XML Compression via DAGs

Markus Lohrey
Universitat Leipzig

ABSTRACT

Unranked trees can be represented using their minimal dag
(directed acyclic graph). For XML this achieves high com-
pression ratios due to their repetitive mark up. Unranked
trees are often represented through first child/next sibling
(fcns) encoded binary trees. We study the difference in size
(= number of edges) of minimal dag versus minimal dag of
the fcns encoded binary tree. One main finding is that the
size of the dag of the binary tree can never be smaller than
the square root of the size of the minimal dag, and that there
are examples that match this bound. We introduce a new
combined structure, the hybrid dag, which is guaranteed to
be smaller than (or equal in size to) both dags. Interestingly,
we find through experiments that last child/previous sibling
encodings are much better for XML compression via dags,
than fcns encodings. This is because optional elements are
more likely to appear towards the end of child sequences.

Categories and Subject Descriptors

E.4 [Coding and Information Theory]|: Data compaction
and compression

Keywords
XML, Tree Compression, Directed Acyclic Graph

1. INTRODUCTION

The tree structure of an XML document can be conve-
niently represented by an ordered unranked tree [24, 20].
For tree structures of common XML documents it was shown
in [4] that dags (directed acyclic graphs) offer high compres-
sion ratios: the number of edges of the minimal dag is only
about 10% of the number of edges of the original unranked
tree. In a minimal dag, each distinct subtree is represented

*This research was carried out while the author was visting
University of Leipzig on a Mercator (DFG) grant.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

EDBT/ICDT’13, March 18-22, 2013, Genoa, Italy

Copyright 2013 ACM 978-1-4503-1598-2/13/03 ...$15.00.

Sebastian Maneth”
University of Oxford

69

Eric Noeth
Universitat Leipzig

only once. A dag can be exponentially smaller than the rep-
resented tree. It was shown in [8] that queries can be eval-
uated directly on the dag (without prior decompression).
Dags and their (average) time construction via hashing are
folklore in computer science (see e.g. [7]); they are a popular
data structure used for sharing of common subexpressions
(e.g., in programming languages) and in binary decision di-
agrams, see [19]. Through a clever pointer data structure,
worst-case linear time construction is shown in [6].
Unranked trees of XML tree structures are often repre-
sented using binary trees, see [23] for a discussion. A com-
mon encoding for XML is the first child/nezxt sibling encod-
ing [10] (in fact, this encoding is well-known in computer
science, see Paragraph 2.3.2 in Knuth’s first book [9]). The
binary tree fcns(t) is obtained from an unranked tree ¢ as
follows. Each node of ¢ is a node of fecns(t). A node u is a
left child of node v in fens(¢) if and only if w is the first child
of v in ¢. A node w is the right child of a node v in fens(t) if
and only if u is the next sibling of v in ¢. From now on, when
we speak of the size of a graph we mean its number of edges.
Consider the minimal dag of fens(t) (called bdag for binary
dag in the following) in comparison to the minimal dag of
t. It was observed in [5] that the sizes of these dags may
differ, in both directions. For some trees the difference is
dramatic, which motivates the work of this paper: to study
the precise relationship between the two dags, and to devise
a new data structure that is guaranteed to be of equal or
smaller size than the minimum size of the two dags.
Intuitively, the dag of ¢ shares repeated subtrees, while the
dag of fens(t) shares repeated sibling end sequences. Consider

L

n times

Figure 1: The unranked tree ¢, and dag(ty).

the tree ¢, in the left of Figure 1. Its minimal dag is shown
on the right. As can be seen, each repeated subtree is re-
moved in the dag. The dag consists of n + 1 edges while ¢,
consists of 2n edges. Moreover, fcns(t,) does not have any
repeated subtrees (except for leaves), i.e., the bdag of ¢,, has
2n edges as well. Next, consider the tree s, in the left of

n times

n edges

n — 1 times

n — 2 edges

® @ @

n — 1 times

n edges

Figure 2: The unranked tree s, and bdag(s,).

Figure 2. Its bdag is shown on the right, it has 3n —2 edges.
On the other hand, s, has n? edges and the same is true
for the dag of s, since this tree has no repeated subtrees
(except for leaves). These two examples show that (i) the
size of the dag of an unranked tree can be half the size of
the dag of the fcns-encoded tree and (ii) the size of the dag
of the fens-encoded tree can be quadratically smaller than
the size of the dag of the unranked tree. We prove in this
paper that these ratios are maximal: The size of the dag of
the unranked tree is (i) lower bounded by half of the size of
the bdag and (ii) upper bounded by the square of the size
of the bdag. Actually, we derive these bounds from stronger
statements concerning a combination of the unranked dag
and the binary dag, called the hybrid dag, which combines
both ways of sharing. The idea is as follows. Given an un-
ranked tree, we compute its minimal dag. The dag can be
naturally viewed as a regular tree grammar: Introduce for
each node v of the dag a nonterminal A, for the grammar.
If a node v is labeled with the symbol f and its children in
the dag are vi,...,v, in this order, then we introduce the
production Ay, — f(Av,,...,As,). We now apply the fcns
encoding to all right-hand sides of this grammar. Finally, we
compute the minimal dag of the forest consisting of all these
fens encoded right-hand sides. See Figure 3 which shows a
tree t of size 9. Its unranked and binary dags are each of
size 6. The hybrid dag consists of a start tree plus one rule,
and is of size 5. For the XML document trees of our corpus,
the average size of the hybrid dag is only 76% of the average
size of the unranked dag.

We show that the size of the hybrid dag is always bounded
by the minimum of the sizes of the unranked dag and the
binary dag. Moreover, we show that (i) the size of the hdag
is at least half of the size of the binary dag and (ii) the size
of the unranked dag is at most the square of the size of the
hdag. The above mentioned bounds for the unranked dag
and binary dag are direct corollaries of these bounds.

The tree grammar of a hybrid dag is not a regular tree
grammar anymore (because identifier nodes may have a right
child). It can be unfolded in three passes: first undoing
the sharing of tree sequences, then the binary decoding, and
then undoing sharing of subtrees. We show that these gram-
mars can be translated into a well known type of gram-
mars: straight-line linear context-free tree grammars, for

70

short SLT grammars (produced by BPLEX [5] or TreeRe-
Pair [15]). This embedding increases the size only slightly.
One advantage is that SLT grammars can be unfolded into
the original tree in one pass. Moreover, it is known that
finite tree automata (even with sibling equality constraints)
and tree walking automata can be executed in polynomial
time over trees represented by SLT grammars [14, 16].

While in the theoretical limit the binary dag can be smaller
in comparison than the dag, it was observed in [5] that for
common XML document trees ¢, almost always the dag of ¢
is smaller than the binary dag of t. One explanation is that ¢
contains many small repeated subtrees, which seldomly are
part of a repeating sibling end sequence. For each repetition
we (possibly) pay a “penalty” of one extra edge in the dag
of fens(t); see the tree ¢, which has penalty n. On the other
hand, there are very few repeating sibling end sequences in
common XML; this is because optional elements typically
appear towards the end of a child sequence. Hence, the
additional feature of sharing sibling sequences is not use-
ful for XML. On real XML documents, we show in experi-
ments that the “reverse binary dag” that arises from the last
child/previous sibling encoding is typically smaller than the
binary dag, and almost as small as the dag. Moreover, for
our test corpus, the average size of the reverse hybrid dag
built from the last child/previous sibling encoding of the
dag is only 62% of the average size of the minimal dag (in
contrast to 76% for the hdag described above).

Observe that in the second sharing phase of the construc-
tion of the hybrid dag, only sequences of identifiers (non-
terminals of the regular tree grammar corresponding to the
dag) are shared. Thus, we are sharing repeated string suf-
fixes in a sequence of strings. We experimented with ap-
plying a grammar-based string compressor to this sequence
of strings. It is not difficult to incorporate the output into
an SLT grammar. As our experiments show, the obtained
grammars are smaller than those of the hybrid dag and al-
most as small as TreeRePair’s grammars. Moreover, they
have the advantage that checking equivalence of subtrees is
simple (each distinct subtree is represented by a unique iden-
tifier), a property not present for arbitrary SLT grammars.
For hybrid dags, even equality of sibling end sequences can
be checked efficiently.

