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ABSTRACT
A common goal of privacy research is to release synthetic
data that satisfies a formal privacy guarantee and can be
used by an analyst in place of the original data. To achieve
reasonable accuracy, a synthetic data set must be tuned to
support a specified set of queries accurately, sacrificing fi-
delity for other queries.

This work considers methods for producing synthetic data
under differential privacy and investigates what makes a set
of queries “easy” or “hard” to answer. We consider answering
sets of linear counting queries using the matrix mechanism
[18], a recent differentially-private mechanism that can re-
duce error by adding complex correlated noise adapted to a
specified workload.

Our main result is a novel lower bound on the minimum
total error required to simultaneously release answers to a
set of workload queries. The bound reveals that the hardness
of a query workload is related to the spectral properties of
the workload when it is represented in matrix form. The
bound is most informative for (ε, δ)-differential privacy but
also applies to ε-differential privacy.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Statistical databases; F.2
[Analysis of Algorithms and Problem Complexity]:
General

General Terms
Algorithms, Theory

Keywords
Differential Privacy, Linear Query, Matrix Mechanism, Spec-
tral Decomposition, Lower Bound

1. INTRODUCTION
Differential privacy [9] is a rigorous privacy standard of-

fering participants in a data set the appealing guarantee

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
EDBT/ICDT’13, March 18-22, 2013, Genoa, Italy.
Copyright 2013 ACM 978-1-4503-1598-2/13/03 ...$15.00.

that released query answers will be nearly indistinguishable
whether or not their data is included. The earliest methods
for achieving differential privacy were interactive: an ana-
lyst submits a query to the server and receives a noisy query
answer. Further queries may be submitted, but increasing
noise will be added and the server may eventually refuse to
answer subsequent queries.

To avoid some of the challenges of the interactive model,
differential privacy has often been adapted to a non-inter-
active setting where a common goal has been to release a
synthetic data set that the analyst can use in place of the
original data. There are a number of appealing benefits to
releasing a private synthetic database: the analyst need not
carefully divide their task into individual queries and can use
familiar data processing techniques on the synthetic data; the
privacy budget will not be exhausted before the queries of
interest have been answered; and data processing can be car-
ried out using the resources of the analyst without revealing
tasks to the data owner.

There are limits, however, to private synthetic data gen-
eration. When a synthetic dataset is released, the server no
longer controls how many questions the analyst computes
from the data. Dinur and Nissim showed that accurately an-
swering “too many” queries of a certain type is incompatible
with any reasonable notion of privacy, allowing reconstruc-
tion of the database with high probability [7].

This tempers the hopes of private synthetic data to some
degree, suggesting that if a synthetic dataset is to be private,
then it can be accurate only for a specific class of queries and
may need to sacrifice accuracy for other queries. A number of
methods have been proposed for releasing accurate synthetic
data for specific sets of queries [6, 18, 16, 27, 28, 4, 1, 25, 30].
These results show that it is still possible to achieve many of
the benefits of synthetic data if the released data is targeted
to a workload of queries that are of interest to the analyst.

In general, efficient differentially private algorithms for an-
swering sets of queries with minimum error are not known.
The goal of our work is to develop tools that can explain what
we informally term the error complexity of a given workload,
which should measure, for fixed privacy parameters, the ac-
curacy with which we can simultaneously answer all queries
in the workload.

Such tools can help us to answer a number of natural ques-
tions that arise in the context of private synthetic data gen-
eration. Why is it possible to answer one set of queries more
accurately than another? What properties of the queries,
or of their relationship to one another, influence this? Can
lower error be achieved by specializing the query set more
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closely to the task at hand? Does the combination of mul-
tiple users’ workloads severely impact the accuracy possible
for the combined workload?

Naive approaches to understanding the “hardness” of a
query workload are unsatisfying. For example, one may nat-
urally expect that the greater the number of queries in the
workload, the larger the error in simultaneously answering
them. Yet the number of queries in a workload is usually an
inadequate measure of its hardness. Query workload sensi-
tivity [9] is another natural approach. Sensitivity measures
the maximum change in all query answers due to an inser-
tion or deletion of a single database record. Basic differen-
tially private mechanisms (e.g. the Laplace mechanism) add
noise to each query in proportion to sensitivity, and in such
cases sensitivity does in fact determine error rates. But bet-
ter mechanisms can reduce error when answering multiple
queries (with no cost to privacy), so that sensitivity alone
fails to be a reliable measure.

In this paper we seek a better understanding of workload
error complexity by reasoning formally about the minimum
error achievable for a workload, regardless of the underlying
database. We pursue this goal in the context of a class differ-
entially private algorithms: namely those that are instances
of the matrix mechanism (so named because workloads are
represented as matrices and analyzed algebraically). The
matrix mechanism can be used to answer sets of linear count-
ing queries, a general class of queries which includes all pred-
icate counting queries, histogram queries, marginals, data
cubes, and others.

The matrix mechanism [18] exploits the relationships be-
tween queries in the workload to construct a complex, corre-
lated noise distribution that offers lower error than standard
mechanisms. It encompasses a range of possible approaches
to differentially-private query answering because it must be
instantiated with a set of queries, called the“strategy”, which
it uses to derive accurate answers to the workload queries.
This makes the mechanism quite general, since any strategy
can be selected. It includes as a special case a number of
recently-proposed techniques for answering various subsets
of the class of linear queries including range-count queries,
sets of low order marginals, sets of data cubes [1, 27, 16, 6,
19, 30, 29]. Each of the above techniques can be seen as se-
lecting strategies (either manually or adaptively) that work
well for given workloads. The lower bound presented in this
work provides a theoretical method of evaluating the qual-
ity of the approaches since it provides a lower bound on the
error attained by the best possible strategy.

We use the optimal error achievable under the matrix
mechanism as a proxy for workload error complexity. It is
computationally infeasible to compute the optimal strategy
for an arbitrary workload, making the assessment of work-
load complexity a challenge. Nevertheless, we are able to
resolve this challenge through the following contributions:

• Our main result is a novel lower bound on the minimum
total error required to simultaneously release answers
to a set of workload queries. The bound reveals that
the “hardness” of a query workload is related to the
eigenvalues of the workload when it is represented in
matrix form.

• Under (ε, δ)-differential privacy, we characterize two
important classes of workloads for which our lower
bound is tight. As a consequence, it is possible to di-

rectly construct a minimum error mechanism for work-
loads in these classes. We also analyze the cases for
which our bound is not tight, including when the bound
is adapted to ε-differential privacy.

• We compare our lower bound to corresponding bounds
on the achieved error of recently-proposed mechanisms
[26, 14, 12, 11].

Note that our lower bound on error is a conditional bound:
it holds for the class of mechanisms defined by the matrix
mechanism, but not necessarily for all differentially private
mechanisms. Nevertheless, we believe this conditional bound
serves as a widely useful tool. First, it helps to resolve a
number of open questions about the quality of previously-
proposed mechanisms that are instances of the matrix mech-
anism [18, 27, 1, 6, 19, 30]. Second, emerging techniques
that can outperform this bound tend to exploit special prop-
erties of the input database. Therefore, the achievable error
of those mechanisms no longer reflects only properties of the
analysis task (as embodied by the workload) but instead re-
flects the interaction of the task with the database. Third,
the data-independence of the matrix mechanism makes de-
ployment particularly efficient since the noise distribution is
fixed for all input databases once a strategy has been se-
lected. Our bound therefore helps to clarify the utility pos-
sible using data-independent mechanisms and reveals when
other methods may be required.

