
Extracting Minimum-Weight Tree Patterns from a
Schema with Neighborhood Constraints

Benny Kimelfeld
IBM Research–Almaden

San Jose, CA 95120, USA
kimelfeld@us.ibm.com

Yehoshua Sagiv∗
The Hebrew University

Jerusalem 91094, Israel
sagiv@cs.huji.ac.il

ABSTRACT
The task of formulating queries is greatly facilitated when they can
be generated automatically from some given data values, schema
concepts or both (e.g., names of particular entities and XML tags).
This automation is the basis of various database applications, such
as keyword search and interactive query formulation. Usually, au-
tomatic query generation is realized by finding a set of small tree
patterns that contain some given labels. More formally, the compu-
tational problem at hand is to find top-k patterns, that is, kminimum-
weight tree patterns that contain a given bag of labels, conform to
the schema, and are non-redundant. A plethora of systems and re-
search papers include a component that deals with this problem.
This paper presents an algorithm for this problem, with complexity
guarantees, that allows nontrivial schema constraints and, hence,
avoids generating patterns that cannot be instantiated. Specifically,
this paper shows that for schemas with certain types of neighbor-
hood constraints, the problem is fixed-parameter tractable (FPT),
the parameter being the size of the given bag of labels. As machin-
ery, an adaptation of Lawler-Murty’s procedure is developed. This
adaptation reduces a top-k problem, over an infinite space of so-
lutions, to a prefix-constrained optimization problem. It is shown
how to cast the problem of top-k patterns in this adaptation. A
solution is developed for the corresponding prefix-constrained op-
timization problem, and it uses an algorithm for finding a (single)
minimum-weight tree pattern. This algorithm generalizes an ear-
lier work by handling leaf constraints (i.e., which labels may, must
or should not be leaves). It all boils down to a reduction showing
that, under a language for neighborhood constraints, finding top-k
patterns is FPT if a certain variant of exact cover is FPT.

Categories and Subject Descriptors: H.3.3 [Information Storage
and Retrieval]: Information Search and Retrieval—query formula-
tion, search process; H.2[Database Management]: Heterogeneous
Databases, Miscellaneous

General Terms: Algorithms, Theory

Keywords: Query extraction, minimal tree patterns, graph search

∗The work of this author was supported by the Israel Science Foundation
(Grant No. 1632/12).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT/ICDT ’13, March 18 - 22 2013, Genoa, Italy.
Copyright 2013 ACM 978-1-4503-1598-2/13/03 ...$15.00.

1. INTRODUCTION
Manual query formulation can be highly laborious and time con-

suming when users lack close familiarity with the schema. SAP
schemas, for instance, may have thousands of relations [10]. Var-
ious paradigms tackle this problem. Some of them, like tools for
schema exploration and semi-automatic query formulation [14,24],
are aimed at facilitating the task of fully specifying a query in a
language such as SQL. Others, such as schema-free (or flexible)
queries [3, 16], and keyword search over structured data [2, 9, 11,
21], are aimed at supporting under-specified queries. Within the
realization of these paradigms, a standard component is an algo-
rithm that extracts from the schema small tree patterns that connect
a given set of items (such as the name of a relation, the value of an
attribute, an XML tag, an XML CDATA value, etc.).

Take, for example, keyword search over structured data. The
typical approach to this problem considers abstractly a data graph,
where nodes represent objects (e.g., tuples or XML elements), and
edges represent pairwise associations between the objects (e.g., for-
eign keys or element nesting). The keywords phrased by the user
match some of the objects, and search results are subtrees that cover
all the keywords. A dominant factor in the quality of a result is its
size (or weight), since smaller subtrees represent closer associa-
tions between the keywords. The computational goal at hand is to
find these small subtrees. In the graph approach (e.g., [2, 5, 11]),
subtrees are extracted directly from the data while ignoring the
schema. The pattern approach [9, 17, 21, 24], which is the one rel-
evant to this paper, deploys two steps. First, a set of candidate pat-
terns is generated; then, search results are obtained by evaluating
the patterns as queries over the data graph (e.g., finding subtrees
that are isomorphic to those patterns).

Efficiency in producing a set of candidate patterns is crucial, as
these patterns are generated in real time in response to a user query.
The effectiveness of existing algorithms has been exhibited on tiny
schemas (usually designed just for experiments), with the exception
of the work by Talukdar et al. [21] that we discuss in the next para-
graph. It is not obvious that these algorithms scale up to the sizes of
real-world schemas. Most of the algorithms (e.g., [17, 18, 20, 24])
follow DISCOVER [9] by essentially producing all the possible
partial patterns (i.e., trees that do not necessarily include the key-
words) up to some size, or until sufficiently many complete patterns
are produced. This generation of the complete patterns is grossly
inefficient, as the incremental construction can blowup the num-
ber of partial patterns. Moreover, many of the generated complete
patterns may make no sense (and in particular produce empty re-
sults), simply because they violate basic constraints of the database
like elementary one-to-many and many-to-one relationships. More
complex constraints are imposed by XML schemas, where regular
expressions qualify the possible sets of sub-elements.

249

The only algorithm that generates patterns with a nontrivial guar-
antee on the running time is that of Talukdar et al. [21]. Their algo-
rithm has been applied to a schema of around 400 relations taken
from bioinformatic data sources. Their experiments show that gen-
erating the patterns can be a bottleneck in an online scenario (e.g.,
more than 10 seconds for 5 patterns). Their algorithm views the
schema as a graph of labels, and applies a top-k Steiner-tree algo-
rithm1 to extract small subtrees of the graph, which are then used as
patterns. As we illustrated in [13], this approach has two significant
(and inherent) drawbacks. First, it does not allow patterns with re-
peated labels (although, conceivably, this problem could be solved
by augmenting the graph with label repetitions). Second, it does
not consider basic constraints on the graph (as those formerly men-
tioned), which may require generating a large number of patterns
to produce just a few useful ones.

To sum up thus far, a plethora of systems and research papers
include a component that extracts, from a given schema, small tree
patterns that connect a given set of labels. An algorithm for effec-
tively realizing such a component should avoid useless patterns that
violate basic database constraints, be able to handle repeated labels,
and be efficient. Quite surprisingly, to the best of our knowledge
there has not been any algorithm with complexity guarantees that
can either handle nontrivial schema constraints or support repeated
labels. In this paper, we present such an algorithm.

In a previous paper [13], we introduced schemas for data graphs
that allow to express neighborhood constraints. For illustration,
consider the graph at the top of Figure 1 that specifies (by edges)
which pairs of labels can be neighbors. A neighborhood constraint
can state that an emp node (representing an employee) can have
either a regular or an exec neighbor (representing the type of the
employee), but not both; and a manages neighbor is allowed only
if an exec neighbor exists. Formally, a constraint maps a label to a
(possibly infinite) set comprising finite bags of labels. A schema S
is a collection of constraints S(σ), one for each label σ, and it also
specifies weights on the nodes and edges. For a node v of a pattern,
where v is labeled with σ, the neighboring labels of v (including
their multiplicities) must form a subbag of a bag in S(σ).

In [13], we investigated the complexity of languages for specify-
ing neighborhood constraints. We also developed an algorithm for
MINPATTERN, which is the following problem. Given a schema S
and a bag Λ of labels (derived from a user’s query), find a minimum-
weight (S,Λ)-pattern—a tree t such that the bag of labels in t
forms a superbag of Λ, and each of t’s nodes satisfies the con-
straint for its label. Of course, in all practical implementations
mentioned earlier, the need is for multiple (i.e., k) minimum-weight
(S,Λ)-patterns, rather than just one. In this paper, we consider
TOPPATTERNS, which is the problem of generating k minimum-
weight (S,Λ)-patterns. Unlike the case of a (single) minimum-
weight (S,Λ)-pattern, it is not even clear how to define the meaning
of “k minimum-weight (S,Λ)-patterns.” We proposed a definition
in [13], but the complexity of TOPPATTERNS was left as an open
question. The current paper resolves this question by presenting an
algorithm for TOPPATTERNS.

The complexity of the problem TOPPATTERNS depends on the lan-
guage used for expressing the neighborhood constraints. However,
even for the simplest conceivable languages (e.g., each S(σ) is a
finite set that is specified explicitly), and even if we want just one
pattern (rather than k > 1), TOPPATTERNS is NP-hard [13]. But this
hardness assumes that the given bag Λ of labels is large, whereas in
practice the size of Λ is similar to that of the user’s query. In turn, a
user’s query is typically very small, and in particular, significantly
1This algorithm is based on that of [11]. The latter was originally designed
for the graph approach mentioned earlier.

smaller than the schema. Hence, we view the size of Λ as a param-
eter, and focus on parameterized complexity [4, 7]. A problem is
deemed tractable if it is Fixed-Parameter Tractable (FPT), which
basically means that the running time is polynomial, except that the
parameter can arbitrarily affect the constant of the polynomial (but
not on the degree). We showed [13] that MINPATTERN is FPT when
neighborhood constraints are regular expressions2 or “circular-arc
mux graphs” (which we do not define in this paper). In this pa-
per we show the same for TOPPATTERNS. In particular, the main
contribution is the first provably efficient algorithm for extracting
top-k tree queries from a schema with nontrivial expressiveness
(e.g., neighborhood constraints as regular expressions). Next, we
review the algorithm and the involved challenges.

The produced top-k minimum-weight (S,Λ)-patterns should be
non-redundant. Otherwise, we may get the second-best pattern t2
just by adding some irrelevant part to a minimum-weight (S,Λ)-
pattern t1. (Applying t2 to a data graph can only yield relevant
answers that are also produced by t1; hence, t2 is useless.) Out
of all the (S,Λ)-patterns, the non-redundant ones are just a small
fraction. Thus, an effective algorithm should avoid redundant pat-
terns. In our case, non-redundancy is not merely the absence of
a proper subtree that is also an (S,Λ)-pattern (which is a conven-
tional definition for top-k Steiner trees [5, 11]), because answering
some queries may involve a sequence of joins in which the same
entity appears several times (e.g., “find the exec and the regular
employees that report to the same exec”). In Section 2, we give
the precise definition of non-redundancy.