2. TREES AND DAGS

Let ¥ be a finite set of node labels. An ordered ¥-labeled
multigraph is a tuple M = (V,~,A), where V is a finite set
of nodes, v : V. — V* and A : V — X. The idea is that
for a node v € V, 7(v) is the ordered list of v’s successor
nodes and A(v) is the label of v. The underlying graph is the
directed graph Gy = (V, E) where (u,v) € E if and only
if v occurs in y(u). The node size of M is #n(G) = |V|
and the edge size or simply size of M is [M| =3 _,, |v(v)|.
Note that the labeling function A does not influence the size
of M. The motivation for this is that the size of M can be
seen as the number of pointers that are necessary in order to
store M and that these pointers mainly determine the space
consumption for M.

Two ordered X-labeled multigraphs My = (Vi,v1, A1) and
My = (Va,7v2, A2) are isomorphic if there exists a bijection
f: Vi — Vasuch that for allv € Vi, v (f(v)) = f(y1(v)) and
A2(f(v)) = A1(v) (here we implicitly extend f to a morphism
f V" = V5). We do not distinguish between isomorphic
multigraphs.

\dag(t)\ = 6 = |bdag(?)|

:

us]
X‘W.JZ
\/

B (f)

e

®)

[ndag(t)| = 5

@

Figure 3: The tree ¢, its dag, its bdag, and its fcns encoding; its hybrid dag is shown in the box.

A Y-labeled ordered dag is a ¥-labeled ordered multigraph
d = (V,v,) such that the underlying graph G4 is acyclic.
The nodes r € V for which there is no v € V such that (v,r)
is an edge of G4 (r has no incoming edges) are called the
roots of d. A X-labeled ordered rooted dag is a X-labeled
order dag with a unique root. In this case every node of d
must be reachable in G4 from the root node. A X-labeled
ordered tree is a X-labeled order rooted dag t = (V,v,\)
such that every non-root node v € V' \ {r} has exactly one
occurrence in the concatenation of all strings v(u) for u € V.
In other words, the underlying graph G is a rooted tree in
the usual sense and in every string v(u), every v € V occurs
at most once. We define 7(X) as the set of all X-labeled
ordered trees. We denote ¥-labeled ordered trees by their
usual term notation, i.e., for every a € ¥, n > 0, and all
trees t1,...,t, € T(X), we also have a(t1,...,tn) € T(X).
Note that trees from 7 (X) are unranked in the sense that the
number of children of a node does not depend on the label of
the node. We therefore frequently speak of unranked trees
for elements of 7(X).

Let d = (V,v,) be a X-labeled ordered dag. With every
node v € V we associate a tree evalg(v) € T(X) induc-
tively as follows: evalg(v) = f(evalg(v1),...,evalg(vn)), if
A(w) = f and v(v) = v1 - - v, (where f(g) = f). Intuitively,
evalg(v) is the tree obtained by unfolding d starting in the
node v. If d is a Y-labeled ordered rooted dag, then we de-
fine eval(d) = evalyq(r), where r is the root node of d. Note
that if ¢ is a X-labeled ordered tree and v is a node of ¢, then
evaly(v) is simply the subtree of ¢ rooted at v and we write
t/v = evaly(v) in this case. If for nodes u # v of t we have
t/u = t/v then the tree t/u = t/v is a repeated subtree of t.

Let t = (V,v,A) € T(X) and let G; = (V,E) be the
underlying graph (which is a tree). For an edge (u,v) € E,
v is a child of u, and w is the parent of v. If two nodes v and
v’ have the same parent node u, then v and v’ are siblings.
If moreover y(u) is of the form wjvv'ug for u1,us € V* then
v’ is the next sibling of v, and v is the previous sibling of

71

v’. If a node v does not have a previous sibling, it is a first
child, and if it does not have a next sibling, it is a last child.

For many tree-processing formalisms (e.g. standard tree
automata), it is useful to deal with ranked trees, where the
number of children of a node is bounded. There is a standard
binary encoding of unranked trees, which we introduce next.
A binary X-labeled dag d, or short binary dag, can be defined
as a (XU{O})-labeled ordered dag d = (V,~,), where O ¢ 2
is a special dummy symbol such that the following holds: (i)
For every v € V with A(v) € ¥ we have |y(v)| = 2 and (ii)
for every v € V with A(v) = O we have |y(v)] = 0. A binary
Y.-labeled tree t, or short binary tree, is a binary dag which
is moreover a (X U {O})-labeled ordered tree. The symbol
O basically denotes the absence of a left or right child of
a node. For instance, f(O,g) denotes the binary tree that
has an f-labeled root with a g-labeled right child but no
left child. Note that f(0O,g) and f(g,0) are different binary
trees. Instead of introducing the dummy symbol O one may
introduce four copies a;,; (4,j € {0,1}) for every label a € 3,
where i = 0 (resp., j = 0) means that the node does not have
a left (resp., right) child. For a binary dag d = (V,~, \), we
define its node size #n(d) = {v € V | A(v) # O}| and size
ldl = > ,cv [7(v)]s, where [viva- - vm|s = [{i | 1 < i <
m, AM(v;) # O}|. In other words: In the definitions of # n(d)
and |d| we disregard all dummy nodes. The reason for this is
that we do not need dummy nodes if we introduce 4 copies
of each label as explained above. Let B(X) denote the set of
binary X-labeled trees.

We define a mapping fens : 7(X)* — B(X), where as
usual 7(3)" denotes the set of all finite words (or sequences)
over the set T(X), as follows (“fens” refers to “first-child-
next-sibling”): For the empty word ¢ let fens(e) = O (the
empty binary tree). If n > 1, t1,...,t, € T(X) and t; =
flut, ..., um) with m > 0, then fens(tte - - - tn) = f(fens(ug
-+ Um), fens(t2 - - - tn)). Note that fens(a) = (0, 0) for a €
3. In the following we always simply write a for a(0O,0).
The encoding fens is bijective, hence the bijection fens™?

B(X) — T(X)* is defined. Moreover, for every t € T (%),
#n(fens(t)) = #n(t) and |fens(t)| = |t], see e.g. [9]. The
fens-encoding is also known as Rabin encoding.

EXAMPLE 1. Let t1 = f(a1,az2,a3) and let to = g(b1,b2).
Then fens(tita) = f(a1(0,a2(0,a3)), g(b1 (0, b2),0)).

One can construct fens(¢) also by keeping all nodes of ¢ and
redirecting edges as follows: For each node u of ¢, the left
child of u is the first child of w in ¢ (if it exists) and the right
child of u is the next sibling of u (if it exists).

An ordered tree can be compacted by representing occur-
rences of repeated subtrees only once. Several edges then
point to the same subtree (which we call a repeated sub-
tree), thus making the tree an ordered dag. It is known
that the minimal dag of a tree is unique and that it can be
constructed in linear time (see e.g., [6]). For later purpose
it is actually useful to define the minimal dag dag(d) for
every Y-labeled ordered dag d = (V,v,\). It can be for-
mally defined as dag(d) = ({evalg(u) | w € V},79/,\) with
N(f(t1,...,tn)) = fand v (f(t1,...,tn)) = t1 -+ - tn. Thus,
the nodes of dag(d) are the different trees represented by
the nodes of d. This is just a convenient way to formally
define dag(d). The internal structure of the nodes of dag(d)
(trees in our definition) has no influence on the size of dag(d),
which is still the number of its edges. Note that in general we
cannot recover d from dag(d): If for instance d is the disjoint
union of two copies of the same tree ¢, then dag(d) = dag(t),
but this will not be a problem. Dags are only used for the
compression of forests consisting of different trees. Such a
forest can be reconstructed from its minimal dag. Note also
that if d is a rooted dag, then dag(d) is also rooted and we
have eval(d) = eval(dag(d)).

EXAMPLE 2. Consider the full binary tree t, of depth n
with all nodes labeled a. While |t,| = 2" — 1, |dag(t,)| =
2n. Hence dag(t) can be exponentially smaller than t.

The binary dag of t € T(X), denoted bdag(t), is defined as
bdag(t) = dag(fens(t)); it is a binary dag as defined above.
See Figure 2 in the introduction for an example.