The organization of the paper is as follows. Section 2 re-
views definitions and Section 3 presents the matrix mech-
anism and properties of workload error. In Section 4 we
present the lower bound and its proof. Section 5 evaluates
the tightness and looseness of the bound. We compare our
bound with error rates of data-dependent mechanisms in Sec-
tion 6. To aid intuition, we include throughout the paper a
series of examples in which we compute our lower bound on
workloads of interest and report concrete error rates. Due to
lack of space, most of proofs are omitted and can be found
in the full version of this paper [20].

2. DEFINITIONS & BACKGROUND
In this section we describe our representation of query

workloads as matrices, formally define differential privacy,
and review linear algebra notation.

2.1 Data model & linear queries
The queries considered in this paper are all counting queries

over a single relation. Let the database I be an instance of a
single-relation schemaR(A), with attributes A = {A1, A2, . . . ,
Am}. The crossproduct of the attribute domains, written
dom(A) = dom(A1)× · · · × dom(Am), is the set of all possi-
ble tuples that may occur in I.

In order to express our queries, we encode the instance I as
a vector x consisting of cell counts, each counting the number
of tuples in I satisfying a distinct logical cell condition.

Definition 2.1 (Cell Conditions). A cell condition
is a Boolean formula which evaluates to True or False on
any tuple in dom(A). A collection of cell conditions Φ =
φ1, φ2 . . . φn is an ordered list of pairwise unsatisfiable cell
conditions: each tuple in dom(A) will satisfy at most one φi.

The data vector is formed from cell counts corresponding
to a collection of cell conditions.
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Definition 2.2 (Data vector). Given instance I and
a collection of cell conditions Φ = φ1, φ2 . . . φn, the data vec-
tor x is the length-n column vector consisting of the non-
negative integral counts xi = |{t ∈ I | φi(t) is True}|.

We may choose to fully represent instance I by defining the
vector x with one cell for every element of dom(A). Then x
is a bit vector of size |dom(A)| with nonzero counts for each
tuple present in I. (This is also a vector representation of the
full contingency table built from I.) Alternatively, it may be
sufficient to partially represent I by the cell counts in x, for
example by focusing on a subset of the attributes of A that
are relevant to a particular workload of interest. Because
workloads are finite, it is always sufficient to consider a finite
list of cell conditions, even if attribute domains are infinite.

Example 2.3. Consider the relational schema R = (name,
gradyear, gender, gpa) describing students and suppose we
wish to form queries over gradyear and gender only, where
dom(gender) = {M,F} and dom(gradyear) = {2011, 2012,
2013, 2014}. Then we can define 8 cell conditions which re-
sult from all combinations of gradyear and gender. These
are enumerated in Table 1(a).

Given a data vector x, queries are expressed as linear com-
binations of the cell counts in x.

Definition 2.4 (Linear counting query). A linear
counting query is a length-n row vector q = [q1 . . . qn] with
each qi ∈ R. The answer to a linear counting query q on x
is the vector product qx = q1x1 + · · ·+ qnxn.

If q consists exclusively of coefficients in {0, 1}, then q is
called a predicate counting query. In this case, q counts the
number of tuples in I that satisfy the union of the cell con-
ditions corresponding to the nonzero coefficients in q.

2.2 Query workloads
A workload is a finite set of linear queries. A workload is

represented as a matrix, each row of which is a single linear
counting query.

Definition 2.5 (Query matrix). A query matrix is a
collection of m unique linear counting queries, arranged by
rows to form an m× n matrix.

Note that cell condition φi defines the meaning of the ith

position of x, and accordingly, it determines the meaning of
the ith column of W. Unless otherwise noted, we assume all
workloads are defined over the same fixed set of cell condi-
tions.

Example 2.6. The matrix in Table 1(b) shows a work-
load of five queries. The first four are predicate queries. Ta-
ble 1(c) describes the meaning of the queries w.r.t. the cell
conditions in Table 1(a).

We assume that workloads consist of unique queries, with-
out duplicates. If workload W is an m × n query matrix,
the answers for W are represented as a length m column
vector of numerical query results, which can be computed by
multiplying matrix W by the data vector x.

Note that it is critical that the analyst include in the work-
load all queries of interest. In the absence of noise intro-
duced by the privacy mechanism, it might be reasonable for

the analyst to request answers to a small set of counting
queries, from which other queries of interest could be com-
puted. (E.g., it would be sufficient to recover x itself by
choosing the workload defined by the identity matrix.) But
because the analyst will receive private, noisy estimates to
the workload queries, the error of queries computed from
their combination is often increased. Our privacy mecha-
nism is designed to optimize error across the entire set of
desired queries, so all queries should be included.

As a concrete example, in Table 1(b), q4 can be computed
as (q2 − q3) but is nevertheless included in the workload.
This reflects the fact that we wish to simultaneously answer
all included queries with minimum aggregate error, treating
each equally. It is also possible to scale individual rows by
a positive scalar value, which has the effect of reducing the
error of that query.

The cell conditions are used to define the semantics of
the queries in a workload, while the workload properties we
study are primarily determined by features of their matrix
representation. This can lead to a few representational in-
consistencies we would like to avoid. First, while a workload
W is meant to represent a set of queries, as a matrix it has
a specified order of its rows. Further, for any workload W
defined by cell conditions Φ = φ1 . . . φn, consider any permu-
tation Φ′ of Φ. Then there is a different matrix W′, defined
on Φ′ and constructed from W by applying the permutation
to its columns, that is semantically equivalent to W. We
will verify later that our analysis of workloads is represen-
tation independent for both rows and columns. We use the
following definition:

Definition 2.7 (Representation independence). A
numerical measure ρ on a workload matrix is row (resp. col-
umn) representation independent if, given a workload matrix
W, and any workload W′ which results from permuting the
rows (columns) of W, ρ(W) = ρ(W′).

A related issue arises in the specification of the cell con-
ditions. If a workload W is defined by cell conditions in Φ,
then we can always consider extending Φ by adding addi-
tional cell conditions not relevant to the queries in W. We
can then define a semantically equivalent workload W′ on Φ′

which will consist of columns of zeroes for each of the new
cell conditions. To address this issue in later sections we rely
on the following definition:

Definition 2.8 (Column Projection). Given an m×
n workload W defined by cell conditions Φ = φ1 . . . φn, and
an ordered subset Ψ ⊆ Φ consisting of p selected cell condi-
tions, the column projection of W w.r.t Ψ is a new m × p
workload consisting only of the columns of W included in Ψ.

In the rest of the paper, µ denotes a subset of cell conditions,
|µ| denotes its cardinality and Un to denote all possible sub-
sets of n cell conditions. µ(W) is the column projection of
W w.r.t. µ.

Example 2.9. The column projection of the workload in
Table 1(b) w.r.t. cell conditions {φ1, φ3, φ5, φ7}, which con-
sists of queries only over Male students, is the following:

1 1 1 1
1 1 0 0
0 0 0 0
1 1 0 0
0 0 1 -1
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Table 1: For schema R = (name, gradyear, gender, gpa), (a) shows 8 cell conditions on attributes gradyear and
gender. The database vector x (not shown) will accordingly consist of 8 counts; (b) shows a sample workload
matrix W consisting of five queries, each described in (c).

