows: Section 2
formulates the problem of guaranteeing differential privacy
for count-range queries, and defines our utility model. Sec-
tion 3 presents our results for count-range queries while Sec-
tion 4 considers threshold queries. Section 5 discusses re-
lated work, while we conclude and discuss future directions
in Section 6. Proofs not found in this submission are pre-
sented in the long version of our paper [1].

2. PRELIMINARIES

2.1 Count-Range Queries and Diff. Privacy
A database is a collection of rows. The domain of each row
is a finite set D. The domain of a database of n rows is thus

represented as Dn. In the rest of this paper, we shall use n
to denote the number of rows in a database.

We will focus on a class of queries called count-range queries,
where a count-range query consists of three parameters: a
predicate p and two non-negative integers θ1, θ2 where (θ1 <
θ2)

1. Thus, we can characterize a count-range query by a
triple 〈p, θ1, θ2〉. Given a count-range query 〈p, θ1, θ2〉 with
predicate p : D → {true, false}, the result of that count-
range query is yes if the number of rows in a database that
satisfy the predicate p is within the range [θ1, θ2], and no

otherwise. For ease of presentation, we define the count of
a count-range query to be the number of rows satisfying the
predicate of that query. When θ1 = 0 or θ2 = +∞, the
count-range query is a threshold query.

Our first goal is to propose a differentially private mech-
anism for count-range queries. In our context, a mecha-
nism is a probabilistic function from Dn to some range R.
Typical ranges include the real numbers, the integers, sub-
ranges of integers, and {yes, no}. For a mechanism X with
a countable range R, we use xτ,r to denote the probability
of outputting r ∈ R when the underlying database is τ . A
mechanism X is called α-differentially private (α > 1) if and
only if for any pair of databases τ, τ ′ that differ by one row,
∀r ∈ R, xτ ′,r/α ≤ xτ,r ≤ αxτ ′,r. Two such databases τ and
τ ′ are called neighboring databases.

We want to guarantee differential privacy for a count-range
query. We formalize that problem next.

2.2 Diff. Private Mechanisms for Count-Range

Queries
Because the result of a count-range query is either yes or
no, given a differentially private mechanism X for a count-
range query, let xτ,1 (xτ,0) be the probability of outputting
yes (no) when the underlying database is τ ∈ Dn. Because
xτ,0 = 1 − xτ,1, we can characterize a differentially private
mechanism for a count-range query by xτ,1.

We assume that the probability that the result of a count-
range query is yes is related to the count, the range, and
the privacy parameter. More precisely, let µτ and µτ ′ be
the count of a count-range query over the databases τ and
τ ′, respectively. Fixing the range and the privacy parameter,
if µτ = µτ ′ , then we assume that xτ,1 = xτ ′,1

2. In the rest
of this paper, unless otherwise specified, we assume that the
range [θ1, θ2] and the privacy parameter α are fixed. We call
mechanisms satisfying our assumption count-oriented mech-
anisms.

Definition 1. (Count-oriented mechanism): A differen-
tially private mechanism is count-oriented if and only if the
output distributions produced by that mechanism on any pair
of databases that have the same counts for a count-range
query are identical.

1We do not consider the case for θ1 = θ2 since a count-range
query is equivalent to a count query in that case, which was
considered in [9].
2The rationale of this assumption is discussed in the long
version of our paper [1].
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We introduce a function φ to characterize a count-oriented
differentially private mechanism for a count-range query.
Let xτ,1 = φ(µ) where µ is the count of that count-range
query when the underlying database is τ . Of course, not
every function φ can be used to define that probability. The
following two basic properties on φ capture the requirement:

Definition 2. (Legal function): A function φ is a legal
function if and only if for any integer µ,

1. for 0 ≤ µ ≤ n, 0 ≤ φ(µ) ≤ 1;

2. for 0 ≤ µ < n, φ(µ)/α ≤ φ(µ+ 1) ≤ αφ(µ) and
(1− φ(µ))/α ≤ 1− φ(µ+ 1) ≤ α(1− φ(µ)).

The second property comes from the requirement of differen-
tial privacy that the ratio of the probabilities of outputting
the same result (either yes or no) for any pair of neigh-
boring databases must be bounded by the privacy param-
eter α. Thus, a legal function naturally corresponds to a
count-oriented differentially private mechanism for a count-
range query. Of course, there are many functions satisfying
those two properties. Let Ω be the set of all legal functions:
Ω = {φ | φ is a legal function}. Next, we propose a utility
model to quantify the quality of a legal function. Our first
goal in this paper is to find an optimal legal function that
maximizes the utility of a consumer.

2.3 Utility Model
Because differentially private mechanisms are probabilistic,
they commit errors. Thus, informally, the best differentially
private mechanism should be the least likely to commit er-
rors. Specifically, there are two types of errors in answering
a count-range query:

1. False negative: the output is no but the correct answer
is yes. The probability of a legal function φ to commit
a false negative error when the count is µ is:

F
−
φ (µ) = 1− φ(µ), θ1 ≤ µ ≤ θ2

2. False positive: the output is yes but the correct answer
is no. The probability of a legal function φ to commit
a false positive error when the count is µ is:

F
+

φ (µ) = φ(µ), 0 ≤ µ < θ1 or θ2 < µ ≤ n

It is possible that different errors incur different utility losses
for different consumers. Consider the following example:
when the count is equal to θ1, and the output is no, then
that error is close to being correct in the sense that the
correct answer will change from yes to no upon deleting
even a single row that satisfies the predicate. Thus, that
error may not severely impact utility. On the other hand,
if the count is much larger than θ2 and the output is no,
the error might incur a large utility loss because it is far
from being correct. Furthermore, each consumer may have
a different tolerance on this type of errors. Therefore, we
introduce an error penalty function ω for a consumer where
ω(i) is the penalty to the error of a legal function when the

count is i. The idea of error penalty function was proposed
in [9, 10] for count queries, and we extend that idea to count-
range queries. In both [9, 10], the error penalty functions
are assumed to be monotone such that the error penalty
function must be non-decreasing in the difference between
the correct result of a count query and the output. In our
work we do not require such property for ω, which provides
greater flexibility in modeling a consumer’s perceived utility
loss for different errors.

