
A Personal Perspective on
Keyword Search over Data Graphs

∗

Yehoshua Sagiv
The Rachel and Selim Benin School of Computer Science and Engineering

Edmond J. Safra Campus
The Hebrew University of Jerusalem
Givat Ram, Jerusalem 91904, Israel

sagiv@cs.huji.ac.il

ABSTRACT

Theoretical and practical issues pertaining to keyword search
over data graphs are discussed. A formal model and algo-
rithms for enumerating answers (by operating directly on
the data graph) are described. Various aspects of a system
are explained, including the object-connector-property data
model, how it is used to construct a data graph from an XML
document, how to deal with redundancies in the source data,
what are duplicate answers, implementation and GUI. An
approach to ranking that combines textual relevance with se-
mantic considerations is described. It is argued that search
over data graphs is inherently a two-dimensional process,
where the goal is not just to find particular content but also
to collect information on how the desired data may be se-
mantically connected.

Categories and Subject Descriptors: H.2.4[Database
Management]: Systems—Textual databases; H.2.5[Database
Management]: Heterogeneous Databases; H.3.3 [Informa-
tion Storage and Retrieval]: Info. Search and Retrieval—
search process

General Terms: Algorithms, Design, Human Factors

Keywords: Keyword search, data graph, enumeration al-
gorithm, information retrieval, graph search

1. INTRODUCTION
Keyword search over databases may have started in or-

der to deal with traditional databases that also have free
text, but nowadays it faces broader challenges. Tradition-
ally, database systems provide query languages for finding
answers at a very fine granularity with a high degree of pre-
cision. Information retrieval deals with documents that are
typically produced by different people. Traditional keyword
search returns whole documents that are relevant to some
extent. Databases require a considerable effort to organize

∗This work was supported by the Israel Science Foundation
(Grant No. 1632/12).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT/ICDT ’13, March 18–22 2013, Genoa, Italy
Copyright 2013 ACM 978-1-4503-1598-2/13/03 ...$15.00.

the data at both the logical and physical level, in order to
effectively support query languages. Information retrieval
can be applied more easily to a collection of documents.

Data sources (and not just documents) are being gener-
ated at an exponential rate in a manner that “does not allow
top-down design (or even overall design)” [3]. In many cases,
those sources also include free text. Traditional query lan-
guage are not effective, because there is no overall design
and the data is inherently heterogeneous. Conventional in-
formation retrieval lacks the ability to take advantage of the
available data semantics. Thus, new paradigms are needed,
and some synergy of query languages and information re-
trieval is a promising approach.

Graphs are a good way of representing data that is cre-
ated in an autonomous, distributed way. Most data mod-
els (such as relational databases, XML and RDF) can be
easily represented as graphs. Nodes can store data at a
variable granularity (that is not necessarily uniform across
the graph), and their contents could be semistructured or
even textual. Edges stand for semantic relationships be-
tween pairs of nodes.

Keyword search over data graphs enjoys the advantage
of a very simple way of querying (just a set of terms, as
in information retrieval). It also provides the main feature
of database query languages, namely, ability to produce re-
sults with some semantic information, because answers are
subtrees or subgraphs and, hence, have a structure.

There are three major issues to deal with when designing
a system for keyword search over data graphs. First, it is not
easy to design algorithms for evaluating search queries, be-
cause an answer is a subtree or a subgraph, rather than just
a connected set of tuples. Second, answers must be ranked.
Substantial work has been done in information retrieval on
ranking and there are effective methods with foundations
that are both theoretical and empirical (e.g., language mod-
els [32]). Ranking based on the relative importance and rele-
vance of entities and relationships is not well understood. It
is even less clear how to combine textual and semantic rank-
ings. The third issue includes various aspects of a practical
implementation, such as efficiency, scalability and human
factors (e.g., a suitable GUI for displaying answers that are
subtrees or subgraphs). The rest of the paper covers these
important issues.

This paper offers a personal perspective and is not in-
tended to be a survey. It is organized as follows. Sec-
tion 2 proffers a retrospect on how keyword search over data
graph might have evolved out of earlier research. Section 3

21

defines the formal notions of data graphs, queries and an-
swers. It also discusses algorithms for enumerating answers
with an emphasis on three important properties: correct-
ness (i.e., ability to generate all the answers), efficiency and
ability to enumerate in some desired order. The algorithms
we discuss are of the type that works directly on the data
graph (as in [5, 19]), rather than by first generating expres-
sions and then evaluating them (e.g., [4, 17]). Section 4 is
about the system we have implemented. In particular, we
describe the object-connector-property data model and how
it is used to construct a data graph from an XML docu-
ment. Data graphs can also be built easily from other types
of data (e.g., relational databases and RDF), but we prefer
to do that from XML. Section 4 also describes how to deal
with redundancies in the source XML document (which are
likely in real-world datasets) and how to define duplicate
answers. In addition, Section 4 discusses various aspects of
the implementation and the GUI. Section 5 deals with the
issue of ranking. It describes our particular approach to
a ranking that combines relevance of the text with seman-
tic importance, where the former depends on the query at
hand whereas the latter does not. In Section 6, we argue
that finding information in a data graph is inherently a two-
dimensional search. That is, we have to find not just par-
ticular answers but also relevant patterns (i.e., expressions)
that may indicate the semantic structures (rather than spe-
cific contents) of the information we are looking for. We
conclude in Section 7.

2. A RETROSPECT
The aim of keyword search in information retrieval is to

find relevant documents. Database queries are geared to-
ward providing full and accurate answers to precise queries.
The universal relation (e.g., [10, 34, 35]) might be perceived
as an early attempt to combine the two. In that paradigm, a
query is just a set of terms, which are attribute names. The
goal is translate those terms into a relational query over the
database. In retrospect, the universal-relation approach has
not been widely used in practice, because the emphasis was
on finding the correct translation of the attribute names to
a relational query. This approach might have been more
successful if it had been oriented toward finding relational
queries that are (just) relevant to the given attribute names.
An early system for keywords search over XML is [9]. That
system also suffered from the desire to determine the correct
way of answering a query and was limited to a data in the
form of tree (rather than a graph).
A major obstacle in the development of a universal-relation

interface was the need to handle incomplete information. In
other words, even if one is able to translate correctly a set
of attributes into a join of several relations, the result may
be empty due to missing data. The notion of full disjunc-
tions [11], also called maximal answers, was developed to
tackle this problem, and several algorithmic solutions were
found (e.g., [8,33]). The difference between a full answer and
a maximal answer is that the former is a set that includes
exactly one tuple from each relation, whereas the latter is a
maximal set consisting of at most one tuple from each re-
lation. In both cases, all the tuples of the set must be join
consistent. Hence, an answer is maximal if one cannot add
any tuple (from a relation not present in the answer) and
still have a join consistent set. However, even a solution to
the problem of incomplete information is not quite sufficient

when dealing with heterogeneous data that is created in an
autonomous, distributed manner, as we explain next.