Thus, the task is to find the top-kminimal-weight (S,Λ)-patterns
among the non-redundant ones; moreover, no two of the top-k can
be isomorphic to each other. There does not seem to be any obvi-
ous general way of tackling this optimization problem (in partic-
ular, when the goal is an FPT algorithm). We are aware of very
few general top-k techniques that are capable of enforcing nontriv-
ial constraints. Our candidate is the procedure of Lawler3 [15] and
Murty [19] that formulates the top-k problem in terms of finding
k least-cost assignments for a given set of Boolean variables (or
equivalently k least-cost subsets of a given set). However, there is
no clear way of formulating TOPPATTERNS under that abstraction,
because the patterns come from a space that is conceptually infi-
nite, they are built from nodes that are created on the fly (rather
than nodes of a given graph, as for example in [5, 11]), and they
could be larger than the input (even if the bag Λ is small).

In Section 4, we adapt Lawler-Murty’s procedure and complex-
ity result to a new abstraction, where the space of solutions (the k
least cost of which are desired) is the infinite set of all finite strings
over a finite alphabet. To apply this abstraction to TOPPATTERNS,
we begin with the assumption that Λ is a set (rather than a general
bag). In Section 5, we devise a serialization of a non-redundant
(S,Λ)-pattern into a string over a finite alphabet. This serialization
acts as canonization, in the sense that isomorphism of patterns is
equivalent to the equality of their corresponding strings. With se-
rialization at hand, the adapted Lawler-Murty’s procedure reduces
TOPPATTERNS to prefix optimization, that is, the problem of find-
ing a minimum-weight, non-redundant (S,Λ)-pattern, such that its
serialization contains a given string as a prefix. In Section 6, we fur-
ther reduce prefix optimization into a variant of MINPATTERN with
leaf constraints that specify which labels may, must or should not
be leaves. In Section 7, we adapt the algorithm for MINPATTERN [13]

2This schema language is essentially the core of DTDs, except that we do
not require one-unambiguity.
3Lawler [15] generalized Yen’s algorithm [23] for finding k-shortest sim-
ple paths in a graph. Another general technique is that of Hamacher and
Queyranne [8], which is very similar to that of Lawler-Murty.

250

to handle leaf constraints. This sequence of adaptations and reduc-
tions is our algorithm for TOPPATTERNS. In Section 8, we discuss
how to generalize the algorithm (and complexity result) to the case
where Λ is a general bag.

Our algorithm for TOPPATTERNS is generic in the sense that it
does not depend on a specific language of neighbor constraints.
Instead, the algorithm is a reduction of TOPPATTERNS to a gener-
alization of the exact-cover problem, denoted by MINLBEXC and
defined in Section 2.8. Our algorithm is FPT if there is an FPT
solver of MINLBEXC for the given language of neighborhood con-
straints. By adapting known results [13], it follows that our algo-
rithm is FPT for the aforementioned constraint languages (regu-
lar expressions and circular-arc mux graphs). It should be noted
that some subtle changes in the latter cause MINPATTERN to be-
come W [1]-hard [13], thereby implying that an FPT algorithm for
TOPPATTERNS is unlikely to exist [7].

2. FORMAL SETTING
In this section, we describe the formal setting of this work and

give some basic notation.

2.1 Bag Notation
Recall that a bag (or multiset) is a pair b = (X,µb), where X

is a set and µb : X → N is a multiplicity function that maps every
element x ∈ X to its multiplicity µb(x) (which is a positive inte-
ger). To distinguish a bag from a set, we use double braces instead
of braces; for example, {0, 1, 1} is a set of size 2 (and is equal to
{0, 1}), whereas b = {{0, 1, 1}} is a bag of size 3 with µb(0) = 1
and µb(1) = 2.

We use] to denote bag union. Containment of bags takes mul-
tiplicities into account. Thus, given two bags b = (X,µb) and
b′ = (X ′, µb′), we say that b is a subbag of b′, denoted by b ⊆ b′,
if X ⊆ X ′ and µb(x) ≤ µb′(x) for all x ∈ X .

For a set B of bags, we define the containment closure of B,
denoted by JBK, as the set of bags

JBK def
=
⋃
b∈B

{b′ | b′ ⊆ b} ,

that is, JBK comprises all the bags of B and their subbags.

2.2 Labels and Regular Expressions
We fix an infinite set Σ of labels. The set of all the finite bags

of labels is denoted by FΣ. We assume that there is a total order≺
on Σ. To simplify our complexity analysis, we further assume that
σ1 ≺ σ2 can be tested in constant time (given σ1 and σ2).

Regular expressions over Σ are defined by the language

e := σ | ε | e∗ | e? | e e | e ∨ e

where σ ∈ Σ and ε is the empty string. A regular expression e
defines the language L(e), which is the set of all the strings over
Σ that match the expression e. We define the bag language Lb(e)
of e in the standard way (e.g., as in [1]): Lb(e) is the set of all the
bags b ∈ FΣ, such that the elements of b can be ordered to form
a word in L(e) (in other words, for some string x ∈ L(e), every
label has the same multiplicity in both x and b).

2.3 Graphs, Schemas and Patterns
We consider undirected graphs with labeled nodes. Section 8

extends our results to the directed variant of the problem we study.
For a graph g, the sets of nodes and edges are denoted by V(g) and
E(g), respectively. Note that an edge of E(g) is a set {u, v} ⊆ V(g)
where u 6= v. For a node v ∈ V(g), the label of v is denoted by

λg(v). If U is a subset of V(g), then λg(U) denotes the bag that
is obtained from U by replacing each node u with its label λg(u)
(that is, the multiplicity of each label σ is |{u ∈ U | λg(u) = σ}|).
Note that λg(v) ∈ Σ and λg(U) ∈ FΣ. For a node v of g, the set
of neighbors of v is denoted by nbrg(v). Usually, the graph g is
clear form the context, and then we may write just λ(v), λ(U) and
nbr(v) instead of λg(v), λg(U) and nbrg(v), respectively.

A tree is a connected and acyclic graph. A leaf is a node v that
is incident to at most one edge. A non-leaf node is internal. We use
leaves(t) and internal(t) to denote the set of all the leaves and the
set of all the internal nodes, respectively, of the tree t.

Graphs represent data and the valid ones are those that satisfy
the constraints imposed by the schema. We use lb-constraints (“lb”
stands for “label bags”), which are a specific type of neighborhood
constraints. Formally, an lb-constraint is a (possibly infinite) sub-
set of FΣ. A schema (or graph schema) S is a mapping over a
finite set of labels, denoted by dom(S). The schema S maps ev-
ery label σ ∈ dom(S) to an lb-constraint S(σ). A graph g con-
forms to S, denoted by g |= S, if for all nodes v ∈ V(g) it holds
that λ(v) ∈ dom(S) and λ(nbr(v)) ∈ S(λ(v)). That is, the bag
of labels appearing in the neighbors of v is an element of the lb-
constraint to which the label of v is mapped.

For complexity analysis, we assume that an lb-constraint is rep-
resented by an lb-specification, which is a finite string in the lan-
guage of the computational model at hand. In [13], several lan-
guages of lb-specifications are discussed. In one of them, a regular
expression e specifies the lb-constraint Lb(e); this is the language
we use in our examples throughout the paper.

A tree is called a pattern (a.k.a. twig pattern) when it denotes
an expression that is evaluated over a graph. Next, we discuss how
to define validity of patterns. Suppose, for example, that a schema
S maps the label σ to the lb-constraint {{{τ1, τ2}}, {{τ1, τ2, τ2}}}.
Thus, if a graph g conforms to S, then a node labeled with σ must
have either two or three neighbors, such that exactly one is labeled
with τ1 and the others—with τ2. However, a query may refer to
only some neighbors; for example, “find edges, such that one end-
point is labeled with σ and the other—with τ2.” We can express
this query by the pattern consisting of v1 and v2 connected by an
edge and labeled with σ and τ2, respectively. This pattern does
not conform to the schema S, because the node labeled with σ has
only one neighbor. However, as an expression over a graph that
conforms to S, this pattern does not violate the lb-constraint S(σ),
because the bag comprising the labels of the neighbors of v1 is con-
tained in some bag of S(σ). This example motivates the definition
of an S-pattern given below.

Let S be a schema. We denote by JSK the schema that is obtained
from S by replacing every S(σ) (where σ ∈ dom(S)) with its
containment closure JS(σ)K.

DEFINITION 2.1. Let S be a schema, let Λ ∈ FΣ be a finite
bag of labels, and let t be a tree. We say that t is an S-pattern if
t |= JSK, a Λ-pattern if Λ ⊆ λ(V(t)), and an (S,Λ)-pattern if t is
both an S-pattern and a Λ-pattern.

EXAMPLE 2.2. Let s′ be the graph at the top of Figure 1. We
define the schema S′ as follows. The labels of dom(S′) are the
eight nodes of s′ (i.e., exec, regular, etc.). For all σ ∈ dom(S′),
the lb-constraint S′(σ) comprises all the finite bags over the neigh-
bors of σ in the graph s′. For example, S′(dept) is the set that con-
sists of every bag that consists of manages, worksIn and pMember,
each appearing zero or more times. Let Λ be the bag at the bottom
of Figure 1, namely {{exec, project, regular}}. Every pattern in
Figure 2 is an (S′,Λ)-pattern (that describes a relationship involv-
ing a regular employee, an executive, and a project).

251

exec

manages dept

pMemberemp

regular

project

worksIn

regular, exec : emp
dept : manages worksIn∗ pMember∗

manages,worksIn : dept emp
emp : (regular | (exec manages∗)) worksIn∗ pMember∗

pMember : (emp | dept) project
project : pMember∗

∀σ, τ ∈ dom(S) : W (σ) = 0 , W (σ, τ) = 1

Λ = {{exec, project, regular}}

Figure 1: Schema S (given by regular expressions) and bag Λ

Let S be a schema with the same domain as S′, but now assume
that the lb-specifications are given by the regular expressions in
the middle of Figure 1. Hence, S(σ) is Lb(eσ), where eσ is the
regular expression assigned to σ in the middle of Figure 1. For
example, S(emp) = Lb(e), where e is the expression (regular |
(exec manages∗)) worksIn∗ pMember∗. In particular, note that
none of the bags of S(emp) contain both regular and exec, and
hence, t′1 is not an S-pattern. Similarly, none of the bags of S(emp)
contain both regular and manages, and therefore t′2 is not an S-
pattern as well. On the other hand, the reader can verify that each
ti (1 ≤ i ≤ 4) is an (S,Λ)-pattern.