Clearly, the number of nodes of dag(t) equals the number
of different subtrees ¢/v for a node v of t. In order to count
the number of nodes of bdag(¢) the following definition is
useful: For a node v of an unranked tree t = (V,~, \) define
sibseq(v) € T(X)* (the sibling sequence of u) as follows: If
v is the root of ¢ then sibseq(v) = ¢t. Otherwise, let u be the
parent node of v and let y(u) = wvovy - + - Uy, where w € V*
and vg = v. Then

sibseq(v) = (t/vo)(t/v1) - (t/Vm).
EXAMPLE 3. The different sibling sequences of the tree
t = f(a, f(b,a),b,a) are: t, af(b,a)ba, f(b,a)ba, ba, and a.
The following lemma follows directly from the definition:

LEMMA 1. The number of nodes of bdag(t) is equal to the
number of different sibling sequences sibseq(v), for allv € V.

3. THE HYBRID DAG

While the dag shares repeated subtrees of a tree, the bi-
nary dag shares repeated sibling sequences (see Lemma 1).
Consider an unranked tree . As we have seen in the intro-
duction, the size of dag(t) can be smaller than the size of

72

bdag(t). On the other hand, it can also be that the size of
bdag(t) is smaller than the size of dag(t). We now wish to
define an object that combines both types of sharing (trees
and tree sequences) and which is guaranteed to be smaller
than or equal to the minimum of the sizes of dag(t) and
bdag(t). Our starting point is dag(t). Basically, the rea-
son for this is that if the same sibling sequence occurs at
two nodes u and v of ¢, then also t/u = t/v (but not the
other way round). In this dag we now want to share all re-
peated sibling sequences. As an example, consider the tree
t = f(f(g(a),g(a)),g(a),g(a)) shown on the top left of Fig-
ure 3. Its size is 9. The dag of this tree consists of a unique
occurrence of the subtree g(a) plus two f-labeled nodes,
shown to the right of ¢ in the figure. Thus |dag(t)] = 6.
We represent this dag by the following regular straight-line
tree grammar G with three productions (straight-line gram-
mars are acyclic and for each nonterminal X there is exactly
one production with left-hand side X):

S — f(B,AA)
B — f(AA)
A = g(a)

(1)

Each non-leaf node of the dag becomes a nonterminal of the
tree grammar. Thereby, the right-hand side of each gram-
mar rule becomes a tree of height 1 (we exclude trees con-
sisting of a single node in the following). Note that it is
well-known that minimal dags are isomorphic to minimal
acyclic tree automata and to minimal straight-line regular
tree grammars (see, e.g., [17]). By eval(G) we denote the
unique tree ¢ € 7(X) obtained from the start nonterminal
S by applying G’s productions. In order to share repeated
sibling sequences in dag(t) we apply the fcns-encoding to
the right-hand sides of the grammar’s productions. For
the above example we obtain the following new binary tree
grammar:

S = [f(B(B,A(G,4)),0)
B — [f(A(5,4),0)

A = g(a,0)

We now build the minimal dag of the dag obtained by tak-
ing the disjoint union of all right-hand sides of this gram-
mar. In the example, the subtree A(O, A) appears twice
and is shared. We write the resulting dag again as a gram-
mar, using the new nonterminal C for the new repeated tree
A(O, A) (corresponding to the repeated sibling sequence AA

in (1)).

S = f(B(O,0),0)

B — f(C,0) (2)
C — A(O,A)

A — g(a,0)

This grammar is the hybrid dag (hdag for short) of the initial
tree. Its size is the total number of edges in all right-hand
side trees; it is 5 in our example (here, as usual, we do not
count edges to O-labeled nodes). Compare this to dag(t)
and bdag(t), which are both of size 6.

In our example, the production B — f(A, A) in the gram-
mar (1) does not save any edges, since the nonterminal B
occurs only once in a right-hand side (namely f(B, A, A)).
Eliminating this production yields the grammar

S o f(f(A A), A, A)
A = g(a)

with the fens encoding
S = f(f(A(DB, 4), AT, 4)),0)
A — g(a,0).
Sharing repeated subtrees in this grammar gives
s = f(f(cC),n)
cC — A(OA)
A — g(a,0).

®3)

The size of this grammar (number of edges to non-O nodes in
all right-hand sides) is still 5, but it has only 3 nonterminals
in contrast to 4 for the above hdag. In practice, having
a grammar with fewer nonterminals is preferable. In fact,
our implementation avoids redundant nonterminals like B
in our example. On the other hand, having only trees of
height 1 as right-hand sides of the dag (seen as a grammar)
does not influence the number of edges in the final grammar.
Moreover, it slightly simplifies the proofs in the next section,
where we show that the size of the hdag of a tree t is smaller
than or equal to the minimum of the sizes of dag(t) and
bdag(t).

In general, the hybrid dag is produced by first building a
dag, then constructing its fcns-encoding (using grammars),
and then building a dag again. More formally, consider
dag(t) as a straight-line regular tree grammar with produc-
tions Ay — t1,...,An — tn, where Aq,..., A, are nonter-
minals that may appear in the right-hand sides as leaf labels
and every tree t; has height 1. Then

hdag(t) = dag(fens(t1), . . ., fens(ty)),

where the tuple (fens(t1), ..., fens(t,)) is viewed as the dag
obtained by taking the disjoint union of the binary trees
fens(t;). Clearly hdag(¢) is unique up to isomorphism. In the
second step when dag(fens(t1),. .., fens(¢,)) is constructed
from the tuple (fcns(t1), .. ., fens(t,)), only sequences of leaf
nodes from ti,...,t, can be shared, since these trees are
pairwise different and of height 1.

We defined the hdag as a particular dag. Alternatively
(and as in our example), we can define the hdag as a partic-
ular tree grammar which has a set of nonterminals that is
partitioned into two sets. Recall that a straight-line gram-
mar is acyclic and contains exactly one production per non-
terminal. A hybrid dag grammar (or hdag grammar) is a
straight-line tree grammar h = (N1, N2, X, S, P) such that
N; and N, are disjoint sets of nonterminals (of rank zero),
S € Ni, and for every A € N1 U N; there is exactly one
production (A — t) € P, where t is a binary tree over
3 U N1 U N3 such that

e nonterminals of Na only appear at leaf positions in ¢,

e if A € Ny then fens™'(t) € T(X U Ny U N2) and non-
terminals from N; only appear at leaf positions in
fens™*(t), and

e if A € N then fens™'(¢) € (S U N1)*(Z U N1 UNa).

Both grammars (2) and (3) are hdag grammars. For (2) we
set N1 = {S, A, B} and N2 = {C} and for (3) we set N =
{S, A} and N2 = {C}. In general, the hdag of a tree can be
seen as an hdag grammar. The set N; consists of those non-
terminals that were introduced in the construction of dag(t)
from t, while N2 comprises those nonterminals that were
introduced in the construction of dag(fens(t1), . .., fens(ty))
from dag(t) . The size of h is defined as |h| =3, _,,.p |t|.

73

Note that an hdag grammar is not a regular tree grammar
because nodes labeled with nonterminals from N; may have
right children. Also note that the root node of the right-hand
side of a nonterminal in N7 does not have a right child.

An hdag grammar h can be decompressed into a tree
eval(h) as follows. We construct the regular tree grammar
RT(h): For every production A — ¢ of h with A € N1 we
add to RT(h) the new production A — fens™*(t'), where ¢’
is obtained from ¢ by applying Na-productions as long as
possible. Then, RT(h) is an ordinary regular tree grammar.
Finally, eval(h) = eval(RT(h)). One can show that hdag(t)
(seen as a grammar) is a size-minimal hdag grammar with
eval(hdag(t)) = t.

3.1 The sizes of dag, bdag, and hdag

We want to compare the node size and the edge size of
dag(t), bdag(t), and hdag(t) for an unranked tree t.

3.1.1 The number of nodes

In this section we consider the number of nodes in the dag
and bdag of an unranked tree. We show that #n(dag(t)) <

#n (bdag(t)).

EXAMPLE 4. Consider the tree t, = f(a,a,...,a) con-
sisting of n nodes, where n > 2. Then #n(dag(t)) = 2 and
#n(bdag(t)) = n, while |dag(t)| = |bdag(t)] = n — 1. Note
that dags with multiplicities on edges, as defined in [4], can
store a tree such as t, in size O(logn).

LEMMA 2. Let t be an unranked tree. Then

#n (dag(t)) < #n (bdag(t)).