In the database way of finding information, we first formu-
late a query that gives the correct relationship between the
entities of interest and then perform some selections. For
example, if we want to find whether Smith is a teacher of
Jones, we first need to join several relations to get the correct
connection between students and their teachers. Then, we
select tuples where the teacher name is Smith and the stu-
dent name is Jones. Common optimizations may reverse the
order and do selections before joins. Nonetheless, in princi-
ple, we formulate a query that is good not just for Smith and
Jones, but for any pair of a teacher and a student—all we
have to do is a simple substitution that replaces the terms
“Smith” and “Jones” with some other names. This is drasti-
cally different from keyword search that zooms in, at first, on
documents that are relevant to Smith and Jones, and only
then does it become apparent whether Smith is a teacher of
Jones. Of course, it may not be easy to find the particular
information we are looking for (namely, whether Smith is a
teacher of Jones) by inspecting documents that are relevant
to these two individuals. If Smith indeed teaches Jones, we
are likely to find rather quickly concrete evidence to this fact
(especially if we add the term“teach”to the query). But how
can we be sure that Smith does not teach Jones? Inspect-
ing all relevant documents (and verifying that none of them
pertains to the fact that Smith teaches Jones) may require
too much time. This is one indication to the need for a two-
dimensional search that we mentioned in the introduction
and is further explained in Section 6.

To summarize thus far, a database query is good not just
for finding a particular unit of information (such as “Smith
teach Jones”)—it can actually be used (with minor modi-
fication) for getting every fact of the same type (e.g., that
one person is the teacher of another). This characteristic
(along with the need to enforce some constraints) is the
cause of why a good database design is rather elusive. It
is even harder to preserve this property when dealing with
data integration from heterogeneous sources and data ex-
change. Nevertheless, a lot of database research has been
fueled by the belief that a database must have that char-
acteristic at all cost. Is it really needed? Undoubtedly, a
database of a bank must have this property. However, in an
era where the amount of information grows exponentially, it
is unrealistic to expect that all databases will have that prop-
erty. Keyword search is an attractive alternative, because
it concentrates on specific terms (e.g., “Smith” and “Jones”)
without trying to find a way of answering all queries of the
same type (e.g., does one person teach another?). How-
ever, keyword search is oblivious to the semantic structure
of the data and, therefore, is rather limited in its ability
to concisely retrieve precise information. In this paper, we
describe ongoing work that aims at amalgamating the two
paradigms: keyword search and database queries.

3. FORMAL MODEL AND ALGORITHMS
In this section, we describe the formal notion of a data

graph and define what are answers to keyword queries. We
also discuss several algorithms for generating answers.

3.1 Formal Data Graphs
Formally, a directed data graph has two types of nodes:

structural nodes and keyword nodes. The former corre-

22

sponds to the basic components of the data. For example, in
a data graph derived from a relational database, the struc-
tural nodes are tuples. The edges correspond to foreign-key
references among tuples. A data graph may also be derived
from an XML document. In this case, the structural nodes
may correspond to elements of the XML document (alter-
natively, there could also be a separate structural node for
each attribute). The edges indicate the relationships that
are derived either from id references or nesting (i.e., an el-
ement appearing inside another one). Each structural node
has some associated text, namely, its content. In the case of
a data graph derived from a relational database, the content
of a structural node is the same as that of its corresponding
tuple. That content comprises both the attribute names and
their values. When the data graph is obtained from an XML
document, the content associated with a structural node is
that of its corresponding element, but excluding the content
of sub-elements (or attributes that are represented by other
nodes). Each structural node also has a label. There is no
need to assume that a label uniquely identifies a node. The
edges have neither contents nor labels.
The keyword nodes are for the terms that comprise the

contents of the structural nodes. Each keyword has its own
node. We use the keyword itself to identify its node. From
each structural node s, there is an edge to every keyword
node k, such that k appears in the content of s. By a slight
abuse of terminology, we may refer to a “keyword node” just
as “keyword.”
As an example, Figure 1 shows a data graph (where key-

word nodes are shown as words). This data graph is derived
from a small part of the Mondial relational database,1 so its
structural nodes correspond to tuples (and their labels are
tuple identifiers). Note that in our model, each keyword is
represented by a single node and all its occurrences point
to that node (hence, this is not a restriction). Moreover,
keywords have only incoming edges.
The nodes and edges of a data graph have nonnegative

weights The length of a path in the graph is the sum of the
weights along the path. The height of a directed subtree T

is the maximum length of any path from the root of T to a
leaf. The weight of T is the sum of weights of all the nodes
and edges of T .

3.2 Queries and Answers
In our model, a query is a set of keywords (or terms)

1http://www.dbis.informatik.uni-goettingen.de/
Mondial/#SQL

G1

Norway

EU

t4t10

t1

t2 t6

Brussels

t5
Oslo

ESA
t3

Belgium

t9t8

t7
Antwerp

Figure 1: Data graph G1

Q. We assume that a query has at least two keywords. An
answer toQ is a directed subtree T of the data graphG, such
that T contains all the keywords of Q and is non-redundant.
The occurrences of the keywords are represented by their
corresponding nodes. Thus, the subtree T must include the
nodes for all the keywords ofQ. Non-redundancy of T means
that T is reduced with respect to Q, namely, T contains the
nodes for all the keywords of Q, but has no proper directed
subtree that also includes all of them.

Since an answer T is a directed subtree, it follows that
T has a node r, called the root, such that every other node
of T is reachable from r through a unique directed path.
Alternatively, we can characterize an answer as a subtree T

of G, such that the root has at least two children and the
set of leaves is exactly Q.

Example 1. Consider the data graph G1 of Fig. 1. Let the
query Q consist of the keywords Belgium, EU and Brussels,
that is, Q = {Belgium, Brussels, EU}. The only two answers
are the subtrees A1 and A2 shown in Fig. 2.

Now, consider the query Q′ = {Brussels, EU}. A1 and A2

are not answers to Q′, because each one contains a proper
subtree that also includes the given keywords.

Following [20, 22], we can also view a data graph G as
undirected. In this case, there are two types of answers to a
query Q. First, an undirected answer is an undirected sub-
tree that contains all the keywords and is reduced (i.e., has
no proper undirected subtree that also contains all of them).
Second, a strong answer is an undirected answer, such that
all its keyword nodes are leaves (that is, we cannot use a key-
word node in order to connect two structural nodes). When
we just say “answer,” we usually mean “directed answer” as
defined earlier.

3.3 Generating Answers
Given a data graph G and a query Q, our goal is to enu-

merate the answers to Q by increasing weight. Thus, we fol-
low the principle that a smaller subtree indicates a stronger
relationship between the keywords.

For efficiency, we would like the enumeration to be with
polynomial delay [18], which means the following. There is a
polynomial p(n), where n is the size of the input (i.e., G and
Q), such that the time needed to produce the next answer
(since the previous one was printed) is always bounded by
p(n). The initial delay (i.e., the running time until the first
answer is printed) and the final delay (i.e., the time interval
between printing the last answer and terminating) are also
bounded by p(n). In particular, if there are no answers at