Following the model presented in [9] in their study of count
queries, we also assume that each consumer has side infor-
mation about the underlying database. We model that side
information as a prior probability distribution ρ over the
count, where ρ(i) represents the probability that a consumer
believes the count of the given threshold query to be i. That
prior distribution represents the beliefs of that consumer,
which might stem from other information sources, previous
interactions with the database, introspection, or common
sense. We emphasize that we are not introducing priors
to weaken the definition of differential privacy; we use the
standard definition of differential privacy, which makes no
assumptions about the side information of an adversary, and
use a prior only to discuss the utility of a legal function to a
potential consumer. We model the utility of a legal function
for a consumer in terms of her weighted error:

err(φ)=

θ1−1
∑

i=0

ω(i)ρ(i)φ(i)+

θ2
∑

i=θ1

ω(i)ρ(i)(1−φ(i))+

n
∑

i=θ2+1

ω(i)ρ(i)φ(i)

(1)

3. OPTIMAL PRIVATE MECHANISMS

FOR COUNT-RANGE QUERIES
In this section, we first propose an optimal differentially pri-
vate mechanism for count-range queries, then consider the
problem of serving multiple consumers. Ghosh et al. [9]
showed that there is a mechanism for count queries that si-
multaneously maximizes every consumer’s utility while guar-
anteeing differential privacy. Although count-range queries
are a simple generalization of count queries, surprisingly, our
results indicate that there is no such mechanism for count-
range queries.

3.1 An Optimal Diff. Private Mechanism
First, we define the notion of an optimal legal function for a
count-range query by a single consumer.

Definition 3. Given a consumer with error penalty func-
tion ω and a prior distribution ρ, a legal function φ∗ is an
optimal legal function for a count-range query by that con-
sumer if and only if ∀φ ∈ Ω,

err(φ∗) ≤ err(φ)

where err() is the weighted error function defined in (1).

A straightforward way to find an optimal legal function for a
consumer is to treat each φ(i), 0 ≤ i ≤ n, as a variable, and
to solve the linear programming problem that minimizes her
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weighted error subject to the requirements of a legal func-
tion. This amounts to solving an optimization problem of
n + 1 variables. However, we will prove that for the design
of an optimal legal function, it suffices to solve an optimiza-
tion problem with two variables. First, we prove a theorem
about the existence of an optimal legal function of a partic-
ular form. To better understand our results, we define two
recurrence relations:

ψ1(µ+ 1) = min{αψ1(µ),
α− 1 + ψ1(µ)

α
} (2)

and

ψ2(µ+ 1) = max{
1

α
ψ2(µ), 1− α+ αψ2(µ)} (3)

We will prove that an optimal legal function for a count-
range query 〈p, θ1, θ2〉 can be characterized by the minimum
of the two recurrence relations defined in (2) and (3).

Theorem 1. An optimal legal function φ∗ for the count-
range query 〈p, θ1, θ2〉 is of the following form:

φ
∗(µ) = min{ψ1(µ), ψ2(µ)} (4)

where ψ1 and ψ2 satisfy (2) and (3), respectively, and

ψ1(θ1) ≤ ψ2(θ1)

ψ1(θ2) ≥ ψ2(θ2) (5)

As we will explain in more detail later, (2) actually charac-
terizes a family of optimal legal functions for the threshold
query 〈p, θ1,+∞〉 while (3) does so for the threshold query
〈p, 0, θ2〉. Since a count-range query 〈p, θ1, θ2〉 can be ex-
pressed as the“and”of the two threshold queries 〈p, θ1,+∞〉
and 〈p, 0, θ2〉, we expect that an optimal legal function for
that count-range query should be closely related to those
two recurrence relations, and Theorem 1 confirms this.

By Theorem 1, when searching for an optimal legal function,
it suffices to consider legal functions satisfying (4), which is
an optimization problem consisting of two variables. That
is, if we fix ψ1(0) = β1, then ψ1 is well-defined because (2)
is a first-order linear recurrence relation. More precisely, we
can rewrite (2) as:

ψ1(µ+ 1) =

{

αψ1(µ) if ψ1(µ) ≤ 1/(α+ 1)
(α− 1 + ψ1(µ))/α otherwise.

For any integer µ (0 ≤ µ ≤ n), if β1 ∈ [0, 1/(αn−1(α+ 1))),
then

ψ1(µ) = α
µ
β1

and if β1 ∈ [1/(α + 1), 1], then

ψ1(µ) = 1−
1− β1

αµ

Figure 1: Consumer Dependent Optimal Mechanism

Figure 2: Serving Multiple Consumers with a Single Mech-
anism

and if β1 ∈ [1/(αn−1(α+1)), 1/(α+1)), let k be the unique
integer between 1 and n − 1, such that if β1 ∈ [1/(αk(α +
1)), α/(αk(α+ 1))), then

ψ1(µ) =

{

αµβ1 if 0 ≤ µ ≤ k

1− 1−β1α
k

αµ−k otherwise.

Therefore, we divide the range [0, 1] into n + 1 subinter-
vals, where ψ1(µ) is linear in β1 when β1 is in a subinter-
val. Similarly, we can show ψ2 is also well-defined by fixing
ψ2(0) = β2.