ProOF. The lemma follows from Lemma 1 and the ob-
vious fact that the number of different subtrees of ¢ (i.e.,
|dag(t)]) is at most the number of different sibling sequences
in ¢: sibseq(u) = sibseq(v) implies ¢/u = t/v. [

LEMMA 3. There ezists a family of trees (tn)n>2 such that
#n(tn) = #n(bdag(t)) = n and ##n(dag(t)) = 2.
PrOOF. Take the family of trees ¢, from Example 4. []

Let us remark that the node size of the hdag can be larger
than the node size of the bdag and the node size of the
dag. When writing dag(t) as a grammar, the number of
nodes in all right-hand sides can be larger than the node
size of dag(t). On the other hand, when writing dag(t) as
a grammar, the number of edges in all right-hand sides is
exactly the number of edges of dag(t).

3.1.2 The number of edges

Recall from the previous section that the number of nodes
of the (minimal) dag is always at most the number of nodes
of the bdag, and that the gap can be maximal (O(1) versus
[t]). For the number of edges, the situation is different. We
show that %|bdag(t)| < |dag(t)| < [bdag(t)|* and that these
bounds are sharp. In fact, we show the three inequalities
Indag(t)] < min(|dag(t)], [bdag(t)]), [bdag(t)] < 2lhdag(t)],
and |dag(t)| < |hdag(t)|* which imply

1
5Ibdag(t)] < |dag(t)] < [bdag(t)|*,

Before we prove these bounds we need some definitions. Re-
call that the nodes of bdag(t) are in 1-1-correspondence with
the different sibling sequences of t. In the following, let

sib(t) = {sibseq(v) | v a node of t}

be the set of all sibling sequences of t. To count the size
(number of edges) of bdag(t) we have to count for each sib-
ling sequence w € sib(t) the number of outgoing edges in
bdag(t). We denote this number with e(w); it can be com-
puted as follows, where w = s182- - sm (m > 1) and the s;
are trees:

e e(w)=0,if m=1and |s;| =0,

e e(w) = 1, if either m = 1 and |s1| > 1 (then w has
only a left child) or m > 2 and |s1| = 0 (then w has
only a right child),

e e(w) = 2, otherwise.
With this definition we obtain:

LEMMA 4. For every t € T(X), we have

lbdag(t) = 3 e(w).

wEsib(t)

The size of the hdag can be computed similarly: In the
following, we always view dag(t) as a regular tree grammar.
Let N be the set of nonterminals of this grammar and let
S be the start nonterminal. Recall that every right-hand
side of dag(t) has the form f(ai,...,an), where every o
belongs to ¥ U N. Let sib(dag(t)) be the set of all sibling
sequences that occur in the right-hand sides of dag(t). Thus,
for every right-hand side f(au, ..., an) of dag(t), the sibling
sequences f(ai,...,an) (a sibling sequence of length 1) and
;g1 o (1 <7 < n) belong to sib(dag(t)). For such a
sibling sequence w we define e(w) as above. Then we have:

LEMMA 5. For every t € T(X), we have

>

wesib(dag(t))

|hdag(t)] = e(w).

For w = s1---sm € sib(t) let w the string that results from
w by replacing every non-singleton tree s; € ¥ by the unique
nonterminal of dag(t) that derives to s;. Actually, we should
write w; instead of w, since the latter also depends on the
tree t. But the tree t will be always clear from the context.
Here are a few simple statements:

e For every w € sib(t), the sibling sequence W belongs
to sib(dag(t)), except for the length-1 sequence w = S
that is obtained from the length-1 sequence w =t €
sib(t).

e For every w € sib(t), e(w) is a word over N U X.
e For every w € sib(t), e(w) < e(w).

e The mapping w +— @ is an injective mapping from

sib(¢) \ {t} to sib(dag(t)).

Using this mapping, the sums in
related as follows:

Lemma 4 and 5 can be

LEMMA 6. For every t € T(X), we have
hdag(t) = > e(w) = N[+ > e(w).
wesib(dag(t)) weEsib(t)

74

Proor. By Lemma 5 it remains to show the second equal-
ity. The only sibling sequences in sib(dag(¢)) that are not
of the form @ for w € sib(t) are the sequences (of length 1)
that consist of the whole right-hand side f(ai,...,am) of a
nonterminal A € N. For such a sibling sequence u we have
e(u) = 1 (since it has length 1 and f(ai,...,am) is not a
single symbol). Hence, we have

Yo ew) = NI+ Y e(d)
wesib(dag(t)) wesib(t)\{t}

= NI+ > e@),

weEsib(t)
where the last equality follows from e(f) = e(S) =0. [

THEOREM 1. For every t € T(X), we have
|hdag(t)| < min(|dag(t)|,|bdag(t)|)-

PROOF. Since hdag(t) is obtained from dag(t) by sharing
repeated sibling sequences, we immediately get |hdag(t)| <

|dag(t)]. It remains to show |hdag(t)| < |bdag(t)|. By
Lemma 4 and 6 we have to show
N[+ D (@) < Y e(w),
weEsib(t) wEsib(t)
where N is the set of nonterminals of dag(t). To see this,

note that:
e ¢(w) < e(w) for all w € sib(t), and

o for every nonterminal A € N there must exist a sibling
sequence w € sib(t) such that @ starts with A. For this
sequence we have e(w) = e(w)+1 (note that the right-
hand side of A does not belong to X, hence w starts
with a tree of size at least 1).

Choose for every A € N a sibling sequence w4 € sib(t) such
that @wa starts with A. Let R =sib(t) \ {wa | A € N}. We

get
INI+ D e(@) = [N+ > e(a)+ Y e()
wEsib(t) AeN wER
=) (e(@a)+ 1)+ > e(w)
AEN weER
< Z e(wa) + Z e(w)
AeEN weER
= Z e(w).
wesib(t)

This proves the theorem. []

THEOREM 2. For every t € T(X), we have
|dag(t)| < |hdag()|".

PRrROOF. Let fi(es1,...,ain;) for 1 <14 <k be the right
hand sides of dag(t) viewed as a grammar. W.Lo.g. assume
that 1 <ny <no < --- < ng. Every ay,; is either from ¥ or
is a nonterminal. Moreover, all the trees fi(ai1,...,Qin;)
are pairwise different. We have |dag(t)| = Zle n;.

Recall that we compute hdag(t) by taking the minimal dag
of the forest consisting of the binary encodings of the trees
fi(ai1, ..., n,). The binary encoding of fi(ai,1,...,Q%in;)
has the form f;(¢;, 0), where ¢; is a chain of n; —1 many right
pointers. Let d be the minimal dag of the forest consisting

of all chains ¢;. Since all the trees fi(ai,1,...,q:n,) are
pairwise distinct, we have |hdag(t)| = k + |d|. Since chain ¢;
consists of n; many nodes, we have |d| > max{n; | 1 < <
k} —1 = ni — 1. Hence, we have to show that ZLI n; <
(k +ny, —1)%. We have

k
> i <keng < (k—Dng +ni < (k—14m)?,
=1

which concludes the proof. [

Consider the tree s, from Figure 2. We have |dag(s,)| =
|sn| = n? and |hdag(s,)| = |bdag(s,)| = 3n — 2. This shows
that up to a constant factor, the bound in Theorem 2 is
sharp.

Next let us bound |bdag(t)| in terms of |hdag(¢)]:

THEOREM 3. For every t € T(X), we have
(bdag(t)] +n < 2|hdag(t)],
where n is the number of non-leaf nodes of dag(t).

PrOOF. We use the notations introduced before Theo-
rem 1. Note that n = |N| is the number of non-terminals of
the regular grammar corresponding to dag(¢). By Lemma 4
we have [bdag(t)] = >, c.n e(w). By Lemma 6 we have

|hdag(t)| = [N[+ 3, cqn) €(@). Hence, we have to show
that
- 1 1
N+ Y el > 2 S ew) + LN
wEsib(t) weEsib(t)

In order to prove this, we show the following for every sibling
sequence w € sib(t): Either e(@) > le(w) or e(w) = 0,
e(w) = 1. In the latter case, the sibling sequence w consists
of a single tree s of size at least one (i.e., s does not consist
of a single node), and W consists of a single nonterminal
A€ N. So,let w=1t1- -t, €sib(t) and let W = a1 ---an
with a; € ¥ U N. We consider the following four cases:

Case 1. n > 1 and t1 = a1 € . We have e(w) = e(w) = 1.
Case 2. n > 1 and |t1| > 1. We have e(w) = 2 and e(w) = 1.