2.4 Non-Redundant Patterns
To define of a non-redundant pattern, we fix a label ? ∈ Σ that is

assumed to be never used in the schema S and the bag Λ of labels.
An output designation of a Λ-pattern t is a tree t′ that is obtained
as follows. We choose |Λ| nodes of t whose labels form the same
bag as Λ and designate them as the output; we then replace the
label of every non-output node with ?. A Λ-pattern is basic if it has
no proper subtree that is also a Λ-pattern (i.e., removing any leaf
results in a non-Λ-pattern). A Λ-pattern is non-redundant if some
output designation converts it into a basic Λ-pattern.4

EXAMPLE 2.3. Consider again the Λ-patterns t1, . . . , t4 of Fig-
ure 2. Each of t1, t2 and t4 is basic and, hence, non-redundant. The
pattern t3 is not basic, because if we remove the project node at
the top left (which is a leaf), the result is still a Λ-pattern. How-
ever, t3 is non-redundant, because it becomes basic if the output
designation includes the left project node. Note that if we choose
the right project node for the output, then t3 does not become
basic. Given the bag Λ′ = {{exec, regular}}, only t1 is a non-
redundant (and also basic) Λ′-pattern, while each of t2, t3 and t4 is
a redundant Λ′-pattern.

An easy observation is that a Λ-pattern t is non-redundant if and
only if no label has a higher multiplicity among the leaves of t than
in Λ. For later use, we record this observation as a proposition.

PROPOSITION 2.4. Let Λ be a bag of labels. A tree t is a non-
redundant Λ-pattern if and only if λ(leaves(t)) ⊆ Λ ⊆ λ(V(t)).

4In [13], basic and non-redundant Λ-patterns are called non-redundant and
weakly non-redundant, respectively.

t2t1

t′1 t′2

t3

t4

dept

pMember

emp

project

pMember

pMember

project

regular

regular

emp

exec

worksIn

emp

emp

worksIn

manages

regular exec

emp

pMember

project

regular exec

empemp

project

pMember

dept

managesworksIn

regular

emp

pMember

exec

emp

pMember

project project

pMember

project

exec exec

emp

regular

emp

manages

dept

Figure 2: Non-redundant Λ-patterns ti under S (Figure 1), and
t′i under S′ (Example 2.2), for Λ = {{exec, project, regular}}

2.5 Weights
When extracting patterns from schemas, some labels may be

preferred over others, and some relationships could be viewed as
stronger than others. To accommodate that, a schema may as-
sign weights to labels and edges. Formally, a weight function for a
schema S is a mapping W : dom(S) ∪ (dom(S) × dom(S)) →
[0,∞) that is symmetric over dom(S) × dom(S). By symmetric
we mean that W (σ, τ) = W (τ, σ) for all σ and τ in dom(S).

A weight function W for S is naturally extended to any graph g
over dom(S) by defining W (g) as follows.

W (g)
def
=
∑
v∈V(g)

W (λ(v)) +
∑

{u,v}∈E(g)

W (λ(u), λ(v)) (1)

A weighted schema comprises a schema S and a weight function
W for S, and is denoted by SW . However, when W is irrelevant,
we may omit it from SW . In particular, “S-pattern” and “SW -
pattern” have the same meaning.

EXAMPLE 2.5. Consider again the schema S of Figure 1. The
figure also defines a weight function W , so the figure actually de-
fines a weighted schema SW . Let W ′ be the same as W , except
that W ′(project, pMember) = 2 and W ′(pMember, project) =
2. Now, consider the trees t1, t2 and t3 of Figure 2. The reader
can easily verify that W ′(t1) = 4 ∗ 1 + 2 ∗ 2 = 8, W ′(t2) =
7 ∗ 1 + 1 ∗ 2 = 9, and W ′(t3) = 4 ∗ 1 + 3 ∗ 2 = 10.

In [13], we studied the problem MINPATTERN, namely, finding a
minimal pattern.

PROBLEM 2.6. The problem MINPATTERN accepts as input a
weighted schema SW and a bag Λ ∈ FΣ. The goal is to find a
minimal (S,Λ)-pattern.

2.6 Top-k Patterns
Consider a weighted schema SW and a bag Λ ∈ FΣ. Let k be

a natural number. We say that T is a top-k set of (S,Λ)-patterns if
|T | = k and all of the following hold.

1. No two distinct members of T are isomorphic.

2. Each (S,Λ)-pattern in T is non-redundant.

3. For all non-redundant (S,Λ)-patterns t′, either t′ is isomor-
phic to some t ∈ T , or W (t′) ≥W (t) for all t ∈ T .

252

If there are only k′ < k non-redundant and pairwise non-isomorphic
(S,Λ)-patterns, then a top-k set is defined to be a top-k′ set.

EXAMPLE 2.7. We continue with our running example, where
the schema SW and the bag Λ are those of Figure 1. Now, con-
sider the patterns ti in Figure 2. The reader can verify that t1 is the
minimal (S,Λ)-pattern. Hence, {t1} is the unique top-1 set. Sim-
ilarly, the second-minimal (S,Λ)-pattern is t3, and hence, {t1, t3}
is a top-2 set. Finally, each of t2 and t4 is a third-minimal (S,Λ)-
pattern, and therefore both {t1, t3, t2} and {t1, t3, t4} are top-3
sets. Of course, if we used some other weight function W , then
these top-k sets could be different.

Our main contribution is an algorithm for TOPPATTERNS, which
generalizes MINPATTERN (finding a minimum-weight (S,Λ)-pattern)
to the problem of finding a top-k set of (S,Λ)-patterns.

PROBLEM 2.8. The problem TOPPATTERNS accepts as input a
weighted schema SW , a bag Λ ∈ FΣ and a natural number k. The
goal is to find a top-k set of (S,Λ)-patterns.

2.7 Complexity Measure
The complexity of TOPPATTERNS (MINPATTERN being a special

case) depends on the language for lb-specifications in use. How-
ever, even for extremely simple languages, finding a minimum-
weight (S,Λ)-pattern is already NP-hard [13]. Nevertheless, in
practical scenarios the input bag Λ is typically very small, because
it corresponds to a user query. Thus, our main yardstick for effi-
ciency is fixed-parameter tractability [4, 7], where |Λ| is the pa-
rameter. Formally, an algorithm for solving MINPATTERN is Fixed-
Parameter Tractable (abbr. FPT) if its running time is bounded by
a function of the form f(|Λ|) · p(‖SW ‖), where f(m) is a com-
putable function (e.g., 2m), p(n) is a polynomial, and ‖SW ‖ is the
size of the representation of SW . (Usually, we do not formally de-
fine ‖SW ‖, but rather assume a simple encoding.) A weaker yard-
stick for efficiency, in the spirit of data complexity [22], is polyno-
mial time under the assumption that |Λ| is fixed.

For simplicity of analysis, we assume that each arithmetic oper-
ation (which is always addition in this paper) has a unit cost.

2.8 Labeled-Bag Cover
In the remainder of the paper we give an FPT algorithm for

TOPPATTERNS. The algorithm is a reduction to a variant of the prob-
lem minimum labeled-bag cover [13]. This problem, which we de-
note by MINLBC, is the following. The input consists of a bag Γ,
an lb-constraint B, and a set C of triples ∆ = (b, τ, w), where b is a
bag, τ ∈ Σ is the label of ∆, andw ∈ [0,∞) is the weight of ∆. A
legal cover (of Γ by C) is a bag {{∆1, . . . ,∆n}}, such that each ∆i

is a triple (bi, τi, wi) in C, Γ ⊆
⊎n
i=1 bi and {{τ1, . . . , τn}} ∈ JBK;

the weight of the legal cover is the sum
∑n
i=1 wi. As in the ordi-

nary set-cover problem, the goal is to find a legal cover that has a
minimal weight. The problem minimum labeled-bag exact cover,
which we denote by MINLBEXC, is the same as MINLBC, except
that the legal cover {{∆1, . . . ,∆n}} is now required to be such that
Γ is equal to (and not just a subbag of)

⊎n
i=1 bi.

In [13], it was shown that MINLBC, parameterized by |Γ|, is FPT
if lb-specifications are in the language of regular expressions. Es-
sentially the same algorithm (with very minor changes) works for
MINLBEXC. Hence, we have the following theorem.5

THEOREM 2.9. If lb-specifications are regular expressions, then
MINLBEXC can be solved in time polynomial in the input size and
2|Γ| (hence, MINLBEXC is FPT when parameterized by |Γ|).
5The same result holds for the case where lb-specifications are
given as circular-arc mux graphs [13].

3. MAIN RESULT
The main result of this paper is that TOPPATTERNS is FPT when-

ever MINLBEXC is FPT.

THEOREM 3.1. The following holds for any language of lb-
specifications. If MINLBEXC (parameterized by |Γ|) is FPT, then
TOPPATTERNS (parameterized by |Λ|) is FPT in ‖SW ‖ and k.

By combining Theorem 3.1 with Theorem 2.9, we get the fol-
lowing result.5

COROLLARY 3.2. If lb-specifications are regular expressions,
then TOPPATTERNS (parameterized by |Λ|) is FPT in ‖SW ‖ and k.

We now discuss the implication of Theorem 3.1 on the complex-
ity of TOPPATTERNS when Λ is of a fixed size (rather than a pa-
rameter). Let c be a natural number. The definition of c-bounded
TOPPATTERNS is the same as TOPPATTERNS, except that we make the
assumption that |Λ| ≤ c (note that there is no restriction on the size
of the schema S). Similarly, |Γ| ≤ c in c-bounded MINLBEXC. For
a language of lb-specifications, containment checking is the prob-
lem of testing whether b ∈ JBK, when the input is a bag b ∈ FΣ

and an lb-constraintB represented by an lb-specification. The prob-
lem c-bounded containment checking is the same as containment
checking, except that |b| ≤ c is assumed. It is straightforward to
show that a polynomial-time procedure for c-bounded containment
checking is sufficient for efficiently solving c-bounded MINLBEXC.
We get the following corollary of Theorem 3.1, relating c-bounded
TOPPATTERNS to c-bounded containment checking.