Hence, the weighed error of φ can be written as err(φ) =
err(β1, β2), where err(β1, β2) is a piecewise multilinear func-
tion in β1, β2. To compute the minimum of err(β1, β2),
we can compute the minimum of err(β1, β2) on each 2-
dimensional subinterval, which is trivial, and then compare
those local minima to get the global minimum. Let that
global minimum be err(β∗

1 , β
∗
2 ). Then, an optimal legal

function φ∗ is of the following form:

φ
∗(µ) = min{ψ∗

1(µ), ψ
∗
2(µ)}

where ψ∗
1(0) = β∗

1 , ψ
∗
2(0) = β∗

2 , and ψ
∗
1 and ψ∗

2 satisfy the (2)
and (3), respectively.

3.2 Multiple Consumers
While we have given an optimal solution for the single con-
sumer case, the situation where there are multiple consumers,
each with their own error penalty functions and prior dis-
tributions, is more complex. Our main question is whether
there is a single optimal function that works for multiple
consumers. In this section, we consider a scenario in which
multiple consumers ask the same count-range query. Our
goal is to enforce differential privacy for multiple consumers
while simultaneously guaranteeing optimal utility for every
consumer.

A näıve application of our single consumer mechanism to

264



Figure 3: Decomposition of the Optimal Mechanism for a
Consumer

multiple consumers is to invoke the optimal α-differentially
private mechanism for each consumer separately. However,
that näıve application allows colluding consumers to com-
bine their noisy results and reduce the noise, and thus in-
fer the real result more accurately. It is well-known that
in such a situation the database has to operate under a
more stringent privacy parameter to satisfy the utility re-
quirements of the consumers. More precisely, suppose that
there are m consumers, and the database guarantees αi-
differential privacy for the ith consumer. By the composi-
tion property of differential privacy [7], we can only guar-
antee α-differential privacy for those m consumers provided
∏m

i=1
αi ≤ α, and thus, αi ≪ α. As a result, the weighted

error of each consumer is actually larger than that of the op-
timal α-differentially private mechanism for each consumer.

The problem with collusion arises because the true answer
is randomized and released multiple times. To avoid that
problem, we observe that if the true query result is ran-
domized only once, and every consumer receives the same
noisy result, then the problem goes away. However, if the
true query result is only randomized once, the differentially
private mechanism cannot be optimal for every consumer
unless they have the same error penalty function and prior
distribution. That apparent paradox is resolved by assum-
ing that the database can individually further transform the
intermediate noisy output (which is the same for every con-
sumer), and that transformation is deliberately calibrated to
the consumer’s parameters — her error penalty function and
prior distribution — such that the combination of the dif-
ferentially private mechanism and that transformation max-
imizes that consumer’s utility.

To illustrate that idea, for a single consumer, the optimal
mechanism depends on her error penalty function and prior
distribution as shown in Figure 1. When serving multi-
ple consumers, instead of invoking each consumer’s optimal
mechanism, the database employs a common mechanism A

for every consumer to produce an intermediate noisy result,
and then for each consumer, individually transforms that
intermediate noisy result for each consumer to produce the
output (yes,no) for that consumer. This is shown in Fig-
ure 2. Therefore, that approach actually decomposes a con-
sumer’s optimal mechanism into two parts, a consumer in-
dependent mechanism A, and a consumer dependent trans-
formation as shown in Figure 3. For each consumer, if that
decomposition is “lossless”, then the mechanism A indirectly
guarantees optimal utility for that consumer. We inquire
whether there exists such a common mechanism A. In the
rest of this paper, we shall refer to the consumer indepen-

dent mechanism A as the “deployed mechanism.” In our
context, a transformation is a probabilistic reinterpretation
of the intermediate noisy output produced by A. This is
defined in Definition 4.

Definition 4. (Transformation): For a deployed differ-
entially private mechanism A : Dn → R, a transformation
t for a count-range query is a probabilistic function from R
to {yes}. For a countable range R, tr denotes the probabil-
ity that the database reinterprets the outcome r ∈ R of the
mechanism A to yes.

It suffices to only consider the probability of mapping an
intermediate noisy result r to yes since 1− tr naturally cor-
responds to the probability of reinterpretting the outcome r
to no. To output a noisy result for a count-range query by
a consumer, let t be a transformation for a particular con-
sumer, and r be the intermediate noisy result produced by
the deployed mechanism A. Then the database flips a biased
coin with probability tr to output yes, and 1− tr to output
no. Note that the output range of the deployed mechanism
A does not necessarily correspond to {yes,no} as the trans-
formation will eventually remap the noisy output of A to
that range. Furthermore, only the deployed mechanism A

needs to be differentially private since the transformation
receives the noisy output from A, which has already been
differentially private.

Given a deployed differentially private mechanism A, and a
transformation t, the combination of A and t induces a new
mechanism X for count-range queries, where the probability
of returning yes for a database τ is: xτ =

∑

r∈R aτ,rtr. Since
A is differentially private, X is also differentially private by
linearity. In accordance with the literature [3, 13], we say a
mechanism X can be derived from the deployed mechanism
A if there is a transformation t such that X = A ◦ t. Since
X is actually a vector, we shall denote it by x.

Since x is a differentially private mechanism for count-range
queries, for the design of an optimal differentially private
mechanism for count-range queries, we shall assume that
x is count-oriented. To guarantee that, we require that
the deployed differentially private mechanism is also count-
oriented, and thus, we can characterize the domain of that
mechanism by {0, . . . , n} instead of Dn. After that restric-
tion, the induced mechanism x naturally corresponds to a
legal function. We say the induced mechanism x is optimal
for a consumer if and only if x minimizes that consumer’s
weighted error.