Case 3. n=1and t; = a; € £. We have e(w) = e(w) = 0.
Case 4. n =1 and [t1] > 1. We have e(w) = 1, e(w) = 0,
and W consists of a single nonterminal A € N. [

For the tree ¢, from Figure 1 we have |bdag(t,)| = |tn| = 2n,

|hdag(sn)| = |dag(tn)] = n+ 1, and n = |N| = 2. Hence,
Theorem 3 is optimal.
From Theorems 1, 2, and 3 we immediately get:

COROLLARY 1. For every t € T(X), we have

1
5lbdag(t)] < [dag(t)] < |bdag(t)|.

3.2 Hybrid dag to SLT grammar

The definition of a hdag grammar suggests that unfold-
ing it into the original tree needs to be done in two phases.
We now show that this is not the case: every hdag gram-
mar can be transformed (with little space overhead) into
a “one-parameter straight-line linear context-free tree gram-
mar” (for short, 1-SLT grammar), see [16]. During a bottom-
up pass, a 1-SLT grammar can be unfolded in time linear in
the size of input grammar plus the size of the output tree.

75

There are several other advantages of 1-SLT grammars. For
instance, tree automata can be executed in polynomial time
over 1-SLT grammars [14]. It was shown in [16] that every
SLT grammar can be transformed in polynomial time into
a 1-SLT grammar. Consider the hdag grammar

S = f(B(O,0),0)
B — f(C,0)
C — A(O,A)
A — g(a(0,0),0)

It is derived from the tree ¢ in Figure 3, where every g-
labeled node has a second b-labeled child. In the right-hand
side A(O, A), the nonterminal A € N; appears at a leaf and
at a unary node. In an SLT grammar each nonterminal has
a fixed rank, which is either 0 or 1 for a 1-SLT grammar. An
occurrence of a nonterminal of rank r in a right-hand side
has exactly r children. Thus, we need to introduce a copy
A of rank 1 of the nonterminal A of the hdag grammar (the
original A will have rank 0 in the 1-SLT grammar). In a
1-SLT grammar, the production for a rank-1 nonterminal X
is of the form X (y) — ¢, where ¢ is a tree over nonterminals
and terminals which contains exactly one occurrence of y at
a leaf. When this production is applied inside a tree, then
we replace every subtree X (¢') by t in which the tree t' is
substituted for the unique occurrence of y. In the hdag, this
substitution point of X € N; is fixed as the right child of the
right-hand side’s root node. In our example, we introduce
for A the copy A with the production

A(y) — 9(a(B,0),y)
(we keep the original production A — g(a(3,b),0) of the
hdag grammar). Clearly, this process may double the size of
the hdag when transforming it into a 1-SLT grammar. How-
ever, observe that every Ni-production of a hdag grammar
has the form A — f(¢,0). Thus, we may introduce a new
nonterminal for the tree ¢ and represent ¢ only once. In our
example, we replace the hdag production A — g(a(O,b),0)
in the 1-SLT grammar by the productions
- 9(Zy)

A(y)
— g(Z,0)
Z — a(3,b).

In this way, only at most two edges are added when we build
1-SLT grammar productions for a nonterminal in Ni. The
hdag productions for nonterminals in Ny can be taken over
without change into the 1-SLT grammar; we only have to
replace every occurrence of a nonterminal A € N;i in the
right-hand side by A if that occurrence has a (right) child.
In our example, the production C — A(O, A) is replaced by
C — A(A). We obtain the following lemma.

LEMMA 7. Given a hdag grammar h = (N1, N2, %, S, P),
a 1-SLT grammar Gy, can be constructed in time O(|h|) such
that eval(Gr) = fens(eval(h)) and |Gr| < |h| 4+ 2|Ny|.

Lemma, 7 implies that results for 1-SLT grammars carry over
to hdags. For instance, finite tree automata [14] (with sib-
ling constraints [16]) and tree-walking automata can be eval-
uated in polynomial time over 1-SLT grammars and hence
over hdags.

3.3 Using the reverse encoding

Instead of using the fcns encoding of a tree, one may
also use the last child previous sibling encoding (lcps). Just

like fens, leps is a map from 7(X)* to B(X) and is de-
fined as follows. For the empty word e let leps(e) = O
(the empty binary tree). If n > 1, t1,...,t, € T(X) and
tn = f(ui,...,um) with m > 0, then leps(tita---tn) =
Fleps(ti, ... tno1),lcps(ur -« tm)).

EXAMPLE 5. Let t1 = f(al,ag7a3) and to = g(bl,bQ).
Then leps(titz) = g(f(O, az(az(a1,0),0)),b2(b1,0)).

Let rbdag(t) = dag(leps(t)) and
rhdag(t) = dag(leps(t1), . .., leps(tn)),

where dag(t) is seen as the regular tree grammar with pro-
ductions Ay — t1,...,Ap — t,. Trivially, in all results
from Section 3.1.2 we can replace hdag by rhdag. The
reason to consider the lcps encoding is that rbdag(t) and
rhdag(t) are smaller for trees that have repeated tree begin
sequences. Empirically, as we show in Section 6.3, this is
actually quite common and for most trees ¢ in our corpus
[rbdag(t)| < |bdag(t)| and |[rhdag(¢)| < |hdag(t)|.

Clearly, there are also trees t where |hdag(t)| < |[rhdag(t)].
This raises the question whether there is a scheme which
combines the best of both approaches. Obviously one can
construct both hdag(t) and rhdag(t) of a tree ¢ and discard
the larger of both. Yet a scheme which combines both ap-
proaches by sharing both suffixes and prefixes of children se-
quences, faces the problem that the resulting minimal object
is not necessarily unique. This can easily be seen by consid-
ering trees in which repeated prefixes and suffixes of children
sequences overlap. Also it is not clear how a minimal such
object can be constructed efficiently. A (non-optimal) ap-
proach we have considered was to first share repeated pre-
fixes and then share repeated suffixes. Yet the results in
compression achieved were not significantly better than for
the rhdag. Moreover, this approach can be further general-
ized by sharing arbitrary factors of sibling sequences. This
is the topic of the next section.

4. DAG AND STRING COMPRESSION

As for the hdag, consider the forest fecns(dag(t)) of the
binary encodings of the right-hand sides of dag(t) (seen as a
grammar) for an unranked tree ¢. In the construction of the
hdag we build the minimal dag of this forest. Therefore we
only share repeated suffixes, i.e., “right branching” trees in
the binary encoding. Such trees can in fact be considered as
strings. We now want to generalize the sharing of suffixes.
Instead of only sharing suffixes, we now apply an arbitrary
grammar-based string compressor to (a concatenation) of
these strings. Such a compressor infers a small straight-
line context-free grammar (in short, SL grammar) for the
given string. For a string grammar G, we define its size |G|
as the sum of the lengths of the strings in the right-hand
sides of G’s productions. As we will see, it is not difficult
to transform this SL grammar into a 1-SLT grammar for
the fcns-encoding of the initial tree with only little space
overhead. This is done as follows: Let N = {A1,..., Ay} be
the set of nonterminals of d = dag(t) and let

Az‘ — fi(ai,l, .. (4)

be the production for A;. Every «; is from NUY and we have
n; > 1. For every symbol a € N UX let & be a copy of a.
The idea is that & represents a copy of a that appears at po-
sitions in the fcns encoding having exactly one child (a right

il ai,n,;)

76

child), whereas the original « will only appear in leaf posi-
tions. This distinction is necessary since in an SLT-grammar
every nonterminal has a fixed rank (see also the discussion
in Section 3.2, where we have already used nonterminals
/1) Let w; be the string w; = &i,1 - Qin;—1Qn,. Note
that we also have to rename occurrences of terminals o € ¥
that are not the last symbol of ay,1 - @i n,; by & Consider
for instance the right-hand side f(a, b, a, b) with the fcns en-
coding f(a(0,b(0,a(d,b))),0). Then our string compressor
should not introduce the same nonterminal for the two oc-
currences of ab in the string abab, since the first occurrence
corresponds to the pattern a(0,b(y)) in the fcns encoding,
while the second occurrence is a full subtree. We now ap-
ply any grammar-based string compressor (e.g. RePair [11]
or Sequitur [21]) to the string Wy = w1$1w2$2ws - - - $p_1wy
where the $; are distinct new separator symbols that do not
appear in any of the w;. Let G5 denote the SL grammar
for Wy produced by the string compressor. We may assume
that every nonterminal of G, except for the start nontermi-
nal S, appears more than once in a right-hand side of G.
This implies that the start production of G5 has the form
S — 11$1v282v3 - - - $r_1vr. We now transform G, into a 1-
SLT grammar G follows: Similar to the hdag to SLT trans-
formation from Section 3.2, we put for the dag production
(4) the following three productions into the 1-SLT grammar,
where v results from v; by replacing every occurrence of &
(a € %) by a:!