COROLLARY 3.3. Let c be a fixed natural number. For a lan-
guage of lb-specifications, if c-bounded containment checking is in
polynomial time, then c-bounded TOPPATTERNS can be computed in
polynomial time in ‖SW ‖ and k.

In the following sections, we first assume that Λ is a set rather
than a general bag, that is, the multiplicity of each label in Λ is 1.
In Section 8, we show how to extend our results to a general Λ.

4. ADAPTING LAWLER-MURTY’S
REDUCTION

Lawler-Murty’s reduction [15,19] is a general technique for top-
k problems (Lawler [15] generalized Yen’s algorithm [23] for find-
ing k-shortest simple paths between two given nodes in a graph).
Essentially, that technique efficiently reduces a top-k problem to
a constrained optimization problem. The latter is the problem of
finding the best (namely, top-1) solution under some constraints. In
order to apply Lawler-Murty’s reduction to a specific top-k prob-
lem, we should provide an efficient algorithm for the constrained
optimization problem.

In Yen’s algorithm [23] for k-shortest paths as well as in some
other cases (e.g., [5, 11]), the top-k results can be viewed as sub-
structures of the input, and so can the generated constraints. For
example, in some applications [5,11,23] the input includes a graph,
the results are paths or subtrees of that graph, and the constraints
are inclusions and exclusions of edges. As another example, in
Lawler’s generalization [15] the input contains Boolean variables,
the results are (scored) truth assignments to these variables, and
constraints are partial truth assignments. That, however, is no longer
true when applying Lawler-Murty’s reduction to the problem of ex-
tracting the top-k patterns from a schema—there could be infinitely
many patterns, and there is no bound on their size (in particular, a
result could be larger than the input). In turn, those patterns give

253

rise to constraints of an unbounded size (and again, a constraint
could be larger than the input). Therefore, we cannot (or at least
it is not clear how to) represent and handle constraints in the same
manner that Lawler-Murty’s reduction does. In the next section, we
adapt Lawler-Murty’s reduction to the case of this paper.

4.1 Adaptation
We first describe an abstraction of top-k problems. Given an

input x, the top-k objects to be found are not parts of x (e.g., sub-
trees) or assignments to Boolean variables given in x. Instead, each
instance of the input is an encoding of infinitely many objects and
their weights. Formally, an instance x comprises a finite alphabet
Γx and a weight functionwx : Γ∗x → R∪{∞}, where Γ∗x is the set
of all finite strings over Γx. A top-strings problem is defined over
a set P of instances as follows. Given an instance x ∈ P and a nat-
ural number k, the goal is to find a set T ⊆ Γ∗x with the following
two properties:

1. |T | = k.

2. wx(t) ≤ wx(s) for all t ∈ T and s ∈ Γ∗x \ T .

As for computational complexity, each instance x ∈ P is rep-
resented by some finite string, and we denote by ‖x‖ the length of
this string. We assume the following. First, the alphabet Γx can be
computed in polynomial time in ‖x‖. Second, the weight wx(s),
where s is a string in Γ∗x, can be computed in polynomial time in
‖x‖ and |s| (the latter is the length of the string s).

COMMENT 4.1. We allow ∞ as a possible weight in order to
model strings that are of no interest. Alternatively, we could assume
thatwx is undefined for such strings. However, assuming that every
string has a weight (even though it could be∞) results in a simpler
abstraction.

If s and t are strings, then we denote by s �prfx t the fact that s
is a prefix of t. Note that we do not assume that the weight function
wx is monotone. That is, it could be the case that wx(s) > wx(t)
even if s �prfx t.

A constrained optimization problem is an essential part of Lawler-
Murty’s reduction, and we now describe its abstraction. The goal of
a prefix-constrained optimization problem (or just prefix optimiza-
tion for short) is to find a minimum-weight string that has a given
prefix u. More formally:

PROBLEM 4.2. Let P be a set of instances. Prefix optimization
over P is the following problem. Given x ∈ P and u ∈ Γ∗x, find a
string t ∈ Γ∗x such that:

1. u �prfx t.

2. wx(t) ≤ wx(s) for all s ∈ Γ∗x with u �prfx s.

An algorithm that solves the prefix optimization over P is called
a prefix optimizer for P . In particular, a prefix optimizer A gets
as input an instance x ∈ P and a string u ∈ Γ∗x, and outputs a
string A(x,u) ∈ Γ∗x. To simplify our complexity analysis, we
assume thatA returns the weight ofA(x,u) in addition to the string
A(x,u) itself (hence, there is no need to explicitly account for the
cost of computing the weight).

In our adaptation of Lawler-Murty’s reduction, a top-strings prob-
lem is solved by means of a prefix optimizer. The role of the prefix
u is to encode the constraints that the solution t = A(x,u) must
satisfy. (Note that the size u is not limited by that of x.) The time
needed to solve a top-strings problem is determined by two factors:
the running time of the prefix optimizer A and the size of the string

A(x,u). We use the monotone functions f and g in order to state
upper bounds on the former and the latter, respectively. The size
of A(x,u) affects the running time, because A(x,u) may be used
to create prefix constraints that subsequent solutions should satisfy.
The formal result is given by the next theorem.

THEOREM 4.3 (ADAPTED LAWLER-MURTY’S REDUCTION).
Let A be a prefix optimizer for P , such that the running time of A
is bounded by f(‖x‖, |u|) and |A(x,u)| < g(‖x‖) + |u|. Then in
O
(
k2 · |Γx| · g(‖x‖) · f(‖x‖, k · g(‖x‖))

)
time, we can solve the

top-strings problem over P .

In the following section, we formulate TOPPATTERNS as a top-
strings problem. Later we show that TOPPATTERNS is FPT by de-
vising a prefix optimizer and applying Theorem 4.3.

5. SERIALIZING PATTERNS
In this section, we formulate TOPPATTERNS as a top-strings prob-

lem. The set P of instances comprises all pairs (SW ,Λ), where
SW is a weighted schema and Λ is a set of labels. For x =
(SW ,Λ), we define the alphabet Γx to be dom(S) ∪ {�}, where
� is a special symbol that is not in Σ. Later, we will show how
the symbol � will be used for representing the structure of the tree
(rather than the labels on its nodes). The strings in Γ∗x represent the
objects to be generated by TOPPATTERNS, namely, non-redundant
(S,Λ)-patterns. Therefore, we should define how a non-redundant
(S,Λ)-pattern is serialized, that is, encoded as a string over Γx.
Actually, we define a function ser that maps every non-redundant
Λ-pattern t to a string over Γx, provided that t has only labels of
dom(S). If a string s represents a non-redundant (S,Λ)-pattern
t (i.e., s = ser(t)), then its weight wx(s) is W (t); otherwise,
wx(s) =∞.

The serialization ser needs to be sound in the sense that two non-
redundant Λ-patterns are mapped to the same string if and only if
they are isomorphic; that is, ser(t1) = ser(t2) if and only if t1 and
t2 are isomorphic Λ-patterns. The serialization should also be com-
plete in the sense that ser(t) is defined for every non-redundant Λ-
pattern t. However, ser is not necessarily surjective, that is, some
strings of Γ∗x might not correspond to any Λ-pattern and, hence,
their weight is infinity. Finally, we need to devise the mapping ser
so that it will be possible to efficiently solve the prefix optimization.

Next, we explain the mapping ser . Suppose that t is a non-
redundant Λ-pattern with q + 1 leaves. By our assumption (in
Section 3) that Λ is a set, Proposition 2.4 implies that the labels
of all the leaves are different from one another and all of them be-
long to Λ. Recall that ≺ is a total order over Σ. Hence, all the
leaves of t can be arranged in a unique sequence (v0, v1, . . . , vq),
such that λ(vi−1) ≺ λ(vi) for all i ∈ {1, . . . , q}. We denote this
sequence by l(t) and use it to construct ser(t) in two steps. Let
pi (1 ≤ i ≤ q) be the unique shortest path of t from vi−1 to vi.
An ascending-leaf traversal of t is done as follows. We start by
traversing the nodes of p1 from v0 to v1. Then, we continue from
the first unvisited node of p2 to v2, and so on. The traversal ends at
leaf vq of pq . For a node u of t, we define time(u) = i if u is the
ith node to be visited. Note that time(v0) = 1 and time(vq) is the
number of nodes in t. Observe that the ascending-leaf traversal is
unique, and each node is visited exactly once. Hence, time(u) is
fully determined by t and u.

EXAMPLE 5.1. Consider the schema S and the set Λ of Fig-
ure 1. In our examples, we assume that ≺ is the dictionary order;
particularly, dept ≺ exec ≺ project ≺ regular. Consider the
trees of Figure 3 (where t1 and t3 are also in Figure 2). The trees

254

1

3

9

3

6

1

3

4

5

5

1

3

5

10

6

6

2

6

2

1

4

3

2

5

7

4

2

53

4

6

2

1

7

4

5

8

8

1

6

2

7

7

4

t′3t7

t1 t5t3

t6

worksIn

emp

regular

pMember

project project

emp

pMember

exec

emp

regular

pMember

project

pMember

emp

exec

project

dept

project

pMember

emp

exec

pMember

emp

regular

emppMember

deptdept

worksIn

emp

exec

pMember

project

dept

worksIn

emp

exec

pMember

project

pMember

execproject

dept

Figure 3: Visit times in ascending-leaf traversal

t1 and t3 are non-redundant Λ-patterns, and t5 is a non-redundant
Λ′-pattern for Λ′ = Λ∪{dept}. The trees t6, t7 and t′3 are all non-
redundant Λ′′-patterns for Λ′′ = {dept, exec, project}. Next to
each node u in Figure 3, time(u) is written in a grey circle.