For each consumer, if the decomposition of her optimal mech-
anism is “lossless” in the sense that there is a transformation
such that the induced mechanism of the deployed mechanism
and that transformation is also optimal for her, then the de-
ployed mechanism indirectly guarantees optimal utility for
that consumer. Such a mechanism is called a universally
utility maximizing mechanism.

Definition 5. (Universally utility maximizing differen-
tially private mechanism): A differentially private mecha-
nism A is universally utility maximizing if and only if for
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each consumer k, there is a transformation tk such that the
induced differentially private mechanism xk is optimal for
that consumer k.

If we can find such a mechanism, then the database can uti-
lize that mechanism to randomize the count only once to
produce an intermediate noisy result, and then store that
intermediate noisy result. For every consumer, the database
uses a transformation tailored for that consumer to ran-
domize the stored intermediate noisy output. That “double-
randomization” approach rules out the privacy threat of col-
luding consumers as even if they successfully cancel out the
noise, the result is the intermediate noisy result, which is
still differentially private. Furthermore, by carefully select-
ing a transformation for each consumer, the induced mech-
anism of the universally utility maximizing mechanism and
that transformation guarantees optimal utility for that con-
sumer, which provides a strong utility guarantee. Ghosh et
al. [9] showed that the range-restricted mechanism is uni-
versally utility maximizing for count queries when the error
penalty function is monotone, and is of the following form:

Definition 6.(Range-restricted geometric mechanism[9]):
For a given privacy parameter α and a count query Q, ∀τ ∈
Dn, let µ be the correct result of Q over τ . The range-
restricted geometric mechanism outputs Z(µ) where Z(µ) is
a random variable with the following distribution for each
integer z:

Pr[Z(µ) = z] =







α
α+1

α−|z−µ| if z ∈ {0, n}
α−1

α+1
α−|z−µ| if 0 < z < n

0 otherwise.

(6)

Since count-range queries are a natural generalization of
count queries, one may expect that the range-restricted geo-
metric mechanism is also universally utility maximizing for
count-range queries. However, we will prove that this is not
so. More surprisingly, our results indicate that there is no
differentially private mechanism that is universally utility
maximizing for count range queries, as stated in Theorem 2.

Theorem 2. There is no universally utility maximizing
differentially private mechanism for count-range queries.

Note that Theorem 2 not only deals with count-oriented
mechanisms, but also considers other differentially private
mechanisms. To give an intuition for why Theorem 2 holds,
let us first examine why the range-restricted geometric mech-
anism is not universally utility maximizing for count-range
queries.

3.2.1 Discussion on Range-restricted Geometric

Mechanism
Let us consider a special case where the size of the database
n = 3, and the bounds for the count-range query are θ1 = 1
and θ2 = 2. In this case we can represent the optimal dif-
ferentially private mechanism for the count-range query as

a vector (z0, z1, z2, z3)
t, where zi (0 ≤ i ≤ 3) is the proba-

bility of outputting yes when the count is i. We can prove
that when a consumer posing this query has a uniform error
penalty function and a uniform prior distribution, the only
optimal differentially private mechanism for that consumer
is

x̂ = (
1

α+ 1
,

α

α+ 1
,

α

α+ 1
,

1

α+ 1
)t

We can prove that the range-restricted geometric mechanism
can not derive x̂, and thus is not universally utility maxi-
mizing. We can also understand why the range-restricted
geometric mechanism is not universally utility maximizing
for count-range queries from a more intuitive perspective:
by Theorem 1, an optimal legal function for count-range
queries can be rewritten into the following form:

φ
∗(µ) =

{

ψ1(µ) if 0 ≤ µ ≤ γ

ψ2(µ) if γ < µ ≤ n

where γ is an integer between θ1 and θ2.

Let r1 = (ψ1(0), . . . , ψ1(n))
t and r2 = (ψ2(0), . . . , ψ2(n))

t.
As proved later in Section 4, there exists a transformation t1
such that the induced mechanism of the range-restricted ge-
ometric mechanism M and that transformation is r1, where
M ◦t1 = r1. There also exists a transformation t2 such that
M ◦ t2 = r2. Therefore, intuitively, the database should
pick t1 to transform the noisy count produced by the range-
restricted geometric mechanism if the count µ does not ex-
ceed γ, and t2 otherwise. However, the decision of which
transformation to employ depends on the correct count µ.
If that decision is deterministic, then it is a violation of dif-
ferential privacy since no deterministic algorithm satisfies
differential privacy [5]. Therefore, that decision has to be
randomized to accommodate the privacy requirement. As a
result, the database will inevitably commit errors in pick-
ing the correct transformation because of the randomized
nature, and thus, the combination of the range-restricted
geometric mechanism and the transformation can not yield
an optimal differentially private mechanism for a consumer.

3.2.2 Count-Oriented Mechanisms
Let us first assume that some universally utility maximizing
mechanism exists that is a function of count. Again, we
start with the special case where n = 3, θ1 = 1 and θ2 = 2.
For a consumer with a uniform error penalty function and
a uniform prior distribution, the only optimal differentially
private mechanism for that consumer is:

x̂ = (
1

α+ 1
,

α

α+ 1
,

α

α+ 1
,

1

α+ 1
)t.