Ai = fi(Z,D)

Aily) — fi(Z.y)
Z — fens(v))

The total number of edges to non-0 nodes in these three
productions is |v;| + 2. For each production X — w of the
string grammar G5 with X # S we add to our 1-SLT gram-
mar G the production X (y) — fens(wy) or X — fens(w)
depending on whether X produces in G a string ending
with a symbol & or not. Note that the number of edges to
non-0 nodes in the right-hand side of this production is at
most |w|. For the size our final 1-SLT grammar G we obtain

k

Gl <> (vl +2)+

=1

ST |wl = 2IN|+]Gy],

(B—>w)EGg
B+#S

where G’ results from G by removing all symbols $; from
the start production.

EXAMPLE 6. Consider the grammar dag(t) consisting of
the productions

A1 — f(a,Ag,Ag,A4,A2,A3,C)
A2 — g(a,a,a)

As — h(a,a,b)

Ay — f(AQ,A3)

A grammar-based string compressor applied to the string
aArAsAs Az Asc $1 daa $2 aab $s Az As
may return the SL grammar with start production
S" — aBAsBc$1 Ca $2 Cb $3 AxAs

!Note that fens(v)) is a chain of right pointers. An occur-
rence of a Gs-nonterminal in v; is written in fcns(v;) as a
unary node, i.e., we omit the left O-labeled child, see also
Example 6.

and the productions B — AQAg and C — aa. Our final
1-SLT grammar is:

Ay — f(a(0,B(A4(B(c)))), D)
Az(y) — g(Cla),y)

As — h(Z,\:\)

As(y) — h(Zy)

Z — C(b

As(y) = f(A2(43),)

B(y) — A2(As(y))

Cly) — a(0,a(d,y)).

Note that our construction may compress dag(t) exponen-
tially. For instance, for the tree f(a,a,...,a) (for which the
dag has the same number of edges) with 2" + 1 many a-
leaves we apply a grammar compressor to the string a-- - aa
with 2"-many a’s. The string compressor may produce the
string grammar

S’ — AlAla
Ai — Ai+1Ai+1 for 1 S 7 S n—3
Anfz — aa

of size 2n — 1 (actually, RePair would produce such a gram-
mar). Our final 1-SLT grammar has the start production

S = f(A1(Ai(a)), D)

and hence in total the size 2n + 2. Hence we obtain a 1-SLT
grammar for the fcns encoding of f(a, a,. .., a) of size O(n).

5. SUBTREE EQUALITY CHECK

In the previous sections we have discussed five different
formalisms for the compact representation of unranked trees:
(1) dag, (2) binary dag, (3) hybrid dag, (4) combination
of dag and SL grammar-based string compression as de-
scribed in the previous section (we refer to this represen-
tation as SL-grammar compressed dag below), and (5) SLT
grammars (e.g. produced by BPLEX or TreeRepair). As
mentioned in Section 3.2, tree automata can be evaluated
in polynomial time for 1-SLT grammars, hence the same
holds for the above five formalisms (since the can be trans-
lated to 1-SLTs). In this section we consider another impor-
tant processing primitive: subtree equality check. Consider
a program which realizes two independent node traversals
of an unranked tree, using one of (1)—(5) as memory rep-
resentation. At a given moment we wish to check if the
subtrees at the two nodes of the traversals coincide. How
expensive is this check? As it turns out, the formalisms be-
have quite differently for this task. The dags (1)—(3) as well
as SL-grammar compressed days (4) allow efficient equality
check. Essentially, for an appropriate representation of the
two nodes, this test can be performed in constant time. This
is because we merely need to check whether subtrees are gen-
erated by the same (tree) nonterminal. For SLT grammars
such a check is much more expensive. Note that we cannot
unfold the subtrees and check node by node, as this can take
exponential time. For SLT grammars a polynomial time al-
gorithm is known, based on Plandowski’s result [22]. A new,
fine difference between bdags (2) and hdags (3) on one hand
and (1), (4) and (5) on the other hand is that we can also
check equality of sibling sequences in constant time, using
the same argument as above, but now for sequence nonter-
minals. This is not possible (without other additional data
structures) for the other formalisms.

77

In what follows we identify a pre-order number p with the
node in t that it represents, and simply speak of “the node p”.
Given an unranked tree ¢ and two numbers 1 < p,q < #n(t)
we denote by SubtrEQ,(p, ¢) the problem that returns true
if the subtrees rooted at nodes p and ¢ of ¢ are equal, and
returns false otherwise.

THEOREM 4. Let t be an unranked tree with N mnodes.
Given g = dag(t) or an SL-grammar compressed dag g (this
includes the hdag) or g = bdag(t), we can, after O(|g|) time
preprocessing, answer SubtrEQ,(p,q) for any 1 < p,q < N
wn time O(log N).

PROOF. First, consider ¢ = dag(t). Let z1,...,zn be
an enumeration of the nodes of ¢ in preorder. Let y, be
the unique node of g such that evaly(yp) is the subtree of
t rooted at node x,. Then it suffices to show that node y,
can be computed from p in time O(log N) (after O(|g|) time
preprocessing). For this, we use techniques from [3]. Let
g = (V,v,)). We obtain an SL string grammar G’ for the
preorder traversal of ¢ by taking V as the set of nontermi-
nals and taking the rule v — fv; - - - v, for the node v, where
v(v) = w1 - vn and A(v) = f. The nodes of ¢ correspond to
the leaves of the derivation tree T; of G’. Note that the dag
node y, is simply the label of the penultimate node on the
path from the root of T to the p-th leaf (from the left to
right) of T;. This label can be computed in time O(log N)
after O(|g|) time preprocessing using the techniques from [3]
(for this, G’ has to be transformed into a grammar where
all right-hand sides have length 2). In [3], a compact repre-
sentation of the path from the root to the p-th leaf of the
derivation tree is computed. This compact representation
consists of the sequence of at most log N many light edges
on the path, where “light” refers to the heavy path decom-
position of the derivation tree. From this information, the
label of the penultimate node on the path can be computed
in constant time.

For a string-compressed dag G essentially the same pro-
cedure as for the dag applies. The only difference is that the
sequence v; - - - U, Of children of the dag-node v is represented
by an SL string grammar. But producing an SL string gram-
mar for the preorder traversal of ¢ is again straightforward.

Finally, for g = bdag(t) = (V,~,\) we can proceed simi-
larly. Again we easily obtain an SL string grammar for the
preorder traversal of t. The nodes of the grammar are again
the (non-O labeled) nodes of g and for every v € V with
A(w) = f # O and v(v) = v1v2 we introduce the production
v — fvivh, where v] = € if A(v;) = O and v; = v; otherwise.
For a given preorder number 1 < p < N we can compute in
time O(log N) (as for the dag) the label y, € V of the penul-
timate node on the path from the root of the derivation tree
to the p-th leaf. But in contrast to the dag, SubtrEQ,(p, q) is
not equivalent to y, = y,4. Instead, SubtrEQ,(p, ¢) is equiv-
alent to the following conditions: (i) A(yp) = A(yq) and (ii)
either y, and y, do not have left children, or there left chil-
dren coincide. Since these checks only require constant time,
we obtain the desired time complexity. []

We observe that for (5), i.e., for general SLT grammars, a
result such as the one of Theorem 4 is not known. To our
knowledge, the fastest known way of checking SubtrEQ, (p, q)
for a given SLT grammar G for ¢t works as follows: From G
we can again easily build an SL string grammar G’ for the
preorder traversal of ¢, see, e.g. [5, 18]. Assume that the