A2A1

EU

t1

Belgium

Brussels

t3

Brussels

t3

EU

t9

Belgium

t1

t6

t6

Figure 2: Answers A1 and A2

23

all, then the algorithm must stop after a polynomial num-
ber of steps. To improve efficiency, we may want to consider
enumeration in an approximate order. This type of enumer-
ation is formally defined in [22].
An important property of an algorithm for enumerating

answers is the ability to generate all of them. It is challeng-
ing to design an algorithm that does not miss answers. In
fact, this property is not realized by most of the existing
algorithms that work directly on the data graph (see [12] for
more details about this issue).
In summary, an algorithm for enumerating answers should

have three important properties: correctness, efficiency and
order. The first means that an enumeration algorithm should
be capable of generating all the answers. The second refers
to the guaranteed running time (e.g., polynomial delay).
The third means that the enumeration should be in some
desirable order (e.g., by increasing weight).
We would like to realize all of these three properties both

theoretically and practically. However, some comprises might
be necessary, especially when considering the practical point
of view.
The work of [21, 23] was the first to give algorithms that

are correct and provably efficient (i.e., run with polynomial
delay); however, the enumeration is in an arbitrary order.
This work includes algorithms for all three variants of an-
swers (i.e., directed, undirected and strong).
The work of [22] was the first to give algorithms that re-

alize all of those three properties. That is, they enumer-
ate all answers, with polynomial delay and by increasing
weight. Since this necessarily involves solving the Steiner-
tree problem, it is essential to assume that the query is of
fixed size. However, the exponential factor (in the polyno-
mial that bounds the delay) is of the form ck, where c is a
small constant and k is the number of keywords in the query.
Practically, this is much better when compared to process-
ing relational queries for which the exponential factor is of
the form nq, where n is the size of the database and q is
the size of the relational query. In [22], they also give algo-
rithms for enumerating in an approximate order by weight.
These algorithm achieve polynomial delay without assum-
ing that the query is of fixed size. All three types of answers
(i.e., directed, undirected and strong) are considered in [22].
Since enumeration by increasing weight is not easy to

achieve in practice, an alternative approach, which was in-
troduced in [5, 19], is to enumerate (directed subtrees) by
increasing height. The rationale is that enumerations by in-
creasing weight and height are reasonably correlated. There-
fore, we can achieve an enumeration that is close to the de-
sired order as follows. Suppose that we want n answers.
We enumerate by increasing height a larger number of an-
swers (say 10n), and then sort them by increasing weight
and take the first n. This approach was adopted in [12].
Their algorithm enumerates answers in a 2-approximate or-
der by increasing height with polynomial delay. In contrast
to [5, 19], the algorithm of [12] does not miss answers and
enumerates with polynomial delay. The work of [12] consid-
ers only directed answers.

3.4 Practically Efficient Algorithms
We have mentioned that the important properties of an

enumeration algorithm are efficiency and ability to generate
all answers in an order that is close to the desired one. How-
ever, an algorithm with a theoretical guarantee of efficiency

(e.g., polynomial delay) is not necessarily better in prac-
tice than algorithms without such a guarantee. The reason
is that theoretical efficiency is typically for the worst case,
whereas in practice we measure (in experiments) the average
behavior.

As mentioned earlier, a fast algorithm for generating di-
rected answers was introduced in [5]. It uses Dijkstra’s
shortest paths iterators—one per keyword of the query Q.
When these iterators (which start at the keyword nodes)
meet in a structural node v, then we should examine the
directed subtree T consisting of the shortest paths from the
keywords of Q to v. If the root of T has at least two chil-
dren, then it is a directed answer. This is a fast algorithm
in practice, even though its delay is not always polynomial.
A more severe problem with this algorithm is the inability
to generate all answers. In particular, that algorithm can-
not generate an answer T rooted at v, such that some paths
of T from the keyword nodes of Q to v are not the short-
est. The algorithm of [12] also uses shortest paths iterators
as in [5], but it does so within the Lawler-Murty’s proce-
dure [26, 31] and couples those iterators with an additional
algorithm for finding a directed subtree having a root with
at least two children, when the shortest-path iterators do not
produce such a subtree. Thus, the algorithm of [12] is both
correct and theoretically efficient. However, we have devel-
oped another correct algorithm that is considerably faster
in practice, even though its worst-case delay is exponential.
That algorithm enumerates all directed answers by increas-
ing height and is given in [15]. Next, we briefly describe its
main ideas.

First, we can modify Dijkstra’s algorithm so that it enu-
merates all simple (i.e., acyclic) paths by increasing weight
from s to t. To do that, the queue has to store paths rather
than nodes. A path is represented by a linked list in re-
verse order from its last node u to s. In each iteration, we
remove the shortest path p from the queue. Let u be the
last node of p. We create new paths by adding the outgoing
edges of u at the end of p, and insert them into the queue
provided that they are acyclic. This is a rather simple mod-
ification of Dijkstra’s algorithm that was already presented
in [36]. Now, we can modify the algorithm of [5] by using an
all-simple-paths (rather than a shortest-path) iterator from
each keyword node of Q. When paths from all the keywords
of Q meet at a node r, we have to check that they create a
subtree and that r has at least two children. If so, we have a
directed answer. Even this straightforward generalization of
Dijkstra’s is substantially more efficient than the algorithm
of [12]. Its efficiency can be enhanced by the following idea.

For each keyword node k ofQ, we apply the following idea.
At each node u, only the first path from k that reaches u can
continue to the neighbors of u. Paths from k that reach u

subsequently are frozen at u. Those paths are unfrozen and
continue to the neighbors of u only when discovering that
u is on a path from k to a node r, such that r is reachable
from all the keywords of Q (hence, r could potentially be the
root of a directed answer). This is just a rough overview and
the actual algorithm is quite intricate; for a full description,
see [15].

3.5 Parallel Algorithms
In the era of ubiquitous multi-core computers, using se-

rial algorithms is a gross under utilization of the resources
at hand. However, designing an effective parallel algorithm

24

is not an easy task. In this section, we give an overview of
the work of [13] on optimizing and paralleling ranked enu-
meration. As mentioned earlier, the algorithm of [12] uses
Lawler-Murty’s procedure [26, 31]. The techniques of [13]
actually apply to that procedure, rather than to a specific al-
gorithm. Hence, the work of [13] is applicable to any ranked
enumeration that uses Lawler-Murty’s procedure.
Lawler-Murty’s procedure works as follows. Essentially,

it is a reduction of an enumeration problem to a sequence
of optimization problems (i.e., each one entails finding the
optimal solution) under constraints. The procedure stores
solutions to those optimization problems in a priority queue.
In each iteration, the top T of the queue is removed and
printed, namely, T is the next element (e.g., an answer to a
given query) in the ranked enumeration. In addition, sev-
eral new optimization problems under constraints are cre-
ated from T (in a way that also incorporates the constraints
under which T was obtained). We call them the spawned op-
timization problems. Each one of those problems is solved
and its solution is inserted into the queue before proceeding
with the next iteration.
To apply Lawler-Murty’s procedure to a specific ranked

enumeration, one has to determine the type of constraints
to be used and to supply a subroutine S for solving the opti-
mization problem under those constraints. In typical appli-
cations, S is iterative and has the property of a progressive
lower bound, which means the following. At the end of each
iteration, S provides a progressively better lower bound on
the cost (e.g., weight or height) of the optimal solution.
The techniques of [13] use progressive lower bounds as fol-

lows. When the lower bound l of a spawned optimization
problem P exceeds the value v at the top of the queue, P is
no longer relevant to the current iteration. When all the ac-
tive spawned optimization problems are no longer relevant,
the next iteration can start. In particular, the solution at the
top of the queue can be removed and printed, even though
not all the spawned problems of the previous iteration have
yet been solved.
A thread pool is used for solving spawned optimization

problems. The main task (which has a dedicated thread)
monitors the progressive lower bounds of the active spawned
problems and decides if it is safe to continue with the next
iteration. If so, the main task removes and prints the top
T of the queue, and also creates the spawned optimization
problems implied by T . This technique is called relevance
monitoring.
The work of [13] also introduces the idea of freezing a

spawned optimization problem. This is instrumental in not
overloading the thread pool. When the progressive lower
bound l of an optimization problem P exceeds the current
value v at the top of the queue, P can be frozen. The com-
putation of P should resume when the top of the queue
becomes greater than l. Note that we want to freeze an op-
timization problem only when there is no available thread
to work on it.
Combining the techniques of relevance monitoring and

freezing in an effective parallel algorithm is not straight-
forward. In particular, subtle synchronization is needed be-
tween the various threads, the frozen optimization problems
and the queue, and it should be done without either incur-
ring too much overhead or doing excessive locking (which
may reduce the degree of parallelism). The details are in [13].
An additional technique of [13] is early freezing. The idea