Next, we reassign the probability mass of the uniform prior
distribution such that the prior distribution ρ satisfies:

ρ(0)/ρ(1) = α
2
, ρ(2)/ρ(1) = α, ρ(3) = ρ(2)

We can prove that for a consumer with a uniform error
penalty function and such a prior distribution ρ, the only
optimal differentially private mechanism is:

266



ŷ = (
1

(α+ 1)α
,

1

α+ 1
,

α

α+ 1
,

1

α+ 1
)t

We characterize a differentially private mechanism A as a
matrix of size 4×m, where the output range of A is {1, . . . ,m}
whose elements satisfy 1/α ≤ ai,j/ai+1,j ≤ α. We prove
that there is no universally utility maximizing mechanism
by showing that no matrix satisfying differential privacy can
derive both x̂ and ŷ. We start by investigating the proper-
ties of A.

Lemma 1. Let B =

[

pt

qt

]

=

[

p1 p2 . . . pm
q1 q2 . . . qm

]

be any

2 × m matrix, where p and q are two probability vectors:
0 ≤ pj , qj ≤ 1 and

∑

j
pj =

∑

j
qj = 1. Suppose they further

satisfy the privacy constraints 1/α ≤ pj/qj ≤ α, and for
some t, with 0 ≤ tj ≤ 1, B ◦ t = ( 1

α+1
, α
α+1

)t. Then, all
privacy constraints are tight: For all 1 ≤ j ≤ m, either
pj/qj = α, or pj/qj = 1/α. Furthermore, tj = 0 in the
former case, and tj = 1 in the latter case.

Proof. If for some j, pj/qj > 1/α and the correspond-
ing tj 6= 0, then pjtj > qjtj/α. Since for every other j′,
pj′/qj′ ≥ 1/α, we get p◦t > q◦t/α, a contradiction. Hence
for all 1 ≤ j ≤ m, pj/qj = 1/α or tj = 0.

Now consider t′ = 1 − t, where 1 is the vector of all ones.
Note that p◦t′ = 1−p◦t = α

α+1
, and q◦t′ = 1−q◦t = 1

α+1
.

Switching the roles of p and q, we have for all 1 ≤ j ≤ m,
pj/qj = α or tj = 1.

Since clearly tj = 0 and tj = 1 cannot hold simultaneously,
we conclude that for all 1 ≤ j ≤ m, either pj/qj = α or 1/α.
In the former case, clearly pj/qj 6= 1/α, and hence tj = 0.
Similarly when pj/qj = 1/α, we have tj = 1.

Corollary 1. If a 4×m matrix A can derive both x̂ and
ŷ, then all the privacy constraints must be tight: ∀i, j, where
0 ≤ i < 3, 1 ≤ j ≤ m

ai,j/ai+1,j = α or ai,j/ai+1,j = 1/α

Next, we will prove that in fact no such matrix exists.

Lemma 2. No matrix A can derive both x̂ and ŷ.

Proof. Let A ◦ t = x̂, and A ◦ t′ = ŷ. By Lemma 1
and Corollary 1, without loss of generality (by renaming
the columns of A), we may assume that ∃k(1 ≤ k < m)
such that ∀j(1 ≤ j ≤ k), a0,j/a1,j = 1/α and tj = 1, and
∀j(k < j ≤ m), a0,j/a1,j = α and tj = 0. Note that since
each row of A sums to 1, we must have 1 ≤ k < m.

Among {1, . . . , k}, we may further assume without loss of
generality that ∃ℓ(0 ≤ ℓ < k), such that ∀j(1 ≤ j ≤ ℓ),

a1,j/a2,j = 1/α, and ∀j(ℓ < j ≤ k), a1,j/a2,j = α. (Here
either range is guaranteed to be non-empty.)

Then,

α

α+ 1
= a1 ◦ t =

1

α

ℓ
∑

j=1

a2,j + α

k
∑

j=ℓ+1

a2,j

α

α+ 1
= a2 ◦ t =

ℓ
∑

j=1

a2,j +

k
∑

j=ℓ+1

a2,j

It follows that

ℓ
∑

j=1

a2,j =
α2

(α+ 1)2

From A ◦ t′ = ŷ, and

a0 ◦ t
′ =

1

α
a1 ◦ t

′

we have ∀j > k, t′j = 0. This is because for any j > k,
a0,j = αa1,j > a1,j/α. From

a1 ◦ t
′ =

1

α
a2 ◦ t

′

we have ∀j(ℓ < j ≤ k), t′j = 0, by the same reasoning.
Therefore,

α

α+ 1
= a2 ◦ t

′ ≤
ℓ

∑

j=0

a2,j =
α2

(α+ 1)2

a contradiction.

Hence, there is no matrix A that can derive both x̂ and ŷ

while guaranteeing differential privacy.

Therefore, for the special case n = 3, θ1 = 1 and θ2 = 2,
there is no universally utility maximizing mechanism that
is count-oriented for count-range queries. For the general
case, we can prove that there are consumers whose only
optimal differentially private mechanisms, when expressed
as vectors of length n+ 1, contain x̂, and ŷ respectively, as
a subsequence. More precisely, let k = (θ1 + θ2 − 1)/2 if
θ1 + θ2 is odd, and k = (θ1 + θ2)/2 otherwise.

Lemma 3. There exists a consumer whose only optimal
differentially private mechanism is:

x = (x0, . . . , xn)
t

where for all i, 0 ≤ i ≤ k, xi = 1/(αk−1−i(α + 1)), and for
all j, k+1 ≤ j ≤ n, xj = 1/(αj−k−2(α+1)), and a consumer
whose only optimal differentially private mechanism is:

y = (y0, . . . , yn)
t
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where for all i, 0 ≤ i ≤ k, yi = 1/(αk−i(α+ 1)), and for all
j, k + 1 ≤ j ≤ n, yj = 1/(αj−k−2(α+ 1)).