An easy observation is that except for v0, every node u of t has
a unique neighbor u′ such that time(u′) < time(u); we define
∆(v0) = 1 and ∆(u) = time(u) − time(u′). Finally, the string
ser(t) is obtained by iterating over the nodes u of t in ascending
time(u), and for each u writing down ∆(u)− 1 occurrences of �
followed by the label λ(u). (Recall that � is the special symbol
that belongs to every Γx but not to Σ.) As becomes apparent in
the next example, if a label in ser(t) is followed by a �, then its
corresponding node in t is a leaf.

EXAMPLE 5.2. Consider again the trees of Figure 3.

ser(t1) = exec, emp, pMember, project, pMember, emp, regular

In particular, ser(t1) does not contain � because t1 is a path. But
this is not the case for ser(t3).

ser(t3) =exec, emp, pMember, project, pMember, project,

�, emp, regular

For t5 we have:

ser(t5) =dept, pMember, project, pMember, emp, exec

�,�,�, pMember, project,�, emp, regular

Finally, consider the trees t6 and t7 of Figure 3. While ser(t6)
starts with exec, the string ser(t7) starts with dept. The reason is
that dept ≺ exec and dept is a leaf in t7 but not in t6.

Clearly, ser is complete, that is, defined for every non-redundant
Λ-pattern t. The following proposition shows that it is also sound.

PROPOSITION 5.3. Two non-redundant Λ-patterns t1 and t2
are isomorphic if and only if ser(t1) = ser(t2).

In order to obtain an algorithm for TOPPATTERNS by applying
Theorem 4.3, we need to solve the following prefix-optimization
problem.

2 33 41 4 12

5

execworksIn dept worksIndept emp execemp

pMember

Figure 4: The left part is tree(dept, worksIn, emp, exec),
which is also tree(dept, worksIn, emp, exec,�); the right part
is tree(dept, worksIn, emp, exec,�, pMember)

PROBLEM 5.4. For instances x = (SW ,Λ), prefix optimiza-
tion is the following problem. Given a weighted schema SW , a
set Λ of labels and a string u ∈ Γ∗x, find a minimal-weight, non-
redundant (S,Λ)-pattern t such that u �prfx ser(t), or determine
that no such t exists.6

EXAMPLE 5.5. Let SW be our usual schema (Figure 1), and let
Λ be the set {dept, exec, project}. Consider again the patterns
of Figure 3.

Let u = exec, emp. Then t6 satisfies u �prfx ser(t6). But
for t7 it is not true that u �prfx ser(t7), since ser(t7) begins
with dept. It can be shown that t6 is a minimal (S,Λ)-pattern t
satisfying u �prfx ser(t); therefore, t6 is a solution to the prefix
optimization for the input SW , Λ and u.

Let v = dept, worksIn, emp, exec,�. The tree t7 satisfies
v �prfx ser(t7). Now, v �prfx ser(t′3) is also true, but t′3 is not
an S-pattern because the worksIn node has two dept neighbors.

Next suppose that w = dept, worksIn, emp, exec,�,�. Then
w �prfx ser(t′3), but again, t′3 is not an S-pattern. Actually, it is
easy to show that no (S,Λ)-pattern t satisfies w �prfx ser(t).

In the following two sections, we present an algorithm for the
prefix optimization over instances x = (SW ,Λ).

6. PREFIX OPTIMIZATION BY
LEAF CONSTRAINTS

This section shows how to reduce the prefix optimization (stated
in Problem 5.4) to the task of finding a minimal (S,Λ)-pattern un-
der leaf constraints. So, for this section, we fix the input SW , Λ
and u. Recall that the goal is to find a minimum-weight,7 non-
redundant8 (S,Λ)-pattern t such that u �prfx ser(t), or determine
that no such t exists.

6.1 Consistency
We first discuss the issue of the consistency of the prefix u. We

say that u is a consistent prefix for Λ if there exists a non-redundant
Λ-pattern t, such that u �prfx ser(t). Note that consistency does
not take the schema S into account. In particular, consistency of u
does not necessarily imply that there exists a non-redundant (S,Λ)-
pattern t, such that u �prfx ser(t).

Testing consistency can be done by trying to construct a subtree
of a non-redundant Λ-pattern from u, as described next. If we suc-
ceed, then we denote this subtree by tree(u).

We say that a label is ordinary if it is different from �. Let u
have n occurrences of ordinary labels. We partition u into seg-
ments s1, . . . , sn. The segment si begins at the ith occurrence of
6If no such t exists, then formally we return u, which has an infinite weight,
and which can be represented by some special symbol (like null).
7Minimum weight does not guarantee non-redundancy, because some
nodes and edges may have zero weight.
8The pattern we are looking for must be non-redundant, because ser is well
defined only for non-redundant patterns.

255

an ordinary label and continues until the next one. Thus, si be-
gins with an ordinary label followed by zero or more occurrences
of �. For each si, we create a node vi that has the ordinary la-
bel that appears in si. For all i, we define9 index(vi) = i and set
cnt(vi) to the number of � in si. We say that vi is a definite leaf if
i = 1 or cnt(vi) > 0. We create an edge {vi, vj}, where i < j, if
index(vi) = index(vj)−cnt(vj−1)−1. Figure 4 shows examples
of trees created in this way.

The construction may fail for three main reasons. First, it is not
well defined if there is a j > 1, such that index(vj)−cnt(vj−1)−
1 ≤ 0. Second, it creates a tree t that is inconsistent with u. This
happens if there are vj and vi, such that index(vi) = index(vj)−
cnt(vj−1)−1 and vi is a definite leaf. It also happens if cnt(vn) >
0, but for every v that is not a definite leaf, index(v) > index(vn)−
cnt(vn)− 1.

The last reason for failure is inconsistency with Λ. This happens
if one of the following holds. First, either t is not a Λ-pattern or
cnt(vn) > 0, but some definite leaf has the largest (under ≺) label
of Λ. Second, the label of some definite leaf is not in Λ. Third, there
are two definite leaves u and v, such that index(v) > index(u),
but λ(v) ≺ λ(u).

If the construction does not fail, then we can add a path p from
a certain node v of tree(u), such that: v is not a definite leaf, and
the path p includes all the labels of Λ that are missing from tree(u)
and ends in a leaf labeled with the largest element of Λ. Hence, we
succeed if and only if u is a consistent prefix for Λ.

In the sequel, vlast denotes the node of tree(u) with the largest
index (i.e., vn) and klast denotes cnt(vn) (i.e., the number of � at
the end of u).

6.2 General Reduction
The reduction we present in this section is general in the sense

that it does not depend on a particular language of lb-specifications.
Suppose that u is a consistent prefix for Λ. The goal is to ex-

pand tree(u) into a minimum-weight (S,Λ)-pattern tmin, such that
u �prfx ser(tmin). Expanding tree(u) in one particular way is
done by choosing some nodes of tree(u) and adding a subtree to
each one of them. Obviously, there are many ways of choosing the
nodes and subtrees, and we should consider all of them in order to
find tmin. Conceptually, we do it in two stages. Firstly, we create
all possible subtrees for each node v of tree(u) and, secondly, we
consider all combinations of those subtrees.

There are several constraints that should be satisfied by each ex-
pansion of tree(u). We take care of some of those constraints (such
as conformity to the schema S) in the first stage, as explained in the
next section. In the second stage, the main concern is that the re-
sulting expansion will be a Λ-pattern. We should choose subtrees
so that together with tree(u) they form an exact cover of Λ. We do
it by using a MINLBEXC solver (see Section 2.8).

The input to the MINLBEXC solver is obtained as follows. For
each node v of tree(u), we pick a unique label lv and create triples
of the form (L, lv, w), where L ⊆ Λ. Each triple (L, lv, w) corre-
sponds to a minimum-weight (S,L)-pattern t′ that satisfies some
constraints (as explained later), and w is the weight of t′. Thus, L
is the set of labels that t′ can contribute to an exact cover of Λ if we
add t′ to tree(u) (by merging its root10 with node v). Note that the
labels lv are needed only for the MINLBEXC solver, and we assume
that they do not appear Γ∗x, where x is the instance (SW ,Λ).

We first explain intuitively how the triples (L, lv, w) are created

9The idea is that in an ascending-leaf traversal of the generated tree,
time(v) = index(v).

10In this section, we use the term “root” informally. We fully define it in the
next section.

and then give the formal details. For example, if v is a node of
tree(u), such that its label λ(v) is in Λ, then we create the triple
({λ(v)}, lv, 0). This triple means that v can contribute λ(v) to the
exact cover just by itself; that is, without adding a subtree at v and,
hence, the weight is 0. Observe that if v is a definite leaf of u, then
this is the only triple we can create for v, because v cannot have
children in any expansion t of tree(u), such that u �prfx ser(t).

Let v′ and v′′ be two consecutive leaves in an ascending-leaf
traversal of some tree t. The fact that v′′ is the next leaf after v′

follows just from the labels of the leaves; it is not affected at all by
the relative positions of v′ and v′′ in t. Thus, if we add some new
subtrees to t, we can continue an existing ascending-leaf traversal
of t provided that two conditions are satisfied. First, the new sub-
trees are not rooted at existing leaves. Second, the labels of all new
leaves are greater (under ≺) than those of all existing leaves.

However, in our case, the situation is a bit more complicated,
because we want to continue a partial traversal, which is given by
the prefix u. So, for example, if klast > 0 (i.e., u ends with one
or more �), then a new node that is added at the end of u can
be connected to an existing non-leaf node v only if index(v) <
index(vlast) − klast. This means the following. Suppose that we
add some subtrees to existing non-leaf nodes. Then the subtree that
has the next leaf (in the traversal) can be connected only to some of
the existing non-leaf nodes, but the other subtrees can be connected
to any one of them.

Suppose that the last label of u is that of vlast (i.e., klast = 0).
The first label l added at the end of u makes vlast a leaf (if l = �) or
continues the path to the next leaf in the traversal (if l is ordinary).
Either way (similarly to the case of klast > 0), the initial expansion
of u determines the next leaf (after the last definite leaf of u) or is
on the path that leads to the next leaf, which we denote by vnext.
After reaching vnext, we can continue the traversal to the other new
leaves provided that their labels are greater than λ(vnext).