Figure 3: An answer to “Paris, Strasbourg”

is to create spawned optimization problem from a solution T

when T is inserted into the queue (rather than when it is re-
moved). Those spawned problems are frozen upon creation.
Early freezing is needed in order to eliminate a situation of
not having enough spawned optimization problems to work
on (which means that the thread pool is underutilized). For
example, in the context of parallelizing the algorithm of [12],
this situation is especially likely when the query has a small
number of keywords and, hence, each answer creates only a
few spawned optimization problems. Early freezing entails a
significant change in the logic of Lawler-Murty’s procedure,
and requires a more subtle synchronization than the parallel
variant (mentioned earlier) that uses freezing. The exper-
iments of [13] show that early freezing delivers a speedup
that is close to linear when using eight cores.

4. THE SYSTEM
In this section, we describe practical aspects of keyword

search over data graphs. We start with a description of our
data model. Then we explain how to build a data graph
from an XML document. We discuss the issues of how to
handle data redundancies in the source XML document and
how to eliminate duplicate answers. Finally, we describe the
implementation of our system and the GUI. This section is
an overview of the work done in [14].

4.1 The OCP Model
An essential feature for keyword search over data graphs

is a GUI that facilitates quick understanding of what an
answer means. Showing just an XML fragment or a set
of tuples makes it very hard to grasp the essence of an
answer. The object-connector-property model was develop
in [1] for rendering XML fragments that are answers to key-
word search over data graphs. Figure 3 shows an answer to
the query “Paris, Strasbourg.” Gray rectangles represent
objects and red circles depict connectors. Each object has a
title, which is shown in blue, and a type, which appears in-
side parentheses. For example, the top rectangle in Figure 3
represents the object entitled Strasbourg that has the type
city. A connector has only a type, which is written in red
next to the circle. Occurrences of the query keywords are
underlined in green. Edges represent connections (i.e., rela-
tionships) between objects. An implicit connection is just
an edge between two objects, and its meaning is clear from
the context. For example, the edge connecting Strasbourg

and France simply means that the former is a city of the
latter. An explicit connection between a pair of objects is
represented by a pair of edges that go through a connec-
tor. The type of the connector indicates the meaning of the
relationship. For example, in Figure 3, the pair of edges

25

Figure 4: A snippet of the Mondial DTD

connecting France and Paris through the connector capi-
tal means that the latter is the capital of the former.
The OCP model assumes that the source data is given as

an XML document. The first task is to identify the objects,
connectors and properties of that document by examining
the DTD. A set of rules for doing that was first developed
in [1]. Here, we describe the approach of [14], which uses
fewer, simpler rules as follows.

• An object is any XML element with an ID attribute.

• A connector is either one of the following two.

– An element that has either an IDREF or IDREFS
attribute, and does not have an ID attribute.

– An IDREF or IDREFS attribute.

• A property is either one of the following two.

– An element such that none of its attributes is
either ID, IDREF or IDREFS (i.e., an element
which is neither an object nor a connector).

– An attribute that is neither IDREF nor IDREFS.

Example 2. Consider the DTD that is shown in Figure 4
(which is a part of the DTD of the Mondial XML docu-
ment2). For each component (i.e., element or attribute) we
want to determine whether it is an object, a connector or
a property. The element country is an object, because its
attribute car_code is defined as ID in the DTD. Similarly,
the elements province, city, organization and sea have
the attribute id that is defined as ID; hence, all of them
are objects. The attributes capital and memberships of
the element country are connectors, because the former is
defined as IDREF and the latter—as IDREFS. Similarly,
the attribute country is a connector in all of the elements
where it appears (i.e., border, city and sea), because each
of those occurrences is defined as either IDREF or IDREFS.
The element border is a connector, because its attribute
country is defined as IDREF and it has no other attribute
that is defined as ID. The elements name and ethnicgroups

are properties, because they have neither an ID, an IDREF
nor an IDREFS attribute. Finally, the attributes car_code,

2http://www.dbis.informatik.uni-goettingen.de/
Mondial/#XML

Figure 5: A fragment of the Mondial document

percentage and (all the occurrences of) id are properties,
because they are defined as neither IDREF nor IDREFS.

Looking now at the XML fragment of Figure 5 that con-
forms to the DTD of Figure 4, we can see that lines 12–15
define a particular object that has two properties: car_code
and name. That object also embeds two connectors: mem-

berships and border, where the latter has a connector of
its own, namely, its attribute country.

As already mentioned, each object, connector and prop-
erty has a type, which is just the name of the corresponding
element or attribute in the DTD. In the above example, the
type of (either the object or connector) country is country,
the type of the property name is name, etc. Each object has a
title, which is the value of one of its properties. As a heuris-
tic, the title is the value of a property having a type such as
name, header, etc; however, for some XML documents, this
heuristic may have to be modified. For example, lines 12–15
of Figure 5 define an object of type country that has the
title Lebanon (which is the value of its property name). It is
possible that some objects lack any title. In the next sec-
tion, we use the types and titles in lieu of the labels of the
formal data graph of Section 3.1.

The above example illustrates several points. First, both
objects and connectors may have properties (e.g., name and
length are properties of an object and a connector, respec-
tively). Second, properties can be nested (e.g., percentage
is a sub-property of ethnicgroups). Third, a connector may
nest another connector (e.g., the connector border contains
the connector country). Obviously, objects may be nested
(e.g., province is a sub-object of country).

4.2 Constructing the Initial Data Graph
We now describe how to build a directed data graph from a

given XML document, after we have determined the objects,
connectors and properties using the rules of Section 4.1.
This construction is taken from [14] and it comprises two
phases. In this section, we show how to build the initial
data graph. The second phase of adding more edges is dis-
cussed in the next section. Note that here we describe a

26

concrete implementation of the abstract notion of a data
graph that was given in Section 3.1. We actually describe
only the construction of the structural nodes and their edges.
The keyword nodes are discussed in Section 4.6. Thus, by
a slight abuse of terminology, when we say “node,” we mean
“structural node.”

Due to the tree structure of an XML document, each ele-
ment and attribute has (at most) one parent. To emphasize
that this notion of a parent is defined by the XML document,
we call it the XML parent and define it formally as follows.
For an attribute a, the XML parent is the element to which
a belongs. For an element e, the XML parent (if it exists)
is the immediate super-element s in which e is nested. The
notion of an XML parent implies naturally the meaning of
an XML child.
For simplicity, we make two assumptions. First, if an el-

ement does not have an XML parent, then it is an object
(i.e., it has an ID attribute).3 Second, an element that is
a connector cannot have a sub-element that is also a con-
nector (but it may have an attribute which is a connector).
The first assumption is rather natural, but the second is not
always satisfied in real-world XML documents. The general
case (namely, when the second assumption does not hold) is
handled in [14].
In the data graph, there are structural nodes for all the

objects and for some of the connectors. By a slight abuse
of terminology, we do not distinguish between a node v and
the object or connector for which v was created. That is, we
may call v an object or a connector (rather than a node).
We construct the data graph as follows. For each object o,
we create a unique node and add a directed edge (o, o′) for
all XML children o′ of o, such that o′ is also an object. For
a connector c, we do the following. If c is an element, we
create a node for c and add a directed edge from the XML
parent of c to c. If c is an attribute, we consider each IDREF
i in the value of c. If i points to an object ~o that has the
same type as c, then we add a directed edge from the XML
parent of c to ~o. If there is at least one i that does not satisfy
that condition (namely, i points to an object of a different
type), then we create a node v for c and add a directed edge
from the XML parent of c to v. In addition, for each i, such
that i points to an object ~o of a different type from that of
c, we add a directed edge from v to ~o.
We do not create nodes for properties. Since properties

can be nested, we consider each maximal subtree t (of the
XML parent hierarchy), such that t comprises only proper-
ties, and associate t with the XML parent of its root.