By Lemma 3, in particular,

(xk−1, xk, xk+1, xk+2)
t = x̂

(yk−1, yk, yk+1, yk+2)
t = ŷ

Therefore, if there is a matrix A that can derive both x

and y, then the submatrix (ak−1, ak,ak+1,ak+2)
t can derive

both x̂ and ŷ, which is in contradiction to Lemma 2.

Corollary 2. No matrix A satisfying differential pri-
vacy can derive both x and y.

3.2.3 Other Mechanisms
So far, we have only considered count-oriented mechanisms.
For any arbitrary mechanism that may depend on the input
database and not merely the count, we construct n + 1 in-
stances of databases, τ0, . . . , τn where the count for a count-
range query is i in the database τi, and τi, τi+1 are neighbor-
ing databases. Therefore, we can still characterize the opti-
mal mechanism, when restricted to these n+1 databases, for
a consumer by a vector (z0, . . . , zn)

t where zi is the prob-
ability of outputting yes when the underlying database is
τi, and the mechanism as a matrix A of size (n + 1) × m

where the ith row corresponds to the database τi, which is
identical to that of count-oriented mechanisms. By differen-
tial privacy, ai+1,j/α ≤ ai,j ≤ αai+1,j . By Lemma 3, there
are consumers whose only optimal mechanism is x and y.
By Corollary 2, no matrix can derive both x and y. There-
fore, there is no universally utility maximizing mechanism
for count-range queries.

3.3 A Non-Existence Result
So far, we have proved that there is no universally util-
ity maximizing mechanism for count-range queries. How-
ever, the requirements of a universally utility maximizing
mechanism actually limit the behavior of a database: the
database can only produce an intermediate noisy output,
and then transform that intermediate noisy output for each
consumer. Going beyond any such restriction, we can prove
that no matter what mechanism is deployed by a database
to produce the noisy results for multiple consumers, as long
as that mechanism is differentially private, that mechanism
can not maximize every consumer’s utility.

Theorem 3. There is no differentially private mechanism
that maximizes every consumer’s utility for a count-range
query.

Proof Sketch: We start by considering a special case where
n = 3, and θ1 = 1, θ2 = 2. We have already shown that
there are two consumers whose only optimal differentially
private mechanisms are:

x̂ = (
1

α+ 1
,

α

α+ 1
,

α

α+ 1
,

1

α+ 1
)t

ŷ = (
1

(α+ 1)α
,

1

α+ 1
,

α

α+ 1
,

1

α+ 1
)t

For ease of presentation, we shall define the consumer whose
optimal mechanism is x̂ as the first consumer, and the other
one as the second consumer. Then ∀τ ∈ Dn, i, j = 0, 1,
let tτ,i,j be the probability of outputting i for the first con-
sumer, and j for the second consumer. First, we prove the
case where the mechanism is count-oriented. This will be
generalized later. Therefore, we can characterize the output
distribution for µ = 0, 1, 2 by three 2× 2 matrices:

0 1
0 t0,0,0 t0,0,1
1 t0,1,0 t0,1,1

0 1
t1,0,0 t1,0,1
t1,1,0 t1,1,1

0 1
t2,0,0 t2,0,1
t2,1,0 t2,1,1

By the requirement of differential privacy, ∀µ = 0, 1, and
i, j = 0, 1, tµ+1,i,j/α ≤ tµ,i,j ≤ αtµ+1,i,j . If that mechanism
maximizes both consumers’ utility, then the marginal dis-
tribution in each matrix for each consumer constitutes her
optimal mechanism. Let tµ,1,1 = tµ, and thus, the mecha-
nism is:

0 1 0 1 0 1

0 t0 +
α−1

α
,

1

(α+1)α
− t0 t1,

1

α+1
− t1 t2 − α−1

α+1
,

α
α+1

− t2

1
1

α+1
− t0, t0

α
α+1

− t1, t1
α

α+1
− t2, t2

By differential privacy, t1 ≤ αt0, and

1

α+ 1
− t1 ≤ α(

1

α(α+ 1)
− t0)

Thus, αt0 ≤ t1. Therefore t1 = αt0. Similarly, we can prove
that t2 = αt1. By differential privacy,

t0 +
α− 1

α
≤ αt1 = α

2
t0

Then, t0 ≥ 1/(α(α + 1)). By differential privacy,

α

α+ 1
− t1 ≤ α(

α

α+ 1
− t2)

Since t2 = α2t0 and t1 = αt0, t0 ≤ 1/(α+1)2. We have thus
obtained a contradiction. Therefore, no such mechanism
maximizes both consumers’ utility when n = 3, θ1 = 1 and
θ2 = 2.

For the more general case, the proof is similar to that of
Corollary 2 and Theorem 2, and we omit the details here. ✷

As discussed in [3], the universally utility maximizing mech-
anism only exists for a limited class of queries. Brenner et
al. characterized the necessary conditions on the queries
that admit universally utility maximizing mechanism. The
basic idea of their proof is to characterize a query by an
undirected graph where each vertex corresponds to an out-
put of the query, and an edge is drawn between two vertices
if the addition/deletion of a tuple to/from a database can
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result in such a change in the outputs. Brenner et al. proved
that if there is a cycle in the privacy constraint graph, then
no universally utility maximizing mechanism exists. How-
ever, for count-range queries there is no cycle on the privacy
constraint graph, hence Brenner’s result cannot be used to
prove our result.

3.4 An Approximate Mechanism
Given that there is no optimal mechanism, we turn to con-
sider approximate mechanisms. First, we formulate the no-
tion of β-approximate universally utility maximizing, which
measures the approximation ratio in terms of the weighted
error.