It thus follows that the label of the first definite leaf vnext after
those already in u, determines which triples (L, lv, w) should be
added to the input for the MINLBEXC solver. (That label also im-
plies some constraints that will be described shortly.) Therefore, we
should consider all the possible choices for the label ξ of λ(vnext);
for each one of them, we should create the appropriate input for the
MINLBEXC solver, and then find a minimum-weight (S,Λ)-pattern
tξmin. The desired (S,Λ)-pattern tmin is a minimum pattern among
all the tξmin. As choices for ξ, we should consider every label in
dom(S) that is greater than all the labels of the definite leaves of
tree(u).

Next, we fully describe how to create the triples (L, lv, w) once
we choose a particular ξ as the label of vnext. In most triples, the
weight is initially unknown and we denote it by ⊥. Each triple
(L, lv,⊥) corresponds to a minimum-weight L-pattern11 tξv[L] that
satisfies some constraints, as explained in the next section. We find
tξv[L] using the algorithm of Section 7, and its weight w updates
the triple to (L, lv, w).

Let D be the set of labels that appear in the definite leaves. Next
are the four rules for creating triples for a given ξ.

Rule 1. For each node v 6= vlast, such that λ(v) ∈ Λ and λ(v) 6=
ξ, we create the triple ({λ(v)}, lv, 0). We apply this rule also to
vlast if it is a definite leaf (in this case λ(vlast) ≺ ξ).

As explained earlier, a triple ({λ(v)}, lv, 0) means that v can
contribute λ(v) to the exact cover just by itself; that is, without
adding a subtree at v and, hence, the weight is 0. This is the only

11A triple does not mention the ξ for which it was created, to avoid cum-
bersome notation. However, ξ appears in the corresponding pattern tξv [L],
because ξ imposes some constraints on tξv [L], as explained later.

256

rule that applies to definite leaves. If vlast is not a definite leaf,
then only the third rule applies to it. Applying this rule requires
that λ(v) 6= ξ, because ξ should be contributed to the exact cover
by a triple that either the third or fourth rule creates.

Rule 2. For each v that is neither vlast nor a definite leaf, we
create the triples (L, lv,⊥) for all nonempty subsets L of Λ − D
such that ξ 6∈ L.

This rule says that nodes of tree(u) that are definitely internal
(i.e., not leaves) can be merged with the root of a new L-pattern if
its leaves are labeled by neither ξ nor the label of any definite leaf.

Rule 3. If vlast is not a definite leaf, we create (L, lvlast ,⊥) for
every L such that ξ ∈ L ⊆ Λ −D. If λ(vlast) = ξ, then we also
create the triple ({ξ}, lvlast , 0), because vlast can contribute ξ just
by itself.

This rule creates the triples corresponding to patterns that could
be merged with vlast. Hence, they cannot contribute any label ofD
to the exact cover. However, they must contain the next leaf vnext

to be visited. Therefore, the label ξ chosen for vnext must appear
in L, since (L, lvlast ,⊥) corresponds to a non-redundant L-pattern
tξv[L]. We later show how to handle the constraint that ξ should be
the label of a leaf in tξv[L].

Rule 4. If vlast is a definite leaf (i.e., klast > 0), then we consider
every node v, such that v is not a definite leaf and index(v) <
index(vlast) − klast. We create for v the triples (L, lv,⊥) for all
L such that ξ ∈ L ⊆ Λ−D.

This rule creates the triples corresponding to patterns that contain
vnext. As explained earlier, these patterns can be merged only with
some of the non-leaf nodes of tree(u). Similarly to the previous
rule, the leaves of tξv[L] cannot have any label of D, but one of
them must be labeled with ξ.

When L = {λ(v)}, the rules may create both (L, lv,⊥) and
(L, lv, 0). In this case, the former is discarded.

After constructing the triples, we replace ⊥ with the appropri-
ate weight in each (L, lv,⊥). We do it by finding the correspond-
ing pattern tξv[L] (see Section 7). The triple (L, lv,⊥) is updated
to (L, lv, w), where w = W (tξv[L]) − W (λ(v)). We subtract
W (λ(v)) from the weight of tξv[L], because v and the root of tξv[L]
are going to be merged and, hence, the weight of these two nodes
should be counted only once. Let Cξ be the resulting set of triples.

The input to the MINLBEXC solver comprises Cξ, Λ (i.e., the set
to be covered) and the lb-constraint B that we now explain. Each
node v is merged with at most one subtree; hence, the exact cover
should have at most one triple for v. So, we specify B by the regu-
lar expression lv1?lv2? . . . lvn?, where v1, . . . , vn are the nodes of
tree(u). The four rules guarantee that only the definite leaves can
contribute their labels to the exact cover; moreover, ξ will be the
label of the next leaf (after the last definite leaf of tree(u)) in the
ascending-leaf traversal of the expansion tξmin of tree(u).

The algorithm is given in Figure 5. Line 1 finds the set P of all
labels that are greater than the label of every definite leaf. Line 2
creates the unique label for each variable; note that these labels are
used only for finding the exact cover, and the labels of tree(u) are
unchanged. The loop of line 3 iterates over all the labels ξ of P .
For each ξ, line 4 creates the triples according to the four rules.
The loop of line 5 iterates over all the triples of the form (L, lv,⊥)
(i.e., the weight is undefined). Line 6 uses the algorithm of Sec-
tion 7 to find a minimum-weight pattern tξv[L] that corresponds to
(L, lv,⊥). Line 7 tests if tξv[L] exists. If so, line 8 updates the
weight; otherwise the triple is discarded in line 10. Line 11 finds a
minimum-weight exact cover. Line 12 tests if the cover exists. If
so, for every tξv[L] that corresponds to a triple in the exact cover,
line 13 merges the root of tξv[L] with node v of tree(u). The re-

Algorithm PrefixToLeaf(SW ,Λ,u)

1: P ← {ξ ∈ Λ | for all labels l of definite leaves, l ≺ ξ}
2: Create a unique label lv for each v ∈ V(tree(u)) {These

labels are needed for the exact cover}
3: for all labels ξ ∈ P do
4: Construct the set of triples Cξ (rules in the text)
5: for all (L, lv,⊥) ∈ Cξ do
6: compute the corresponding tξv[L] (alg. in Sec. 7)
7: if tξv[L] exists then
8: replace ⊥ with the weight of tξv[L]
9: else

10: delete (L, lv,⊥) from Cξ
11: Mξ ← a minimal exact cover of Λ from Cξ, such that

each lv appears at most once
12: if Mξ exists then
13: tξmin ← the expansion of tree(u) with the patterns cor-

responding to the triples of Mξ

14: return a tξmin with the minimum weight

Figure 5: General reduction of prefix optimization to
minimum-weight pattern under leaf constraints

sulting tree is assigned to tξmin. Line 14 returns a minimum-weight
pattern among all the tξmin that were found.

In the next section, we precisely define the trees tξv[L].

6.3 Constrained Minimal Patterns
Some of the constraints that the construction of each tξmin should

satisfy are incorporated either in the rules for creating the triples
or in the regular expression B. Now, we discuss the rest of those
constraints.

First, we need to verify that tree(u) is an S-pattern; if not, it
cannot be expanded into an (S,Λ)-pattern. Our main result (The-
orem 3.1) is for all the languages of lb-specifications, such that
MINLBEXC is FPT. Therefore, we have to check that tree(u) is
an S-pattern by reducing this problem to MINLBEXC. Thus, for
each node v of tree(u), we construct the following instance of
MINLBEXC. There is a triple ({σ}, σ, 1) for each occurrence of
a label σ in the bag λ(nbr(v)). The bag to be covered is λ(nbr(v))
and the lb-constraint is S(λ(v)). Clearly, there is an exact cover if
and only if λ(nbr(v)) ∈ JS(λ(v))K.

Recall that we add a tree tξv[L] to tree(u) at node v. To make
this operation well defined, we require tξv[L] to have a node vr that
is designated as the root. We do not include vr among the leaves,
even if it has only one neighbor. The label of vr , denoted by lr , is
λ(v) since vr has to be merged with v.

The algorithm that finds tξv[L] creates an S-pattern. Thus, we
only need to make sure that when merging the root vr of tξv[L] with
v, the resulting node v̂ still satisfies λ(nbr(v̂)) ∈ JS(λ(v))K. So,
we associate vr with the lb-constraint Br , rather than S(lr). We
get Br as follows. Let b = λ(nbr(v)) (i.e., the bag of labels of the
neighbors of v in tree(u)). B−b is obtained from B by

B−b
def
= {b′ | b] b′ ∈ B}. (2)

Finally, Br = S(lr)−b.
Recall that in the third and fourth rules of the previous section,

ξ is required to be the label of a leaf in tξv[L]. Moreover, by the
definition of ξ, all labels l ∈ Λ, such that l ≺ ξ, can appear only
in non-leaf nodes of tξv[L]. Thus, we use two sets LF, nLF ⊆ L

257

of leaf constraints (where LF and nLF stand for “leaf” and “non-
leaf,” respectively). The set LF consists of the labels that must
appear in leaf nodes. The set nLF comprises the labels that may
appear only in non-leaf nodes. The pattern tξv[L] should satisfy
LF ⊆ λ(leaves(tξv[L])) ⊆ L \ nLF. In summary, nLF = {l | l ∈
Λ ∧ l ≺ ξ} and LF = {ξ | ξ ∈ L} (i.e., LF is empty if ξ is not in
L; otherwise, LF is the singleton {ξ}).

Formally, the problem leaf-constrained minimal pattern, denoted
by MINLCPATTERN, generalizes MINPATTERN when the bag of la-
bels is a set. The input consists of a weighted schema SW , a set L
of labels, a root label lr , an lb-constraint Br for the root, and two
sets LF, nLF ⊆ L of leaf and non-leaf constraints, respectively.
An (S,L)-pattern t with a root vr is satisfactory if the following
conditions hold.

1. λ(vr) = lr and λ(nbr(vr)) ∈ JBrK.

2. LF ⊆ λ(leaves(t)) ⊆ L \ nLF.

In Condition 2, the meaning of⊆ is bag containment; in particular,
λ(leaves(t)) ⊆ L \ nLF implies that no two leaves of t have the
same label. Note that Condition 2 implies non-redundancy with
respect to Λ. In MINLCPATTERN, the goal is to find a satisfactory
(S,L)-pattern of a minimum weight.