(a) Cell conditions Φ
φ1 : gradyear = 2011 ∧ gender = M
φ2 : gradyear = 2011 ∧ gender = F
φ3 : gradyear = 2012 ∧ gender = M
φ4 : gradyear = 2012 ∧ gender = F
φ5 : gradyear = 2013 ∧ gender = M
φ6 : gradyear = 2013 ∧ gender = F
φ7 : gradyear = 2014 ∧ gender = M
φ8 : gradyear = 2014 ∧ gender = F

(b) A query matrix W
1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
0 1 0 1 0 0 0 0
1 0 1 0 0 0 0 0
0 0 0 0 1 1 -1 -1


(c) Counting queries defined by rows of W

q1: all students;
q2: students with gradyear ∈ [2011, 2012];
q3: female students with gradyear ∈ [2011, 2012];
q4: male students with gradyear ∈ [2011, 2012];
q5: difference between 2013 grads and 2014 grads.

Common workloads. We introduce notation for two com-
mon workloads that contain all queries of a certain type.
AllRange(d) denotes the workload consisting of all range-
count queries over d cell conditions (typically derived from
a single ordered attribute Ai with |dom(Ai)| = d). There
are d

2
(d + 1) queries in workload AllRange(d). Over k or-

dered attributes with domain sizes d1 . . . dk, we similarly de-
fine the set of all k-dimensional range-count queries, denoted
AllRange(d1, . . . dk).

AllPredicate(d) is the much larger workload consisting
of all predicate counting queries over d cell conditions. There
are 2d queries in AllPredicate(d).

Example 2.10. The workload of queries counting the stu-
dents who have graduated in any interval of years drawn from
{2011, 2012, 2013, 2014} is denoted AllRange(4) and con-
sists of 10 one-dimensional range queries over the gradyear
attribute.

Example 2.11.The set of all two dimensional range-count
queries over gradyear and gender is written AllRange(4, 2),
where the possible “ranges” for gender are simply M , F , or
(M ∨ F ). This workload consists of 30 queries. The work-
load of all predicate queries over over gradyear and gender
is AllPredicate(8), consisting of all 256 predicate queries
over a domain of size 8.

2.3 Differential privacy & basic mechanisms
Standard ε-differential privacy [9] places a bound (con-

trolled by ε) on the difference in the probability of query
answers for any two neighboring databases. For database in-
stance I, we denote by nbrs(I) the set of databases formed
by adding or removing exactly one tuple from I. Approxi-
mate differential privacy [8, 22], is a relaxation in which the
ε bound on query answer probabilities may be violated with
small probability, controlled by δ.

Definition 2.12 (Differential Privacy).A random-
ized algorithm K is (ε, δ)-differentially private if for any in-
stance I, any I ′ ∈ nbrs(I), and any subset of outputs S ⊆
Range(K), the following holds:

Pr[K(I) ∈ S] ≤ exp(ε)× Pr[K(I ′) ∈ S] + δ

where the probability is taken over the randomness of the K.

When δ = 0, this definition describes standard ε-differential
privacy.

Both definitions can be satisfied by adding random noise
to query answers. The magnitude of the required noise is de-
termined by the sensitivity of a set of queries: the maximum
change in a vector of query answers over any two neighbor-
ing databases. However, the two privacy definitions differ

in the measurement of sensitivity and in their noise distri-
butions. Standard differential privacy can be achieved by
adding Laplace noise calibrated to the L1 sensitivity of the
queries [9]. Approximate differential privacy can be achieved
by adding Gaussian noise calibrated to the L2 sensitivity of
the queries [8, 22]. This small difference in the sensitivity
metric—from L1 to L2—has important consequences for the
theory underlying our analysis and, unless otherwise noted,
stated results apply only to approximate differential privacy.
Sec 4.3 contains a comparison of these two definitions as they
pertain to the matrix mechanism and the results of this pa-
per.

Since our query workloads are represented as matrices, we
express the sensitivity of a workload as a matrix norm. No-
tice that for neighboring databases I and I ′, |(I − I ′)∩ (I ′−
I)| = 1 and recall that all cell conditions are mutually unsat-
isfiable. It follows that the corresponding data vectors x and
x′ differ in exactly one component, by exactly one. We ex-
tend our notation and write x′ ∈ nbrs(x). The L2 sensitivity
of W is equal to the maximum L2 norm of the columns of
W. Below, cols(W) is the set of column vectors Wi of W.

Definition 2.13 (L2 Query matrix sensitivity).
The L2 sensitivity of a query matrix W is denoted ∆W and
defined as follows:

∆W
def
= max

x′∈nbrs(x)
||Wx−Wx′||2 = max

Wi∈cols(W)

||Wi||2

The classic differentially private mechanism adds indepen-
dent noise calibrated to the sensitivity of a query workload.
We use Normal(σ)m to denote a column vector consisting of
m independent samples drawn from a Gaussian distribution
with mean 0 and scale σ.

Proposition 2.14. (Gaussian mechanism [8, 22])Given
an m× n query matrix W, the randomized algorithm G that
outputs the following vector is (ε, δ)-differentially private:

G(W,x) = Wx + Normal(σ)m

where σ = ∆W

√
2 ln(2/δ)/ε

Recall that Wx is a vector of the true answers to each
query in W. The algorithm above adds independent Gaus-
sian noise (scaled by the sensitivity of W, ε, and δ) to each
query answer. Thus G(W,x) is a length-m column vector
containing a noisy answer for each linear query in W.

2.4 Linear algebra notation
Throughout the paper, we use the notation of linear al-

gebra and employ standard techniques of matrix analysis.
Recall that for a matrix A, AT is its transpose, A−1 is its
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inverse, and trace(A) is the sum of values on the main diago-
nal. The Frobenius norm of A is denoted ||A||F and defined
as the square root of the squared sum of all entries in A,
or, equivalently,

√
trace(ATA). We use diag(c1, . . . cn) to

indicate an n× n diagonal matrix with scalars ci on the di-
agonal. We use 0m×n to indicate a matrix of zeroes with m
rows and n columns. An orthogonal matrix Q is a square
matrix whose rows and columns are orthogonal unit vectors,
and for which QT = Q−1.

We will also rely on the notion of a positive semidefinite
matrix. A symmetric square matrix A is called positive
semidefinite if for any vector x, xTAx ≥ 0. If A is posi-
tive semidefinite, denoted A � 0, all its diagonal entries are
non-negative as well. In particular, for any matrix A, ATA
is a positive semidefinite matrix.

In addition, we use A+ to represent the Moore-Penrose
pseudoinverse of a matrix A, a generalization of the matrix
inverse defined as follows:

Definition 2.15. (Moore-Penrose Pseudoinverse [2])
Given a m×n matrix A, a matrix A+ is the Moore-Penrose
pseudoinverse of A if it satisfies each of the following:

AA+A = A, A+AA+ = A+,

(AA+)T = AA+, (A+A)T = A+A.

We include some important properties of the Moore-Penrose
pseudoinverse in the following theorem.

Theorem 2.16. ([2]) The Moore-Penrose pseudoinverse
satisfies the following properties:

1. Given any matrix A, there exists a unique matrix that
is the Moore-Penrose pseudoinverse of A.

2. Given a vector y, we have ||y−Ax||2 ≥ ||y−AA+y||2
for any vector x.

3. For any satisfiable linear system BA = W, WA+ is
a solution to the linear system and ||WA+||F ≤ ||B||F
for any solution B to the linear system.