Definition 7. (β-approximate universally utility maxi-
mizing): A differentially private mechanism X is
β-approximate universally utility maximizing if and only if
for any consumer, there exists a differentially private mech-
anism that is derivable from X whose weighted error for that
consumer is at most β times of the minimal weighted error
of that consumer.

We will prove that the range-restricted geometric mechanism
is 2-approximate universally utility maximizing for count-
range queries.

Theorem 4. The range-restricted geometric mechanism
(6) is 2-approximate universally utility maximizing for count-
range queries.

We consider the range-restricted geometric mechanism as
an approximation is because of the following observation: if
there were no privacy concern, then the identity matrix I

would be a trivial universally utility maximizing mechanism
for count-range queries. An identity matrix I means that
given a count i, the mechanism always outputs i. In other
words, the output probability distribution is 1 at i and 0
everywhere. However, by the requirement of differential pri-
vacy, that probability distribution needs to be “flattenned”
such that the probability mass of outputting i is assigned to
other outputs. Intuitively, after that reassignment, given an
output i, the most likely output should still be i, and the
probability of outputting j decreases with the increasing in
|j − i|. The range-restricted geometric mechanism exactly
reflects that intuition.

4. OPTIMAL DIFF. PRIVATE MECHANISMS

FOR THRESHOLD QUERIES
In this section, we consider threshold queries, a special case
of count-range queries which test whether or not the number
of rows in a database satisfying a predicate is less/greater
than a threshold. More precisely, a threshold query can be
characterized by either 〈p, 0, θ〉 or 〈p, θ,+∞〉. We first revisit
the problem of designing an optimal mechanism for a single
consumer, now for the special case of threshold queries. It
turns out that a simpler mechanism is possible for threshold
queries than for count-range queries, and this simpler mech-
anism will be useful in our search for an optimal mechanism
for multiple consumers for threshold queries. We show that,

unlike the case for count-range queries, in the case when mul-
tiple consumers ask threshold queries with the same predi-
cate (with possibly different thresholds), there exists a mech-
anism that simultaneously maximizes every consumer’s util-
ity while guaranteeing differential privacy.

4.1 An Optimal Diff. Private Mechanism
As was the case for count-range queries, a straightforward
way to find an optimal legal function for a consumer asking
a threshold query is to treat each φ(i), 0 ≤ i ≤ n, as a
variable, and to solve the linear programming problem that
minimizes her weighted error subject to the requirements of
a legal function. This amounts to solving an optimization
problem of n + 1 variables. However, again, we will prove
that for the design of an optimal legal function, it suffices to
solve an optimization problem with a single variable. First,
we prove a theorem about the existence of an optimal legal
function of a particular form.

Theorem 5. There exists an optimal legal function φ∗

for a threshold query 〈p, θ,+∞〉 that satisfies the recurrence
relation in (2).

By Theorem 5, when searching for an optimal legal func-
tion, it suffices to consider legal functions satisfying (2). As
discussed in Section 3, φ∗ is well-defined if we fix φ∗(0) = β.
Hence, the weighed error of φ can be written as err(φ) =
err(β), where err(β) is a piecewise linear function in β. To
compute the minimum of err(β), we can compute the min-
imum of err(β) on each subinterval, which is trivial, and
then compare those local minima to get the global mini-
mum. Let that global minimum be err(β∗). Then, an opti-
mal legal function φ∗ is well-defined where φ∗(0) = β∗ and
φ∗ satisfies (2).

We can also prove the existence of a particular form of op-
timal legal functions for a threshold query 〈p, 0, θ〉, which is
symmetric to Theorem 5.

Theorem 6. There exists an optimal legal function φ∗

for the query 〈p, 0, θ〉 that satisfies the recurrence relation
in (3).

4.2 Multiple Consumers
Next, we consider the problem of serving multiple consumers
asking the same threshold query. We want to know if there
exists a universally utility maximizing mechanism for thresh-
old queries. Surprisingly, unlike the case for count-range
queries, we can prove that the range-restricted geometric
mechanism is a such mechanism. This is shown in Theo-
rem 7.

Theorem 7. The range-restricted geometric mechanism
in (6) is a universally utility maximizing differentially pri-
vate mechanism for threshold queries.

Proof Sketch: We can characterize a range-restricted geo-
metric mechanism by a symmetric matrix M of size (n +
1)× (n+ 1) whose element mi,j = Pr[Z(i) = j].
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M=
α− 1

α+ 1

















α
α−1

· 1 α−1 α−2 · · · α
α−1

· α−n

α
α−1

· α−1 1 α−1 · · · α
α−1

· α−n+1

α
α−1

· α−2 α−1 1 · · · α
α−1

· α−n+2

...
...

...
. . .

...
α

α−1
· α−n α−n+1 α−n+2 · · · α

α−1
· 1

















We can characterize a consumer’s optimal differentially pri-
vate mechanism for threshold queries 〈p, θ,+∞〉 by a vector
z = (z0, . . . , zn)

t satisfying Theorem 5. We can show thatM
is invertible. Let t =M−1◦z = (t0, . . . , tn)

t. Then it suffices
to prove that t is a transformation satisfying Definition 4.
Let Mi be the matrix obtained from M by replacing the ith

column ofM by z. By Cramer’s rule, ti = det(Mi)/det(M).