Example 3. In Example 2, we showed what are the ob-
jects, connectors and properties of the XML fragment of Fig-
ure 5. Figure 6 depicts the data graph constructed from that
XML fragment. The nodes for objects are rectangles and
those for connectors—ellipses. To avoid cluttering, only the
title (but not the type) of an object is written inside its corre-
sponding node. For a connector, its node includes the type.
The solid edges are those created as explained earlier. The
dashed edges will be discussed in the next section. Recall
that lines 12–15 of Figure 5 define the object Lebanon of type
country. A single node is created for Lebanon and its two
properties (i.e., car_code and name). The object Lebanon

embeds the connectors memberships and border. The con-

3We need not assume that there is just one element without
an XML parent.

Figure 6: Data graph of the Mondial fragment

nector memberships is an IDREF attribute that points to
the object UN (which is defined in lines 19-21 of Figure 5).
Since memberships is different from the type of UN (which is
organization), we create a node for memberships and con-
nect it by a directed edge to UN. Similarly, a node is created
for the connector border of Lebanon. Line 14 of Figure 5
shows that border has the attribute country, which is a con-
nector with a single IDREF that points to Israel (which is
also of type country). Hence, we add a directed edge from
(the node created for) border to Israel and no node has to
be created for the connector country of line 14 of Figure 5.
Note that a node of type memberships is created also for
Israel, but it has two outgoing edges, because Israel is a
member of two organizations. As a last example, lines 5–10
of Figure 5 define the object Central of type province that
embeds the object Jerusalem of type city. Therefore, there
is a directed edge from Central to Jerusalem.

For simplicity, we assume that in a data graph that is
constructed as described in this section, all the edges are
between either two objects or an object and a connector;
that is, there is no edge between two connectors. This is
equivalent to requiring the following. If a connector c is
an element of the given XML document, then each of its
IDREF or IDREFS attributes a points only to objects that
have the same type as a. We have also ignored the case
that a connector has no outgoing edges and the possibility
of some errors in the source XML document (e.g., an id
reference that points to a non-existing element). As already
mentioned, the general case is discussed in [14].

4.3 Adding Opposite IDREF Edges
The initial data graph (constructed in the previous sec-

tion) cannot provide some answers that we would expect
to get. For example, consider the data graph of Figure 6
with only the solid edges (which are those of the initial data
graph). This graph does not have a subtree that includes
Israel, Lebanon, UN and the two memberships nodes. So,
when posing the query “Israel, Lebanon, UN” we would not
get the answer that both Israel and Lebanon are members
of the UN. A solution to this problem is to introduce edges
in the opposite direction of existing ones. We could do it for
all edges, but that may result in overwhelming the user with
too many answers of a semantically weak nature. Therefore,
we do it more judiciously as discussed in this section, based
on the work of [14] (which also includes additional details
that are not covered here).

27

Figure 7: A data graph of papers and citations

Recall that an explicit connection between two objects o1
and o2 is a pair of edges (o1, c) and (c, o2) that pass through
a connector c (note that in the initial data graph, the latter
edge is due to an id reference). An implicit connection is a
single edge (o1, o2) between two objects, and it is either an
implicit idref connection or an implicit nesting connection
depending on whether it is due to an id reference or nesting,
respectively. When we just say “connection,” we mean that
it could be of any type.
For some of the connections that are not due to nesting, we

add edges in the opposite direction. We use the data graph
of Figure 6 as a running example. Recall that solid edges
are those created for the initial data graph, as explained in
the previous section. Dashed arrows are called opposite idref
edges and we now describe the rules for creating them.
Suppose that e is an implicit idref connection from node o1

to o2. If the data graph does not already have a connection
(using only solid edges) in the opposite direction, we add a
directed edge from o2 to o1. For example, in Figure 6, we
add the (dashed) edge from Israel to Mediterranean Sea.
However, there is no need to add an edge from Israel to
Jerusalem, because the data graph already has a connection
from the former to the latter through the connector capital.
Now, suppose that there is an explicit connection from

o1 to o2 consisting of the edges (o1, c) and (c, o2), namely,
c is a connector. At first, we assume that the objects o1
and o2 have different types. We add the edges (o2, c) and
(c, o1) if in the opposite direction, there is neither an implicit
connection nor an explicit connection that uses the same
connector type. For example, in Figure 6, for the explicit
connection Israel→ memberships→ Interpol, we add the
edges from Interpol to memberships and from memberships

to Israel. However, for the explicit connection Israel →
capital → Jerusalem, we do not add any edges, because
there is already the implicit connection from Jerusalem to
Israel in the initial data graph.
If o1 and o2 have the same type, then additional infor-

mation is required. We need to determine whether the con-
nection is symmetric or asymmetric. For example, for two
countries, the connection that they have a common border
is symmetric. That is, if we reverse the direction of the con-
nection, its meaning remains the same. In contrast, for two
papers, the connection that one cites the other is asymmet-
ric. Namely, if the first paper cites the second, then the
opposite connection is cited_by and not cite.
If the explicit connection (from o1 to o2 of the same type)

is symmetric, then we treat it as in the case where o1 and
o2 have different types. For example, for the explicit con-
nection Lebanon → border → Israel, we do not add any
edges, because there is already an explicit connection in the
opposite direction through border.
Figure 7 depicts a situation that occurs in the data graph

for the DBLP dataset. There is an explicit connection from
paper1 to paper2 through cite, which is asymmetric. In
this case, we add opposite idref edges from paper2 to pa-

per1 through the same cite connector. We do that even
though there is already a connection from paper2 to pa-

per1 through another cite connector. The new connection
through the opposite idref edges is really cited_by (rather
than cite). Therefore, when presenting an answer that uses
those opposite idref edges, we show the connector as hav-
ing the type cited_by (rather than cite). In other words,
cited_by does not exist in the data graph—it is only created
at the presentation level.

Determining whether a connection is symmetric or asym-
metric can be done interactively by consulting some users.
It can also be done automatically as explained in [14].

We end this section with the following observation. In the
initial data graph, a node of a connector has exactly one
incoming edge (from its XML parent). Therefore, if a node
of a connector has any incoming opposite idref edges, then
it has exactly one outgoing opposite idref edge; otherwise,
it has no outgoing opposite idref edges.