Throughout the paper, we use the singular value decompo-
sition of a matrix, which is a classic tool of matrix analysis.
If W is an m × n matrix, the singular value decomposition
(SVD) of W is a factorization of the form W = QWΛWPT

W

such that QW is an m×m orthogonal matrix, ΛW is a m×n
diagonal matrix containing the singular values of W and PW

is an n × n orthogonal matrix. When m > n, the diagonal
matrix ΛW consists of an n × n diagonal submatrix com-
bined with 0(m−n)×n. In addition, we also consider the eigen-
value decomposition of matrix WTW and the square root
of WTW. The eigenvalue decomposition of WTW has the
form WTW = PWDWPT

W, where PW is the same matrix
as the singular value decomposition of W and D′W is an n×n
diagonal matrix such that DW = ΛT

WΛW. The square root
of WTW, denoted as

√
WTW, is a matrix W′ such that

(W′)2 = WTW, which can also be represented as the sin-
gular values and singular vectors of W: W′ = PWΛWPT

W.

3. THE (ε, δ)-MATRIX MECHANISM
In this section we define the class of algorithms that can be

constructed using the matrix mechanism, we define optimal
error of a workload with respect to this class, and we develop
notions of workload equivalence and containment consistent
with our error measures.

3.1 The extended matrix mechanism
The matrix mechanism [18] has a form similar to the Gaus-

sian mechanism in Prop. 2.14, but adds a more complex noise
vector. It uses a different set of queries (the strategy matrix
A) to construct this vector. The intuitive justification for
this mechanism is that it is equivalent to the following three-
step process: (1) the queries in the strategy are submitted to
the Gaussian mechanism; (2) an estimate x̂ for x is derived
by computing the x̂ that minimizes the squared sum of errors
(this step consists of standard linear regression and requires
that A be full rank to ensure a unique solution); (3) noisy
answers to the workload queries are then computed as Wx̂.

We present an extended version of the matrix mechanism
which relaxes the requirement that A be full rank. Instead
it is sufficient that all queries in W can be represented as
linear combinations of queries in A. Then estimating x̂ is
not necessary, and step (2) and (3) can be combined.

Proposition 3.1. (Extended (ε,δ)-Matrix Mechanism)
Given an m× n query matrix W, and a p× n strategy ma-
trix A such that WA+A = W, the following randomized
algorithm MA is (ε, δ)-differentially private:

MA(W,x) = Wx + WA+Normal(σ)m.

where σ = ∆A

√
2 ln(2/δ)/ε.

Here condition WA+A = W guarantees that the queries
in A can represent all queries in W. When A has full rank,

A+ = (ATA)
−1

AT , which coincides with the original defi-
nition [18].

Like the Gaussian mechanism, the matrix mechanism com-
putes the true answer vector Wx and adds noise to each com-
ponent. But a key difference is that the scale of the Gaussian
noise is calibrated to the sensitivity of the strategy matrix A,
not that of the workload. In addition, the noise added to the
list of query answers is no longer independent, because the
vector of independent Gaussian samples is transformed by
the matrix WA+.

The matrix mechanism can reduce error, particularly for
large or complex workloads, by avoiding redundancy in the
set of desired workload queries. Intuitively, some workloads
consist of queries that ask the same (or similar) questions of
the database multiple times, which incurs a significant cost
to the privacy budget under the Gaussian mechanism. By
choosing the right strategy matrix for a workload, it is pos-
sible to remove the redundancy from the queries submitted
to the privacy mechanism and derive more accurate answers
to the workload queries.

Fundamental to the performance of the matrix mechanism,
is the choice of the strategy matrix which instantiates it.
One naive approach is to minimize sensitivity. The full rank
strategy matrix with least sensitivity is the identity matrix, I,
which has sensitivity 1. With A = I, the matrix mechanism
privately computes the individual counts in x and then uses
them to estimate any desired workload query. At the other
extreme, the workload itself can be used as the strategy,
setting A = W. In this case, there is no benefit in sensitivity
over the Gaussian mechanism1.

For many workloads, neither of these basic strategies offer
optimal error. Recent research has shown that for specific
1Although there is no benefit in sensitivity when A = W,
the matrix mechanism still has lower error than the Gaussian
mechanism for some workloads by combining related query
answers into a more accurate consistent result.
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workloads, there exist strategies that can offer much better
error rates. For example, if W = AllRange(n), two strate-
gies were recently proposed. A hierarchical strategy [16] in-
cludes the total sum over the whole domain, the count of
each half of the domain, and so on, terminating with counts
of individual elements of the domain. The wavelet strat-
egy [27] consists of the matrix describing the Haar wavelet
transformation. Informally, both strategies achieve low error
because they each have low sensitivity, O(logn), and every
range query can be expressed as a linear combination of just
a few strategy queries.2 Although both of these strategy ma-
trices offer significant improvements in error for range query
workloads, neither is optimal. We will use our lower bound
to evaluate the quality of these proposed strategies in Sec
4. Other recently-proposed techniques can be seen as at-
tempts to compute approximately optimal strategy matrices
adapted to the input workload [1, 6, 19, 30, 29].

3.2 Measuring & minimizing error
We measure the error of individual query answers using

mean squared error. For a workload of queries, the error is
defined as the total of individual query errors.

Definition 3.2 (Query and Workload Error [18]).
Let ŵ be the estimate for query w under the matrix mecha-
nism using query strategy A. That is, ŵ =MA(w,x). The
mean squared error of the estimate for w using strategy A
is:

ErrorA(w)
def
= E[(wx− ŵ)2].

Given a workload W, the total mean squared error of an-
swering W using strategy A is: ErrorA(W) =∑

wi∈W ErrorA(wi).

The query answers returned by the matrix mechanism
are linear combinations of noisy strategy query answers to
which independent Gaussian noise has been added. Thus, as
the following proposition shows (extending the correspond-
ing proposition from [18]), we can directly compute the error
for any linear query w or workload of queries W:

Proposition 3.3 (Total Error). Given a workload
W, the total error of answering W using the extended (ε, δ)-
matrix mechanism with query strategy A is:

ErrorA(W) = P (ε, δ)∆2
A ||WA+||2F (1)

where P (ε, δ) = 2 log(2/δ)

ε2
.

We call a mechanism data-independent if its error for work-
load W is independent of the data vector x. Proposition 3.3
shows that the matrix mechanism is data-independent.

The optimal strategy for a workload W is defined to be
the one that minimizes total error (the same measure used
in [18]).

Definition 3.4 (Minimum Total Error [18]). Given
a workload W, the minimum total error is:

MinError(W) = min
A:WA+A=W

ErrorA(W). (2)

Our work investigates the error complexity of workloads as
it is represented by MinError(W). This reflects the hard-
ness of the workload assuming we use an algorithm that is an

2The approaches in [16, 27] were originally proposed in the
context of ε-differential privacy, but their behavior is similar
under (ε, δ)-differential privacy.

instance of the matrix mechanism and that a total squared
error measure is used. Understanding error for this class of
mechanisms is a first step towards more general lower bounds
and helps to assess the quality of a number of previously-
proposed algorithms included in this class [18, 27, 1, 6, 19,
30, 29].

The strategy matrix that minimizes total error can be
computed using a semi-definite program (SDP) [18]. How-
ever, finding the solutions of the program with standard SDP
solvers takes O(n8) time, where n is the number of cell con-
ditions, making it infeasible for realistic applications. Effi-
cient approximation algorithms for this problem have been
investigated recently [19, 30]. Yet, approximate—or even
exact—solutions to this problem do not provide much gen-
eral insight into the main goal of this paper: to understand
the properties of workloads that determine the magnitude of
MinError(W). The bound we will present in Sec. 4 is im-
portant because it closely approximates MinError(W), it
is easily computable, and it reveals the connection between
minimum error and spectral properties.