File Edges mD aC mC dag bdag rbdag hdag rhdag DS TR
1998statistics 28305 5 224 50 1377 2403 2360 1292 1243 561 501
catalog-01 225193 7 31 2500 8554 6990 10303 4555 6421 4372 3965
catalog-02 2240230 7 3.1 25000 32394 52392 56341 27457 29603 27242 26746
dblp 3332129 5 10.1 328858 454087 677389 681744 358603 362571 149964 156412
dictionary-01 277071 7T 44 733 58391 77554 75247 47418 46930 32139 22375
dictionary-02 2731763 7 4.4 7333 545286 681130 653982 414356 409335 267944 167927
EnWikiNew 404651 4 39 34974 35075 70038 70016 35074 35055 9249 9632
EnWikiQuote 262954 4 3.7 23815 23904 47710 47690 23903 23888 6328 6608
EnWikiVersity 495838 4 3.8 43593 43693 87276 87255 43691 43676 7055 7455
EnWikTionary 8385133 4 3.8 726091 726221 1452298 1452270 726219 726195 81781 84107
EXI-Array 226521 8 2.3 32448 95584 128009 128011 95563 95563 905 1000
EXI-factbook 55452 4 6.8 265 4477 5081 2928 3847 2355 1808 1392
EXI-Invoice 15074 6 3.7 1002 1073 2071 2068 1072 1069 96 108
EXI-Telecomp 177633 6 3.6 9865 9933 19808 19807 9933 9932 110 140
EXI-weblog 93434 2 11.0 8494 8504 16997 16997 8504 8504 44 58
JSTgene.chrl 216400 6 4.8 6852 9176 14606 14114 7901 7271 3943 4208
JSTsnp.chrl 655945 7 4.6 18189 23520 40663 37810 22684 19532 9809 10327
medline 2866079 6 2.9 30000 653604 740630 381295 466108 257138 177638 123817
NCBIgene.chrl 360349 6 4.8 3444 16038 14356 10816 11466 7148 6283 5166
NCBIsnp.chrl 3642224 3 9.0 404692 404704 809394 809394 404704 404704 61 83
sprot39.dat 10903567 5 4.8 86593 1751929 1437445 1579305 1000376 908761 335756 262964
SwissProt 2977030 4 6.7 50000 1592101 1453608 800706 1304321 682276 278915 247511
treebank 2447726 36 2.3 2596 1315644 1454520 1244853 1250741 1131208 1121566 528372

Table 1: The XML documents in Corpus I, their characteristics, and their compressed sizes.

subtree of ¢ rooted in p (resp., ¢) consists of m (resp., n)
nodes. Then we have to check whether the substring of
eval(G’) from position p to position p +m — 1 is equal to
the substring from position g to position ¢ +n — 1. Using
Plandowski’s result [22], this can be checked in time poly-
nomial in the size of G’ and hence in time polynomial in
the size of the SLT grammar G. Note that more efficient
alternatives than Plandowski’s algorithm exist, see, e.g. [13]
for a survey, but all of them require at least quadratic time
in the size of the SL grammar.

In the context of XML document trees, it is also inter-
esting to check equivalence of two sibling sequences. Given
an unranked tree t and two numbers 1 < p,q < #n(t) we
denote by SibSeqEQ, (p, ¢) the problem that returns true if
the sibling sequences at nodes p and ¢ of ¢ are equal, and
returns false otherwise. For the binary and hybrid dag this
problem can be solved again very efficiently:

THEOREM 5. Let t be an unranked tree with N mnodes.
Given g = bdag(t) or g = hdag(t) we can, after O(|g|) time
preprocessing, answer SibSeqEQ,(p,q) for any 1 < p,q < N
in time O(log N).

PRrOOF. The proof is similar to the one of Theorem 4.
For the bdag, we can use exactly the same algorithm that
was used for the dag in the proof of Theorem 4. For the
hdag, we compute again an SL string grammar for the pre-
order traversal of ¢; the nonterminals of this grammar are
the nodes of the hdag. Using [3] we compute the path from
the root of the derivation tree to the p-th (resp.g-th) leaf.
For x € {p,q} let A, — a, and By — B, be the last two
rules that were applied on the path from the root to the z-th
leaf, where A, appears in ;. Then the sibling sequences for
p and ¢ are the same if and only if (i) A, = A4 (this means
that the subtrees rooted in p and ¢ are the same), and (ii)
either also B, = B4 or A, is the last symbol in 3, as well as

78

in B4. Once the two paths are computed this can be easily
checked in constant time. []

For dag(t) it seems to be more expensive to answer a query
SibSeqEQ, (p, q). After locating p and ¢ in the dag, we need
to compare all right siblings. In the worst case, this takes
time O(|dag(t)]). For an SL-grammar compressed dag, the
best solution we are aware of uses again an equality check
for SL-grammar compressed strings.

6. EXPERIMENTS

In this section we empirically compare the sizes of differ-
ent dags of unranked trees, namely dag, bdag, rbdag, hdag,
and rhdag. We also include a comparison with SL-grammar
compressed dags with RePair [11] as the string compressor,
as explained in Section 4, and with TreeRepair [15]. We are
interested in the tree structure only, hence we did not com-
pare with XML file compressors like Xmill [12] or XQueC [1].

6.1 Corpora

We use three corpora of XML files for our tests. For each
XML document we consider the unranked tree of its element
nodes; we ignore all other nodes such as texts, attributes,
etc. One corpus (Corpus I') consists of XML documents that
have been collected from the web, and which have often been
used in the context of XML compression research, e.g., in [4,
5, 15]. Each of these files is listed in Table 1 together with
the following characteristics: number of edges, maximum
depth (mD), average number of children of a node (aC), and
maximum number of children of a node (mC). Precise ref-
erences to the origin of these files can be found in [15]. The
second corpus (Corpus II) consists of all well-formed XML
document trees with more than 10000 edges and a depth of
at least four that were in the University of Amsterdam XML

Corpus Edges mD aC mC
I 1.9-10° 6.6 57 8-10*
I 79465 7.9 6.0 2925
111 1531 18 1.5 13.2

Table 2: Document characteristics, average values.

Corpus Parse dag hdag DS TR
I 35 43 46 48 175
II 85 105 120 117 310
II1 6.9 8.7 9.2 10.0 14.8

Table 3: Cumulative Running times (in seconds).

Web Collection®. We decided on fixing a minimum size be-
cause there is no necessity to compress documents of very
small size, and we chose a minimum depth because our sub-
ject is tree compression rather than list compression. Note
that out of the over 180,000 documents of the collection,
only 1100 fit our criteria and are part of Corpus II (more
than 27.000 were ill-formed and more than 140.000 had less
than 10.000 edges). The documents in this corpus are some-
what smaller than those in Corpus 1, but otherwise have
similar characteristics (such as maximal depth and average
number of children) as can be seen in Table 2. The third cor-
pus (Corpus III) consists of term rewriting systems®. These
are stored in XML files, but, are rather atypical XML doc-
uments, because their tree structures are trees with small
rank, i.e., there are no long sibling sequences. This can be
seen in Table 2, which shows that the average number of
children is only 1.5 for these files (on average).

6.2 Experimental setup

For the dag, bdag, rbdag, and hdag we built our own im-
plementation. It is written in C4++ and uses the Libxml
XML parser. It should be mentioned that these are only
rough prototypes and that our code is not optimized at all.
The running times listed in Table 3 should be understood
with this in mind. For the RePair-compressed dag we use
Gonzalo Navarro’s implementation of RePair*. This is called
“DS” in our tables. For TreeRePair, called “TR” in the ta-
bles, we use Roy Mennicke’s implementation® and run with
max rank=1, which produces 1-STL grammars. Our test
machine features an Intel Core i5 with 2.5Ghz and 4GB of
RAM. Our dag implementations are done using g-++ version
4.6.3 (with O3-switch) and Libxml 2.6 for XML parsing.

6.3 Comparison

Consider first Corpus 1 and the numbers shown in Table 1.
The most interesting file, concerning the effectiveness of the
hybrid dag and of the reverse binary encoding, is certainly
the medline file. Just like dblp, it contains bibliographic
data. In particular, it consists of MedlineCitation elements;
such elements have ten children, the last of which varies
greatly (it is a MeshHeadingList node with varying children
lists) and thus cannot be shared in the dag. This is perfect

http://data.politicalmashup.nl/xmlweb/
Shttp://www.termination-portal.org/wiki/TPDB
“http://http://www.dcc.uchile.cl/~gnavarro/software/
®http://code.google.com/p/treerepair/

79

for the reverse hybrid dag, which first eliminates repeated
subtrees, thus shrinking the number of edges to 653,604, and
then applies the last child/previous sibling encoding before
building a dag again. This last step shrinks the number of
edges to impressive 257,138. In contrast, the reverse binary
dag has a size of 381,295. Thus, for this document really the
combination of both ways of sharing, subtrees and reversed
sibling sequences, is essential. We note that in the context of
the first attempts to apply dag compression to XML [4] the
medline files were particularly pathological cases where dag
compression failed. We now have new explanations for this:
using reverse (last child/previous sibling) encoding slashes
the size of the dag by almost one half. And using hybrid
dags again brings an improvement of more than 30%. The
dblp document is similar, but does not make use of optional
elements at the end of long sibling lists. Thus, the reverse
dags are not smaller for dblp, but the hybrid dag is indeed
more than 20% smaller than the dag. The treebank doc-
ument, which is a ranked tree and does not contain long
lists, gives hardly any improvement of hybrid dag over dag,
but the reverse hybrid dag is somewhat smaller than the
dag (by 5%). For treebank, TreeRePair is unchallenged and
produces a grammar that is less than half the size of DS.