A MINLCPATTERN solver is an algorithm for MINLCPATTERN.
The input for the solver consists of six arguments: SW , L, lr , Br ,
LF and nLF. Each of L, LF and nLF is a subset of Λ. Recall that
Br = S(lr)−b, where b is the bag of labels of the neighbors of
a node in tree(u). We assume that Br is represented by b, and
we check b̂ ∈ JB−bK by testing b̂] b ∈ JBK. We further assume
that |b| ≤ |Λ|, because the degree of any node in a non-redundant
(S,Λ)-pattern is at most |Λ|. Therefore, we only need to bound the
running time of the solver by a function of SW and Λ. The next
lemma gives the formal result of this section.

LEMMA 6.1. Consider a language for lb-specifications. If a
MINLCPATTERN solver runs in time bounded by h(‖SW ‖, |Λ|), then
there is a prefix optimizerA for TOPPATTERNS, such that the follow-
ing hold for a given input comprising x = (SW ,Λ) and u.

1. A runs in time bounded by a function f(‖SW ‖, |Λ|, |u|) that
is a polynomial in h(‖SW ‖, |Λ|), 2|Λ| and |u|.

2. |A(x,u)| ≤ g(‖x‖) + |u| where g(‖x‖) = 2|dom(S)|2|Λ|.

Part 1 of the lemma uses Theorem 2.9, because PrefixToLeaf (Fig-
ure 5) calls a MINLBEXC solver with a regular expression as the lb-
constraint. Note that the function f(‖SW ‖, |Λ|, |u|) in Lemma 6.1
has the same role as the function f(‖x‖, |u|) in Theorem 4.3, ex-
cept that in the former x is broken into its two components (SW and
Λ) to describe different dependencies of f on their sizes. Part 2 re-
quires the observation that no matter which MINLCPATTERN solver
is used, we can always post-process its output so that the total num-
ber of nodes that our prefix optimizer (i.e., the algorithm of Fig-
ure 5) adds to tree(u) is at most 2|dom(S)|2|Λ|.

7. HANDLING LEAF CONSTRAINTS
Next, we describe the algorithm MinLCP of Figure 6 for solving

MINLCPATTERN. This algorithm extends FindMinPattern of [13]
by also handling leaf constraints.12

The input consists of a weighted schema SW , a set L of labels,
a root label lr , an lb-constraint Br , and leaf constraints LF, nLF ⊆

12The notation we use in this section is similar, but not identical, to that
of [13].

Λ. The goal is to find a satisfactory (S,L)-pattern of a minimal
weight. We assume that LF ∩ nLF = ∅ or else there is no such an
(S,L)-pattern.

For every label π in dom(S), the algorithm has an array T π . An
index of T π consists of a label σ in dom(S) and a nonempty subset
N of L. Throughout the execution, T π[σ,N] is either⊥ (i.e., null)
or a tree t. Let π/t denote the tree that is obtained by creating a
new root vr with the label π and adding an edge from vr to root(t)
(which denotes the root of t). We say that t is (π, σ,N)-proper if
all of the following hold.

• The root of t is labeled with σ.

• Both t and π/t are (S,N)-patterns.

• LF ∩N ⊆ λ(leaves(π/t)) ⊆ N \ nLF.

During the execution of the algorithm, if T π[σ,N] is non-null, then
it is (π, σ,N)-proper. Note that in the special case where N =
{σ}, the tree t may contain only one node, but not when σ ∈ nLF
or else we have that leaves(π/t) ∩ nLF 6= ∅.

We create trees by combining smaller ones. Each entry of the
T π may be updated several times during the execution of the al-
gorithm. The priority queue Q stores all the triples 〈π, σ,N〉. Pri-
ority in Q is determined by the weight of the tree T π[σ,N]; a
higher weight means a lower priority. The weight of ⊥ is infin-
ity; hence, 〈π, σ,N〉 has the lowest priority if T π[σ,N] = ⊥.
When 〈π, σ,N〉 is removed from the top of Q, its corresponding
T π[σ,N] has a minimal weight among all the (π, σ,N)-proper
trees; namely, T π[σ,N] has obtained its final value.

By definition, a (π, σ,N)-proper tree exists only if the labels
π and σ can be neighbors according to the given schema S, that
is, {{σ}} ∈ JS(π)K and {{π}} ∈ JS(σ)K. If this condition holds,
we write S |= π σ. We can test whether S |= π σ by applying
(twice) the reduction to MINLBEXC that is described in Section 6.3.

The main idea for updating T π[σ,N] is to find h trees ti =
T σ[τi,Mi] (1 ≤ i ≤ h), such that the Mi are a minimal ex-
act cover of N . The triples for this instance of MINLBEXC are
(Mi, τi,W (ti)) and the lb-constraint is S(σ)−{{π}}. We should
verify that S |= π σ and the leaf constraints hold. If so, we create
a new root vr with the label σ, connect vr to the roots of the ti and
assign the result to T π[σ,N].

The pseudo code of MinLCP (Figure 6) consists of the main pro-
cedure and three subroutines. The subroutine Initialize() is called
in line 1 of the main procedure. In that subroutine, line 1 initial-
izesQ to the empty priority queue. The loop of line 2 iterates over
all the pairs π and σ. Lines 3–5 initialize T π[σ,N] to ⊥ and in-
sert 〈π, σ,N〉 into Q for all nonempty subsets N of L. Finally,
lines 6–7 check whether σ is in L but not in nLF; if so, T π[σ, {σ}]
is assigned a new tree t that consists of a single node vr , such that
vr is the root and its label is σ. We assume that the procedure
singletonRTree(σ) constructs and returns that tree. However, be-
fore line 7 sets T π[σ, {σ}] to t, line 6 also checks that S |= π σ.

After initialization, the main procedure executes the loop of line 2.
The top triple 〈π, σ,N〉 is removed from Q, and then line 5 calls
the subroutine Update, which has three arguments: a label π, a
label σ and an lb-constraint B. This subroutine implements the
main idea mentioned earlier. In particular, it tries to improve all
the T π[σ,N] under the restriction that the new root vr satisfies
λ(nbr(vr)) ∈ JBK. In line 5, B is the lb-constraint S(σ)−{{π}}
(rather than S(σ)), because the definition of a (π, σ,N)-proper tree
requires that we can add a neighbor labeled with π to the root vr .

The third argument S(σ)−{{π}} in line 5 is represented by {{π}},
because σ is already the second argument of Update; similarly, for

258

the call in line 6 (as explained in Section 6.3, the argument Br is
actually S(lr)−b for some (small) bag b of labels).

The subroutine Update(π, σ,B) calls Assmbl in order to create
the new tree t from t1, . . . , th, as mentioned earlier. Line 3 of
Assmbl calls singletonRTree(σ) to initialize t to a tree comprising
just the new root vr . The loop of line 4 makes each ti a subtree of
t by connecting root(ti) to vr .

The search for t1, . . . , th is done by a reduction to the following
instance I of MINLBEXC. Lines 1–5 of Update construct the set
C that consists of all triples (M, τ,w), such that T σ[τ,M] 6= ⊥
and w = W (T σ[τ,M]). The bag of labels (of the instance I) is
a nonempty subset N of L and the lb-constraint is B. The triples
of a legal cover correspond to the entries of T σ that form the trees
t1, . . . , th mentioned earlier. To simplify the pseudo code, line 6
simultaneously solves the MINLBEXC problem for all nonempty
subsets N of L. Hence, L (rather than some N) is the first argu-
ment of the call to ExactMinCovers in line 6. That call returns the
array MinCovers that has an index N for every nonempty subset
N of L. MinCovers[N] is a minimal exact cover of N (or ⊥ if
none exists). Line 7 iterates over all nonempty subsets N of L to
construct the rooted tree t that is assigned to T π[σ,N]. Here, four
cases are considered.

• σ /∈ N . In this case, t is constructed from the trees that
correspond to the triples of MinCovers[N]—the minimal
exact cover of N .

• σ ∈ N ∩ LF and |N | > 1. We do the same as in the pre-
vious case. Note that if σ ∈ N ∩ LF and |N | = 1, then
T π[σ,N] is assigned its final value in the initialization. Fur-
thermore, since we create the tree only from MinCovers[N]
(and never from MinCovers[N \ {σ}]), an induction shows
that σ must be the label of a leaf.

• σ ∈ N \ (LF ∪ nLF) and |N | > 1. In this case, t is con-
structed from the minimal cover among MinCovers[N] and
MinCovers[N \ {σ}]. Note that if σ ∈ N \ (LF ∪ nLF)
and |N | = 1, then T π[σ,N] is assigned its final value in the
initialization.

• σ ∈ N∩nLF and |N | > 1. We do the same as in the previous
case. Note that when σ ∈ N ∩ nLF, the initialization does
not create a tree for σ. Hence, it is easy to show by induction
that the algorithm never creates a tree having a leaf labeled
with σ.

The first two cases are handled in lines 8–9 of Update, and the
last two—in lines 10–11. In lines 9 and 11, there is no need to
compare the new value with the previous one, because the weight
of T π[σ,N] can only decrease (this is certainly true when it is
changed from ⊥ to a non-null value, and an easy induction shows
that it is always true).

In the main procedure, after the loop of line 2 terminates, we
create the output t by calling Update in line 6. The second and
third arguments are the root label lr and the lb-constraint Br that
the root should satisfy. There is no need to require that root(t) can
have an additional neighbor labeled with some π. Hence, the call
in line 6 does not have a test of the form S |= π σ (in contrast
to line 4). Furthermore, the first argument of Update (in line 6)
is the special symbol ? which is not in dom(S). Note that ? is
only needed to indicate that Update assigns its result to T ?[lr, L].
In addition, in line 6 of Update, we now have to find a minimal
exact cover only for L, rather than every nonempty subset N of L.
Similarly, the loop of line 7 also has to consider only L.