Nevertheless, our results do not preclude the existence of
different mechanisms capable of answering a workload W
with lower error. In particular, our error analysis does not
include data-dependent algorithms [26, 14, 24, 5]. The error
rates for these mechanisms no longer reflect properties of
the workload alone, but instead some combination of the
workload and properties of the input data, and call for a
substantially different analysis. In our case, x (i.e., the vector
of cell counts corresponding to the database) does not appear
in (1) above. This means that our minimum error strategy
depends on the workload alone, independent of a particular
database instance.

3.3 Equivalence & containment for workloads
Next we develop a notion of equivalence and containment

of workloads with respect to error. We will verify that the
error bounds presented in the next section satisfy these rela-
tionships in most cases.

The special form of the expression for total error in Prop.
3.3 means that there are many workloads that are equivalent
from the standpoint of error. For two workloads W1 and
W2, if WT

1 W1 = WT
2 W2, then any strategy A that can

represent the queries of W1 can also represent the queries of
W2, and vice versa. In addition, WT

1 W1 = WT
2 W2 implies

||W1A
+||2F = ||W2A

+||2F for any strategy A. We therefore
define the following notion of equivalence of two workloads:

Definition 3.5 (Workload Equivalence). An m1×
n1 workload W1 and an m2×n workload W2 are equivalent,
denoted W1 ≡W2, if WT

1 W1 = WT
2 W2.

The following conditions on pairs of workloads imply that
they have equivalent minimum error:

Proposition 3.6 (Equivalence Conditions). Given
an m1×n1 workload W1 and an m2×n2 workload W2, each
of the following conditions implies that MinError(W1) =
MinError(W2):

(i) W1 ≡W2

(ii) W1 = QW2 for some orthogonal matrix Q.

(iii) W2 results from permuting the rows of W1.

(iv) W2 results from permuting the columns of W1.
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(v) W2 results from the column projection of W1 on all of
its nonzero columns.

It follows from this proposition that MinError is row and
column representation independent, and behaves well under
the projection of extraneous columns.

Defining a notion of containment for workload matrices
is more complex than simple inclusion of rows. Even if the
rows of W1 are not present in W2, it could be that W1 is
in fact contained in W2 when expressed using an alternate
basis. The following definition considers this possibility:

Definition 3.7 (Workload Containment). An m1×
n workload W1 is contained in an m2×n workload W2, de-
noted W1 ⊆ W2, if there exists a W′

2 ≡ W2 and the rows
of W1 are contained in W′

2.

The following proposition shows two conditions which im-
ply inequality of error among workloads:

Proposition 3.8 (Error inequality). Given an m1×
n1 workload W1 and an m2 × n2 workload W2, each of the
following conditions implies that

MinError(W1) ≤MinError(W2) :

(i) W1 ⊆W2

(ii) W1 is a column projection of W2.

4. THE SINGULAR VALUE BOUND
In this section we state and prove our main result: a lower

bound on MinError(W), the optimal error of a workload
W under the extended (ε, δ)-matrix mechanism. The bound
shows that the hardness of a workload is a function of its
eigenvalues. We describe the measure and its properties in
Section 4.1 and prove that it is a lower bound in Section 4.2.
In Section 4.3 we briefly discuss the challenge of adapting
this bound to ε-differential privacy.

4.1 The Singular Value Bound
We first present the simplest form of our bound, which is

based on computing the square of the sum of eigenvalues of
the workload matrix:

Definition 4.1 (Singular Value Bound). Given an
m×n workload W, its singular value bound, denoted svdb(W),
is:

svdb(W) =
1

n
(λ1 + . . .+ λn)2,

where λ1, . . . , λn are the singular values of W.

The following theorem guarantees that the singular value
bound is a valid lower bound to the minimal error of a work-
load. The proof is presented in detail in Sec. 4.2.

Theorem 4.2. Given an m× n workload W,

MinError(W) ≥ P (ε, δ)svdb(W),

where P (ε, δ) = 2 log(2/δ)

ε2
.

In the rest of paper, we refer to svdb(W) as the “SVD
bound”. For any workload W, the SVD bound is determined
by WTW and can be computed directly from it (which can
be more efficient):

Proposition 4.3. Given n× n matrix WTW.

svdb(W) =
1

n
(

n∑
i=1

√
di)

2.

where d1, . . . , dn are the eigenvalues of WTW.

The SVD bound satisfies equivalence properties analogous
to (i), (ii), (iii), and (iv) in Prop. 3.6 and inequality (i) in
Prop. 3.8. However, it does not satisfy properties related
to column projection, as shown in the following counter-
example.

Example 4.4. Consider a 2 × n workload W consisting
of queries [1, 0, . . . , 0] and [t, t, . . . , t]. Let µ be the column
projection w.r.t. the first cell condition of W. When n > 8
and t < 1/8, svdb(W) < svdb(µ(W)).

According to Prop 3.8, column projections reduce the min-
imum error. Therefore, the SVD bound on any column pro-
jection of W also constitutes a lower bound for the minimum
error of W. Because of this we extend the simple SVD bound
in the following way. Recall that Un is the set of all column
projections.

Definition 4.5. Given an m × n workload W and U ⊆
Un. The singular value bound of W w.r.t. U , denoted by
svdbU (W) is defined as

svdbU (W) = max
µ∈U

svdb(µ(W)).

In particular, if U = Un, we call this bound the supreme
singular value bound, denoted svdb(W).

According to Prop. 3.8 and Thm. 4.2, for any U ⊆ Un,
svdbU (W) provides a lower bound on MinError(W).

Corollary 4.6. Given an m × n workload W, and for
any U ⊆ Un

MinError(W) ≥ max
µ∈U

MinError(µ(W))

≥ P (ε, δ)svdbU (W),

where P (ε, δ) = 2 log(2/δ)

ε2
.

The supreme SVD bound satisfies all of the error equiv-
alence and containment properties, analogous to those of
Prop. 3.6 and Prop. 3.8, as stated below:

Theorem 4.7. Given an m1 × n1 workload W1 and an
m2 × n2 workload W2, the following conditions imply that
svdb(W1) = svdb(W2):

(i) W1 ≡W2

(ii) W1 = QW2 for some orthogonal matrix Q.

(iii) W2 results from permuting the rows of W1.

(iv) W2 results from permuting the columns of W1.

(v) W2 results from column projection of W1 on all of its
nonzero columns.

Theorem 4.8. Given an m1 × n1 workload W1 and an
m2 × n2 workload W2, the following conditions imply that
svdb(W1) ≤ svdb(W2):

(i) W1 ⊆W2

(ii) W1 is a column projection of W2.
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While Theorems 4.7 and 4.8 show that svdb(W) matches
all the properties of MinError(W), we often wish to avoid
considering all possible column projections as required in the
computation of svdb(W). In many cases, using svdb(W)
as our lower bound provides good results. In other cases, we
can choose an appropriate set of column projections to get a
good approximation to the supreme SVD bound. We provide
empirical evidence for this in the following example, along
with an application of our bound to range and predicate
workloads which have been studied in prior work. The bound
allows us to evaluate, for the first time, how well existing
solutions approximate the minimum achievable error under
(ε, δ)-differential privacy.

Example 4.9. In Table 2 we consider three workloads,
each consisting of all multi-dimensional range queries for a
different dimension set, along with a workload of all predicate
queries. We report svdb(W) and its ratio with svdbU (W)
where U contains projections onto all possible ranges over the
domain, showing that they are virtually indistinguishable.