4.4 Data Redundancies
Real-world data often has redundancies. The Mondial

XML document has quite a few. For example, Figure 6
shows that the information about borders is stored twice.
There is a connection through border from Lebanon to Is-

rael and vice versa. This redundancy is rather easy to de-
tect, because the same type of connector is used for both
directions. As explained in Section 4.3, we do not create
opposite idref edges in this case. Sometimes each direction
is through a different type of connector. For example, the
Mondial XML document stores for each country information
about its memberships in organizations, and for each orga-
nization it lists its members. Only the former is shown in
the XML fragment of Figure 5 and in the data graph of Fig-
ure 6. This kind of redundancy is harder to detect, because
one direction uses connectors of type memberships whereas
the other is through the type members. Nonetheless, [14]
shows how to detect this redundancy automatically. Hence,
there is actually no need to add opposite idref edges for con-
nections through memberships when building the data graph
for the full Mondial XML document (and the same is true
for members).

There are also cases of redundancies involving different
connections in the same direction. The Mondial XML doc-
ument stores twice the same relationship between a river
and the countries through which it flows. First, each river

has an IDREFS attribute country that points to the rele-
vant countries. Second, for each river, Mondial stores sep-
arately each country and those of its provinces that contain
the river. In this case, it seems reasonable not to include
the former in the data graph (i.e., to remove the attribute
country of river). Automatically detecting this kind of
redundancy can be done as explained in [14].

4.5 Eliminating Duplicates
We use a directed data graph. In the graphical interface

(e.g., Figure 8), the direction of the edges is not shown ex-
plicitly, but is from top to bottom. Due to opposite idref
edges, when we get the answer of Figure 8, there would also
be a similar answer but in the opposite direction (i.e., the
root is Ukraine and Dnepr is the leaf). These two answers
are essentially the same. As in [5], we use an undirected
semantics for answers. Since we employ an algorithm that
generates directed subtrees, we need to eliminate duplicates.

28

Figure 8: An answer for the query “Dnepr Ukrainian”

An answer is removed if it is the same as a previous one when
viewing edges as undirected. Duplicate elimination is done
after removing the keyword nodes (which are attached to
the data graph when generating answers, as explained in
the next section).
Eliminating duplicates just on the basis of on undirected

semantics may not be enough. For example, in Figure 6,
the information that Lebanon and Israel have a common
border is stored in both directions using different connec-
tors (although both are of the same type). Therefore, our
system offers also the option of eliminating duplicates while
viewing two connectors as the same node if their types are
identical. In this way, we would get only one answer (rather
than two) with the information that Lebanon and Israel

have a common border. Note that this would eliminate
many redundancies among answers that include the path
Lebanon → border → Israel (or its reversal). This idea
can be extended to cases where two different types of con-
nectors are deemed the same (e.g., memberships and mem-

bers). An alternative is to build the data graph so that the
same connection between two objects is represented in both
directions by the same connector (i.e., same physical node).
It should be noted that although duplicate removal as-

sumes that edges are undirected, we still get fewer answers
compared with the case of assuming that the initial data
graph is undirected (and generating strong answers). We
believe that in this way, we quickly cull many semantically
weak answers, even if there are examples where this is not
necessarily the case. In summary, we judiciously add oppo-
site idref edges (as explained in Section 4.3), but eliminate
duplicates based on an undirected semantics. We believe
that this approach strikes the right balance between inun-
dating the user with a lot of semantically weak answers, on
the one hand, and missing important ones on the other hand.

4.6 Implementation and GUI
The data graph is stored in a DBMS. When the system

is started, a skeleton of the data graph is loaded into main
memory. The skeleton consists of the structural nodes with
only their internal ids (generated by the system) and their
edges. When a query Q is given, nodes are created for its
keywords. Those nodes are attached to the data graph,
based on the information in the DBMS. That is, an edge
is created from each node v of the data graph to a keyword
k of Q, provided that the content of v contains k. Note that
the keyword nodes that are needed for generating answers
to Q are only those for the terms of Q.
When parsing the source XML document, during the con-

struction of the data graph, we also create for each node v an
XML fragment that describes the full content (i.e., text) of

Figure 9: An expanded answer for “Dnepr Ukrainian”

v, that is, its type, title (if it exists), all the nested properties
and their values, and any additional text (e.g., PCDATA).
The XML fragment of each node is stored in the DBMS.
Given an answer, we can easily combine the XML fragments
of its nodes to obtain an effective graphical rendition.

Our approach of using fat nodes, by associating each ob-
ject and connector with all its properties (even nested ones),
results in a much smaller data graph, compared with having
a separate node for each property. Thus, less main memory
is needed and the traversal of the graph is faster when gen-
erating answers. As demonstrated in [2], fat nodes also fa-
cilitate an easy-to-understand graphical presentation of an-
swers. The default display of an answer is illustrated in
Figure 8. The keyword of the query are underlined in green.
Only properties that include the keywords are shown. There
is an option to expand an answer so that all its properties
are displayed, as illustrated in Figure 9.

Recall that an answer is defined (in Section 3.2) as a re-
duced subtree with respect to the query. Next, we discuss
cases where this definition does not yield (sufficiently) mean-
ingful answers and explain how to handle them.

It is meaningless to show a connector without display-
ing also some of its adjacent objects. Actually, we need
to display at least two adjacent objects, such that one of
them is the XML parent of the connector. For example,
in the data graph of Figure 6, there is a connector mem-

berships with the adjacent objects Israel, Interpol and
UN. Any meaningful information pertaining to that connec-
tor must include at least its XML parent Israel and one
more adjacent object. Observe that if we display two ad-
jacent objects, such that none is the XML parent, then
the obtained information is rather meaningless. That is,
UN ← memberships → Interpol only indicates that some
country is a member of both Interpol and UN.

Hence, if a connector is either the root or a leaf of a gen-
erated answer A, we need to augment A before showing it
to the user. First, suppose that the root of A is a connector

29

c. Recall that the root must have at least two children. If
one of them is the XML parent of c, we discard the answer
A, because it is more meaningful when the XML parent is
the root (and due to opposite idref edges, there would be
an equivalent answer that satisfies that). If the answer A is
not discarded, we add the XML parent of c as the new root
(and c becomes its child). Note that this augmentation vi-
olates the requirement that the root must have at least two
children, but it is necessary to make the answer meaningful
to the user.
Now, suppose that a leaf of the answer A is a connector c.

If a solid edge (i.e., of the initial data graph) enters c, then
we add all the outgoing solid edges of c and their adjacent
objects become leaves instead of c. If an opposite idref edge
(i.e., dashed arrow) enters c, then we add the only outgoing
opposite idref edge of c and its adjacent object (which is
actually the XML parent of c) becomes a new leaf instead
of the connector c.
Sometimes, nodes added during augmentation already ap-

pear in the answer. These cases can be handled as explained
in [14].
The discussion about augmentation already alludes to an

important principle. That is, if a connector appears in an
answer, both its incoming and outgoing edges should be of
the same kind (i.e., all of them should be either solid or
dashed edges). For example, consider the path Interpol→
memberships → UN in Figure 6. A dashed (i.e., opposite
idref) edge enters memberships and a solid one goes out.
This is a rather meaningless path—all it says is that some
country is a member of both Interpol and UN. Therefore, we
do not want such paths in answers. We achieve this by re-
quiring that the traversal of the data graph (during the pro-
cess of generating answers) satisfies the following rule. If a
path (which is part of an answer) enters a connector through
a solid (resp., dashed) edge, then it must also leave through
a solid (resp., dashed) edge. Since this rule is applied during
the traversal of the graph, we do not even generate answers
that violate it.