Next, consider the accumulated numbers for the three cor-
pora in Table 4. For Corpus I, the reverse hdag is smaller
than the dag by around 38% while the hdag is only around
25% smaller than the dag. As noted in Section 3.3, the
somewhat surprising outcome that the reverse binary en-
coding enables better compression results from the custom
that in many XML-documents optional elements are listed
last. This means that there are more common sibling pre-
fixes than suffixes, hence the reverse schemes perform better.
When we transform hdags into SLT grammars (according to
Section 3.2), then we get a modest size increase of about 1-
2%. For the term rewriting systems of Corpus III, the hdag
improves about 10% over the dag. Represented as gram-
mars, however, this improvement disappears and in fact we
obtain an accumulated size that is slightly larger than the
dag. Note that for this corpus, also TreeRePair (TR) is not
much smaller than the dag. Compared to the dag, TreeRe-
Pair shares tree patterns (=connected subgraphs). Hence,
the trees in Corpus IIT do not contain many repeated tree
patterns which are not already shared by the dag. When we
compare DS with TR, then we see on corpora I and II that
TreeRePair grammars are on average around 34% smaller
than DS, while on Corpus I11 it is only 23% smaller. On very
flat files, such as the EXI documents in Table 1, DS is about
as good as TreeRePair. For combined dag and string com-
pression we also experimented with another grammar-based
string compressor: Sequitur [21], but found the combined
sizes to be larger than with RePair. Concerning running
times (see Table 3) note that the dag-variants stay close to
the parsing time, while TreeRePair needs considerably more
time. Hence, dags should be used when light-weight com-
pression is preferred.

7. CONCLUSION AND FUTURE WORK

We compare the sizes of five different formalisms for com-
pactly representing unranked trees: (1) dag, (2) binary dag,
(3) hybrid dag, (4) combination of dag and SL grammar-
based string compression, and (5) SLT grammars (e.g. pro-
duced by BPLEX or TreeRepair). For the comparison of
(1)—(3) we prove precise bounds: (i) the size of the binary

Corpus Input dag bdag rbdag hdag G(hdag) rhdag G(rhdag) DS TR
1 43021 7815 9292 8185 6270 6323 5220 5285 2523 1671
11 90036 13510 15950 14671 10884 11109 9806 10039 5162 3957
111 2095 354 391 390 319 362 320 364 324 310

Table 4: Accumulated sizes (in thousand edges). G(X) stands for the grammar size of X.

dag of a tree is bounded by twice the size of the hybrid dag
of the tree and (ii) the size of the unranked dag of a tree is
bounded by the square of the size of the hybrid dag of the
tree. As a corollary we obtain that the size of the dag is at
least of the size of the binary dag, and at most the square of
the size of the binary dag. We also prove that for (1)—(4),
checking equality of the subtrees rooted at two given nodes
of these structures, can be carried out in O(log N) time,
where N is the number of nodes of the tree. One advantage
of binary and hybrid dags, is that they also support the ef-
ficient checking of equality of (ending) sibling sequences in
O(log N) time.

Our experiments over two large XML corpora and one cor-
pus consisting of term rewriting systems show that dags and
binary dags are the quickest to construct. Out of the dags
(1)—(3), the reverse hdag (which uses a last child/previous
sibling encoding) gives the smallest results. On our XML
corpora, using the reverse binary encoding instead of the
standard first child/next sibling encoding gives a compres-
sion improvement of more than 20%. As a practical yard-
stick we observe: For applications where sibling sequence
check is important, or where the uniqueness of the com-
pressed structures is important, the hybrid dag is a good
choice. If strong compression is paramount, then structures
(4) and (5) are appropriate. The advantage of (4) over (5) is
its support of efficient subtree equality test. In future work
we would like to apply our compression within other recent
compression schemes in databases, such as for instance fac-
torized databases [2].

Acknowledgments

The first and third author were supported by the DFG grant
LO 748/8. The second author was supported by the DFG
grant INST 268/239 and by the Engineering and Physi-
cal Sciences Research Council project "Enforcement of Con-
straints on XML streams” (EPSRC EP/G004021/1).

8. REFERENCES

[1] A. Arion, A. Bonifati, I. Manolescu, and A. Pugliese.
XQueC: A query-conscious compressed XML
database. ACM Trans. Internet Techn., 7(2), 2007.

N. Bakibayev, D. Olteanu, and J. Zavodny. Fdb: A
query engine for factorised relational databases.
PVLDB, 5(11):1232-1243, 2012.

P. Bille, G. M. Landau, R. Raman, K. Sadakane, S. R.
Satti, and O. Weimann. Random access to
grammar-compressed strings. In SODA, pages
373-389, 2011.

P. Buneman, M. Grohe, and C. Koch. Path queries on
compressed XML. In VLDB, pages 141-152, 2003.

G. Busatto, M. Lohrey, and S. Maneth. Efficient
memory representation of XML document trees. Inf.
Syst., 33(4-5):456-474, 2008.

2]

80

[6] P. J. Downey, R. Sethi, and R. E. Tarjan. Variations
on the common subexpression problem. J. ACM,
27(4):758-771, 1980.

A. P. Ershov. On programming of arithmetic
operations. Commun. ACM, 1(8):3-9, 1958.

M. Frick, M. Grohe, and C. Koch. Query evaluation
on compressed trees (extended abstract). In LICS,
pages 188-197, 2003.

D. E. Knuth. The Art of Computer Programming, Vol.
I: Fundamental Algorithms. Addison-Wesley, 1968.

C. Koch. Efficient processing of expressive
node-selecting queries on XML data in secondary
storage: A tree automata-based approach. In VLDB,
pages 249-260, 2003.

N. J. Larsson and A. Moffat. Offline dictionary-based
compression. In DCC| pages 296-305, 1999.

H. Liefke and D. Suciu. XMILL: An efficient
compressor for XML data. In SIGMOD Conference,
pages 153-164, 2000.

M. Lohrey. Algorithmics on SLP-compressed strings: a
survey. Groups Complexity Cryptology, 4:241-299,
2013.

M. Lohrey and S. Maneth. The complexity of tree
automata and XPath on grammar-compressed trees.
Theor. Comput. Sci., 363(2):196-210, 2006.

M. Lohrey, S. Maneth, and R. Mennicke. Tree
structure compression with RePair. In DCC, pages
353-362, 2011.

M. Lohrey, S. Maneth, and M. Schmidt-Schauf.
Parameter reduction and automata evaluation for
grammar-compressed trees. J. Comput. Syst. Sci.,
78(5):1651-1669, 2012.

S. Maneth and G. Busatto. Tree transducers and tree
compressions. In FoSSaCS, pages 363-377, 2004.

S. Maneth and T. Sebastian. Fast and tiny structural
self-indexes for XML. CoRR, abs/1012.5696, 2010.

C. Meinel and T. Theobald. Algorithms and Data
Structures in VLSI Design: OBDD - Foundations and
Applications. Springer, 1998.

F. Neven. Automata theory for XML researchers.
SIGMOD Record, 31(3):39-46, 2002.

C. G. Nevill-Manning and I. H. Witten. Identifying
hierarchical strcture in sequences: A linear-time
algorithm. J. Artif. Intell. Res. (JAIR), 7:67-82, 1997.
W. Plandowski. Testing equivalence of morphisms on
context-free languages. In ESA, pages 460—470, 1994.
T. Schwentick. Automata for XML - a survey. J.
Comput. Syst. Sci., 73(3):289-315, 2007.

D. Suciu. Typechecking for semistructured data. In
DBPL, pages 1-20, 2001.

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

(21]

(22]
(23]

(24]