We also compute the actual error introduced by several
well-known strategies: the identity strategy, the hierarchical
strategy [16], and the wavelet strategy [27], as well as a strat-
egy generated by the Eigen-design mechanism [19]. These
results reveal the quality of these approaches by their ratio
to svdb(W). For example, from the table we can conclude
that the Eigen-design mechanism and wavelet strategies have
error at most 1.5 to 3 times the optimal for range work-
loads, but perform worse on the predicate queries. The iden-
tity strategy is far from optimal on low dimensional range
queries, but better on high dimensional range queries and
predicate queries.

4.2 Proof of the SVD bound
We now describe the proof of Theorem 4.2. The key to

the proof is an important property of the optimal strategy
for the (ε, δ) matrix mechanism. As shown in Lemma 4.10,
among the optimal strategies for a workload W, there is
always a strategy A that has the same sensitivity for every
cell condition (i.e. in every column). We use AW to denote
the set that contains all strategies that satisfy WA+A = W
and have the same sensitivity for every cell condition.

Recall that the sensitivity of strategy A (Def. 2.13) is
the maximum L2 column norm of A. The square of the
sensitivity is also equal to the maximum diagonal entry of
ATA. By using Lemma 4.10, the sensitivity of A can instead
be computed in terms of the trace of the matrix ATA and
minimizing the error of W with this alternative expression
of the sensitivity leads to the SVD bounds. Ultimately, to
achieve the SVD bounds, a strategy A must simultaneously
(i) minimize the error of W with the sensitivity computed
in terms of the trace(ATA), and (ii) have A ∈ AW. Such
a strategy may not exist for every possible W and therefore
the SVD bounds only serve as lower bounds to the minimal
error of W.

Lemma 4.10. Given a workload W, there exists a strategy
A ∈ AW such that ErrorA(W) = MinError(W).

Lemma 4.11. Let D be a diagonal matrix with non-negative
diagonal entries and P be an orthogonal matrix whose col-
umn equals to p1,p2, . . . ,pn.

trace(D) ≤
n∑
i=1

||Dpi||2.

Theorem 4.2 can hence be proved using the lemmas above.

Proof. For a given workload W, according to Lemma 4.10,
it has an optimal strategy matrix A ∈ AW, whose sensitivity
can then be computed as ∆2

A = 1
n
||A||2F .

Let W = QWΛWPW and A = QAΛAPA be the singular
decomposition of W and A, respectively. We have:

min
A:WA+A=W

∆2
A||WA+||2F

= min
A∈AW

1

n
||A||2F ||WA+||2F

=
1

n
min

(ΛAPA)∈AW

||ΛA||2F ||ΛWPWPT
AΛ+

A||
2
F

≥ 1

n
min

ΛA,PA

ΛWΛ+
A

Λ=
AΛW

||ΛA||2F ||ΛWPWPT
AΛ+

A||
2
F (3)

≥ 1

n
min
PA

(

n∑
i=1

||ΛWpi||2)2 (4)

≥ 1

n
(

n∑
i=1

λi)
2, (5)

where pi is the i-th column of matrix PWPT
A, the inequality

in (4) is based on the Cauchy-Schwarz inequality and the
inequality in (5) comes from Lemma 4.11.

The equal sign in (4) is satisfied if and only if ΛA ∝
√

ΛW.
Therefore to achieve equality in (4) and (5) simultaneously,
we need A ∝ Q

√
ΛWPW for any orthogonal matrix Q.

Moreover, (3) is true if and only if A ∈ AW, which may
not be satisfied when A ∝ Q

√
ΛWPW, therefore the SVD

bound only gives an lower bound to the minimum total er-
ror.

Intuitively, the SVD bound is based on the assumption
that the error can be evenly distributed to all the cells, which
may not be achievable in all the cases. The supreme SVD
bound considers only the case that the error can be evenly
distributed to some of the cells and therefore may be tighter
than the SVD bound.

4.3 Bounding MinError(W) Under the ε-Matrix
Mechanism

The SVD bound is defined for the (ε, δ)-matrix mechanism,
so it is natural to consider extending these results to the
ε-matrix mechanism. Prop. 3.3 can be adopted to the ε-
matrix mechanism, which uses Laplace noise, an alternative
privacy parameter, P (ε) = 1/ε2, and measures the sensitivity
of A as the largest L1 norm of the columns of A. For any
vector, its L1 norm is always greater than or equal to its
L2 norm. Given a workload W and a strategy matrix A,
P (ε)∆2

A||WA+||2F provides a lower bound to ErrorA(W)
under the ε-matrix mechanism. Therefore, error under the
ε-matrix mechanism is also bounded below by svdb(W).

When the number of queries in a workload is no more than
the domain size, Bhaskara et al. [3] presented the following
lower bound of error for any data-independent ε-differential
privacy mechanism.

Theorem 4.12 ([3]). Given an m×n workload W with
m ≤ n, let convex body K = WBn

1 , where Bm
1 is the m-

dimensional L1 ball. Let P1, . . . ,Pt be projection operators
to a collection of t mutually orthogonal subspaces of Rm of
dimension m1, . . . ,mt respectively. Then the error of an-
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Example Workload, W svdb(W) svdbU (W)
Error, as ratio to P (ε, δ)svdb(W)

Identity Hierarchical Wavelet Eigen Design

AllRange(2048) 3.034× 107 1.001 47.25 1.776 1.545 1.028
AllRange(64, 32) 2.261× 107 1.000 12.11 2.996 1.899 1.107

AllRange(2, 2, 2, 2, 2, 2, 2, 2, 2, 2) 5.242× 105 1.000 2.000 2.000 2.000 1.000
AllPredicate(1024) 4.885× 10156 1.000 1.884 3.464 6.292 1.000

Table 2: Four example workloads, their singular value bounds, and their error rates under common strategies
and strategies proposed in prior work.

swering W under any data-independent ε-differentially pri-
vate mechanism must be at least

Ω

(∑
i

m3
i

ε2
Volmi(PiK)2/mi

)
,

where Volmi(PiK) is the volume of the convex body PiK in
mi dimensional space.

In particular, when Pi are the projections to the singu-
lar vectors of W, we can formulate the bound above using
singular values of W.

Corollary 4.13. Given an m×n workload W with m ≤
n, the error of answering W under any data-independent
ε-differentially private mechanism must be at least

Ω

(
n∑
i

λ2
i

ε2

)
,

where λ1, . . . , λn are singular values of W.

When m ≤ n, we can compare the lower bound in Corol-
lary 4.13 with the SVD bound under the ε-matrix mecha-
nism. It is clear that the bound in Corollary 4.13 is tighter
unless all singular values of W are equal. When m > n, the
quality of the SVD bound under the ε-matrix mechanism is
not yet known. The discussion on the tightness and looseness
of the SVD bound in the next section is based on the (ε, δ)-
matrix mechanism and cannot be extended to the ε-matrix
mechanism directly.

5. ANALYSIS OF THE SVD BOUND
In this section, we analyze the accuracy of the SVD bound

as an approximation of the minimum error for a workload.
We study the sufficient and necessary conditions under which
the SVD bound is tight. In addition, we show the minimum
error is equal to the bound over a specific class of workloads
called variable-agnostic workloads and then generalize the
result to the widely-studied class of data cube workloads.
For both classes, strategies that achieve the minimum error
can be constructed, as a by-product of the proof of the SVD
bound.

We then show that the bound may be loose, underestimat-
ing the minimal error for some workloads. The worst case of
looseness of the SVD bound is presented in Section 5.2, along
with a formal estimate of the quality of the bound. We con-
clude this section with an example demonstrating empirically
that error rates close to the lower bound can be achieved for
workloads consisting of multi-dimensional range queries.