5. RANKING ANSWERS
In this section, we discuss the issue of how to assign weights

to the nodes and edges of a data graph and how to do the fi-
nal ranking of answers. It should be noted that lower weights
are better, since (as mentioned in Section 3.3) we follow the
principle that a smaller answer is more meaningful (and the
size of an answer is actually its weight).
Two factors determine the weights: the semantics of the

data and the text. The former refers to database aspects,
namely, the relative importance of entities and the strength
of the relationships among them (note that entities and re-
lationships are objects and connections, respectively, in our
model). The latter factor refers to the relevance of the text
to a specific query, as viewed in information retrieval (IR).
Semantic considerations determine static weights that are

independent of a specific query. Using a given query Q and
the text associated with the nodes of the data graph, we
should also derive dynamic weights that indicate relevance
to Q. The weights of nodes and edges are used in two ways.
First, when generating answers for a given query Q, we do
it in a manner that uses the weights. As mentioned in Sec-
tions 3.3 and 3.4, enumeration by increasing height is a good
strategy, because it can be done efficiently and has a good
correlation with the desired final ranking. Second, those

weights can be used in the final ranking, say by increasing
weight (and, hence, “smaller is better” actually means “an
answer with a smaller weight is better.”) However, the final
ranking of answers may also be done in a way that is not
strictly determined by their weights.

A common theme for determining static weights is “pres-
tige” [5]. It is tempting to interpret this notion as meaning
a high degree in the data graph. That is, an object that has
a high degree in the data graph (which means connections
to many other objects) would be deemed more important
(and, hence, should get a lower weight). But this is hardly
a universal principle. For example, which is a more im-
portant organization—one with many members or one with
only a few? An organization with many members may be
important because it is viewed as having a wide influence,
whereas an organization with only a few members could be
deemed important because it is highly exclusive. Formulas
for assigning static weights are given in [12,29,30].

Clearly, the first step is to assign the static weights to
the structural nodes of the data graph and to the edges
connecting them, because they do not depend on a specific
query. Now, suppose that we are given a query Q. Two
issues arise: how to determine dynamic weights and how
to assign them; in particular, there is no obvious way of
combining static and dynamic weights.

In [29, 30], dynamic weights are computed by using lan-
guage models [32] with smoothing methods [37]. In addition,
the text of each node is divided into three fields: title, con-
tent and structure. The first field is just the title of a node,
if it exists (recall that objects, but not connectors, typically
have titles). The second is the whole text associated with
the node (including the nested properties). The third com-
prises the type of the node and those of its properties (that
is, the names of the corresponding elements and attributes
from the source XML document). The approach of dividing
the text into fields bears some similarity to [16]. It makes it
possible to determine the degree of importance of a partic-
ular keyword occurrence depending on where it appears.

Recall from Section 4.6 that only keyword nodes of the
given query Q are attached to the skeleton of the data graph,
when generating answers to Q. In [30], only the edges of
those keyword nodes get dynamic weights. Consider an edge
(v, k) from a node v that has an occurrence of the keyword
k of Q to the node for k. The weight of (v, k) is determined
by the relevance of v to the query Q (rather than just to
k). That relevance is calculated by the language-model ap-
proach. In particular, distinct language models are created
for the title and content fields and then combined together.
A keyword that appears in the structure field is treated dif-
ferently (see details in [30]), because language models are
not effective in this case.

The final ranking of answers in [30] is not according to the
weights of the generated answers. Instead, for each answer,
the text from all its nodes is concatenated (while keeping
distinct fields separately) and a new lm-value is computed
based on language models. That lm-value is combined with
the weight of an answer to yield a score that determines the
final ranking.

An important issue is that of normalizing (into one scale)
the static weights, the dynamic weights and the lm-values.
Recall that the first are derived from semantic considerations
whereas the latter two are obtained from language models.
In particular, language models yield probabilities for which

30

the higher is better. The first task of the normalization is to
invert those probabilities, since ranking is done by increas-
ing score (i.e., the lower is better). The second task of the
normalization is to make it meaningful to combine values
obtained from language model with those derived from se-
mantic considerations. Some formulas for doing that were
developed in [30]. However, more research is needed to pro-
vide theoretical foundations for the normalization process.
In [30], as explained earlier, the dynamic weight of an edge

(v, k) from a node v to a keyword k is determined only by
the relevance of v to the given query Q. However, v is (at
best) just one node of a relevant answer. In [29], a neigh-
borhood of v, called a virtual leaf, is considered rather than
merely v itself. In addition, the estimation of probabilities
for a virtual leaf takes into account the distance of each term
occurrence t from v, in a manner that resembles [27]. Note
that the distance is the sum of static weights from v to the
node containing t. In [29], the idea of virtual leaves is also
extended to virtual roots, that is, nodes that might be roots
of relevant answers.
In [7], they developed a framework for evaluating database

keyword-search strategies and tested nine systems. Their
framework consists of three datasets and fifty queries for
each one of them. When compared with those nine systems,
[30] achieved higher MAP (mean average precision) on each
of the three datasets, and [29] was even better. The work
of [6] reported the best performance that has been achieved
so far on the evaluation framework of [7], but the authors
of [6] have not yet published sufficient details to reproduce
their results.
In [30], they also showed how to combine the system de-

scribed in Section 4 with Lucene,4 which is an open-source
software for information retrieval. Thus, we can efficiently
generate answers according to the ranking described in this
section. In particular, [30] showed that there is no need to
have edges entering keyword k from all the structural nodes
that contain k. Instead, it is sufficient to do that just for
the top-N nodes that contain k, where the ranking of those
nodes is according to their relevance to the given query Q.
That is, even when using small values of N , the decrease in
the MAP is relatively minor, whereas the efficiency is sub-
stantially increased (because a smaller portion of the data
graph has to be traversed). A similar result holds for the
approach of [29].
Two useful features were demonstrated in [2]. The first is

to specify that a keyword of the query must appear in the
structure field. This is done by adding the suffix ? to the key-
word. For example, the query “France, capital?” would
return the answer France → capital → Pairs. Hence,
this is a form of question answering. The second feature is
the ability to group several keywords together by enclosing
them inside curly brackets. The meaning is that those key-
words should appear together in the same node of an answer.
In [30], it is shown that these two features can enhance the
performance (i.e., increase the MAP).

6. TWO DIMENSIONAL SEARCH
As enunciated in [28], keyword search over data graph is

inherently a two-dimensional process. A specific answer is
characterized by its content as well as by its pattern. The
latter refers to the tree structure of an answer, that is, the

4http://lucene.apache.org/

pattern that we get when considering only the type of each
node (and ignoring the node’s id and the rest of its content).

For example, consider the query“Lebanon, Israel.” Many
answers to this query have a similar flavor: each one states
that both countries are members of some organization. All
those answers have the pattern country← memberships←
organization → memberships → country. It is pointless
to show to the user many answers of this pattern if she is
interested in something else. Some rudimentary features for
dealing with this issue were demonstrated in [2]. For exam-
ple, the user can specify that she is not interested in answers
that have nodes of type organization.

A comprehensive approach would allow a user to seam-
lessly navigate across the two dimensions. Toward this end,
we may want to allow a user (who has already seen some
answers) to choose any option among the following three.
First, getting the next best answer in the overall ranking
order. Second, getting the next best answer of a particu-
lar pattern, which would be chosen from those of answers
that have already been presented, and the user may impose
some additional constraints (e.g., the pattern should include
a specific node). Third, getting the best next answer of a
patten that has not yet appeared among the presented an-
swers; again, some constraints might be imposed (e.g., the
pattern should not include a node of type organization).