Algorithm MinLCP(SW , L, lr,Br, LF, nLF)

1: Initialize()
2: whileQ 6= ∅ do
3: 〈σ, σ′, N〉 ← Q.pop()
4: for all π ∈ dom(S) where S |= π σ do
5: Update(π, σ, S(σ)−{{π}})
6: Update(?, lr,Br)
7: return T ?[lr, L]

Subroutine Initialize()

1: Q ← empty priority queue
2: for all π, σ ∈ dom(S) do
3: for all nonempty N ⊆ L do
4: T π[σ,N]← ⊥
5: Q.insert(〈π, σ,N〉)
6: if σ ∈ L \ nLF and S |= π σ then
7: T π[σ, {σ}]← singletonRTree(σ)

Subroutine Update(π, σ,B)

1: C ← ∅
2: for all τ ∈ dom(S) and M ⊆ L do
3: t← T σ[τ,M]
4: if t 6= ⊥ then
5: C ← C ∪ {(M, τ,W (t))}
6: MinCovers ← ExactMinCovers(L,B, C)
7: for all nonempty N ⊆ L do
8: if σ /∈ N or (σ ∈ LF and |N | > 1) then
9: T π[σ,N]← Assmbl(σ,MinCovers[N])

10: if σ ∈ N \ LF and |N | > 1 then
11: T π[σ,N] ← min. of Assmbl(σ,MinCovers[N]) and

Assmbl(σ,MinCovers[N \ {σ}])

Subroutine Assmbl(σ, C′)

1: if C′ = ⊥ then
2: return ⊥
3: t← singletonRTree(σ)
4: for all (M, τ,w) ∈ C′ do
5: tM ← T σ[τ,M]
6: add tM as a subtree of t immediately below root(t)
7: return t

Figure 6: Finding a minimal leaf-constrained (S,L)-pattern

7.1 Correctness and Efficiency
Correctness of the algorithm MinLCP is by the next lemma. The

proof is similar to showing correctness of two algorithms: one is
FindMinPattern [13] and the other finds a minimal Steiner tree [12].

LEMMA 7.1. Whenever line 3 of MinLCP pops 〈σ, σ′, N〉 from
Q, it holds that T σ[σ′, N] is either a minimal (σ, σ′, N)-proper
tree, or ⊥ if no such tree exists.

The next theorem states the correctness of MinLCP, which is
implied by Lemma 7.1. It also gives the dependency of the run-
ning time on the input and on the running time of ExactMinCovers,

259

which is a solver for MINLBEXC that is discussed in Section 2.8.
Recall our assumptions (in Section 6.3) that L, LF, nLF ⊆ Λ, and
that Br = S(lr)−b is represented by a bag b, where |b| ≤ |Λ.

THEOREM 7.2. As output, MinLCP(SW , L, lr,Br, LF, nLF) re-
turns a minimal-weight satisfactory (S,L)-pattern or ⊥ if no such
pattern exists (hence, MinLCP is a MINLCPATTERN solver). The
number of operations and function calls is polynomial in 2|Λ| ·
|dom(S)|.

Theorem 7.2, together with Lemma 6.1 and Theorem 4.3, imply
our main result (Theorem 3.1) when Λ is a set.

8. GENERALIZING THE ALGORITHM
We first discuss how to generalize our main result to the case

where Λ is a bag. In Section 5, we use l(t) to denote the unique
string of the leaves of an (S,Λ)-pattern t, according to the order
≺ defined on Σ. When Λ is a bag, l(t) is non-decreasing and no
longer unique. Consequently, there may be more than one way
to serialize t. We let ser∗(t) denote the set of all the different
serializations. Observe that for two (S,Λ)-patterns t1 and t2, we
have that ser∗(t1) and ser∗(t2) are either the same (if t1 and t2
are isomorphic) or disjoint (otherwise).

Theorem 4.3 enables us to enumerate only strings. So, we are
forced to find all the strings of a ser∗(t) before we can find any
string that represents an (S,Λ)-pattern having a larger weight than
that of t. However, it is easy to show that for all (S,Λ)-patterns t,
the cardinality of ser∗(t) is bounded by ×Λ, which is the product
of the multiplicities over the different elements of Λ. As a result, we
are guaranteed to find a top-k set of (S,Λ)-patterns by producing a
top-k′ set of strings, where k′ = ×Λ · k.

Some technical details need to be adjusted in Sections 6 and 7.
They are mostly straightforward and will be described in the full
version. Regarding Section 6, an important observation is that, even
when Λ is a bag, we can still find each tree tξv[L] independently of
the other ones. We also need to adjust the definition of the prob-
lem MINLCPATTERN (and consequently the algorithm MinLCP) to
accommodate the fact that L is a bag. In MINLCPATTERN, we treat
a constraint σ ∈ LF as “at least one leaf has the label σ,” while a
constraint σ ∈ nLF means “none of the leaves have the label σ.”
The algorithm MinLCP is mostly unchanged, except for the han-
dling of the constraints in the set LF, which is done as follows. For
each σ ∈ LF, we define a special new label σl that replaces σ in LF
and also replaces one occurrence of σ in L (which is now a bag);
of course, we also add σl to dom(S). In the procedure Initialize,
we set T π[σ, {{σl}}] to singletonRTree(σ) for each σl ∈ LF and
π, such that S |= π σ.

Finally, we mention the generalization to patterns with directed
edges. In [13], it is shown how to define lb-constraints and schemas
for the directed case. Theorem 3.1 can be extended to directed
schemas. The needed adjustments will be given in the full version.

9. CONCLUSIONS
This work continues [13], where we laid the framework for query

extraction from a schema with neighborhood constraints, gave an
FPT reduction from MINPATTERN to MINLBC (with the bag Λ of
labels as the parameter), and devised FPT algorithms for MINLBC
under two languages of lb-constraints, namely, regular expressions

and circular-arc mux graphs. The algorithm presented here is an
FPT reduction from TOPPATTERNS to MINLBEXC. Straightforward
adaptations of the algorithms of [13] for MINLBC give FPT algo-
rithms for MINLBEXC, and thus an FPT algorithm for TOPPATTERNS,
under the above two languages. The main components of our algo-
rithm are an adaptation of Lawler-Murty’s procedure, serialization
of a non-redundant (S,Λ)-pattern, reduction of prefix optimization
to the problem MINLCPATTERN that entails leaf constraints, and fi-
nally an algorithm for MINLCPATTERN. An important future goal is
to implement this algorithm and optimize it to the level of practical-
ity needed for dealing with large schemas. For instance, an inter-
esting question is to what extent parallelization techniques for (the
ordinary) Lawler-Murty’s procedure [6] can improve efficiency of
the overall algorithm.

10. REFERENCES
[1] C. Beeri and T. Milo. Schemas for integration and translation of structured and

semi-structured data. In ICDT, pages 296–313. Springer, 1999.
[2] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan. Keyword

searching and browsing in databases using BANKS. In ICDE, pages 431–440.
IEEE, 2002.

[3] S. Cohen, Y. Kanza, B. Kimelfeld, and Y. Sagiv. Interconnection semantics for
keyword search in XML. In CIKM, pages 389–396. ACM, 2005.

[4] R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs in
Computer Science. Springer, 1999.

[5] K. Golenberg, B. Kimelfeld, and Y. Sagiv. Keyword proximity search in
complex data graphs. In SIGMOD Conference, pages 927–940. ACM, 2008.

[6] K. Golenberg, B. Kimelfeld, and Y. Sagiv. Optimizing and parallelizing ranked
enumeration. PVLDB, 4(11):1028–1039, 2011.

[7] M. Grohe and J. Flum. Parameterized Complexity Theory. Theoretical
Computer Science. Springer, 2006.

[8] H. Hamacher and M. Queyranne. K-best solutions to combinatorial
optimization problems. Annals of Operations Research, 4:123–143, 1985/6.

[9] V. Hristidis and Y. Papakonstantinou. DISCOVER: Keyword search in
relational databases. In VLDB, pages 670–681. Morgan Kaufmann, 2002.

[10] A. Kemper, D. Kossmann, and B. Zeller. Performance tuning for SAP R/3.
IEEE Data Eng. Bull., 22(2):32–39, 1999.

[11] B. Kimelfeld and Y. Sagiv. Finding and approximating top-k answers in
keyword proximity search. In PODS, pages 173–182. ACM, 2006.

[12] B. Kimelfeld and Y. Sagiv. New algorithms for computing Steiner trees for a
fixed number of terminals. Accessible from the first author’s home page, 2006.

[13] B. Kimelfeld and Y. Sagiv. Finding a minimal tree pattern under neighborhood
constraints. In PODS, pages 235–246. ACM, 2011.

[14] B. Kimelfeld, Y. Sagiv, and G. Weber. ExQueX: exploring and querying XML
documents. In SIGMOD Conference, pages 1103–1106. ACM, 2009.

[15] E. L. Lawler. A procedure for computing the k best solutions to discrete
optimization problems and its application to the shortest path problem.
Management Science, 18(7):401–405, 1972.

[16] Y. Li, C. Yu, and H. V. Jagadish. Schema-free XQuery. In VLDB, pages 72–83.
Morgan Kaufmann, 2004.

[17] Y. Luo, W. Wang, and X. Lin. SPARK: A keyword search engine on relational
databases. In ICDE, pages 1552–1555. IEEE, 2008.

[18] A. Markowetz, Y. Yang, and D. Papadias. Keyword search over relational tables
and streams. ACM Trans. Database Syst., 34(3), 2009.

[19] K. G. Murty. An algorithm for ranking all the assignments in order of
increasing cost. Operations Research, 16(3):682–687, 1968.

[20] L. Qin, J. X. Yu, and L. Chang. Keyword search in databases: the power of
RDBMS. In SIGMOD Conference, pages 681–694. ACM, 2009.

[21] P. P. Talukdar, M. Jacob, M. S. Mehmood, K. Crammer, Z. G. Ives, F. Pereira,
and S. Guha. Learning to create data-integrating queries. PVLDB,
1(1):785–796, 2008.

[22] M. Y. Vardi. The complexity of relational query languages (extended abstract).
In Proceedings of the Fourteenth Annual ACM Symposium on Theory of
Computing, pages 137–146. ACM, 1982.

[23] J. Y. Yen. Finding the k shortest loopless paths in a network. Management
Science, 17:712–716, 1971.

[24] G. Zenz, X. Zhou, E. Minack, W. Siberski, and W. Nejdl. From keywords to
semantic queries - incremental query construction on the semantic Web. J. Web
Sem., 7(3):166–176, 2009.

260