5.1 The Tightness of the SVD Bound
The circumstances under which the SVD bound is tight

arise directly from inspection of the proof presented in Sec.
4.2. In particular, we noted the conditions that make the in-
equalities in equations (3), (4) and (5) actually equal. Those

conditions are equivalent to a straightforward property of
WTW:

Theorem 5.1. Given workload W, svdb(W) is tight if

and only if the diagonal entries of
√

WTW are all equal.

There are workloads that satisfy the condition in Thm 5.1.
Here we present one such special class of workloads, called
variable-agnostic workloads, in which the queries on each cell
are fully symmetric and swapping any two cells does not
change WTW.

Definition 5.2 (Variable-agnostic workload).
A workload W is variable-agnostic if WTW is unchanged
when we swap any two columns of W.

For any variable-agnostic workload W, WTW has the fol-
lowing special form: for some constants a and b such that
a > b, all diagonal entries of WTW are equal to a and the
remaining entries of WTW are equal to b.

The following theorem shows that any variable-agnostic
workload W satisfies the condition in Thm 5.1. Furthermore,
we also demonstrate the closed form expression of the SVD
bound in case that n is a power of 2.

Theorem 5.3. The SVD bound is tight for any variable-
agnostic workload W. In addition, when n = 2k for any
nonnegative integer k, svdb(W) = 1

n
(
√
a+ (n− 1)b+ (n−

1)
√
a− b)2, where a is the value of diagonal entries of WTW

and b is the value of off-diagonal entries of WTW.

As a concrete example, the workload AllPredicate(n) is
variable-agnostic, and therefore we can construct its optimal
strategy and compute the error rate directly.

Corollary 5.4. The SVD bound is tight for the workload
AllPredicate(n). In addition, when n = 2k for any non-

negative integer k, svdb(AllPredicate(n)) = 2n−2

n
(n−1+√

n+ 1)2.

For variable-agnostic workloads, using a naive strategy like
the identity matrix or the workload itself results in total error
equal to na and the ratio by which the error is reduced using
the strategy in Thm. 5.3 is approximately 1 − b

a
. In the

case of AllPredicate(n), the ratio is at least as low as 0.5,
which occurs when n is very large.

Another family of workloads for which the SVD bound is
tight are those consisting of sets of data cube queries. A data
cube workload consists of one or more cuboids, each of which
contains all aggregation queries on all possible values of the
cross-product of a set of attributes. Here we also consider
the case that each cuboid can have its own weight, so that
higher weighted queries will be estimated more accurately
than lower weighted ones.
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Theorem 5.5. The SVD bound is tight for any weighted
data cube workload W.

Data cube workloads (a special case of marginal work-
loads) have been studied by the differential privacy commu-
nity in both theory and practice [1, 6, 17]. Barak et al. [1]
use the Fourier basis as a strategy for workloads consisting
of marginals while Ding et al. [6] proposed an approximation
algorithm for data cube workloads. Thm. 5.5 shows that un-
der (ε, δ)-differential privacy we can now directly compute
the optimal strategy, obviating the need to use an approxi-
mation algorithm or blindly relying on the Fourier basis for
workloads of this type. The result in [17], however, involves
data-dependent techniques and the comparison between [17]
to the SVD bound relies on a thorough analysis of the spec-
tral properties of data cube workloads, which is a direction
of future work.

5.2 The Looseness of the SVD Bound
The SVD bound can also underestimate the minimum er-

ror when the workload is highly skewed. For example, the
SVD bound does not work well when the sensitivity of one
column in the workload is overwhelmingly larger than oth-
ers. Recall the workload in Example 4.4, when t → 0, the
SVD bound will underestimate the total error by a factor of
n. This is caused by the underestimate of the sensitivity of
A considered in equation (3) in the proof of Thm. 4.2.

Since the proof of Thm. 4.2 constructs a concrete strategy,
one way to measure the looseness of the SVD bound is to esti-
mate its ratio to the actual error introduced by this strategy.
Note that the sensitivity of the strategy is the only part of
the SVD bound that is underestimated. The square of the
sensitivity is the maximum diagonal entry of matrix ATA,
rather than the estimate given by trace(ATA)/n. The ratio
between the actual sensitivity and the estimated sensitivity
bounds the looseness of the SVD bound, as shown by the
following theorem.

Theorem 5.6. Given an m × n workload W. Let d0 be
the maximum diagonal entry of

√
WTW.

MinError(W) ≤ nd0P (ε, δ)svdb(W)

trace(
√

WTW)
,

where P (ε, δ) = 2 log(2/δ)

ε2
.

According to Thm. 5.6, the approximate ratio of the SVD
bound corresponds to the ratio between d0, the largest diag-
onal entry of

√
WTW and the trace of

√
WTW, which is

equal to the sum of all singular values of W. This ratio, al-
though it is upper-bounded by the ratio between the largest
singular value of W and the sum of all singular values of
W, is much closer to 1 than the ratio between singular val-
ues. As a consequence, the skewness in singular values does
not always lead to a bad approximation ratio for the SVD
bound. For example, for variable-agnostic workloads, the
largest singular value can be arbitrarily larger than the rest
of the singular values, while the SVD bound is tight. Instead,
the cases where the SVD bound has high approximation ra-
tio, such as the one in Example 4.4, are due to the skewness
of singular value of W and the particular distribution of sin-
gular vectors. The supreme SVD bound can help us to avoid
some of these worst cases, but there is no guarantee of the
quality of the bound with more sophisticated cases.

Nevertheless, for many common workloads, empirical ev-
idence suggests that the SVD bound is quite close to the

minimal error. The following example provides a compari-
son between the SVD bound and achievable error for a few
common workloads.

Example 5.7. Returning to Table 2, we observe empir-
ical evidence that for range and predicate workloads, there
are strategies that come quite close to the SVD bound. The
last column of Table 2 lists the error for the Eigen-design
mechanism [19], which attempts to find approximately op-
timal strategies for any given workload by computing opti-
mal weights for the eigenvectors of the workload. This al-
gorithm is able to find a strategy whose error is within a
factor of 1.028 and 1.107 of optimal for AllRange(2048)
and AllRange(64, 32), respectively.

6. COMPARISON OF MECHANISMS
The matrix mechanism is a data-independent mechanism:

the noise distribution (and therefore error) depends only on
the workload and not on the particular input data. This
makes it possible to process the workload once and apply
the mechanism efficiently to any dataset. On the other hand,
data-independent mechanisms lack the flexibility to exploit
specific properties of individual datasets. In this section,
we use the SVD bound to compare the error bounds of the
matrix mechanism with error bounds of other mechanisms
that are data-dependent.

6.1 Asymptotic Estimation of the SVD bound
Before the comparison, we first convert the SVD bound

into an error measure that can be directly related to other
bounds in the literature. We assume all queries in the work-
load have sensitivity at most one and estimate the SVD
bound as a function of the domain size n and the number
of queries m. Recall that the error in previous sections is
defined as the total mean squared error of the queries. We
introduce a new measure of error which bounds the maxi-
mum absolute error of the workload queries by α with high
probability (controlled by β).

Definition 6.1 ((α, β)-Accurate [12]).Given a work-
load W, an algorithm K is (α, β)-accurate if, for any uni-
formly drawn data vector x, with a probability of at least
1− β, maxq∈W |K(q,x)− qx| ≤ α.

Since the SVD bound measures total error (rather than
max error), here we modify the (α, β)-accuracy by bounding
the root mean squared error of the workload.