Efficient algorithm for supporting the above options should
be developed. A possible approach might be based on a syn-
ergy of algorithms that directly search for answers on the
data graph and those that first generate patterns and then
compute them. The problem with the latter is that many
of the generated patterns may yield empty results. Recent
work [24, 25] developed algorithms that alleviate this prob-
lem by taking into account neighborhood constraints that
the schema satisfies.

There is also a need for some additional methods and fea-
tures to support two-dimensional search; for example, tech-
niques for summarization and aggregation of answers. More
details are given in [28].

Another approach is to facilitate two-dimensional search
by automatically diversifying the presented answers. In [12],
they introduced the idea of penalizing answers due to simi-
larity to those that have already been presented to the user.
Thus, the ranking is dynamic in the sense that after printing
each answer, the remaining ones are re-ranked by adding a
factor that takes into account similarity to the answers that
the user has already seen. The notion of similarity is based
on common parts either in the patterns of two answers or in
their particular trees (i.e., by taking into account the id’s of
nodes, rather than just their types).

7. CONCLUSIONS
Although work on keyword search over data graphs has

already been done for (at least) a decade, there are still quite
a few theoretical and practical issues that have to be tackled.
Progress depends on a synergy of practical and theoretical
research. It is essential to invest resources in creating real-
world data graphs and developing evaluation frameworks.

8. ACKNOWLEDGMENTS
The author is deeply grateful to Konstantin Golenberg,

Benny Kimelfeld and Yosi Mass without whom the work
described in this paper would not have been done.

31

9. REFERENCES

[1] H. Achiezra. Understanding Complex Answers of
Queries on Graphs. Master’s thesis, Hebrew
University, Department of Computer Science, 2009.

[2] H. Achiezra, K. Golenberg, B. Kimelfeld, and
Y. Sagiv. Exploratory keyword search on data graphs.
In SIGMOD Conference, pages 1163–1166, 2010.

[3] M. S. Ackerman. The politics of design: Next
generation computational environments. In
K. Kraemer and M. Elliott, editors, Computerization
Movements and Technology Diffusion: From
Mainframes to Ubiquitous Computing, ASIS&T
Monograph Series, 2006.

[4] S. Agrawal, S. Chaudhuri, and G. Das. Dbxplorer:
enabling keyword search over relational databases. In
SIGMOD Conference, page 627, 2002.

[5] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti,
and S. Sudarshan. Keyword searching and browsing in
databases using banks. In ICDE, pages 431–440, 2002.

[6] V. Bicer, T. Tran, and R. Nedkov. Ranking support
for keyword search on structured data using relevance
models. In CIKM, pages 1669–1678, 2011.

[7] J. Coffman and A. C. Weaver. A framework for
evaluating database keyword search strategies. In
CIKM, pages 729–738, 2010.

[8] S. Cohen, I. Fadida, Y. Kanza, B. Kimelfeld, and
Y. Sagiv. Full disjunctions: Polynomial-delay iterators
in action. In VLDB, pages 739–750, 2006.

[9] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv.
Xsearch: A semantic search engine for xml. In VLDB,
pages 45–56, 2003.

[10] R. Fagin, A. O. Mendelzon, and J. D. Ullman. A
simplified universal relation assumption and its
properties. ACM Trans. Database Syst., 7(3):343–360,
1982.

[11] C. A. Galindo-Legaria. Outerjoins as disjunctions. In
SIGMOD Conference, pages 348–358, 1994.

[12] K. Golenberg, B. Kimelfeld, and Y. Sagiv. Keyword
proximity search in complex data graphs. In SIGMOD
Conference, pages 927–940, 2008.

[13] K. Golenberg, B. Kimelfeld, and Y. Sagiv. Optimizing
and parallelizing ranked enumeration. PVLDB,
4(11):1028–1039, 2011.

[14] K. Golenberg and Y. Sagiv. The architecture of a
system for keyword search over data graphs.
Manuscript in preparation.

[15] K. Golenberg and Y. Sagiv. A practically efficient
algorithm for generating all answers to search queries
over data graphs. Manuscript in preparation.

[16] D. Hiemstra. Statistical language models for
intelligent XML retrieval. In Intelligent Search on
XML Data, pages 107–118, 2003.

[17] V. Hristidis and Y. Papakonstantinou. Discover:
Keyword search in relational databases. In VLDB,
pages 670–681, 2002.

[18] D. S. Johnson, C. H. Papadimitriou, and
M. Yannakakis. On generating all maximal
independent sets. Inf. Process. Lett., 27(3):119–123,
1988.

[19] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan,
R. Desai, and H. Karambelkar. Bidirectional

expansion for keyword search on graph databases. In
VLDB, pages 505–516, 2005.

[20] B. Kimelfeld and Y. Sagiv. Efficient engines for
keyword proximity search. In WebDB, pages 67–72,
2005.

[21] B. Kimelfeld and Y. Sagiv. Efficiently enumerating
results of keyword search. In DBPL, pages 58–73,
2005.

[22] B. Kimelfeld and Y. Sagiv. Finding and
approximating top-k answers in keyword proximity
search. In PODS, pages 173–182, 2006.

[23] B. Kimelfeld and Y. Sagiv. Efficiently enumerating
results of keyword search over data graphs. Inf. Syst.,
33(4-5):335–359, 2008.

[24] B. Kimelfeld and Y. Sagiv. Finding a minimal tree
pattern under neighborhood constraints. In PODS,
pages 235–246, 2011.

[25] B. Kimelfeld and Y. Sagiv. Extracting
minimum-weight tree patterns from a schema with
neighborhood constraints. In ICDT, 2013.

[26] E. L. Lawler. A procedure for computing the k best
solutions to discrete optimization problems and its
application to the shortest path problem. Management
Science, 18(7), 1972.

[27] Y. Lv and C. Zhai. Positional language models for
information retrieval. In SIGIR, pages 299–306, 2009.

[28] Y. Mass, M. Ramanath, Y. Sagiv, and G. Weikum.
IQ: The case for iterative querying for knowledge. In
CIDR, pages 38–44, 2011.

[29] Y. Mass and Y. Sagiv. Language models for virtual
documents in data graphs. Unpublished manuscript.

[30] Y. Mass and Y. Sagiv. Language models for keyword
search over data graphs. In WSDM, pages 363–372,
2012.

[31] K. G. Murty. An algorithm for ranking all the
assignments in order of increasing cost. Operations
Research, 16(3), 1968.

[32] J. M. Ponte and W. B. Croft. A language modeling
approach to information retrieval. In SIGIR, pages
275–281, 1998.

[33] A. Rajaraman and J. D. Ullman. Integrating
information by outerjoins and full disjunctions. In
PODS, pages 238–248, 1996.

[34] Y. Sagiv. Can we use the universal instance
assumption without using nulls? In SIGMOD
Conference, pages 108–120, 1981.

[35] Y. Sagiv. A characterization of globally consistent
databases and their correct access paths. ACM Trans.
Database Syst., 8(2):266–286, 1983.

[36] T. Tran, H. Wang, S. Rudolph, and P. Cimiano. Top-k
exploration of query candidates for efficient keyword
search on graph-shaped (rdf) data. In ICDE, pages
405–416, 2009.

[37] C. Zhai and J. D. Lafferty. A study of smoothing
methods for language models applied to information
retrieval. ACM Trans. Inf. Syst., 22(2):179–214, 2004.

32