By Theorem 5, for all i, 0 ≤ i < n, zi+1 = min{αzi, 1 −
(1 − zi)/α}. We will prove that for all j, 0 ≤ j ≤ n, 0 ≤
det(Mj)/det(M) ≤ 1. Therefore, t = (t0, t1, . . . , tn)

t is a
transformation. We can prove the same results for threshold
queries 〈p, 0, θ〉 in a similar way, and we omit the details
here. ✷

The universally utility maximizing differentially private mech-
anism was first studied for count queries in [9, 10], where
only “oblivious”mechanisms were considered. A mechanism
is oblivious if it sets up an identical distribution over outputs
for every pair of databases that has the same unperturbed
query result. Naturally, an implementation of an oblivious
mechanism only needs to have access to the true query result
— the input — and can be oblivious to the database itself.
The range-restricted geometric mechanism only depends on
the result of a count query instead of the database itself,
and thus, it is an oblivious mechanism.

In contrast to previous work, the differentially private mech-
anisms we are considering in this paper are non-oblivious
mechanisms because the true query result of a threshold
query is either yes or no, whereas the mechanisms we have
proposed rely on the count of a threshold query rather than
just yes or no. Of course, there are also oblivious mech-
anisms for threshold queries. We can use a function Φ to
characterize the oblivious mechanisms for threshold queries
where β1 (β2) is the probability of outputting yes when the
correct answer is no (yes).

Φ(µ) =

{

β1 if 0 ≤ µ < θ

β2 if θ ≤ µ ≤ n

When 0 ≤ β2/α ≤ β1 ≤ αβ2 ≤ 1 and (1−β2)/α ≤ (1−β1) ≤
α(1 − β2), it is easy to verify that Φ is a legal function.
However, we can show that any legal function Φ is not an
optimal legal function unless β1 = β2 = 1 or β1 = β2 = 0:
we construct a function φ satisfying (2), and φ(θ) = β2. It
is not difficult to see that φ is less likely to commit both
types of errors for a threshold query unless β1 = β2 = 1
or β1 = β2 = 0. Thus, an oblivious differentially private
mechanism for threshold queries is not optimal in a general
sense.

By Theorem 7, the database utilizes the range-restricted
geometric mechanism to perturb the count of a threshold
query only once, and stores that noisy count. For each con-
sumer asking the same threshold query, the database ran-
domly transforms the stored noisy count to yes or no using
the transformation which maximizes that consumer’s utility.
For consumers asking threshold queries with the same predi-
cate but different thresholds, the database still only needs to
perturb the count once since the counts for those queries are
the same. Note that Theorem 5 is independent of the thresh-
old θ, and thus, for each consumer, there is an optimal legal
function satisfying (2). By Theorem 7, there is a transforma-
tion for that consumer such that the induced differentially
private mechanism of the range-restricted geometric mecha-
nism and that transformation guarantees optimal utility for
that consumer. Therefore, the range-restricted geometric
mechanism also simultaneously guarantees optimal utility
for all consumers asking threshold queries with the same
predicate but different thresholds.

Corollary 3. For consumers asking threshold queries
with the same predicate but different thresholds, there is a
transformation for each consumer such that the induced dif-
ferentially private mechanism of the range-restricted geomet-
ric mechanism and that transformation guarantees optimal
utility for that consumer.

The range-restricted geometric mechanism also simultane-
ously maximizes utility for different privacy levels. We refer
interested readers to [10] for a complete and precise descrip-
tion of that property.

5. RELATED WORK
The notion of differential privacy was proposed by Dwork et
al. in [5]. The same authors also proposed the addition of
Laplacian noise to guarantee differential privacy [7] for count
queries. McSherry et al. proposed a universal differentially
private mechanism for general queries in [15]; see [6] for a
recent survey of privacy.

Dinur and Nissim [4] are pioneers in establishing the upper
bounds on the number of queries that can be answered with
reasonable accuracy. Count queries [4, 8], and more general
queries [16, 7, 2] have been studied from that perspective.
Recently, Hardt and Talwar [11] gave tight upper and lower
bounds on the amount of noise needed to ensure differential
privacy for a given number of linear queries. Hay et al.
and Li et al. [12, 14] both proposed exploiting consistency
constraints to increase accuracy when answering multiple
queries.

Ghosh et al. [9] were the first to formally define a universally
utility maximizing differentially private mechanism that si-
multaneously maximizes every consumer’s utility for count
queries. Their results indicate that the range-restricted ge-
ometric mechanism is a universally utility maximizing dif-
ferentially private mechanism for a single count query such
that every consumer can combine her own information and
utility function in a way that maximizes her utility, and that
transformation is effectively enough to result in an optimal
mechanism. Gupte et al. proved a similar result in [10] for
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a different utility model. Our work extends that idea to
threshold queries. Brenner [3], shows that the universally
utility maximizing mechanism only exists for a limited class
of queries, and gives a criterion that partially characterizes
when they do not exist. In our work we give an example of
a class of queries (count-range queries) for which no univer-
sally utility maximizing mechanism exists that is not covered
by Brenner’s criterion.

6. CONCLUSION
In this paper, we propose an optimal differentially private
mechanism for count-range queries. However, when consid-
ering serving multiple consumers, in contrary to previous
positive results for count queries, we prove that for count-
range queries there is no differentially private utility maxi-
mizing mechanism that guarantees optimal utility for every
consumer. Despite this negative result, we prove that the
range-restricted geometric mechanism is a 2-approximate
universally utility maximizing for count-range queries. Fur-
thermore, we show that for threshold queries (a natural re-
striction on count-range queries), a universally utility maxi-
mizing differentially private mechanism that simultaneously
maximizes every information consumer’s utility does exist.

The optimal mechanisms for both threshold queries and
count-range queries we have proposed are non-oblivious, in
that they take a count as the input instead of yes or no.
It would be interesting to investigate non-oblivious optimal
differentially private mechanisms for other classes of queries.
An application of our results to differentially private fre-
quent itemset mining is also an interesting direction for fu-
ture research, as determining whether an itemset is frequent
is akin to answering a threshold query.
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