Definition 6.2 (RMS-(α, β)-Accurate). Given a
workload W, an algorithm K is RMS-(α, β)-accurate if, for
any uniformly drawn data vector x, with a probability of at

least 1− β,
√∑

q∈W ||K(q,x)− qx||2/|W| ≤ α.

Theorem 6.3. Given an m× n workload W, if the
svdb(W) is asymptotically tight, then there exists a strategy
under which the matrix mechanism is RMS-(α, β)-accurate,
where

α = O

√min(m,n)
√

log(2/δ) log(
√
π/2/β)

ε

 .

Recall the discussion in Sec. 5.1 indicates that the SVD
bound is tight or almost tight for many common workloads.
Thus, it is reasonable to compare the asymptotic estimate of
the SVD bound to the error introduced by other mechanisms.
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Mechanism α

1 Median [26] O

(√
N(logn logm)1/4

√
t(logm+t)√

ε

)
2 MW [14] O

(√
N(logn)1/4

√
t(logm+t)√

ε

)
3 IDC [12] O

(
(nN)1/4

√
t(logm+t)√
ε

)
4 Boosting [11] Õ

(√
N logn·t3/2 log3/2m

ε

)
5 SVDB O

(√
min(m,n)·t

ε

)
Table 3: For t ≥ 2, bounds on the α required to
achieve (ε, exp(−t))-differential privacy and accuracy
measures of: (α, exp(−t))-accuracy (mechanisms 1-4);
RMS-(α, exp(−t))-accuracy (mechanism 5).

6.2 Comparison of Error Bounds
Here we compare our SVD bound with other error bounds

from data-dependent mechanisms. We include four competi-
tors each representing fundamentally different mechanisms.
The median mechanism [26] discards candidate data vectors
that are inconsistent with historical query answers. The mul-
tiplicative weights mechanism (MW) [14] and the iterative
database construction method (IDC) [12] repeatedly update
an estimated data vector according to query answers. The
boosting method [11] maintains a distribution of queries ac-
cording to the quality of their answers and repeatedly sam-
ples queries from the distribution so as to improve their an-
swers. The (α, β)-accuracy under (ε, δ)-differential privacy
for the median and the multiplicative weight mechanism fol-
lows the result in [12].

Table 3 summarizes error bounds of different data de-
pendent approaches. In particular, the comparison is over
(ε, exp(−t))-differential privacy and (α, exp(−t))-accuracy.
The workload W we considered contains m queries with sen-
sitivity no larger than 1. The database is of size N , which
means the sum of all xi’s in the data vector is N .

Observing the values of α in Table 3, the matrix mecha-
nism has a greater dependence on ε compared with the me-
dian, the multiplicative weights and the iterative database
construction methods. In addition, since the matrix mech-
anism is data-independent, it cannot take advantage of the
input dataset so that it always assumes n = N . However,
when N is sufficiently large (Θ(n)) and m = O(n), the SVD
bound is smaller than the error of the Boosting method and
can outperform other competitors when m = Ω(exp(t/ε)).

6.3 Data-dependency & the matrix mechanism
Although the techniques of the matrix mechanism are data-

independent, they can be deployed in a data-dependent way,
blurring the distinction between mechanism types. The dif-
ferentially private domain compression technique [21] may be
applied to reduce the domain size n to Θ(N) with an addi-
tional O(logn) noise, which suggests a method for improving
the error dependency of the matrix mechanism on n.

Further, the optimal strategy matrix used in the matrix
mechanism represents the fundamental building blocks of the
workload and the matrix mechanism reduces error by using
the strategy queries as differentially private observations, in-
stead of the workload queries. Recent data-dependent ap-
proaches can benefit from the same approach. In fact, [13]
selects Fourier basis vectors adaptively in a data dependent
manner, but could benefit from selecting from a more effi-
cient strategy matrix. Therefore, the SVDB bound can serve

as a baseline accuracy measure, which may be improved by
data-dependent query selection.

7. RELATED WORK
The original description of the matrix mechanism [18] fo-

cuses primarily on ε-differential privacy, with a brief con-
sideration of (ε, δ)-differential privacy. A number of pro-
posed mechanisms can be formulated as instances of the ma-
trix mechanism: techniques for accurately answering range
queries are presented in [27, 16]; low-order marginals are
studied in [1] using a Fourier transformation as the strategy
(combined with other techniques for achieving integral con-
sistency) as well as in [29] by optimally scaling a manually-
chosen set of strategy queries; an algorithm for generating
good strategies for answering sets of data cube queries is
introduced in [6]; and an algorithm for computing optimal
low-rank strategy matrices is presented in [30]. The lower
bound presented in this work provides a theoretical method
to evaluate the quality of each of the approaches above, as-
suming (ε, δ)-differential privacy.

In recent work, Nikolov et al. [23] propose an algorithm
whose error is within a ratio of O(log2 rank(W) log(1/δ))
to the optimal error under any data-independent (ε, δ)-diff-
erentially private mechanism (not limited to instances of the
matrix mechanism). Their algorithm is in fact a special case
of the (ε, δ)-matrix mechanism, so this approximation ra-
tio also bounds the ratio between the SVD bound and the
minimum achievable error of all possible data-independent
(ε, δ)-differential private mechanisms.

Blum et al. [4] describe a very general mechanism for syn-
thetic data release, in which error rates are related to the VC
dimension of the workload. However, for many workloads of
linear queries, VC dimension is too coarse-grained to provide
a useful measure of workload error complexity. For example,
the VC dimension for any workload of d-dimensional range
queries that can not be embedded into (d − 1)-dimensional
spaces is always d + 1, despite the fact that such workloads
could have very different achievable error rates.

Hardt et al. [15] present a lower bound on error for low
rank workloads. Similar to the SVD bound, this geometric
bound can also be represented as a function of the singular
values of the workload. In particular, the bound uses the
geometric average of the singular values rather than the al-
gebraic average in the SVD bound. The geometric bound
provides a more general guarantee since it is a lower bound
on all ε-differential privacy mechanisms. But it is not directly
comparable with the SVD bound since it bounds the mean
absolute error rather than mean squared error in the SVD
bound. Lower and upper bounds on answering all k-way
marginals with a data dependent mechanism are discussed
in [17]. Though it is clear that the SVD bound is tight in
the case of all k-way marginals (since it is a special case of
data cube) comparison with [17] requires a careful analysis
of the singular values of workloads of k-way marginals and
is a direction for future investigation.

There are also error bounds from data-dependent mecha-
nisms, some of which we have compared with in Sec. 6. A
data-dependent approach for range queries is described in [5].
The median mechanism [26] drops data vectors that are in-
consistent with query answers in each step. Dwork et al. [11]
samples linear queries in each step and modifies the sample
distribution with the new query answers. In [14, 13, 12], the
authors recursively update the estimated data vector to re-
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duce the error on linear queries. More generally, Dwork et al.
provide an error bound using an arbitrary differentially pri-
vate mechanism [10] but not specifically for linear counting
queries. Those analyses lead to smaller error than the matrix
mechanism over sparse databases by analyzing the properties
of the underlying database. Thus their error bounds reflect
the connection between workloads and databases but cannot
lead to bounds on error that can be used to characterize the
error complexity of workloads.

8. CONCLUSION
We have shown that, for a general class of (ε, δ)-differentially

private algorithms, the error rate achievable for a set of
queries is determined by the spectral properties of the queries
when they are represented in matrix form. The result is a
lower bound on error which is a simple function of the eigen-
values of the query matrix. The bound can be used to assess
the quality of a number of existing differentially private algo-
rithms, to directly construct error-optimal strategies in some
cases, to compare the hardness of query sets, and to guide
users in the design of query workloads.
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